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1, rue de la Noë, BP 92101, F-44321 Nantes Cedex 03, France.
Phone: + 33 2 40 37 69 19, fax: + 33 2 40 37 69 30

E-mail: said.moussaoui@irccyn.ec-nantes.fr

Abstract. This paper focuses on the issue of stepsize determination (linesearch)
in iterative descent algorithms applied to the minimization of a criterion
containing a barrier function associated to linear constraints. Such an issue
arises in inversion methods involving the minimization of a penalized criterion
where the barrier function comes either from the data fidelity term or from
the regularizing functional. In order to circumvent the inefficiency of general-
purpose linesearch strategies in the case of barrier functions, we propose to adopt a
majorization-minimization scheme by deriving a new form of a majorant function
well suited to approximate a criterion containing barrier terms. We also establish
the convergence of classical descent algorithms when this linesearch strategy is
employed. Its efficiency is illustrated by means of numerical examples of signal
and image restoration.

Submitted to: Inverse problems

‡ E. Chouzenoux is with the Université Paris-Est, LIGM, CNRS-UMR 8049
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1. Introduction

A common inverse problem arising in many application domains is to estimate an
object from a set of observations depending on this object through a measurement
process. In this paper, we consider the frequent situation where the dependence of
the observations y ∈ R

M on the unknown discretized object xo ∈ R
N is represented

by a linear model
y = Kxo + ǫ, (1)

with K a known ill-conditioned matrix and ǫ an additive noise term representing
measurement errors and model uncertainties. This simple formalism covers many real
situations such as deblurring, denoising, and inverse-Radon transform in tomography
[1]. It can also be used as a first order approximation of a non-linear observation model
[2]. To handle the ill-posedness of such problems, several efficient inversion methods
are based on the minimization of a composite criterion (See for instance [3, 4] and
references therein):

F (x) = S(x) + λR(x), λ > 0. (2)

The first term S(x) aims at enforcing some fidelity of the solution to the data. It
typically corresponds to a neg-log-likelihood, which derives from the statistics of
the noise ǫ. The second term R(x), whose weight is set by the parameter λ, is a
regularization term that allows to account for additional information not carried out
by the data alone. Its design is linked to some a priori assumptions one can have
concerning the sought object. Both terms will be assumed differentiable in the sequel.

The effective resolution of the inverse problem is then expressed as that of finding
the minimizer of the composite criterion (2). However, in several cases, the solution
cannot be given explicitly or cannot be computed directly since it requires the inversion
of large scale matrices. Instead, iterative descent algorithms are employed. Starting
from an initial guess x0, these algorithms generate a sequence of iterates {xk} until
the fulfillment of a stopping condition. In practice, from the current value xk, the
update xk+1 is obtained according to

xk+1 = xk + αkdk, (3)

where αk > 0 is the stepsize and dk is a descent direction i.e., a vector such that
gT
k dk < 0, where gk = ∇F (xk) denotes the gradient of F at xk. The determination

of αk is called the linesearch. Linesearch strategies perform an inexact minimization
of f(α) = F (xk + αdk) to find a stepsize value that ensures the convergence of the
whole descent algorithm [5, 6].

The strategies used for computing the direction and the stepsize strongly depend
on the mathematical properties of the criterion. In this paper, we focus on penalized
criteria that contain a barrier function associated to some constraints x ∈ C. A
fundamental property of barrier functions is to ensure that any minimizer of F belongs
to the interior of a feasible domain C by making the gradient of F unbounded at
the boundary of C. This property is used by interior point algorithms [7] to solve
inequality-constrained optimization problems, a barrier function being artificially
introduced to the objective function. Interior-point methods have been applied
for instance to sparse signal reconstruction [8] and to image reconstruction under
positivity constraints [9].

Table 1 reports several examples of barrier criteria that can be encountered in the
context of signal or image reconstruction. In the first two examples, the barrier results
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Name Function Constraints

Log-likelihoods

Poisson [12]
M∑

m=1

[Kx]m − ym + ym log
ym

[Kx]m
[Kx]m > 0

Gamma [13, 14]

M∑

m=1

− log
ym

[Kx]m
+

ym

[Kx]m
[Kx]m > 0

Prior log-densities

Gamma [15, 16]

N∑

n=1

(1− αn) log xn +
αn

βn
xn xn > 0

Beta [16]
N∑

n=1

(1− αn) log(xn − an) + (1− βn) log(bn − xn) xn ∈ (an, bn)

Rayleigh [17]
N∑

n=1

− log(xn) + αnx
2
n xn > 0

Entropies

Shannon [18]
N∑

n=1

xn log xn xn > 0

Burg [11] −
N∑

n=1

log xn xn > 0

Hyperbolic [19] −
N∑

n=1

√
xn xn > 0

Cross entropy [20]
N∑

n=1

xn log
xn

rn
+ xn − rn xn > 0

Generalized Fermi-
Dirac [21]

N∑

n=1

(xn − an) log(xn − an) + (bn − xn) log(bn − xn) xn ∈ (an, bn)

Roughness penalties

Kullback-Leibler [22]

N∑

n=1

xn log
xn

xn−1

+ xn − xn−1 xn > 0

Itakura-Saito [22]
N∑

n=1

− log
xn

xn−1

+
xn

xn−1

xn > 0

Table 1. Examples of barrier functions encountered in penalized signal or image
reconstruction. The first two functions are data fidelity functions S(x) while the
others are penalty functions R(x). We emphasize that Gamma log-likelihood and
the two roughness penalties do not fall within the scope of this study.

from the presence of singular terms in the data fidelity term. For example, when
a Poisson noise distribution is assumed, S(x) corresponds to the Kullback-Leibler
divergence of Kx from y, which plays the role of a barrier function associated to the
constraints [Kx]m > 0, m = 1, . . . ,M . In section 4.1, we will consider a positron
emission tomography problem [10] which involves this form of likelihood. In the other
examples, the barrier function is part of the regularization term. For instance, Shannon
and Burg entropic penalty terms, used in the maximum entropy strategy for image
reconstruction [11], act as barrier functions for the positivity orthant. The maximum
entropy approach will be applied in section 4.2 to the reconstruction of one-dimensional
nuclear magnetic resonance spectra.

As discussed in [23], general-purpose linesearch techniques tend to be inefficient
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in the case of criteria containing a barrier function. In this paper, we propose a
majorization-minimization approach by constructing a tangent majorant function
suitable for a wide set of barriers. As it will be shown hereafter, the main advantage of
this approach is to yield a simple scheme for stepsize determination that ensures the
convergence of many descent algorithms whatever the number of linesearch iterations.

The rest of this paper is organized as follows. In Section 2 we recall the main
properties of the barrier functions and discuss why specific linesearch strategies are
called for when dealing with barrier functions. The proposed linesearch procedure
is introduced and its properties are studied in Section 3. Section 4 illustrates the
efficiency of the proposed approach through numerical examples in the field of signal
and image processing.

2. Linesearch strategies for barrier functions

2.1. Formulation of the criterion involving barrier functions

In this paper, we focus on the cases when the composite criterion (2) can be rewritten
as

F (x) = P (x) +B(x), (4)

where B is a barrier function associated to x ∈ C, with C defined by linear inequalities:

C = {x ∈ R
N |Ci(x) = cTi x+ ρi > 0, ∀i ∈ {1, . . . , I}}, (5)

and P is a differentiable criterion over C. A barrier function associated to x ∈ C is
built as

B(x) =

I
∑

i=1

ψi(Ci(x)), (6)

where for all i ∈ {1, . . . , I}, ψi(u) are scalar barrier functions associated to u > 0, i.e.:

ψi is continuous and strictly convex on [0,+∞[

ψi(u) is differentiable on (0,+∞[

lim
u→0

ψ̇i(u) = +∞

Barrier name Logarithmic Inverse Entropic Hyperbolic

Function ψ(u) − log u u−1 u log u −ur, r ∈ (0, 1)

Table 2. Examples of scalar barrier functions associated to u > 0. The first two
are strict barrier functions since they grow to infinity as u → 0. Note that (7)
does not hold for the inverse barrier function.

When limu→0 ψi(u) = +∞, the scalar barrier ψi is said strict. In the particular
case where ψi is a strict scalar barrier function for all i ∈ {1, . . . , I}, B(x) is called a
strict barrier function. We restrict ourselves to barrier functions (6) formed of scalar
barriers ψi that fulfill

− 2

u
ψ̈i(u) 6

...
ψ i(u) 6 0, ∀u > 0, ∀i ∈ {1, . . . , I} . (7)

This assumption allows us to consider, for the ψi in (6), logarithmic, entropic and
hyperbolic scalar barrier functions presented in Table 2. Therefore, all barrier
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functions from Table 1 fall within the scope of (6)-(7) except the Gamma log-likelihood
and the two roughness penalties.

2.2. Determination of the stepsize

Let xk ∈ C and dk a descent direction for F at xk. In order to compute the new
iterate xk+1, one has to perform a linesearch that identifies a step length αk achieving
sufficient reductions in f(α) = F (xk+αdk) [6, Chap.3]. The presence of scalar barrier
functions ψi imply that the derivative of the scalar function

f(α) = P (xk + αdk) +
I

∑

i=1

ψi(Ci(xk + αdk)) (8)

is unbounded when α is such that Ci(xk+αdk) = 0 for some i. Since functions Ci are
assumed to be linear, this limits the stepsize value αk to an interval (α−, α+) where

{

α− = maxi∈I
−

− θi
δi

α+ = mini∈I+
− θi

δi

with

{

I− = {i ∈ {1, . . . , I} | δi > 0}
I+ = {i ∈ {1, . . . , I} | δi < 0} , (9)

where, for all i ∈ {1, . . . , I}, θi = cTi xk + ρi, δi = cTi dk, and it is understood that
α− = −∞ (respectively, α+ = +∞) if I− (resp., I+) is empty. Moreover, the stepsize
should fulfill some sufficient convergence conditions. The most popular are the strong
Wolfe conditions that state that a stepsize series {αk} is acceptable if there exist σ1,
σ2 ∈ (0, 1) such that for all k and for all xk,

F (xk + αkdk) 6 F (xk) + σ1αkg
T
k dk, (10)

|∇F (xk + αkdk)
Tdk| 6 σ2|gT

k dk|. (11)

The stepsize is then determined with an iterative procedure that generates candidate
values, until (10)-(11) are satisfied. One iteration usually consists in a bracketing
phase that finds an interval containing acceptable stepsizes, followed by a polynomial
cubic interpolation phase that computes a particular stepsize within this interval [5, 6].
However, cubic interpolation is not suited to interpolate function (8) since its derivative
ḟ(α) tends to −∞ when α tends to α− or α+. Therefore, new interpolating functions
have been proposed in [23, 24] to account for the barrier singularity.

2.3. Interpolation based linesearch for barrier functions optimization

The particular case ψi(u) = −µ log(u), µ > 0, for all i ∈ {1, . . . , I}, is considered
in [23, 25, 24]. In order to account for the logarithmic barrier term, Murray et al
propose a log-quadratic interpolating function of the form

f0 + f1α+ f2α
2 − µ log(f3 − α) (12)

where the coefficients fi are chosen to fit f and its derivative at two or three trial
points. More precisely, four interpolating schemes are considered where in each case,
f0, f1 and f2 have an analytical expression while the computation of f3 requires to
solve a scalar equation. In order to guarantee the uniqueness of f3, some inequality has
to be fulfilled. If this is the case, f3 is computed from an iterative Newton procedure.
Otherwise, f3 is undefined and a cubic interpolation is rather used. The linesearch
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strategy consists in repeating this interpolation process over intervals [a, b] until the
fulfillment of Wolfe conditions [24] or Armijo condition [25]. Let us remark that the
resulting algorithms are not often used in practice, possibly because the interpolating
function is difficult to compute.

3. Majorize-Minimize linesearch

Recently, a linesearch procedure based on the Majoration-Minimization (MM)
principle has been introduced [26]. In this strategy, the stepsize αk results from
successive minimizations of quadratic tangent majorant functions for f(.). Function
h(., α′) is said tangent majorant for f(.) at α′ if for all α,

{

h(α, α′) > f(α),

h(α′, α′) = f(α′).
(13)

The convergence of conjugate-gradient [27, 28] and truncated Newton algorithms [29]
associated to quadratic MM linesearch strategy has been established. A major
advantage of quadratic majorization is that it gives an analytical formulation of the
stepsize value. However, its application is not possible in the case of strict barrier
function since there exists no quadratic function that majorizes f in the set (α−, α+).
Actually, it would be sufficient to majorize f within the level set {α ∈ R| f(α) 6 f(0)},
but this set reveals difficult to determine or even to approximate. In the case of non
strict barriers, f is bounded at the boundary of the set (α−, α+). However, the
curvature of f is unbounded and one can expect suboptimal results by majorizing the
scalar function with a parabola. In particular, very high curvature will be obtained
for stepsize values close to the singularity. In this section, we propose a new form of
a tangent majorant function that is well suited to approximate a criterion containing
a barrier function.

3.1. A new tangent majorant for MM linesearch

Let α′ ∈ (α−, α+) a current stepsize value. Instead of a quadratic, we propose the
following form of tangent majorant function of f at α′:

h(α, α′) = h0 + h1α+ h2α
2 − h3 log(h4 − α). (14)

The majorizing function (14) takes a similar form than (12) but, here, parameters hi
are chosen to ensure the majorization properties (13) for all α and α′ in (α−, α+).
According to the MM principle, the stepsize is defined by αk = αJ , with

α0 = 0

αj+1 = argmin
α

h(α, αj), j = 0, . . . , J − 1
(15)

where h(α, αj) is the tangent majorant function

h(α, αj) =

f(αj) + (α − αj)ḟ(αj) +
1

2
mj(α− αj)2 + γj

[

(ᾱj − αj) log
ᾱj − αj

ᾱj − α
− α+ αj

]

, (16)

which depends on three parameters mj , γj and ᾱj . It is easy to check that
h(α, α) = f(α) for all α. There remains to find values of mj , γj , ᾱj such that
h(α, αj) > f(α) holds for all α ∈ (α−, α+).
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3.2. Construction of the majorant function

Let us introduce the following assumption on P .

Assumption 1. For all x′, there exists a symmetric matrix A(x′) such that

Q(x,x′) = P (x′) + (x− x′)T∇P (x′) +
1

2
(x− x′)TA(x′)(x− x′) > P (x) (17)

for all x. Moreover, for any bounded set V included in the definition domain of P (.),
the set {A(x)|x ∈ V} has a positive bounded spectrum with bounds (νAmin, ν

A
max), i.e.

for all x ∈ V,
0 < νAmin 6

vTA(x)v

‖v‖2 6 νAmax, ∀v ∈ R
N\ {0} (18)

As emphasized in [28, Lem.2.1], Assumption 1 holds if P (.) is gradient Lipschitz
with constant Lp by setting A(x) = Lp IN for all x, where IN states for the identity
matrix with size N ×N . Useful methods for constructing A(x) without requiring the
knowledge of Lp are developped in [30, 31].

Under Assumption 1, the majorization of (8) is given by the following theorem.

Theorem 1. Let F = P + B where P fulfills Assumption 1 and B takes the form
(6) where ψi fulfills (7) for all i ∈ {1, . . . , I}. For all xk ∈ C and dk ∈ R

N , the log-
quadratic function (16) is tangent majorant for (8) at αj for the following parameters:











ᾱj = α−

mj = mj
p + Z2(α

j)

γj = (α− − αj)Z1(α
j)

∀α ∈ (α−, α
j ] (19)











ᾱj = α+

mj = mj
p + Z1(α

j)

γj = (α+ − αj)Z2(α
j)

∀α ∈ [αj , α+) (20)

where














mj
p = dT

kA(xk + αjdk)dk,

Z1(α
j) =

∑

i∈I
−

ζi(α
j),

Z2(α
j) =

∑

i∈I+
ζi(α

j),

with ζi(α) = δ2i ψ̈i(θi + αδi) for all i = 1, . . . , I.

Proof. See Appendix A.

Remark 1. If the set I− is empty (i.e., α− = −∞), it is understood that Z1(α
j)

equals zero. Thus, for all α ∈ (−∞, αj ], γj = 0 and the tangent majorant function
has the following expression

h(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
(mj

p + Z2(α
j))(α − αj)2. (21)

Respectively, if I+ is empty (i.e., α+ = +∞), Z2(α
j) = 0 so that for all α ∈ [αj ,+∞),

h(α, αj) = f(αj) + (α− αj)ḟ(αj) +
1

2
(mj

p + Z1(α
j))(α − αj)2. (22)
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Although Theorem 1 separately defines h(α, αj) whether α is in (α−, α
j ] or

[αj , α+) (see Fig. 1 for an illustration), the resulting function is twice differentiable
and convex according to the following lemma.

Lemma 1. Under Assumption 1, h(., αj) is C2 and strictly convex in (α−, α+).

Proof. See Appendix B.

3.3. Minimization of the tangent majorant

According to the MM theory, the stepsize αk is defined by (15) where h(α, αj) is the
tangent majorant function (16). The MM recurrence (15) involves the computation
of the minimizer of h(α, αj) for j ∈ {0, . . . , J − 1}. Thanks to Lemma 1, the tangent
majorant h(., αj) has a unique minimizer, which can be expressed as an explicit
function of ḟ(αj) as follows:

αj+1 =































αj − 2q3

q2 +
√

q22 − 4q1q3
if |ᾱj | <∞ and ḟ(αj) 6 0

αj − 2q3

q2 −
√

q22 − 4q1q3
if |ᾱj | <∞ and ḟ(αj) > 0

αj − ḟ(αj)

mj
if |ᾱj | = ∞

(23)

with






q1 = −mj

q2 = γj − ḟ(αj) +mj(ᾱj − αj)

q3 = (ᾱj − αj)ḟ(αj)

(24)

Finally, (15) produces monotonically decreasing values {f(αj)} and the series {αj}
converges to a stationary point of f(α) [32].

3.4. Convergence analysis

This section studies the convergence of the iterative descent algorithm

xk+1 = xk + αkdk, k > 0, (25)

when dk satisfies gT
k dk < 0 and the stepsize value αk results from (15). The proposed

analysis requires the following assumption on F :

Assumption 2. For some x0 ∈ C, there exists a neighborhood V0 of the level set
L0 =

{

x ∈ R
N |F (x) 6 F (x0)

}

such that:

• V0 is bounded;

• F is differentiable on V0 and ∇F (x) is Lipschitz continuous on V0 with the
Lipschitz constant L > 0, i.e.,

‖∇F (x)−∇F (y)‖ 6 L‖x− y‖, ∀x,y ∈ V0. (26)

Let us emphasize that Assumption 1 holds for the particular case V = V0.
Moreover, the boundedness assumption on V0 holds if F is coercive, that is:

lim
‖x‖→+∞

F (x) = +∞. (27)
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α
−

α+

α < αj

αj αj+1

α > αj

(a) Case α
−

and α+ finite

α < αj α > αj

α+αj αj+1

(b) Case α
−

= −∞ and α+ finite

Figure 1. Schematic principle of the MM linesearch procedure. The tangent
majorant function h(α,αj) (dashed line) for f(α) (solid line) at αj is piecewise
defined on the sets (α

−
, αj ] and [αj , α+). The new iterate αj+1 is taken as the

minimizer of h(., αj). Two cases are illustrated. The third and last case where
α
−

is finite and α+ = +∞ is the mirror image of case (b).

3.4.1. Properties of the stepsize series. First, let us recall some essential properties
of the MM recurrence.

Lemma 2 ([31, 32]). Let xk ∈ V0 and dk such that gT
k dk < 0. For all j > 1, the

series {αj} defined by (15) fulfills

• f(αj) 6 f(αj−1)

• sign(αj − αj−1) = −sign(ḟ(αj−1))

• αj > 0

and converges to a stationary point of f .

The first item of Lemma 2 implies that for all k,

F (xk + αkdk) 6 F (xk),

which means that the iterates {xk} remain in V0. However, this simple monotonicity
condition does not imply that the descent algorithm (3) converges [6, Chap.3].
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3.4.2. Sufficient decrease condition. In order to ensure that the descent algorithm
makes reasonable progress, the stepsize value must yield a sufficient decrease in the
objective function F , as measured by the first Wolfe condition (10).

Property 1. Let xk ∈ V0 and dk satisfying gT
k dk < 0. Under Assumptions 1 and 2,

the iterates of (15) fulfill

F (xk + αjdk) 6 F (xk) + σ
j
1α

j∇F (xk)
Tdk, (28)

for all j > 1, with σj
1 = (2σj

max)
−1 ∈ (0, 1) for some σj

max > 0.

Proof. See Appendix C.

Property 1 is a strong result since it means that the MM linesearch produces a
sufficient decrease of the criterion, whatever the number of linesearch iterates J .

3.4.3. Stepsize minoration. The first Wolfe condition alone is not sufficient to ensure
the convergence since it does not prevent arbitrarily small steps. A second condition
is required, such as the second Wolfe condition (11). Here, the proposed convergence
study rather relies on a direct minoration of the stepsize values.

Property 2. Let xk ∈ V0 and dk satisfying gT
k dk < 0. Under Assumptions 1 and 2,

for all j > 1, the iterates of (15) fulfill

αj
> σminα

1 (29)

and

αj
> σmin

−gT
k dk

ν‖dk‖2
(30)

for some σmin, ν > 0.

Proof. See Appendix D.

3.4.4. Zoutendijk condition. Obviously, the global convergence of a descent direction
method is not only ensured by a good stepsize strategy, but also by well-chosen search
directions dk. Convergence proofs often rely on the fulfillment of Zoutendijk condition

∞
∑

k=0

‖gk‖2 cos2 θk <∞, (31)

where θk is the angle between dk and the steepest descent direction −gk:

cos θk =
−gT

k dk

‖gk‖ ‖dk‖
. (32)

In the case of the proposed linesearch, Properties 1 and 2 lead to the following result.

Property 3. Let αk be defined for all k by (15) with J > 1. Under Assumptions 1
and 2, (gk,dk)k>0 fulfills Zoutendijk condition (31).

Proof. See Appendix E.
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3.4.5. Gradient related directions. Finally, a general convergence result can be
established from Property 3 by using the concept of gradient related direction [33].

Definition 1. A direction sequence {dk} is said gradient related to {xk} if
the following property holds: for any subsequence {xk}k∈K that converges to a
nonstationary point, the corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

gT
k dk < 0. (33)

Property 4. [33] If there exist ν1 > 0, ν2 > 0 such that for all k, dk fulfills

ν1‖gk‖2 6 −gt
kdk, ‖dk‖2 6 ν2‖gk‖2, (34)

then {dk} is gradient related to {xk}.
Theorem 2. Let {xk} a sequence generated by a descent method xk+1 = xk +
αkdk. Assume that the sequence {dk} fulfills (34) and αk is defined by (15).
Under Assumptions 1 and 2, the descent algorithm (25) converges in the sense
limk→∞ ‖gk‖ = 0.

Proof. According to Property 3, Zoutendijk condition (31) holds. Theorem 2 results
from [34, Theo.5.1].

As emphasized in [35, Sec.6.2], Theorem 2 yields convergence of several classical
descent optimization schemes such as the steepest descent method, truncated Newton
method and the projected gradient method for constrained optimization. Let us
remark that it does not cover nonlinear conjugate gradient algorithms (NLCG) defined
by the following recurrence

xk+1 = xk + αkdk,

dk+1 = −gk+1 + βk+1dk.
(35)

where βk is the conjugacy parameter. However, a deeper analysis of the MM
stepsize properties shows that specific convergence results hold for standard NLCG
methods such as Fletcher-Reeves, Polak-Ribière-Polyak and the modified Polak-
Ribière-Polyak [35, Sec.6.3].

4. Numerical results

In this section, two application examples are considered to illustrate the practical
efficiency of the proposed linesearch procedure. In both cases, a reference descent
optimization algorithm is considered, and the MM linesearch is tested against two
Wolfe linesearch strategies taken from [5] and [23], respectively based on polynomial
and log-quadratic interpolation.

4.1. Image reconstruction under Poisson noise

A simulated positron emission tomography (PET) ([10]) reconstruction problem is
first considered. The measurements in PET are modeled as Poisson random variables:

y ∼ Poisson(Kx+ r) (36)
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where the nth entry of x represents the radioisotope amount in pixel n and K is the
projection matrix whose elements Kmn model the contribution of the nth pixel to the
mth datapoint. The components of y are the counts measured by the detector pairs
and r models the background events (scattered events and accidental coincidences).
The aim is to reconstruct the image x > 0 from the noisy measurements y.

4.1.1. Objective function. According to the noise statistics, the neg-log-likelihood of
the emission data is

S(x) =

M
∑

m=1

([Kx]m + rm − ym log([Kx]m + rm)) . (37)

A useful penalization favoring smoothness of the estimated image is given by

R(x) =
∑

ℓ

ωℓφ([Dx]ℓ),

where φ is the edge preserving potential function φ(u) =
√
δ2 + u2 − δ and Dx is the

vector of difference between neighboring pixel intensities [36]. The weights depend on
the relative position of the neighbors: ωℓ = 1 for vertical and horizontal neighbors
and ωℓ = 2−

1
2 for diagonal neighbors. The estimated image is the minimizer of the

following objective function

F (x) = S(x) + λR(x), (38)

over the positive orthant {x > 0}.
An efficient approach for solving this constrained optimization problem is to use

the split-gradient method (SGM) from [37] associated with a convergent linesearch
strategy ([12, 38]). The first part of the criterion implies the presence of a logarithmic
barrier in S(.) associated to the domain Kx + r > 0. We propose to analyse the
performance of the SGM algorithm when the stepsize is computed using the proposed
MM linesearch.

4.1.2. Optimization strategy. The SGM is a descent algorithm aimed at minimizing a
criterion under nonnegativity constraints. Assuming that the gradient can be splitted
into positive and negative parts ∇F (x) = V (x)−U(x), U(x), V (x) > 0, for all x > 0,
the SGM iteration is defined as

xk+1 = xk + skdk, dk = −Diag

(

xk

V (xk)

)

gk, (39)

where sk is a stepsize ensuring the positivity of the iterates. When sk = 1 for all k,
iteration (39) takes a very simple multiplicative form

xk+1 = Diag

(

xk

V (xk)

)

U(xk). (40)

However, the unit step size does not guarentee the convergence of the iterates and
a linesearch along dk has to be performed. More precisely, according to [39], the
convergence is ensured if

sk = min(τsmax, αk), smax = max{s|xk + sdk > 0}, τ ∈ (0, 1), (41)
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as soon as αk results from a linesearch along dk that satisfies both (10) and (31)
conditions.

Let F = P +B with

B(x) =

M
∑

m=1

−ym log([Kx]m + rm),

P (x) =

M
∑

m=1

[Kx]m + rm + λ
∑

ℓ

ωℓφ([Dx]ℓ).

The linear operators K and D are such that ker(KTK) ∩ ker(DTD) = {0}. Thus,
it is straightforward that Assumption 2 holds for all x0 > 0. Moreover, according
to [30], Assumption 1 holds for

A(x) = DTDiag(ω(Dx))D, ω(u) =
1

u
φ̇(u).

Therefore, according to Properties 1 and 3, the proposed MM linesearch ensures the
convergence of the SGM algorithm. We propose to compare its performances with
the Moré and Thuente’s linesearch [5] (MT) based on the fulfillment of the strong
Wolfe conditions (10)-(11). Two interpolation schemes will be considered for the MT
linesearch, namely the cubic interpolation procedure (MTcubic) and the Murray and
Wright’s log-quadratic interpolation procedure (MTlog) [23].

The SGM iteration (39) is employed with the same splitting functionnals U(.)
and V (.) as in [38, Eq.20-22]. The algorithm is initialized with a uniform positive
object and the convergence is checked using the following stopping rule ([40])

‖∇PF (xk)‖∞ < 10−3 ‖∇PF (x0)‖∞ , (42)

where ∇PF (x) denotes the projected gradient of F (.) at x,

∇PF (x) = max(x−∇F (x),0)− x. (43)

4.1.3. Results and discussion. We present a simulated example using data generated
with J.A. Fessler’s code available at http://www.eecs.umich.edu/~fessler. For
this simulation, we consider an image xo of size N = 128× 128 pixels and M = 30720
pairs of detectors. 105 counts are considered in the Poisson degradation model (36).
The regularization parameters (λ, δ) are set to λ = 10−1, δ = 50 to get the best result
in terms of similarity between the simulated and the estimated images (in the sense
of quadratic error). The two images are illustrated in Fig. 2.

Tab. 3 summarizes the performance results in terms of iteration number and
computation time in seconds on an Intel Core 2 CPU 6700, 3 GHz, 3 GB RAM.
The same strategy as in [9, Sec.4.1.2] has been used for the implementation of the
three linesearch methods, reducing the gradient computation counts to the descent
algorithm outer iteration number. The design parameters are the number of sub-
iterations J for the MM procedure and the Wolfe condition constants (σ1, σ2) for the
MTcubic and MTlog methods. For the two latter methods, we give the mean number
J of sub-iterations that are necessary to fulfill the two Wolfe conditions.

It can be noted that the split-gradient algorithm with MM linesearch (SGM-
MM) requires about the same number of iterations than the MTcubic or MTlog

http://www.eecs.umich.edu/~fessler
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SGM-MTcubic SGM-MTlog SGM-MM

σ1 σ2 J Iter. Time σ1 σ2 J Iter. Time J Iter. Time

10−4 0.5 5.9 353 66 10−4 0.5 5.4 349 60 1 353 44

10−4 0.9 4.3 356 56 10−4 0.9 4.9 350 58 2 349 48

10−4 0.99 2.5 389 54 10−4 0.99 3.3 350 54 3 350 54

10−3 0.99 2.5 389 57 10−3 0.99 3.3 350 54 4 350 60

10−2 0.99 2.5 389 57 10−2 0.99 3.3 350 53 5 349 66

10−1 0.99 2.5 389 56 10−1 0.99 3.3 350 53 10 349 94

Table 3. Comparison between MM, MTcubic and MTlog linesearch strategies for
a PET reconstruction problem solved using the split-gradient algorithm, in terms
of iteration number and time (in s.) before convergence, considered in the sense
of (42). As a comparison, the multiplicative split-gradient (i.e., sk = 1, ∀k > 0)
requires 788 iterations and 58 s to fulfill the stopping criterion.

approaches (SGM-MTcubic and SGM-MTlog), provided that the parameters (σ1, σ2)
are appropriately chosen.

The effect of the Wolfe parameters (σ1, σ2) differs according to the interpolation
strategy. For the cubic linesearch, a decrease of the first Wolfe parameter σ1 accelerates
the convergence rate, but at a price of a larger cost per iteration. On the contrary,
it appears that the number of iterations for SGM-MTlog remains stable towards
the tuning (σ1, σ2), which shows that the use of Murray and Wright’s log-quadratic
interpolation enhances the performances of the MT linesearch.

In terms of time before convergence, the SGM algorithm performs better when
the stepsize is obtained with the proposed MM search, because of smaller computation
cost per sub-iteration. The MM strategy admits a unique tuning parameter, namely
the sub-iteration number J , and it appears that the simplest choice J = 1 leads
to the best results. This indicates that the best strategy corresponds to a rough
minimization of f(α). Such a conclusion meets that of [28] in the context of quadratic
MM linesearch.

 

(a) Simulated PET phantom (b) Reconstruction with similarity error 6%

Figure 2. Simulated PET reconstruction with split gradient method
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4.2. Nuclear magnetic resonance reconstruction

We consider a mono-dimensional nuclear magnetic resonance (NMR) reconstruction
problem. The NMR decay y(t) associated with a continuous distribution of relaxation
constants x(T ) is described in terms of a Fredholm integral of the first kind:

y(t) =

∫ Tmax

Tmin

x(T ) k(t, T ) dT. (44)

with k(t, T ) = exp
{

− t
T

}

. In practice, the measured signal y is a set of discrete
experimental noisy data points ym = y(tm) modeled as

y = Kx+ ǫ (45)

where K and x are discretized versions of k(t, T ) and x(T ) with dimensions M ×N

and N × 1, and ǫ is an additive noise assumed centered white Gaussian. Given y, the
aim is to determine x > 0. This problem is equivalent to a numerical inversion of the
Fredholm integral (44) and is known as very ill-conditioned ([41]).

4.2.1. Objective function. In order to get a stabilized solution, an often used method
minimizes the expression

F (x) = S(x) + λR(x) (46)

under positivity constraints, where S(.) is a fidelity to data term:

S(x) =
1

2
‖Kx− y‖22, (47)

and R(.) is an entropic regularization term, e.g., the Shannon entropy measure:

R(x) =

N
∑

n=1

xn log xn (48)

Moreover, the positivity constraint is implicitely handled because of the barrier
property of the entropy function.

4.2.2. Optimization strategy. The truncated Newton (TN) algorithm is employed for
minimizing (46). The direction dk is computed by approximately solving the Newton
system ∇2F (xk)d = −gk using preconditioned conjugate gradient (PCG) iterations.
We propose a preconditioning matrix Mk built as an approximation of the inverse
Hessian of F (.) at xk:

Mk =
(

V DV T + λDiag(xk)
−1

)−1
, (49)

where UΣV T is the truncated singular value decomposition of K with rank equal to
5, and D = ΣTΣ. Direction dk being gradient related, the convergence of the TN
algorithm with the proposed linesearch is established in Theorem 2 under Assumptions
1 and 2, by defining L ≡ P and R ≡ B. The verification of Assumption 1 is
straightforward for A(x) = KTK. The fulfillment of Assumption 2 is more difficult
to check since the level set L0 may contain an element x with zero components,
contradicting the gradient Lipschitz assumption. In practice, we initialized the
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algorithm with x0 > 0 and we never noticed convergence issues in our practical tests.
The extension of the convergence results under a weakened version of Assumption 2
remains an open issue in our convergence analysis.

The algorithm is initialized with a uniform positive object and, following [6], the
convergence is checked using:

‖∇F (xk)‖∞ 6 10−9(1 + |F (xk)|). (50)

Following [42], the PCG iterations are stopped when:

‖∇F (xk) +∇2F (xk)dk‖ 6 10−5‖F (xk)‖. (51)

We propose to compare the performances of the MM linesearch with both MTcubic
and MTlog strategies.

4.2.3. Results and discussion. Let x(T ) a distribution to estimate. We consider the
resolution of (45) when data y are simulated from x(T ) via the NMR model (45)
over M = 10000 sampled times tm, with a SNR of 25 dB (Fig. 3). The regularization
parameter λ is set to λ = 7.2 ·10−4 to get the best result in terms of similarity between
the simulated and the estimated spectra (in the sense of quadratic error). Tab. 4
summarizes the performance results in terms of iteration number and computation
time in seconds.
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(a) Simulated NMR measurement
(SNR: 25 dB)

(b) NMR reconstruction
(similarity error: 8.5%)

Figure 3. Simulated NMR reconstruction with maximum entropy method

According to Table 4, the TN algorithm with the MM linesearch performs better
than with Wolfe-based strategies with their best settings for σ1 and σ2. Concerning
the choice of the sub-iteration number, it appears that J = 1 leads again to the best
results in terms of computation time.
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TN-MTcubic TN-MTlog TN-MM

σ1 σ2 J Iter. Time σ1 σ2 J Iter. Time J Iter. Time

10−4 0.5 1.9 35 8 10−4 0.5 2.6 35 10 1 36 6

10−4 0.9 1.4 41 10 10−4 0.9 2 35 9 2 40 7

10−4 0.99 1 70 15 10−4 0.99 2 35 9 3 40 7

10−3 0.99 1 70 15 10−3 0.99 2 35 9 4 40 7

10−2 0.99 1 70 15 10−2 0.99 2 35 9 5 40 7

10−1 0.99 1 70 15 10−1 0.99 2 35 9 10 40 8

Table 4. Comparison between MM, MTcubic and MTlog linesearch strategies
for a maximum entropy NMR reconstruction problem solved with TN algorithm,
in terms of iteration number and time (in s.) before convergence. Convergence is
considered in the sense of (50).

5. Conclusion

This paper extends the linesearch strategy of [28] to the case of criteria containing
barrier functions, by proposing a non-quadratic majorant approximation of the
criterion in the linesearch direction. The proposed majorant has the same form as
the interpolating function proposed in [23]. However, in the majorization approach,
the construction of the approximation is easier and its minimization leads to a
closed-form stepsize formula, which guarantees the convergence of several descent
algorithms. Numerical experiments indicate that this linesearch strategy outperforms
interpolating-based linesearch methods.

Two extensions of this work are envisaged. On the one hand, the analysis could
be extended to additional forms of barrier functions, such as barriers for nonlinear
constraints ([43]), roughness penalties ([22]) or inverse function ([44]). For the latter,
the main difficulty will come from the fact that the inverse barrier grows faster than a
logarithmic barrier near zero. Therefore, the proposed log-quadratic majorization will
not be suited, and another form of majorant function should probably be envisaged.

On the other hand, the applicability of the proposed procedure for nonnegative
matrix factorization (NMF) could be studied. NMF is usually based on the
minimization of a Bregman divergence between two unknown matrices [45]. Particular
Bregman divergences such as Kullback-Leibler and Itakuro-Saito contain barrier
terms that fall within the scope of the present study. It would be interesting to
analyse the performances of NMF iterative algorithms when the proposed linesearch
is incorporated into the update schemes.
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Appendix A. Proof of Theorem 1

Appendix A.1. Majorizing property

Let xk ∈ C, dk ∈ R
N a search direction and αj ∈ (α−, α+). Let us show that h(α, αj)

whose parameters (mj , γj , ᾱj) are given by (19) and (20) is a tangent majorant for
F (xk + αdk) = f(α) at αj , over (α−, α+).

First, according to Assumption 1, q(α, αj) = p(αj)+(α−αj)ṗ(αj)+ 1
2m

j
p(α−αj)2

is a tangent majorant for p(α) = P (xk + αdk) at α
j for all α ∈ R. There remains to

show that

φ(α, αj) = b(αj)+(α−αj)ḃ(αj)+
1

2
m

j
b(α−αj)2+γj

[

(ᾱj − αj) log
ᾱj − αj

ᾱj − α
+ αj − α

]

,

(A.1)
with m

j
b = mj − mj

p is a tangent majorant for b(α) = B(xk + αdk) at αj . Let us
define

b1(α) =
∑

i∈I
−

ψi(θi + αδi), b2(α) =
∑

i∈I+

ψi(θi + αδi), (A.2)

so that b(α) = b1(α) + b2(α) + b0 where b0 is constant with respect to α. First, we
will prove that















φ1(α, α
j) = b1(α

j) + (α− αj)ḃ1(α
j) +

1

2
m

j
b(α − αj)2

φ2(α, α
j) = b2(α

j) + (α− αj)ḃ2(α
j) + γj

[

(α+ − αj) log
α+ − αj

α+ − α
+ αj − α

]

,

respectively majorize b1 and b2 for all α ∈ [αj , α+).
Let us assume that I− is not empty. Then, according to the expression of

b1, Z1(α) = b̈1(α) so m
j
b = b̈1(α

j). The strict convexity of functions ψi, for all

i ∈ {1, . . . , I}, implies that b1 is strictly convex and ḃ1 is strictly concave. Then, for
all α ∈ [αj , α

+), b̈1(α) 6 b̈1(α
j) = m

j
b. Hence, φ1(., α

j) majorizes b1 on [αj , α
+). If

I− is empty, both b1(.) and φ1(., α
j) equal zero so the latter majorizing property still

holds.
Let us assume that I+ is not empty. The expression of b2 leads to Z2(α) = b̈2(α)

so γj = (α+ − αj)b̈2(α
j). Let us define T (α) = ḃ2(α)(α+ − α) and l(α) =

ḃ2(α
j)(α+ − α) + γj(α − αj). Given γj = (α+ − αj)b̈2(α

j), the linear function l

also reads:
l(α) = φ̇2(α, α

j)(α+ − α). (A.3)

Thus we have l(αj) = T (αj) and l̇(αj) = Ṫ (αj). Moreover:

T̈ (α) =
...
b 2(α)(α+ − α)− 2b̈2(α) =

∑

i∈I+

δ3i
...
ψ i(θi + αδi)(α+ − α)− 2δ2i ψ̈i(θi + αδi).

(A.4)

According to the definition of α+:

α+ − α < −θi + αδi

δi
, ∀i ∈ I+. (A.5)

According to (7), the third derivative of ψi is negative, so

T̈ (α) <
∑

i∈I+

δ2i

[

−
...
ψ i(θi + αδi)(θi + αδi)− 2ψ̈i(θi + αδi)

]

< 0, (A.6)
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where the last inequality is a consequence of (7). Thus T is concave. Since l is a linear
function tangent to T , we have

l(α) > T (α), ∀α ∈ [αj , α
+). (A.7)

Given α+ > α, (A.7) also reads:

φ̇2(α, α
j) > ḃ2(α), ∀α ∈ [αj , α

+), (A.8)

so φ2(., α
j) majorizes b2 over [αj , α

+). This property still holds if I+ is empty, since
both b2(.) and φ2(., α

j) equal zero in that case. Finally, φ(., αj) = φ1(., α
j)+φ2(., α

j)
majorizes b for α > αj . The same elements of proof apply to the case α 6 αj . We can
thus conclude that h(α, αj) = q(α, αj) + φ(α, αj) is a tangent majorant for f at αj .

Appendix B. Proof of Lemma 1

First, h(., αj) is C∞ over (α−, α
j) and (αj , α+). Moreover, it is easy to check that h

and its first two derivatives are continuous at αj according to (19)-(20). Then, h(., αj)
is C2 over (α−, α+). On the other hand, (19)-(20) imply, for all α ∈ (α−, α

j ],

ḧ(α, αj) =

{

mj
p + Z2(α

j) + Z1(α
j) (α−

−αj)2

(α
−
−α)2 if I− 6= ∅

mj
p + Z2(α

j) otherwise
(B.1)

and for all α ∈ [αj , α+),

ḧ(α, αj) =

{

mj
p + Z1(α

j) + Z2(α
j) (α+−αj)2

(α+−α)2 if I+ 6= ∅
mj

p + Z1(α
j) otherwise

(B.2)

Z1(·) and Z2(·) are positive since ψi is strictly convex for all i ∈ {1, . . . , I}. Moreover,
mj

p > 0 according to Assumption 1. Thus, h(., αj) is strictly convex.

Appendix C. Proof of Property 1

Let us consider x ∈ V0 and d a descent direction. First, we establish some preliminary
results arising from the expression of the majorizing function. Then, some lower and
upper bounds for the stepsize values are derived. Finally, Property 1 is proved.

Appendix C.1. Preliminary results

Lemma 3. Let j ∈ {0, . . . , J − 1}. If ḟ(αj) 6 0 and |ᾱj | <∞, then αj+1 fulfills:

− q3

q2
6 αj+1 − αj

6 −2q3
q2
. (C.1)

where q1, q2 and q3 are given by (24).

Proof. If ḟ(αj) 6 0 and |ᾱj | <∞, then αj+1 reads

αj+1 = αj − 2q3

q2 +
√

q22 − 4q1q3
, (C.2)
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with










q1 = −mj,

q2 = γj − ḟ(αj) +mj(ᾱj − αj),

q3 = (ᾱj − αj)ḟ(αj),

(C.3)

where parameters (mj , γj , ᾱj) are given by















ᾱj = α+,

mj = mj
p +

∑

i∈I
−

φi(α
j),

γj = (α+ − αj)
∑

i∈I+
φi(α

j),

(C.4)

with φi(α) = δ2i ψ̈i(θi + αδi), a positive function. Therefore, we have q1 < 0, q3 < 0
and q2 > 0, which yield (C.1).

Lemma 4. Let j ∈ {0, . . . , J − 1}. If ḟ(αj) 6 0, then:

f(αj)− f(αj+1) +
1

2
(αj+1 − αj)ḟ(αj) > 0. (C.5)

Proof. The property is trivial if ḟ(αj) = 0. Let us assume that ḟ(αj) < 0 so that
α+ > αj+1 > αj . Let us define

τ(α) = h(α, αj)−
(

f(αj) + (α− αj)ḟ(αj)
)

. (C.6)

If I+ is not empty, τ(α) = Q(α) + γj(α+ − αj)ϕ(α) with Q(α) = 1
2m

j(α− αj)2 and

ϕ(α) = ξ
(

α−αj

α+−αj

)

, where ξ(u) = − log(1−u)−u for all u ∈ (0, 1). A straightforward

analysis shows that
ξ(u)

uξ̇(u)
6

1

2
, ∀u ∈ (0, 1). (C.7)

Taking u = α−αj

α+−αj in (C.7) leads to

ϕ(α)

(α− αj)ϕ̇(α)
6

1

2
, ∀α ∈ (αj , α+). (C.8)

Furthermore, according to the expression of Q(α), we have

Q(α) =
1

2
(α− αj)Q̇(α). (C.9)

Thus, using (C.8) and (C.9),

τ(α)

(α− αj)τ̇ (α)
6

1

2
, ∀α ∈ (αj , α+). (C.10)

If I+ is empty, τ(α) = Q(α) so (C.10) still holds, according to (C.9). h(., αj) is a
tangent majorant for f so

h(α, αj)− f(α) = f(αj)− f(α) + (α− αj)ḟ(αj) + τ(α) > 0. (C.11)
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Taking α = αj+1 > αj in (C.10) and (C.11), we obtain

f(αj)− f(αj+1) + (αj+1 − αj)ḟ(αj) +
1

2
(αj+1 − αj)τ̇ (αj+1) > 0. (C.12)

Finally, the result holds since τ̇ (αj+1) = ḣ(αj+1, αj)− ḟ(αj) = −ḟ(αj).

Lemma 5. Let j ∈ {0, . . . , J − 1}. Under Assumptions 1 and 2, there exists νmin,
νmax, 0 < νmin 6 νmax, such that for all x ∈ V0 and for all descent direction d at x:

νmin‖d‖2 6 ḧ(αj , αj) 6 νmax‖d‖2, ∀j > 0. (C.13)

Proof. Let us first remark that, according to Assumption 2, there exists η > 0 such
that

‖∇F (x)‖ 6 η, ∀x ∈ V0. (C.14)

Moreover, because the gradient of B is unbounded at the boundary of C, (C.14) leads
to the existence of Cmin > 0 such that

Ci(x) > Cmin, ∀x ∈ V0, ∀i ∈ {1, . . . , I} , , (C.15)

and the boundedness assumption on V0 implies that there exists Cmax > 0 such that

Ci(x) 6 Cmax, ∀x ∈ V0, ∀i ∈ {1, . . . , I} .. (C.16)

According to Lemma 1,
ḧ(αj , αj) = mj

p + b̈(αj), (C.17)

where b(α) = B(xk + αdk), so that

b̈(αj) = dT∇2B(x+ αjd)d. (C.18)

On the other hand,
mj

p = dTA(x+ αjd)d. (C.19)

Since x+αjd ∈ V0, it is sufficient to show that the set
{

A(x) +∇2B(x)|x ∈ V0

}

has
a positive bounded spectrum.

∇2B(x) = CTDiag(ψ̈i(Ci(x)))C, (C.20)

with C = [c1, . . . , cI ]
T . According to (7), for all i ∈ {1, . . . , I}, ψ̈i is decreasing on

R
+. Therefore, (C.16) and (C.15) yield

dTH(Cmax)d 6 dT∇2B(x)d 6 dTH(Cmin)d, ∀x ∈ V0, (C.21)

with H(c) = CTDiag(ψ̈i(c))C. Since ψ̈i is strictly convex, matrix H(c) is symmetric
and has a nonnegative bounded spectrum with bounds (νHmin(c), ν

H
max(c)). Moreover,

according to Assumption 1, A(x) has a positive bounded spectrum with bounds
(νAmin, ν

A
max) on V0. Thus, Lemma 5 holds with νmin = νAmin + νHmin(Cmax) > 0 and

νmax = νAmax + νHmax(Cmin).
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Appendix C.2. Upper and lower bound for the stepsize series

Lemma 6. Under Assumptions 1 and 2, there exist ν, ν′ > 0 such that for all x ∈ V0

and for all descent direction d at x,

−gTd

ν ‖d‖2
6 α1

6
−gTd

ν′ ‖d‖2
, (C.22)

where g denotes the gradient of F (.) at x.

Proof. d is a descent direction, so ḟ(0) < 0 and h(., 0) has a barrier at ᾱ0 = α+.
If α+ = +∞ then h(., 0) is a quadratic function with curvaturem0. This majorant

is minimized at α1 = −ḟ(0)
m0 and according to Lemma 5, we have:

−gTd

νmax‖d‖2
6 α1

6
−gTd

νmin‖d‖2
. (C.23)

If α+ < +∞, according to Lemma 3:

−gTd
γ0

α+
− gTd

α+
+m0

6 α1
6

−2gTd
γ0

α+
− gTd

α+
+m0

. (C.24)

Using Lemma 5 and the positivity of −gTd, we obtain

νmin‖d‖2 6
γ0

α+
− gTd

α+
+m0. (C.25)

On the other hand, taking ι = argmaxi∈{1,...,I}−cTi d, we deduce from (C.15) that

α+
>
Cmin

|cTι d|
. (C.26)

Thus, using Cauchy-Schwartz inequality and (C.14),

−gTd

α+
=

|gTd|
α+

6 |gTd| |cTι d|
1

Cmin
6 ‖g‖ ‖cι‖ ‖d‖2

1

Cmin
6

ηC̄

Cmin
‖d‖2, (C.27)

with C̄ = maxi∈{1,...,I} ‖ci‖ > 0. Moreover, there exists νmax such that

m0 +
γ0

α+
6 νmax‖d‖2, (C.28)

according to Lemma 5. Therefore, (C.25)-(C.28) allow to check that Lemma 6 holds

for ν = νmax +
ηC̄
Cmin

and ν′ = νmin

2 .

Property 5. Under Assumptions 1 and 2, for all j ∈ {1, . . . , J},

αj
6 σj

maxα
1, (C.29)

where

σj
max =

(

1 +
2νmaxL

ν2min

)j−1
(

1 +
ν

L

)

− ν

L
> 1. (C.30)
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Proof. It is easy to check (C.29) for j = 1, with σ1
max = 1. Let us prove that (C.29)

holds for j > 1. Assume that ḟ(αj) < 0. Then ᾱj = α+. Let us denote

m̂j =

{

mj + γj

α+−αj if I+ 6= ∅,
mj otherwise.

(C.31)

If I+ is not empty, i.e. α+ < +∞, we deduce from Lemma 3 that

αj+1 − αj
6

−2ḟ(αj)
γj−ḟ(αj)
α+−αj +mj

. (C.32)

Since ḟ(αj) is negative,

αj+1 − αj
6

−2ḟ(αj)

m̂j
. (C.33)

If I+ is empty, then αj+1−αj = −ḟ(αj)
mj , so (C.33) also holds. According to Lemma 5:

‖d‖2 > m̂0

νmax
, (C.34)

and
m̂j

> νmin‖d‖2, (C.35)

thus we have
m̂j

>
(

m̂0
) νmin

νmax
> 0. (C.36)

Then, from (C.33):

αj+1
6 αj +

2|ḟ(αj)|
m̂0

νmax

νmin
. (C.37)

If ḟ(αj) > 0, αj+1 is lower than αj so (C.37) still holds. According to Assumption 2,
∇F is Lipschitz, so that |ḟ(αj) − ḟ(0)| 6 L‖d‖2αj . Using the fact that |ḟ(αj)| 6
|ḟ(αj)− ḟ(0)|+ |ḟ(0)|, and ḟ(0) < 0, we get:

|ḟ(αj)| 6 Lαj‖d‖2 − ḟ(0). (C.38)

Using Lemma 6 and (C.34):

− ḟ(0) 6 α1ν‖d‖2 6 α1 ν

νmin
m̂0. (C.39)

Given (C.34)- (C.39), we get:

αj+1
6 αj +

2νmax

νmin

1

m̂0

[

Lαj

(

m̂0

νmin

)

+ α1 ν

νmin
m̂0

]

. (C.40)

Hence

αj+1
6 αj

(

1 +
2νmaxL

ν2min

)

+ 2α1 νmaxν

ν2min

. (C.41)

This corresponds to a recursive definition of the series (σj
max) with:

σj+1
max = σj

max

(

1 + 2
νmaxL

ν2min

)

+ 2
ννmax

ν2min

. (C.42)

Given σ1
max = 1, (C.30) is the general term of the series.
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Appendix C.3. First Wolfe condition

First, for j = 1, the first Wolfe condition (28) holds according to Lemma 4, since
it identifies with (C.5) when j = 0, given σ1

max = 1. For all j > 1, (28) holds by
immediate recurrence, given Property 5, hence the result.

Appendix D. Proof of Property 2

First, let us show that (29) holds for all j > 1 with

σmin =

√

1 + 2 L
νmin

− 1

2 L
νmin

∈
(

0,
1

2

)

. (D.1)

Let φ be the concave quadratic function φ(α) = f(0) + αḟ(0) + mα2

2 , with m =

− L
νmin

m̂0, where m̂0 is defined in (C.31). We have φ(0) = f(0) and φ̇(0) = ḟ(0) < 0,

so φ is decreasing on R
+. Let us consider α ∈ [0, αj ], so that x+αd ∈ V0. According

to Assumption 2, we have |ḟ(α) − ḟ(0)| 6 ‖d‖2L|α|, and according to Lemma 5,

|ḟ(α) − ḟ(0)| 6 Lα

νmin
m̂0. (D.2)

Then we obtain:

|ḟ(α)| 6 Lα

νmin
m̂0 − ḟ(0). (D.3)

Hence:
φ̇(α) 6 ḟ(α), ∀α ∈ [0, αj ]. (D.4)

Integrating (D.4) between 0 and αj yields

φ(αj) 6 f(αj). (D.5)

On the other hand, the expression of φ at αmin = σminα
1 reads φ(αmin) =

f(0) + Sα1ḟ(0), where

S = σmin − σ2
minLα

1 m̂0

2ḟ(0)νmin

. (D.6)

According to (C.33):

α1
6

−2ḟ(0)

m̂0
, (D.7)

so that

S 6 σmin + σ2
min

L

νmin
=

1

2
, (D.8)

where the latter equality directly stems from the expression of σmin. Since φ is
decreasing on R

+, we get

φ(αmin) > f(0) +
1

2
α1ḟ(0) > f(α1), (D.9)

where the last inequality is the first Wolfe condition (28) for j = 1.
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Finally, αj > 0 for all j > 1. Assume that there exists j such that αj < αmin.
According to (D.5) and given that φ is decreasing on R

+, we get:

f(αj) > φ(αj) > φ(αmin) > f(α1), (D.10)

which contradicts the fact that f(αj) is nonincreasing. Thus, (29) holds. So does (30),
according to Lemma 6.

Appendix E. Proof of Property 3

Let us first remark that for all k, dk 6= 0, since gT
k dk < 0. According to Property 1,

the first Wolfe condition holds for σ1 = σJ
1 :

F (xk)− F (xk+1) > −σJ
1 αkg

T
k dk. (E.1)

According to Property 2,

αk > σmin
−gT

k dk

ν‖dk‖2
, (E.2)

so

0 6 σ0
(gT

k dk)
2

‖dk‖2
6 F (xk)− F (xk+1), (E.3)

with σ0 = 1
ν
σminσ

J
1 > 0. According to Assumption 2, the level set L0 is bounded, so

limk→∞ F (xk) is finite. Therefore:

∞
∑

k=0

(gT
k dk)

2

‖dk‖2
6

1

σ0

[

F (x0)− lim
k→∞

F (xk)

]

<∞. (E.4)
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