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Context: inverse problems in signal/image processing

Microscopy Parallel MRI Mass spectrometry
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Context: variational formulation

y = H

Observation matrix

x

Original signal

+ w

Noise

Objective: Find an estimation x̂ ∈ R
N of x from y.

⇒ Define estimate x̂ as a solution to minimize
x∈RN

F (x) .

Observation model

✗ No closed form minimizer for F  iterative method required.

✗ Large size of the problem (at least, N = 106 variables.)
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Context: variational formulation

y = H

Observation matrix

x

Original signal

+ w

Noise

Objective: Find an estimation x̂ ∈ R
N of x from y.

⇒ Define estimate x̂ as a solution to minimize
x∈RN

F (x) .

Observation model

In the context of large scale problems, how to find an optimization
algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement ?

?
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A unified framework: Majorize-Minimize principle

Problem: Find x̂ ∈ Argminx∈RN F (x)

For all x′ ∈ R
N , let Q(., x′) a tangent majorant of F at x′ i.e.,

(∀x ∈ R
N) Q(x, x′) > F (x) and Q(x′, x′) = F (x′)

MM algorithm:

(∀k ∈ N)

xk+1 ∈ Argminx∈RN Q(x, xk)

xk xk+1

F (.)

Q(., xk)

⋆ Quadratic majorants  tractable inner minimization step
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Outline

MM framework: A simple and elegant methodology to build
optimization algorithms for solving inverse problems of signal and
image processing.

However: A need for modernization !

Outline:

➀ Convergence analysis in the nonconvex case

➁ Block alternating and parallel strategies

➂ Stochastic optimization at a large scale

➃ Data augmentation in the Bayesian framework
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➀ - Convergence analysis in the nonconvex case
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Motivations

Nonconvexity in inverse problems:
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Sparse signal recovery Phase retrieval

Spectral unmixing Blind deconvolution

How to design fast optimization algorithms with established
convergence guarantees on their iterates in the nonconvex setting?

?
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An essential tool: Kurdyka- Lojasiewicz inequality

Function F satisfies the Kurdyka- Lojasiewicz inequality i.e., for every ξ ∈ R,
and, for every bounded subset E of RN , there exist three constants κ > 0,
ζ > 0 and θ ∈ [0, 1) such that

(
∀t ∈ ∂F (x)

)
‖t‖ ≥ κ|F (x) − ξ|θ,

for every x ∈ E such that |F (x) − ξ| ≤ ζ.

⋆ Satisfied for a wide class of non necessarily convex functions :

• real analytic functions
• semi-algebraic functions
• ...

⋆ Key ingredient to prove convergence of iterates under suitable
descent properties
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An essential tool: Kurdyka- Lojasiewicz inequality

Function F satisfies the Kurdyka- Lojasiewicz inequality i.e., for every ξ ∈ R,
and, for every bounded subset E of RN , there exist three constants κ > 0,
ζ > 0 and θ ∈ [0, 1) such that

(
∀t ∈ ∂F (x)

)
‖t‖ ≥ κ|F (x) − ξ|θ,

for every x ∈ E such that |F (x) − ξ| ≤ ζ.

⋆ Satisfied for a wide class of non necessarily convex functions :

• real analytic functions
• semi-algebraic functions
• ...

⋆ Key ingredient to prove convergence of iterates under suitable
descent properties ➨Provided by the MM framework .
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Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

⋆ Minimize differentiable and nonconvex function F on R
N .

At each iteration k ∈ N:

➊ Build a quadratic majorant function Q(·, xk) of F at xk .

➋ Minimize it within the subspace spanned by the columns
of a matrix Dk ∈ R

N×Mk .

✘ MM algorithm : rank(Dk) = N  Large computational cost.
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Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

⋆ Minimize differentiable and nonconvex function F on R
N .

At each iteration k ∈ N:

➊ Build a quadratic majorant function Q(·, xk) of F at xk .

➋ Minimize it within the subspace spanned by the columns
of a matrix Dk ∈ R

N×Mk .

✘ MM algorithm : rank(Dk) = N  Large computational cost.

☛ 3MG algorithm : Mk = 2 and Dk = [∇F (xk) | xk − xk−1].

✓ Convergence of the sequence (xk)k∈N to a critical point
of F under KL assumption.

✓ 3MG algorithm outperforms state-of-the-art optimization
algorithms in many image processing applications.
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Application to parallel MRI [Florescu et al. - 2014]

(Joint work with Ph. Ciuciu, CEA Neurospin)

Challenges :

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

◮ Nonconvex smoothed ℓ0 prior on wavelet coefficients

Results :

Original 3MG result 3MG result
(convex) (nonconvex)
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Application to parallel MRI [Florescu et al. - 2014]

(Joint work with Ph. Ciuciu, CEA Neurospin)

Challenges :

◮ Parallel acquisition and compressive sensing

◮ Complex-valued signals

◮ Nonconvex smoothed ℓ0 prior on wavelet coefficients

Results :
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Variable metric FB algorithm [Chouzenoux et al., 2014]

(PhD Thesis of Audrey Repetti)

⋆ Minimize F = f1 + f2 with f1 Lipschitz-differentiable and f2 non smooth .

⇒ Forward-backward algorithm: gradient steps on f1 and proximal steps on f2:

(∀k ∈ N) xk+1 = proxθk f2 (xk − θk∇f1(xk)) .

✘ slow convergence in practice.
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Variable metric FB algorithm [Chouzenoux et al., 2014]

(PhD Thesis of Audrey Repetti)

⋆ Minimize F = f1 + f2 with f1 Lipschitz-differentiable and f2 non smooth .

⇒ Forward-backward algorithm: gradient steps on f1 and proximal steps on f2:

☛ Use MM framework to propose an efficient variable metric strategy:

(∀k ∈ N) xk+1 = proxθ−1
k Ak ,f2

(
xk − θkA

−1
k ∇f1(xk)

)
.

✓ Convergence of the sequence (xk)k∈N
to a critical point of F

under KL assumption.

✓ Robustness to errors in the computation of the proximity
operator within the metric.

✓ Efficient construction of the preconditioning matrices
thanks to the MM framework.
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Application to image reconstruction

y = Hx + w(Hx)

with H Radon projector, and w(Hx) non homogeneous
Gaussian noise ( ≈ Poisson-Gaussian model).
 nonconvex data fidelity term.

Observation model
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➁ - Block alternating and parallel strategies
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Block alternating strategy

The vector of unknowns x is partitioned into block subsets.
At each iteration, one or several blocks are updated.

x = x(1) x(j) x(J)

Practical advantages:

✓ Control of memory for large scale image processing (eg, 3D, video).

✓ Flexibility of alternating scheme suitable to blind/unmixing problems.

✓ A first step towards parallel and distributed implementation.

How to find efficient and reliable block alternating schemes for
nonconvex and/or non differentiable optimization problems ? ?
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Block coordinate VMFB algorithm [Chouzenoux et al., 2016]

(PhD Thesis of Audrey Repetti)

⋆ Minimize F = f1 + f2 with f1 smooth and f2 non differentiable.
At each iteration k ∈ N:

➊ Choose a block index jk ∈ {1, . . . , J} according to a quasi-cyclic rule.

➋ Perform a gradient step on the restriction of f1 to block jk , using a
MM preconditioner.

➌ Perform a proximal step on the restriction of f2 to block jk , within
the MM metric.

✓ Convergence guarantees on the sequence (xk)k∈N under KL
assumption.

✓ Experimental validation in numerous applications of
image/signal processing (eg, phase retrieval, spectral unmixing, blind
deconvolution).
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Application to seismic data recovery [Repetti et al., 2015]

(Joint work with L. Duval, IFPEN)

0 100 200 300 400 500 600 700

y

x y = h ∗ x + w with x original sparse

signal and h unknown filter ⇒ blind
deconvolution problem.
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Application to seismic data recovery [Repetti et al., 2015]

(Joint work with L. Duval, IFPEN)
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1 y = h ∗ x + w with x original sparse

signal and h unknown filter ⇒ blind
deconvolution problem.

✓ Proposition of a novel nonconvex penalty for sparse signals:
smoothed version of the ℓ1/ℓ2 prior.

✓ Application of the BC-VMFB algorithm alternating between x and h.
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Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of

proximity operators of composite functions F =
∑J

j=1 fj ◦ Aj ? ?
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Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of

proximity operators of composite functions F =
∑J

j=1 fj ◦ Aj ? ?

⋆ Apply the block coordinate VMFB to the dual problem ⇔ dual ascent
technique [Abboud et al., 2016]:

✓ Acceleration thanks to MM preconditioning strategy.

✓ Convergence guarantees on the primal and dual iterates.
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Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of

proximity operators of composite functions F =
∑J

j=1 fj ◦ Aj ? ?

⋆ Apply the block coordinate VMFB to the dual problem ⇔ dual ascent
technique [Abboud et al., 2016]:

✓ Acceleration thanks to MM preconditioning strategy.

✓ Convergence guarantees on the primal and dual iterates.

⋆ Introduction of a consensus constraint decomposed into hyperedges of a
connected hypergraph ⇔ distributed implementation [Abboud et al., 2015]:

✓ Suitable to multicore computing architectures.

✓ Convergence guarantees on the primal and dual iterates.
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Application to video restoration

(Joint work with J.-H. Chenot and L. Laborelli, INA)

At each frame t ∈ {1, . . . ,T} : yt = St(h ∗ xt ) + wt

with St decimation operator and h horizontal blur.

Observation model
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Acceleration using distributed implementation
(joint work with H. Talbot, LIGM)
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Parallel 3MG algorithm [Cadoni et al., 2016]

How to make 3MG algorithm efficient for parallel implementation ?

At each iteration k ∈ N:

➊ Choose a subset of block indexes Sk ⊂ {1, . . . , J}.

➋ Update the selected blocks using a 3MG step performed in parallel
thanks to a block-diagonal MM metric.

Iteration k

x(1)

x(J)

Core 1
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Core 4
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◮ Application to 3D image
deblurring with space-variant
PSF (CNRS OPTIMISM
project).

◮ SPMD implementation on
Matlab Parallel Toolbox.

◮ Great potential for
parallelization.
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➂ - Stochastic optimization at a large scale
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Problem statement

minimize
x∈RN

(
F (x)=

1

2
E(‖yj − h⊤j x‖

2) + Ψ(x)

)Stochastic problem

⋆ The second-order statistics of (hj , yj)j≥1 are estimated online in
an adaptive manner.

Numerous applications:
∗ supervised classification ∗ linear prediction/interpolation
∗ inverse problems ∗ echo cancellation
∗ system identification ∗ channel equalization

How to find a fast and flexible stochastic optimization algorithm
with theoretical convergence guarantees ?

?
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Stochastic 3MG algorithm [Chouzenoux and Pesquet, 2017]

At each iteration j ∈ N
∗:

➊ Build an estimate of the objective function:

(∀x ∈ R
N) Fj(x) =

1

2j

j∑

k=1

‖yk − h⊤k x‖
2 + Ψ(x)

➋ Construct a quadratic majorant for Fj .

➌ Minimize in a memory gradient subspace.

➍ Perform recursive updates of the second-order statistics.

✓ Convergence guarantees on the sequence (xj)j≥1.

✓ Reduced complexity thanks to recursive update scheme.

✓ Convergence rate analysis in stochastic and batch case
([Chouzenoux and Pesquet, 2016]).
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Application to sparse adaptive filtering

x

(wj)j≥1

(yj)j≥1(hj)j≥1 Unknown filter

Random input signal
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[Chouzenoux et al., 2014]
[Kopsinis et al., 2011]
[Chen et al, 2010]
[Meng et al., 2011]
[Werner et al., 2007]

◮ x: sparse linear filter with abrupt
change at j = 2500.

◮ S3MG algorithm with forgetting
factor and smoothed ℓ0 penalty.

◮ Minimal estimation error, and good
tracking properties.
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➃ - Data augmentation in the Bayesian framework
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Motivation: Bayesian formulation

We observe y ∈ R
N according to the model y = Hx + w. We seek for

an entire distribution describing Θ = {x,H, . . .}:

posterior

p(Θ|y) =

likelihood

p(y|Θ)

prior

p(Θ)
∫

p(y|Θ′)p(Θ′) dΘ′

p(z): marginal density

Bayes framework

How to find fast and flexible Bayesian algorithms for approximating
p(Θ|y) in the context of large scale inverse problems ? ?

☛ Take advantages from optimization tools developed in the
deterministic framework.
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Optimization tool: Half-quadratic strategies

(PhD Thesis of Yosra Marnissi)

⋆ For a wide class of cost functions F in inverse problems:

(∀x ∈ R
N) F (x) = argmin

b∈RP

Φ(x, b)

with x 7→ Φ(x, b) quadratic and b 7→ Φ(x, b) separable.
☛ Minimize F using an alternating minimization scheme on Φ

➨ Half-quadratic algorithm ⇔ MM quadratic algorithm.

Half-quadratic scheme
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Optimization tool: Half-quadratic strategies

(PhD Thesis of Yosra Marnissi)

⋆ For a wide class of cost functions F in inverse problems:

(∀x ∈ R
N) F (x) = argmin

b∈RP

Φ(x, b)

with x 7→ Φ(x, b) quadratic and b 7→ Φ(x, b) separable.
☛ Minimize F using an alternating minimization scheme on Φ

➨ Half-quadratic algorithm ⇔ MM quadratic algorithm.

Half-quadratic scheme

In the Bayesian setting:

Quadratic⇒ Gaussian statistics
Separable ⇒ Independent statistics

}
Efficient strategies available
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Fast variational Bayesian approach [Marnissi et al., 2017]

Target parameters: Θ = {x, γ}
Bayes variational strategy: Approximate p(Θ|y) by a separable
density q(Θ) = qX (x)qΓ(γ) = argmin

q

KL(q(Θ)‖p(Θ|y)).

➊ Replace p(Θ|y) by an augmented function L(Θ|y;ω,λ) resulting
from half-quadratic construction strategies.

➋ Minimize the distance KL(qX (x)qΓ(γ)‖L(Θ|y;ω,λ)) using an
alternating scheme on (qX (x), qΓ(γ),ω,λ).

Application to image deblurring with
Poisson-Gaussian noise (ANR GRAPHSIP)

✓ Flexibility of the half-quadratic
construction.

✓ Reduced computational cost.

✓ Automatic determination of the
regularization parameter.
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Accelerated MH algorithm [Marnissi et al., 2016a]

(Joint work with A. Benazza, SUPCOM Tunis)

⋆ Metropolis-Hastings sampling method to explore p(Θ | y):
For every iteration k ∈ N:

➊ Generate Θ̃k from a proposal distribution of density g(·|Θk).

➋ Accept Θk+1 = Θ̃k with probability min
(

1, p(Θ̃k |y)g(Θ̃k |Θk )

p(Θk |y)g(Θk |Θ̃k )

)
.

✗ Slow convergence in the context of large scale problems.
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Accelerated MH algorithm [Marnissi et al., 2016a]

(Joint work with A. Benazza, SUPCOM Tunis)

⋆ Metropolis-Hastings sampling method to explore p(Θ | y):
For every iteration k ∈ N:

➊ Generate Θ̃k from a proposal distribution of density g(·|Θk).

➋ Accept Θk+1 = Θ̃k with probability min
(

1, p(Θ̃k |y)g(Θ̃k |Θk )

p(Θk |y)g(Θk |Θ̃k )

)
.

☛ 3MH: Langevin proposal with MM preconditioning

Θ̃k ∼ N
(
Θk + ǫ

2

2 A(Θk)−1∇ log p(Θk | y), ǫ2A(Θk)−1
)

☛ Data augmentation to facilitate preconditioning.

✓ Geometric ergodicity of the generated Markov chain.

✓ Good practical performance on image/signal restoration
problems.
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Application to image deblurring [Marnissi et al., 2016b]

◮ Restoration of a multispectral cube degraded by blur
and noise.

◮ GMEP prior on wavelet coefficients to account for
cross-component similarities [Marnissi et al., 2013].

◮ Auxiliary variables to split Fourier / Wavelet
transformed domains.
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Conclusions and future work
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Conclusion

Signal/image applications

✗ Nonconvex and non smooth cost functions.

✗ Large number of variables.

✗ Limited time or limited accessibility to dataset.
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Conclusion

Signal/image applications

Optimization theory

✓ Flexible and robust algorithms which take

into account the characteristics of the problems.

✓ Convergence guarantees on the iterates.

✓ Online/parallel/distributed processing.
✗ Nonconvex and non smooth cost functions.

✗ Large number of variables.

✗ Limited time or limited accessibility to dataset.
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Future works

⋆ Nonconvex optimization:

 Efficient resolution of nonlinear inverse problems ?

 Interior points in the nonconvex setting ?

⋆ Huge scale problems:

 Efficient online schemes for non quadratic losses ?

 Practical implementation on multicore computers ?

⋆ Neural networks models :

 Resolution of complex inverse problems with CNN ?

 Acceleration of back-propagation algorithm ?

☞ ANR JCJC MajIC starting in 2018.
☞ CNRS-Cefipra project (collab. IIIT Delhi).
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F. Debarbieux

L. ChaariN. Pustelnik

S. Moussaoui

J. Idier

F. Mariette

M. Legendre

Q. Wei

J.-Y. Tourneret

M. Pereyra

P. Schniter

S. McLaughlin

A. O. Hero

P. CiuciuA. Florescu

S. Ciochina



Introduction Nonconvex Block alternating Stochastic Bayesian Conclusions and future work

HdR - 01/12/2017 35/35
P
h
D

st
u
d
e
n
ts

A. Repetti Y. Marnissi F. Abboud A. Cherni M.-C. Corbineau M. Sghaier

Supervision 6 PhD students (3 defended)
2 Post Docs students
6 Master students

Dissemination 18 journal papers (14 since PhD)
40 conference papers (14 invited)
30 invited seminars
6 open-source software + 2 web platforms

Grants ANR JCJC
Univ. Paris Saclay
CNRS-Cefipra
CNRS Mastodons
GDR ISIS JCJC

Thank you !
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