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1 Variational formulation

A well-known and very e�cient strategy for solving ill-posed inverse problems is to
adopt a penalization approach that provides an estimate X̂ 2 RN of the original signal
X 2 RN , that is the solution of the constrained minimization problem:

minimize
X2RN

 (X) subject to kHHHX � Y k  ⌘, (1)

where  is the regularization function and ⌘ is an estimate of the experimental noise.
In this work, we choose to define  for every X 2 RN and � 2 [0, 1], as:

 (X) = � ent(X, a) + (1� �)`
1

(X), (2)

where the Shannon entropy with a flat prior a > 0 and the `
1

norm are defined, respec-
tively, as:
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2 Proximity operator

To solve Problem (1), we propose to rely on a proximal optimization method, that makes
use of the so-called proximity operator. Since  is convex on RN , its proximity operator

at a given point X 2 RN is defined as the unique minimizer of
1

2
k ·�Xk2 + . Since  

in (2) takes a separable form, i.e. it can be written as:

(8X = (x
n

)
1nN

2 RN )  (X) =
NX

n=1

 (x
n

), (3)

its proximity operator is given by:

prox
 

(x) = (p(x
n

))
1nN

. (4)

Hereabove, for every n 2 {1, . . . , N}, p(x
n

) 2 R is the unique minimizer of:
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Let us first consider the case when � 2]0, 1]. Then,

�̇(u) = 0 , u� x
n

+
�

a
log(u) +

�

a
� �

a
log(a) + 1� � = 0
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�

✓
�u+ x� �

a
+

�

a
log(a)� 1 + �

◆

, u = exp

✓
�a

�
u+

ax� a(1� �)

�
+ log(a)� 1

◆
.

Finally:
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�

a
W

✓
a

�
exp

✓
ax� a(1� �)

�
+ log(a)� 1

◆◆
. (6)

In the above expression, W states for the Lambert function, also called Omega, defined
as the inverse function of f : x ! x exp(x) for all x 2 C:

z = x exp(x) , x = W(z).

If � = 0, we have:

x
n

� u 2 @|u| () x
n

� u 2
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sign(u) if u 6= 0
[�1, 1] elsewhere
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8
<

:
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x
n

+ 1 elsewhere.

Finally, we can conclude that (8X = (x
n

)
1nN

2 RN ), prox
 

(X) is given by (4),
where, for all n 2 {1, . . . , N},
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(7)

3 Asymptotic development

Let us emphasize that the Lambert function has many interesting properties. In partic-
ular:

W(ex) �!
x!+1

x

✓
1� log(x)

1 + x

◆
(8)

This asymptotic development is of main interest in our context. Indeed, when � 2]0, 1],
for all n 2 {1, . . . , N},

p(x
n

) =
�

a
W (exp(c

n

)) , (9)

with c
n

= axn�a(1��)

�

� 1 + 2 log(a) � log(�). When c
n

is large (typically c
n

> 102),
standard numerical implementation of the Lambert function yields infinity as an output.
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We thus propose to use, for large c
n

, the following approximation of the proximity
operator, which is a consequence of the asymptotic development (8):

p(x
n

) =
�

a

✓
c
n

� c
n

1 + c
n

log(c
n

)

◆
. (10)

Figure 8 illustrates relative error of the approximation, when � = a = 1.

Figure S1: Relative error value between W(ecn) and the approximation of p(x
n

) in 9.
The relative error becomes lower than 10�3 for c

n

> 20.

4 PALMA algorithm

Using the PPXA+ algorithm, we propose a new proximal algorithm to solve (1) that
makes use of the proximal formula (7). The so-called PALMA algorithm, standing for
“Proximal Algorithm for L

1

combined with MAxent prior”, is given below:

Initialization

V (0,1) 2 RN , V (0,2) 2 RM

X(0) = (I
N

+HHH>HHH)�1(V (0,1) +HHH>V (0,2))
BBB = (I

N

+HHH>HHH)�1

� 2 (0, 2),
Minimization

For k = 0, 1, . . .66666666664

Z(k,1) = prox
 

(V (k,1))
Z(k,2) = projk·�Y k⌘

�
V (k,2)

�

U (k) = BBB(Z(k,1) +HHH>Z(k,2))
X(k+1) = X(k) + �(U (k) �X(k))
V (k+1,1) = V (k,1) + �

�
2U (k) �X(k) � Z(k,1)

�

V (k+1,2) = V (k,2) + �
�
HHH(2U (k) �X(k))� Z(k,2)

�
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where I
N

is the identity matrix of RN and the projection projk·�Y k⌘

is defined as
follows:

projk·�Y k⌘

(Z) = Z + (Z � Y )min

✓
⌘

kZ � Y k , 1
◆
� Y (8(Y, Z) 2 (RN )2).

5 Choice of processing parameters

As it is detailed in the previous theoretical section, the PALMA algorithm is controlled
by several scaling parameters which have to be adapted to the current problem.

5.1 Choice of a

The entropy approach requires an expression of the prior knowledge on the system, which
in the present case corresponds to a priori spectrum in the absence of experimental
evidences. A general expression is thus a flat spectrum of intensity a, the value of which
has to be adapted to the scaling of the experimental measurement. A natural approach
consists in estimating the area under the signal expected signal:

P
n

x
n

and scaling the
prior with this value. Due to the properties of the Laplace transform, we have chosen
here a = y

0

⇡
P

n

x
n

.

5.2 Choice of ⌘

If we assume that the experimental values are tainted by an additive random noise:
y
m

= ŷ
m

+ "
m

, and if this noise is supposed to be centered and Gaussian i.i.d. with
variance �2, then we can expect the residual of the fit to be ⌘ ⇡ �

p
M . The value of �

can be measured here either from additional measures or from a simple polynomial fit
of the y

m

curve as it is done in the current implementation. The case of a correlated
Gaussian noise ", with covariance matrix ⌃, is encompassed by our method. Indeed, the
least squares constraint becomes:

(8X 2 RN )
⇣
(HHHX � Y )>⌃�1(HHHX � Y )

⌘
1/2

 ⌘,

which is equivalent to kHHHX � Y k
2

 ⌘, up to any change of variable with the form
HHH  � ✓⌃�1/2HHH and Y  � ✓⌃�1/2Y , ⌘  � ✓⌘, for some ✓ > 0. In order to facilitate
the choice of ⌘, we propose to take ✓ = �

max

, i.e. the maximal singular value of ⌃, so
that a suitable choice for ⌘ is �

max

p
M .
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6 Choice of �

In order to evaluate the influence of the � factor on the balance between sparsity and
the amount of information in the processed signal, we launch our PALMA algorithm for
di↵erent signal of monodisperse and polysdisperse species (A, B, C1 and C2) and we
trace on Figures S2 to S6, the recovered signal by variying � from 0 to 1.
The associated reconstruction quality, measured in terms of signal to noise ratio (SNR)

= 10 log 10
⇣

kXk
k ˆ

X�Xk

⌘
of each tested case, is reported in Table S1.

Larger value of quality of reconstruction correspondents to the best recon-

struction.

• Signal A

Signal A consists in three monodisperse components with di↵usion coe�cients 16µm2/s,
63µm2/s, and 230µm2/s, with respective intensities 1.0, 0.33 and 0.66. This data-set
is equivalent to the simulation used in Kazimierczuk et al.

• Signal B

Signal B is a wide monodisperse distribution, simulated as a symmetric log-normal
distribution centered at 35µm2/s and with variance 25.

• Signals C1 & C2

C1 and C2 signals are asymmetric distributions built from 15 log-normal components,
ranging from 18 to 85µm2/s, with intensities ranging from 0.1 to 10 s. They have PDI
estimated respectively to 1.79 and 1.32.
For C1, the intensities are chosen as 10.0/(1.4i), i = 1, . . . , 15, and for C2, as
10.0/(1.415�i), i = 1, . . . , 15.
In all simulations, an additive zero-mean white Gaussian noise and standard deviation
� equals 0.1% of the initial point of HHHX was added to the observed data. The number
of measurement is M = 64 and the original signal has the dimension N = 256.

Figure S2: Measurement of A, B, C1 and C2 signals
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Figure S3: Reconstruction of signal A using PALMA with di↵erent �. The minimal
error is obtained for � = 0 (Spectra obtained with � 6= 0 have their intensities multiplied
by 3 for clarity).

Figure S4: Reconstruction of signal B using PALMA with di↵erent �. The minimal error
is obtained for � = 0.05 (Spectra obtained with � = 0 have their intensities divided by
8 for clarity).
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Figure S5: Reconstruction of signal C1 using PALMA with di↵erent �. The minimal
error is obtained for � = 0.01 (Spectra obtained with � = 0 have their intensities divided
by 8 for clarity).

Figure S6: Reconstruction of signal C2 using PALMA with di↵erent �. The minimal
error is obtained for � = 0.01 (Spectra obtained with � = 0 have their intensities divided
by 8 for clarity).
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�
Qlty reconstruction of Signal

A B C1 C2

0.0 5.65 �11.04 �9.87 �12.58

0.01 1.05 28.57 15.21 16.15

0.02 0.80 31.87 13.76 14.89

0.05 0.58 32.51 12.92 14.06

0.1 0.47 31.11 12.71 13.66

0.2 0.39 31.17 12.37 13.35

0.5 0.30 31.44 11.65 12.91

1 0.26 31.55 11.21 12.44

Table S1: Quality of reconstruction of A, B, C1 and C2 signals for various � values.

9



7 Comparison with state-of-the-art algorithms

Several algorithms have been developed to solve the ill-posed problem in DOSY experi-
ence. In Table S2, we present the comparison results between our approach and several
recent algorithms, namely ITAMeD, ITAMeD with `

p

, and TRAIN.
As an illustration, we present in Figures S7 to S10, the reconstruction of B ans C2 signals
with di↵erent algorithms for 4 di↵erent noise levels.
The following settings have been used, which lead to the best performance in terms of
both reconstruction quality and computational cost:
PALMA: � = 0.01.
ITAMED : Regularization parameter = 10�6.
ITAMeD with `

p

: Smoothing parameter ⌧ = 10�7, ration between 1st and 2nd term
✏ = 10.
TRAIn: ⌧ = 1.02

Signal
Algorithm

Noise level Qlty reconstruction in dB

1% 0.1% 0.01% 0.001%

B

ITAMeD 3.37 18.65 29.04 29.40

ITAMeD with `
p

6.06 25.26 36.69 37.08

TRAIn 24.75 28.63 26.53 19.47

PALMA with � = 0.01 20.54 28.57 41.69 53.25

PALMA with � = 0.05 24.01 32.51 48.28 51.37

C
2

ITAMeD 1.57 15.13 14.36 14.06

ITAMeD with `
p

3.37 6.30 6.29 6.29

TRAIn 8.62 15.39 23.36 25.5

PALMA with � = 0.01 10.6 12.72 17.72 23.24

PALMA with � = 0.05 7.62 10.97 16.59 20.75

Table S2: Quality of reconstruction of signals B and C2 with di↵erent algorithms for
various noise levels. Here, M = 64
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M
Algorithm

Noise level Qlty reconstruction in dB

1% 0.1% 0.01% 0.001%

64
ITAMeD 1.57 15.13 14.36 14.06

ITAMeD with `
p

3.37 6.30 6.29 6.29

TRAIn 8.62 15.39 23.36 25.5

PALMA with � = 0.01 10.6 12.72 17.72 23.24

PALMA with � = 0.05 7.62 10.97 16.59 20.75

32

ITAMeD �3.72 8.89 12.89 13.91

ITAMeD with `
p

0.57 6.18 6.27 6.27

TRAIn 3.68 6.60 9.396 18.04

PALMA with � = 0.01 11.09 14.60 19.48 23.04

PALMA with � = 0.05 8.69 13.09 18.92 20.56

Table S3: Quality of reconstruction of signal C2 for various noise levels and problem
sizes.

Figure S7: Reconstruction of signal B, using di↵erent algorithms. Here, M = 64 and
noise level = 0.001%.
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Figure S8: Reconstruction of signal B, using di↵erent algorithms. Here, M = 64 and
noise level = 0.001%.

Figure S9: Reconstruction of signal B, using di↵erent algorithms. Here, M = 64 and
noise level = 0.001%.
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Figure S10: Reconstruction of signal B, using di↵erent algorithms. Here, M = 64 and
noise level = 0.001%.

Figure S11: Reconstruction of signal C2, using di↵erent algorithms. Here, M = 64 and
noise level = 1%.
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Figure S12: Reconstruction of signal C2, using di↵erent algorithms. Here, M = 64 and
noise level = 0.1%.

Figure S13: Reconstruction of signal C2, using di↵erent algorithms. Here, M = 64 and
noise level = 0.01%.
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Figure S14: Reconstruction of signal C2, using di↵erent algorithms. Here, M = 64 and
noise level = 0.001%.
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8 Robustness against noise

We propose to evaluate the quality of reconstruction of signal C2 for di↵erent � values
and for 4 di↵erent noise levels. Figure S15 shows that the best quality reconstruction is
obtained when � = 0.01 whatever the di↵erent noise level. For this optimal � PALMA
algorithm ensures a great quality of reconstruction as it is illustrated in Figure S16.

Figure S15: Quality of reconstruction of signal C2 with di↵erent �.
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Figure S16: Reconstruction of signal C2 with �
optimal

for di↵erent noise levels.
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