Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					1/35

Majorization-Minimization methods for large scale inverse problems in signal and image processing.

Habilitation thesis defended by: Emilie CHOUZENOUX

University Paris East - LIGM UMR CNRS 8049, Champs-sur-Marne CentraleSupélec - Center for Visual Computing, INRIA Saclay

December, 1st 2017

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					2/35

Short biography

SINCE SEP. 2016: Associate Researcher at Center for Visual Computing, INRIA Saclay, CentraleSupélec (délégation INRIA).

SINCE SEP. 2011: Assistant Professor at Université Paris-Est Marne-la-Vallée, Laboratoire d'Informatique Gaspard Monge.

2010-2011: ATER at Université Paris-Est Marne-la-Vallée.

2007-2010: PhD Thesis at IRCCyN, Nantes, under the supervision of Jérôme Idier and Saïd Moussaoui, defended the 8th December 2010.

2006-2007: Master Degree in Automatic and Production Systems from Ecole Centrale Nantes. Graduated in September 2007 (with honors).

2004-2007: Engineer studies at Ecole Centrale de Nantes. Graduated in September 2007 (with honors).

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					3/35

Context: inverse problems in signal/image processing

Microscopy

Satellite imaging

Parallel MRI

Seismic data

Mass spectrometry

Material science

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					4/35

Context: variational formulation

X No closed form minimizer for $F \rightsquigarrow$ iterative method required. X Large size of the problem (at least, $N = 10^6$ variables.)

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					4/35

Context: variational formulation

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement ?

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					5/35

A unified framework: Majorize-Minimize principle

PROBLEM: Find $\hat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} F(\mathbf{x})$

For all $\mathbf{x}' \in \mathbb{R}^N$, let $Q(., \mathbf{x}')$ a **tangent majorant** of F at \mathbf{x}' i.e.,

$$(\forall \mathbf{x} \in \mathbb{R}^N) \quad Q(\mathbf{x}, \mathbf{x}') \geqslant F(\mathbf{x}) \text{ and } Q(\mathbf{x}', \mathbf{x}') = F(\mathbf{x}')$$

* Quadratic majorants ~> tractable inner minimization step

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					6/35

Outline

MM FRAMEWORK: A simple and elegant methodology to build optimization algorithms for solving inverse problems of signal and image processing.

HOWEVER: A need for modernization !

Outline:

- O convergence analysis in the nonconvex case
- ^② Block alternating and parallel strategies
- ^③ Stochastic optimization at a large scale
- \circledast Data augmentation in the Bayesian framework

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	000000	0000000	0000	000000	00000
HdR - 01/12/201	7				7/35

- Convergence analysis in the nonconvex case

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					8/35

Motivations

NONCONVEXITY IN INVERSE PROBLEMS:

Sparse signal recovery

Spectral unmixing

Blind deconvolution

How to design fast optimization algorithms with established convergence guarantees on their iterates in the nonconvex setting?

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	000000	0000000	0000	000000	00000
HdR - 01/12/2017					9/35

An essential tool: Kurdyka-Łojasiewicz inequality

Function *F* satisfies the Kurdyka-Łojasiewicz inequality i.e., for every $\xi \in \mathbb{R}$, and, for every bounded subset *E* of \mathbb{R}^N , there exist three constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

$$ig(orall {f t}\in \partial F({f x})ig) \qquad \|{f t}\|\geq \kappa |F({f x})-\xi|^ heta,$$

for every $\mathbf{x} \in E$ such that $|F(\mathbf{x}) - \xi| \leq \zeta$.

- * Satisfied for a wide class of non necessarily convex functions :
 - real analytic functions
 - semi-algebraic functions
 - ...

 Key ingredient to prove convergence of iterates under suitable descent properties

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	000000	0000000	0000	000000	00000
HdR - 01/12/2017					9/35

An essential tool: Kurdyka-Łojasiewicz inequality

Function *F* satisfies the Kurdyka-Łojasiewicz inequality i.e., for every $\xi \in \mathbb{R}$, and, for every bounded subset *E* of \mathbb{R}^N , there exist three constants $\kappa > 0$, $\zeta > 0$ and $\theta \in [0, 1)$ such that

$$ig(orall \mathbf{t} \in \partial F(\mathbf{x})ig) \qquad \|\mathbf{t}\| \geq \kappa |F(\mathbf{x}) - \xi|^{ heta},$$

for every $\mathbf{x} \in E$ such that $|F(\mathbf{x}) - \xi| \leq \zeta$.

- * Satisfied for a wide class of non necessarily convex functions :
 - real analytic functions
 - semi-algebraic functions
 - ...

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					10/35

Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

- * Minimize differentiable and nonconvex function F on \mathbb{R}^N . At each iteration $k \in \mathbb{N}$:
 - Build a quadratic majorant function $Q(\cdot, \mathbf{x}_k)$ of F at \mathbf{x}_k .
 - **2** Minimize it within the subspace spanned by the columns of a matrix $\mathbf{D}_k \in \mathbb{R}^{N \times M_k}$.
 - **X** MM algorithm : rank(\mathbf{D}_k) = $N \rightsquigarrow$ Large computational cost.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
HdR - 01/12/2017					10/35

Majorize-Minimize subspace algorithm [Chouzenoux et al., 2013]

- * Minimize differentiable and nonconvex function F on \mathbb{R}^N . At each iteration $k \in \mathbb{N}$:
 - Build a quadratic majorant function $Q(\cdot, \mathbf{x}_k)$ of F at \mathbf{x}_k .
 - **2** Minimize it within the subspace spanned by the columns of a matrix $\mathbf{D}_k \in \mathbb{R}^{N \times M_k}$.
 - **X** MM algorithm : rank(\mathbf{D}_k) = $N \rightsquigarrow$ Large computational cost.
 - 3MG algorithm : $M_k = 2$ and $\mathbf{D}_k = [\nabla F(\mathbf{x}_k) | \mathbf{x}_k \mathbf{x}_{k-1}].$
 - ✓ CONVERGENCE of the sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ to a critical point of *F* under KL assumption.
 - ✓ 3MG ALGORITHM outperforms state-of-the-art optimization algorithms in many image processing applications.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017	7				11/35

Application to parallel MRI [Florescu et al. - 2014]

(Joint work with Ph. Ciuciu, CEA Neurospin) CHALLENGES :

- Parallel acquisition and compressive sensing
- Complex-valued signals
- Nonconvex smoothed ℓ_0 prior on wavelet coefficients

RESULTS :

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017	,				11/35

Application to parallel MRI [Florescu et al. - 2014]

(Joint work with Ph. Ciuciu, CEA Neurospin) CHALLENGES:

- Parallel acquisition and compressive sensing
- Complex-valued signals
- ▶ Nonconvex smoothed ℓ_0 prior on wavelet coefficients

RESULTS :

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					12/35

Variable metric FB algorithm [Chouzenoux et al., 2014]

(PhD Thesis of Audrey Repetti)

* Minimize $F = f_1 + f_2$ with f_1 Lipschitz-differentiable and f_2 non smooth.

 \Rightarrow Forward-backward algorithm: gradient steps on f_1 and proximal steps on f_2 :

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}_{k+1} = \operatorname{prox}_{\theta_k f_2} (\mathbf{x}_k - \theta_k \nabla f_1(\mathbf{x}_k)).$$

X slow convergence in practice.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					12/35

Variable metric FB algorithm [Chouzenoux et al., 2014]

(PhD Thesis of Audrey Repetti)

* Minimize $F = f_1 + f_2$ with f_1 Lipschitz-differentiable and f_2 non smooth. \Rightarrow Forward-backward algorithm: gradient steps on f_1 and proximal steps on f_2 : Use MM framework to propose an efficient variable metric strategy:

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}_{k+1} = \operatorname{prox}_{\theta_k^{-1} \mathbf{A}_k, f_2} \left(\mathbf{x}_k - \theta_k \mathbf{A}_k^{-1} \nabla f_1(\mathbf{x}_k) \right).$$

- CONVERGENCE of the sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ to a critical point of F under KL assumption.
- 1 ROBUSTNESS TO ERRORS in the computation of the proximity operator within the metric.
- **EFFICIENT CONSTRUCTION** of the preconditioning matrices thanks to the MM framework.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					13/35

Application to image reconstruction

Observation model

 $\mathbf{y} = \mathbf{H}\overline{\mathbf{x}} + \mathbf{w}(\mathbf{H}\overline{\mathbf{x}})$

with **H** Radon projector, and $w(H\overline{x})$ non homogeneous Gaussian noise (\approx Poisson-Gaussian model). \rightarrow nonconvex data fidelity term.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					14/35

^② - Block alternating and parallel strategies

"Let's shrink Big Data into Small Data ... and hope it magically becomes Great Data."

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0●00000	0000	000000	
HdR - 01/12/2017					15/35

Block alternating strategy

The vector of unknowns **x** is partitioned into **block subsets**. At each iteration, **one** or **several blocks** are updated.

		: :		1.1					Г		1		Т		1		Г	1	1									
× —	×(1)	 			÷	÷	·	ŀ	÷	÷	÷		¥(Ĵ)) : : :		÷	÷	÷	Ľ	÷	÷	 •••	5	.(J)	÷
x —	^	1		111	1				l	1	1	1	1		Ξ.		1			1		÷.	1			•		1
		: :	 	11					1	1	1			: :	÷			50	1	1	Ľ	1	÷		:			1

PRACTICAL ADVANTAGES:

- \checkmark Control of memory for large scale image processing (eg, 3D, video).
- $\checkmark\,$ Flexibility of alternating scheme suitable to blind/unmixing problems.
- ✓ A first step towards parallel and distributed implementation.

How to find efficient and reliable block alternating schemes for nonconvex and/or non differentiable optimization problems ?

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					16/35

Block coordinate VMFB algorithm [Chouzenoux et al., 2016]

(PhD Thesis of Audrey Repetti)

- * Minimize $F = f_1 + f_2$ with f_1 smooth and f_2 non differentiable. At each iteration $k \in \mathbb{N}$:
 - Choose a block index $j_k \in \{1, \dots, J\}$ according to a quasi-cyclic rule.
 - **2** Perform a gradient step on the restriction of f_1 to block j_k , using a MM preconditioner.
 - Perform a proximal step on the restriction of f_2 to block j_k , within the MM metric.
 - ✓ CONVERGENCE GUARANTEES on the sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ under KL assumption.
 - EXPERIMENTAL VALIDATION in numerous applications of image/signal processing (eg, phase retrieval, spectral unmixing, blind deconvolution).

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017	,				17/35

Application to seismic data recovery [Repetti et al., 2015]

(Joint work with L. Duval, IFPEN)

 $\mathbf{y} = \overline{\mathbf{h}} * \overline{\mathbf{x}} + \mathbf{w}$ with $\overline{\mathbf{x}}$ original sparse signal and $\overline{\mathbf{h}}$ unknown filter \Rightarrow blind deconvolution problem.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					17/35

Application to seismic data recovery [Repetti et al., 2015]

(Joint work with L. Duval, IFPEN)

 $\mathbf{y} = \overline{\mathbf{h}} * \overline{\mathbf{x}} + \mathbf{w}$ with $\overline{\mathbf{x}}$ original sparse signal and $\overline{\mathbf{h}}$ unknown filter \Rightarrow blind deconvolution problem.

✓ Proposition of a novel nonconvex penalty for sparse signals: smoothed version of the ℓ_1/ℓ_2 prior.

✓ Application of the BC-VMFB algorithm alternating between x and h.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					18/35

Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of proximity operators of composite functions $F = \sum_{j=1}^{J} f_j \circ A_j$?

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					18/35

Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of proximity operators of composite functions $F = \sum_{i=1}^{J} f_i \circ A_i$?

* Apply the block coordinate VMFB to the dual problem \Leftrightarrow dual ascent technique [Abboud *et al.*, 2016]:

- ✓ Acceleration thanks to MM preconditioning strategy.
- ✓ Convergence guarantees on the primal and dual iterates.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					18/35

Dual block alternating FB algorithm

(PhD Thesis of Feriel Abboud)

How to find a fast numerical solution for the computation of proximity operators of composite functions $F = \sum_{i=1}^{J} f_i \circ A_i$?

 \star Apply the block coordinate VMFB to the dual problem \Leftrightarrow dual ascent technique [Abboud *et al.*, 2016]:

- ✓ Acceleration thanks to MM preconditioning strategy.
- ✓ Convergence guarantees on the primal and dual iterates.

 \star Introduction of a consensus constraint decomposed into hyperedges of a connected hypergraph \Leftrightarrow distributed implementation [Abboud *et al.*, 2015]:

- ✓ Suitable to multicore computing architectures.
- ✓ Convergence guarantees on the primal and dual iterates.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					19/35

Application to video restoration

(Joint work with J.-H. Chenot and L. Laborelli, INA)

OBSERVATION MODEL

At each frame
$$t \in \{1, \dots, T\}$$
 : $\mathbf{y}_t = \mathrm{S}_t(\,\mathbf{h} st \mathbf{x}_t\,) + \mathbf{w}_t$

with S_t decimation operator and **h** horizontal blur.

Parallel 3MG algorithm [Cadoni et al., 2016]

How to make 3MG algorithm efficient for parallel implementation ?

At each iteration $k \in \mathbb{N}$:

- Choose a subset of block indexes $S_k \subset \{1, \ldots, J\}$.
- Opdate the selected blocks using a 3MG step performed in parallel thanks to a block-diagonal MM metric.

- Application to 3D image deblurring with space-variant PSF (CNRS OPTIMISM project).
- SPMD implementation on Matlab Parallel Toolbox.
- Great potential for parallelization.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	●000	000000	00000
HdR - 01/12/2017					21/35

$\ensuremath{\textcircled{3}}$ - Stochastic optimization at a large scale

"Why Gramma, what big data you have!"

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					22/35

Problem statement

* The second-order statistics of $(\mathbf{h}_j, \mathbf{y}_j)_{j \ge 1}$ are estimated online in an adaptive manner.

NUMEROUS APPLICATIONS:

- * supervised classification
- * inverse problems
- system identification
- * linear prediction/interpolation
- * echo cancellation
- * channel equalization

How to find a fast and flexible stochastic optimization algorithm with theoretical convergence guarantees ?

Introduction 00000	Nonconvex 0000000	Block alternating	Stochastic 00●0	Bayesian 000000	Conclusions and future work
HdR - 01/12/2017					23/35

Stochastic 3MG algorithm [Chouzenoux and Pesquet, 2017]

At each iteration $j \in \mathbb{N}^*$:

• Build an estimate of the objective function:

$$(\forall \mathbf{x} \in \mathbb{R}^N) \quad F_j(\mathbf{x}) = \frac{1}{2j} \sum_{k=1}^j \|\mathbf{y}_k - \mathbf{h}_k^\top \mathbf{x}\|^2 + \Psi(\mathbf{x})$$

- **2** Construct a quadratic majorant for F_j .
- 6 Minimize in a memory gradient subspace.
- Output Perform recursive updates of the second-order statistics.
- ✓ CONVERGENCE GUARANTEES on the sequence $(\mathbf{x}_j)_{j>1}$.
- ✓ **REDUCED COMPLEXITY** thanks to recursive update scheme.

 CONVERGENCE RATE ANALYSIS in stochastic and batch case ([Chouzenoux and Pesquet, 2016]).

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					24/35

Application to sparse adaptive filtering

- ► x: sparse linear filter with abrupt change at j = 2500.
- ► S3MG algorithm with forgetting factor and smoothed ℓ₀ penalty.
- Minimal estimation error, and good tracking properties.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	00000	00000
HdR - 01/12/2017					25/35

4 - Data augmentation in the Bayesian framework

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	00000	00000
HdR - 01/12/2017					26/35

Motivation: Bayesian formulation

BAYES FRAMEWORK We observe $\mathbf{y} \in \mathbb{R}^{N}$ according to the model $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$. We seek for an entire distribution describing $\boldsymbol{\Theta} = \{\mathbf{x}, \mathbf{H}, \ldots\}$: $\frac{\mathsf{posterior}}{\mathsf{p}(\boldsymbol{\Theta}|\mathbf{y})} = \frac{\begin{array}{c}\mathsf{likelihood} & \mathsf{prior} \\ \mathsf{p}(\mathbf{y}|\boldsymbol{\Theta}) & \mathsf{p}(\boldsymbol{\Theta}) \\ \hline \int \mathsf{p}(\mathbf{y}|\boldsymbol{\Theta}')\mathsf{p}(\boldsymbol{\Theta}') \ d\boldsymbol{\Theta}' \\ \mathsf{p}(\mathbf{z}): \text{ marginal density} \end{array}$

How to find fast and flexible Bayesian algorithms for approximating $p(\Theta|\mathbf{y})$ in the context of large scale inverse problems ?

Take advantages from optimization tools developed in the deterministic framework.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					27/35

Optimization tool: Half-quadratic strategies

(PhD Thesis of Yosra Marnissi)

HALF-QUADRATIC SCHEME

 \star For a wide class of cost functions F in inverse problems:

$$egin{array}{lll} (orall \mathbf{x} \in \mathbb{R}^{N}) & F(\mathbf{x}) = rgmin_{\mathbf{b} \in \mathbb{R}^{P}} & \Phi(\mathbf{x}, \mathbf{b}) \ \end{array}$$

with x → Φ(x, b) quadratic and b → Φ(x, b) separable.
✓ Minimize F using an alternating minimization scheme on Φ
→ Half-quadratic algorithm ⇔ MM quadratic algorithm.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					27/35

Optimization tool: Half-quadratic strategies

(PhD Thesis of Yosra Marnissi)

HALF-QUADRATIC SCHEME

 \star For a wide class of cost functions F in inverse problems:

$$egin{array}{lll} (orall \mathbf{x} \in \mathbb{R}^{N}) & F(\mathbf{x}) = rgmin_{\mathbf{b} \in \mathbb{R}^{P}} \Phi(\mathbf{x}, \mathbf{b}) \ & \mathbf{b} \in \mathbb{R}^{P} \end{array}$$

with x → Φ(x, b) quadratic and b → Φ(x, b) separable.
✓ Minimize F using an alternating minimization scheme on Φ
→ Half-quadratic algorithm ⇔ MM quadratic algorithm.

IN THE BAYESIAN SETTING:

 $\begin{aligned} \text{Quadratic} \Rightarrow \text{Gaussian statistics} \\ \text{Separable} \Rightarrow \text{Independent statistics} \end{aligned}$

Efficient strategies available

Introduction 00000	Nonconvex 0000000	Block alternating	Stochastic Bayesian		Conclusions and future work	
HdR - 01/12/2017					28/35	

Fast variational Bayesian approach [Marnissi et al., 2017]

TARGET PARAMETERS: $\boldsymbol{\Theta} = \{\mathbf{x}, \gamma\}$

BAYES VARIATIONAL STRATEGY: Approximate $p(\boldsymbol{\Theta}|\mathbf{y})$ by a separable density $q(\boldsymbol{\Theta}) = q_X(\mathbf{x})q_{\Gamma}(\gamma) = \operatorname{argmin} \mathcal{KL}(q(\boldsymbol{\Theta})||p(\boldsymbol{\Theta}|\mathbf{y})).$

- Replace p(Θ|y) by an augmented function L(Θ|y; ω, λ) resulting from half-quadratic construction strategies.
- **2** Minimize the distance $\mathcal{KL}(q_X(\mathbf{x})q_{\Gamma}(\gamma)||L(\Theta|\mathbf{y}; \omega, \lambda))$ using an alternating scheme on $(q_X(\mathbf{x}), q_{\Gamma}(\gamma), \omega, \lambda)$.

Application to image deblurring with Poisson-Gaussian noise (ANR GRAPHSIP)

- Flexibility of the half-quadratic construction.
- ✓ Reduced computational cost.
- ✓ Automatic determination of the regularization parameter.

Accelerated MH algorithm [Marnissi et al., 2016a]

(Joint work with A. Benazza, SUPCOM Tunis)

* Metropolis-Hastings sampling method to explore $p(\boldsymbol{\Theta} \mid \mathbf{y})$: For every iteration $k \in \mathbb{N}$:

• Generate $\widetilde{\Theta}_k$ from a proposal distribution of density $g(\cdot | \Theta_k)$.

2 Accept
$$\Theta_{k+1} = \widetilde{\Theta}_k$$
 with probability min $\left(1, \frac{p(\widetilde{\Theta}_k|\mathbf{y})g(\widetilde{\Theta}_k|\Theta_k)}{p(\Theta_k|\mathbf{y})g(\Theta_k|\widetilde{\Theta}_k)}\right)$

X Slow convergence in the context of large scale problems.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	00000
HdR - 01/12/2017					29/35

Accelerated MH algorithm [Marnissi et al., 2016a]

(Joint work with A. Benazza, SUPCOM Tunis)

* Metropolis-Hastings sampling method to explore $p(\Theta | \mathbf{y})$: For every iteration $k \in \mathbb{N}$:

• Generate $\widetilde{\Theta}_k$ from a proposal distribution of density $g(\cdot | \Theta_k)$.

2 Accept $\mathbf{\Theta}_{k+1} = \widetilde{\mathbf{\Theta}}_k$ with probability min $\left(1, \frac{p(\widetilde{\mathbf{\Theta}}_k|\mathbf{y})g(\widetilde{\mathbf{\Theta}}_k|\mathbf{\Theta}_k)}{p(\mathbf{\Theta}_k|\mathbf{y})g(\mathbf{\Theta}_k|\widetilde{\mathbf{\Theta}}_k)}\right)$.

3MH: Langevin proposal with MM preconditioning

$$\widetilde{\boldsymbol{\Theta}}_k \sim \mathcal{N}\left(\boldsymbol{\Theta}_k + \frac{\epsilon^2}{2} \boldsymbol{\mathsf{A}}(\boldsymbol{\Theta}_k)^{-1} \nabla \log \mathsf{p}(\boldsymbol{\Theta}_k \mid \mathbf{y}), \epsilon^2 \boldsymbol{\mathsf{A}}(\boldsymbol{\Theta}_k)^{-1}\right)$$

Data augmentation to facilitate preconditioning.

- ✓ GEOMETRIC ERGODICITY of the generated Markov chain.
- ✓ GOOD PRACTICAL PERFORMANCE on image/signal restoration problems.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017					30/35

Application to image deblurring [Marnissi et al., 2016b]

- Restoration of a multispectral cube degraded by blur and noise.
- GMEP prior on wavelet coefficients to account for cross-component similarities [Marnissi et al., 2013].
- Auxiliary variables to split Fourier / Wavelet transformed domains.

Introduction Nonconvex		Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	●0000
HdR - 01/12/2017					31/35

Conclusions and future work

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	0000
HdR - 01/12/2017					32/35

Conclusion

SIGNAL/IMAGE APPLICATIONS

X Nonconvex and non smooth cost functions.

X Large number of variables.

X Limited time or limited accessibility to dataset.

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	000000	0000	000000	00000
HdR - 01/12/2017	7				32/35

Conclusion

SIGNAL/IMAGE APPLICATIONS

X Nonconvex and non smooth cost functions.

X Large number of variables.

X Limited time or limited accessibility to dataset.

 \checkmark Flexible and robust algorithms which take into account the characteristics of the problems.

✓ Convergence guarantees on the iterates.

✓ Online/parallel/distributed processing.

OPTIMIZATION THEORY

Introduction	Nonconvex	Block alternating	Stochastic	Bayesian	Conclusions and future work
00000	0000000	0000000	0000	000000	0000
HdR - 01/12/2017					33/35

Future works

- * NONCONVEX OPTIMIZATION:
 - \rightsquigarrow Efficient resolution of nonlinear inverse problems ?
 - \rightsquigarrow Interior points in the nonconvex setting ?

★ HUGE SCALE PROBLEMS:

- \rightsquigarrow Efficient online schemes for non quadratic losses ?
- \rightsquigarrow Practical implementation on multicore computers ?
- \star Neural networks models :
 - $\rightsquigarrow\,$ Resolution of complex inverse problems with CNN ?
 - \rightsquigarrow Acceleration of back-propagation algorithm ?
 - ANR JCJC MajIC starting in 2018.
 - CNRS-Cefipra project (collab. IIIT Delhi).

Introduction	Nonconvex	Block alternating	lock alternating Stochastic		Conclusions and future work	
00000	0000000	0000000	0000	000000	00000	
HdR - 01/12/2017					34/35	

\star Collaboration graph:

Introduction Nonconvex 00000 0000000		Block alternating		Stochastic 0000	Bayesian 000000	Conclu 0000	Conclusions and future work			
HdR - (01/12/2017								35/35	
) students			ß,		R					
DHC	A. Rep	oetti	Y. Marn	nissi	F. Abboud	A. Cherni	MC. Cort	oineau	M. Sghaier	
	Sup	ervi	sion	6 P	hD studer	nts (3 defe	nded)			
		2 Post Docs students								
				6 Master students						
Dissemination 18 journal papers				pers (14 si	ers (14 since PhD)					
				40	conference	e papers (1	.4 invited)			
				30	invited ser	ninars				
				6 open-source software $+ 2$ web platforms						
Grants ANR JCJC										
	Univ. Paris Saclay									
	CNRS-Cefipra									
	CNRS Mastodons									
				GD	R ISIS JC.	JC				

Thank you !