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Optimized Population Monte Carlo
Vı́ctor Elvira and Émilie Chouzenoux

Abstract—Adaptive importance sampling (AIS) methods are
increasingly used for the approximation of distributions and
related intractable integrals in the context of Bayesian inference.
Population Monte Carlo (PMC) algorithms are a subclass of AIS
methods, widely used due to their ease in the adaptation. In this
paper, we propose a novel algorithm that exploits the benefits
of the PMC framework and includes more efficient adaptive
mechanisms, exploiting geometric information of the target distri-
bution. In particular, the novel algorithm adapts the location and
scale parameters of a set of importance densities (proposals). At
each iteration, the location parameters are adapted by combining
a versatile resampling strategy (i.e., using the information of
previous weighted samples) with an advanced optimization-based
scheme. Local second-order information of the target distribution
is incorporated through a preconditioning matrix acting as a
scaling metric onto a gradient direction. A damped Newton
approach is adopted to ensure robustness of the scheme. The
resulting metric is also used to update the scale parameters of the
proposals. We discuss several key theoretical foundations for the
proposed approach. Finally, we show the successful performance
of the proposed method in three numerical examples, involving
challenging distributions.

Index Terms—Importance sampling, Monte Carlo methods,
population Monte Carlo, Newton algorithm, covariance adap-
tation, stochastic optimization, Langevin dynamics.

I. INTRODUCTION

Intractable integrals appear in countless problems of science
and engineering. For instance, in Bayesian inference the in-
terest is in estimating a posterior distribution of an unknown
parameter given a set of related data. For most realistic models,
the posterior distribution cannot be obtained in a closed form,
and even more, it is not possible to simulate samples from it.
Therefore, obtaining moments of interests (e.g., the mean, the
variance, the probability of a certain event) is unfeasible either
via an exact closed form or through approximations involving
direct sampling. Importance sampling (IS) is a popular type
of Monte Carlo methods [1], [2], [3] for the approximation of
intractable distributions and related integrals. In its standard
procedure, IS requires the simulation of samples from another
distribution (called proposal). The samples receive an impor-
tance weight that takes into account the mismatch between
target and proposal distributions. IS is a theoretically solid
mechanism with strong guarantees, such as consistency, central
limit theorems, and explicit error bounds [3], [4]. The perfor-
mance in IS strongly depends on the adequacy of the proposal
distribution. Intuitively, a proposal is good when it is close to
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V.E. and É.C. acknowledge support from the Agence Nationale de la
Recherche of France under PISCES (ANR-17-CE40-0031-01) and MAJIC
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the integrand in the targeted integral. However, it is usually
impossible to know in advance where the probability mass of
the target distribution is located (e.g., in Bayesian inference,
one only has access to the evaluation of an unnormalized
version of the posterior distribution). Therefore, advanced
strategies must be employed, usually involving more than one
proposal, which is called multiple importance sampling (MIS)
[5], combined with the adaptation of the multiple proposals,
leading to adaptive importance sampling (AIS) schemes [6].

The literature of AIS is vast, including methods based on
sequential moment matching such as AMIS [7], that com-
prises a Rao-Blackwellization of the temporal estimators, and
APIS that incorporates multiple proposals [8]. Other recent
methods have introduced Markov chain Monte Carlo (MCMC)
mechanisms for the adaptation of the IS proposals [9], [10],
[11]. The family of population Monte Carlo (PMC) methods
also falls within AIS. Its key feature is arguably the use of
resampling steps in the adaptation of the location parameters of
the proposals [12], [13]. The seminal paper [14] introduced the
PMC framework. Since then, other PMC algorithms have been
proposed, increasing the resulting performance by the incor-
poration of stochastic expectation-maximization mechanisms
[15], non-linear transformation of the importance weights [16],
or better weighting and resampling schemes [17]. The method
we propose in this paper falls within the PMC framework.

The state-of-the-art AIS methods, and particularly those
belonging to the PMC family, suffer from several limitations
that prevent a wider application of IS to more challenging
problems. First, in the case of PMC, the resampling step
provokes the well-known path degeneracy (see for instance
[17, Fig. 4]), endangering the diversity of the proposals in
the subsequent iterations. Some attempts have been recently
done to attenuate this problem, e.g., the LR-PMC in [17]
first forms a partition of the samples and then performs
independent resampling step in each subset. However, this
is at the expense of worsening the local exploration, since
each partition approximates the target with less samples (see
more details in [17]). The second limitation, not only in PMC
but also in AIS in general, is that most existing methods
only adapt the location parameters of the proposals, while
the scale parameter remains fixed from the beginning. This
is a clear limitation, since it is well known that the scale
parameters of the proposals can make a significant difference
in the efficiency of the AIS algorithm. Moreover a fine manual
tuning requires a prior knowledge about the scale of the
posterior distribution. Finally, even if such optimal fine tuning
was possible, there is a clear advantage in adapting the scale
parameter over the iterations, depending where the proposals
are placed. Moreover, this represents an extra challenge when
the dimensions of the posterior are of different order of



XXX, VOL. X, NO. Y, DATE 2

magnitude and/or present strong correlations.
Some families of AIS methods use geometric information

about the target for the adaptation of the location parame-
ters, yielding to optimization-based adaptation schemes. For
example, the GAPIS algorithm [18] is an AIS method that
exploits the gradient and the Hessian of the logarithm of
the target, and also introduces an artificial repulsion among
proposals to promote the diversity (without any resampling
step). Other methods such as [19], [20] adapt the location
parameters by performing at each sample several steps of the
unadjusted Langevin algorithm (ULA) [21], which can also be
seen as an instance of a stochastic gradient descent method.
The covariance is also adapted in those methods by either com-
puting the sample autocorrelation [19] or using second-order
information [18], [20]. A covariance adaptation has been also
explored via robust moment-matching mechanisms in [22],
[23]. We refer the interested reader to the survey [6]. The use
of optimization techniques within PMC framework remains
however unexplored. It is worth mentioning that optimization
inspired schemes have also shown to be an efficient strategy to
improve practical convergence rate in MCMC algorithms (see
the survey paper [24] and references therein). In particular, the
works [25], [26], [27], [28], [29] fall in the framework of the
so-called Metropolis adjusted Langevin algorithms (MALA),
where the ULA scheme is combined with a Metropolis-
Hastings step. The Langevin-based strategy yields proposed
samples that are more likely drawn from a highly probable re-
gion, with the consequence of a larger acceptance probability.
MALA can be further improved by rescaling the drift term by
a preconditioning matrix encoding local curvature information
about the target density, through the Fisher metric [30], the
Hessian matrix [31], [32], [28] or a tractable approximation
of it [33], [34], [35], [36]. Optimization-based methods for
accelerating MCMC sampling of non-differentiable targets
have also been considered, for instance in [26], [37].

In this work, we propose a new Optimized PMC (O-
PMC) approach.1 To the best of our knowledge, the proposed
algorithm is the first within the relevant PMC family to
incorporate explicit optimization steps in order to enhance the
resampling-based adaptation by exploiting the geometry of the
target. In O-PMC, the proposals are adjusted using a stochastic
Newton-based step adapted to the sample values resulting from
a suitable resampling strategy. In contrast to the aforemen-
tioned works, here the mean and covariance adaptation are
performed jointly, with the advantage of fitting the proposal
distributions locally, boosting the exploration and increasing
the performance. A damped Newton strategy, incorporating
two stabilization features is proposed for the mean adaptation,
and the retained scale matrix is per-used for the covariance
adaptation. We show on three sets of numerical examples that
this novel methodology catalyzes the local adaptation without
endangering the diversity of the proposals nor the stability of
the trajectories.

The rest of the paper is structured as follows. Section 2
introduces the problem setting, the AIS framework, and

1A limited version of this work was presented by the authors in the
conference paper [38].

optimization-based proposal adaptation rules. In Section 3,
we present the proposed method. We discuss its rationale
and theoretical foundations in Section 4, including also a
toy example. Finally, we show three numerical examples in
Section 5 and conclude in Section 6.

II. BAYESIAN INFERENCE VIA IMPORTANCE SAMPLING

In this section, we describe the Bayesian inference frame-
work, the generic importance sampling methodology, and the
standard PMC, which is an adaptive IS (AIS) algorithm. Note
that, as stated in the introduction, the range of applicability
of O-PMC goes beyond Bayesian inference (e.g., in the first
two examples presented in Section V, the target distribution
is available in a closed form and not necessarily coming from
a Bayesian inference problem).

A. Bayesian inference

We consider the estimation problem of a vector of unknowns
x ∈ Rdx that is statistically connected through a probabilistic
model to the vector y ∈ Rdy that contains the available
data. The observation model is embedded into the likelihood
function `(y|x). The Bayesian approach allows for the incor-
poration of available prior information about x in the so-called
prior distribution p0(x). The so-called posterior distribution
of the unknowns given the data (a.k.a. target distribution) can
then be expressed thanks to the Bayes rule:

π̃(x|y) =
`(y|x)p0(x)

Z(y)
. (1)

Very often, the interest lies in the computation of a specific
moment of the posterior distribution which amounts to solving
integrals under the generic form

I =

∫
h(x)π̃(x)dx =

1

Z

∫
h(x)π(x)dx, (2)

where h is any integrable function w.r.t. π̃(x). Unfortunately,
in most cases of interest, Eq. (2) cannot be computed, either
because the integral is intractable or because the posterior
distribution is rarely available in a closed form, mostly
because of the impossibility of computing the normalizing
constant Z(y) ,

∫
π(x|y)dx (a.k.a. model evidence, marginal

likelihood, or partition function). Hence, it is useful to de-
fine the non-negative function π(x|y) , `(y|x)p0(x) =
Z(y)π̃(x|y).2 In order to overcome this limitation, approx-
imate methods must be employed.

B. Importance sampling

Importance sampling (IS) is a Monte Carlo methodology
that allows for the approximation of distributions and integrals
as those of previous section. Unlike the raw (or standard)
Monte Carlo technique, the basic IS method simulates all
samples from the so-called proposal distribution q(x). The
samples are weighted accordingly in such a way consistent
estimators can be built. More precisely, IS is composed of the
two following steps:

2From now on, in order to ease the notation, we drop y in Z, π(x), and
π̃(x).
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1) Sampling. Simulate K samples as

xk ∼ q(x), k = 1, ...,K.

2) Weighting. Assign an importance weight to each sample
as

wk =
π(xk)

q(xk)
k = 1, ...,K.

i.e., the ratio between the unnormalized target and the
proposal distribution, evaluated at the specific sample.

This basic sampling-weighting procedure allows for the con-
struction of the both next estimators:
• Unnormalized IS (UIS) estimator:

Î =
1

KZ

K∑
k=1

wkh(xk). (3)

• Self-normalized IS (SNIS) estimator:

Ĩ =

K∑
k=1

w̄kh(xk). (4)

Both UIS and SNIS are consistent with K, while only UIS is
unbiased. However, UIS can be used only if Z is known. The
key of success in IS is an appropriate choice of the proposal
q in such a way that the aforementioned estimators have a
low variance. The variance of the UIS estimator is minimized
when the proposal is q(x) ∝ |h(x)|π(x), while the optimal
proposal of the SNIS estimator is q(x) ∝ |h(x)|π(x) [1],
[2], [3]. However, in most of cases it is impossible to design
such proposal because it does not have a known form where
sampling is possible. Hence, adaptive methods are required in
order to iteratively improve the proposal.

C. Multiple importance sampling

Multiple importance sampling (MIS) refers to the case
where several proposals {qn(x)}Nn=1 are used instead of just
one, as in the previous section. It is known that in MIS, many
possible sampling and weighting schemes are possible, and
we refer the interested reader to an exhaustive comparison
and analysis in [5]. Let us consider the case where K = N
samples are simulated from the set of N proposals. One can
proceed as follows:

1) Sampling: Each sample is simulated from each of the
proposals as

xn ∼ qn(x), n = 1, ..., N

2) Weighting: Among all possible weighting options, we
describe two possibilities:

• Option 1: Standard MIS (s-MIS):

wn =
π(xn)

qn(xn)
, n = 1, . . . , N

• Option 2: Deterministic mixture MIS (DM-MIS):

wn =
π(xn)

ψ(xn)
=

π(xn)
1
N

∑N
j=1 qj(xn)

, n = 1, . . . , N,

TABLE I
STANDARD PMC ALGORITHM.

1) [Initialization]: Set σ > 0, (N,T ) ∈ N+. For n = 1, . . . , N ,
select the initial adaptive parameters µ(1)

n ∈ Rdx and Σ = σ2Idx .

2) [For t = 1 to T ]:
a) Draw one sample per each proposal pdf,

x
(t)
n ∼ q

(t)
n (x;µ

(t)
n ,Σ) (5)

with n = 1, . . . , N .
b) Compute the importance weights,

w
(t)
n =

π(x
(t)
n )

q
(t)
n (x

(t)
n )

. (6)

with n = 1, . . . , N .
c) Resample N location parameters {µ(t+1)

n }Nn=1 from the set of
N weighted samples of iteration t.

3) [Output, t = T ]: Return the pairs {x(t)
n , w

(t)
n }, for n = 1, . . . , N

and t = 1, . . . , T .

where ψ(x) = 1
N

∑N
j=1 qj(x) is the mixture pdf.

We recall that more sampling options are also possible. In the
two MIS schemes presented below, it is possible to build the
UIS estimator and also to normalize the weights to create the
SNIS estimator. It is important to note that, while Option 1
(s-MIS) seems a natural extension of IS to MIS, it has been
shown to provide always worse performance than Option 2
(DM-MIS), quantified in the variance of the UIS estimator. In
very simple examples, the difference of this variance in both
cases can be of several orders of magnitude (see [5] for more
details).

D. Adaptive Importance Sampling and Population Monte
Carlo

Adaptive importance sampling (AIS) is an iterative pro-
cedure for the adaptation of one or several proposals. The
literature of AIS is vast, specially in the last decade, and
we refer to [6] for an exhaustive review. Here we focus on
population Monte Carlo (PMC), a family of AIS algorithms
where the adaptation is based on resampling previous weighted
particles. Table I describes the standard PMC algorithm [14].

In Step 1), the algorithm is initialized with N proposals
where the location parameter is set to µ(1)

n (or could be chosen
randomly) and the scale parameter is also set to Σ = σ2Idx ,
with σ > 0. Then, the algorithm runs for T iterations as
follows. In Step 2a), exactly one sample is simulated from each
proposal. An importance weight is assigned to each sample in
Step 2b). In Step 2c), the location parameters of next iteration
are chosen by resampling the population of samples with
probability proportional to the importance weight. Finally,
the set of NT weighted samples is returned so the classical
unnormalized or self-normalized IS estimators can be built
similarly to Eqs. (3)-(4).

Several PMC-based algorithms have been proposed since
the publication of [14]. For instance, the M-PMC in [15]
adapts a mixture proposal, including the weight, location, and
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scale parameter of each kernel of the mixture. The recent
DM-PMC [17], adapts the location parameters of N proposals
while the scale parameters remain static (e.g., with Gaussian
proposals, the means are adapted but not the covariance
matrices). The algorithm runs also over T iterations, where
at each of them, K samples per proposal are simulated and
weighted. The N adapted location parameters are resampled
from the population of the NK samples at time t.

E. Optimization-based samplers
The choice of a suitable proposal distribution is a key

challenge in sampling algorithms and have major conse-
quences in their performance. While algorithms where the
proposals are parametrized by static parameters might be
easier to set up, this is often suboptimal. The reason is
that the properties of the sought target are rarely known a
priori, particularly in challenging applications. Many iterative
schemes for proposal adaptation have been proposed in the
literature of MC samplers, with the aim of a better and
faster target exploration, especially at large dimension. One
of the most relevant strategies within this recent trend is
the Langevin-based sampling methods. Let us assume that
log π is continuously differentiable on Rdx . Langevin samplers
are derived from discrete approximations of the continuous
diffusion initially introduced in [39]. They use a gradient
descent step to move the samples location in the direction of a
local increase of the target. This leads to an iterative strategy
called unadjusted Langevin algorithm (ULA) [21]:

(∀t ∈ N) x(t+1) = x(t) +
ε2

2
∇ log π(x(t)) + εω(t), (7)

where, for every t ∈ N, ω(t) ∈ Rdx is a realization of a
standard Gaussian distribution and ε > 0 is the discretization
stepsize. Note that the above scheme can also be interpreted as
a gradient descent method perturbed with an i.i.d. stochastic
error. Convergence analysis of the ULA sampler can be found
for instance in [40], [21]. As emphasized in the aforemen-
tioned works, except in very specific situations, the Markov
chain generated by the ULA scheme has a unique stationary
distribution which differs from the target π (see in particular
[41] for a quantification of this discrepancy). This undesirable
effect is a consequence of the discretization procedure, as it
is not present for the continuous Langevin diffusion [42]. To
overcome this limitation, the ULA can be combined with a
Metropolis-Hasting (MH) strategy, based on an acceptance-
reject procedure, leading to the so-called Metropolis adjusted
Langevin algorithm (MALA) [25]. The latter method has
proved ergodic convergence, under milder assumptions on π.
Moreover, its nice stability opens the door to the introduction
of acceleration strategies. In particular, more sophisticated
scale matrices, integrating more information (e.g., curvature)
about the target [33], [30], [29], [28], [43], [25], [44], can be
adopted. Let us in particular mention the Newton MH strategy
[29], [28], which consists in combining an MH procedure with
the stochastic Newton update:

(∀t ∈ N) x(t+1) =

x(t) + A(x(t))∇ log π(x(t)) + A1/2(x(t))ω(t), (8)

TABLE II
O-PMC ALGORITHM.

1) [Initialization]: Set σ > 0, (N,K, T ) ∈ N+, {νn}Nn=1. For n =

1, . . . , N , select the initial adaptive parameters µ(1)
n ∈ Rdx and

Σ
(1)
n = σ2Idx .

2) [For t = 1 to T ]:
a) [Sampling]: Simulate NK samples as

x
(t)
n,k ∼ q

(t)
n (x;µ

(t)
n ,Σ

(t)
n ,νn) (9)

with n = 1, . . . , N , and k = 1, . . . ,K.
b) [Weighting]: Calculate the normalized IS weights as

w
(t)
n,k =

π(x
(t)
n,k)

1
N

∑N
i=1 q

(t)
i (x

(t)
n,k)

. (10)

c) [Adaptation]: Adapt the location and scale parameters of the
proposal

i) [Resampling step] Resample N proposals densities from
the pool of NK weighted samples at the iteration t. The
means and scales of the resampled proposals are denoted as
µ̃

(t)
n and Σ̃

(t)
n , respectively. See Section III-C for explicit

definitions of the notations.
ii) [Optimization step] Adapt the proposal parameters
{(µ(t+1)

n ,Σ
(t+1)
n )}Nn=1 according to (11)-(12).

3) [Output, t = T ]: Return the pairs {x(t)
n,k, w

(t)
n,k}, for n =

1, . . . , N , k = 1, . . . ,K and t = 1, . . . , T .

where A(x(t)) is the inverse (or an approximation of it,
when undefined or too complex) of the Hessian matrix
∇2 log π(x(t)). In the next section, we present our main
contribution, that is a new adaptive importance sampling
algorithm that integrates such Newton-based strategy within
the proposal adaptation rule of an advanced PMC scheme.

III. NEWTON POPULATION MONTE CARLO

In this section, we present the novel algorithm optimized
population Monte Carlo (O-PMC), an AIS algorithm that
belongs to the family of PMC algorithms (see Table I). O-
PMC incorporates several features for an efficient adaptation
of the IS proposals with the goal of approximating Eq. (2). The
O-PMC is presented in Table II. The algorithm is initialized
with N proposals whose location and scale parameters are
denoted with µ(1)

n ∈ Rdx and Σ
(1)
n = σ2Idx , respectively,

with σ > 0, i.e., the initial scale matrices are isotropic. We
denote the static parameters of the N proposals as {νn}Nn=1.
Then, the algorithm runs for T iterations, each of them divided
in three steps: sampling in Step 2a), weighting in Step 2b), and
adaptation in Step 2c). Finally the set of weighted samples is
returned, so IS estimators can be built. In the following, we
detail the steps.

A. Sampling and weighting

In Step 2a), at iteration t, each proposal is used to simulate
exactly K samples from it. Note that it would be possible to
have a different number of samples per proposal, Kn, although
this variation should be accordingly done with the resampling
step of previous iteration t−1. For simplicity in the description
of the algorithm, we stick to a fixed K.
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The weighting scheme is applied in Step 2b) according to
Eq. (10), and in particular, those are based on the deterministic
mixture weighting scheme (DM-MIS) of Section II-C. Note
that these weights have been shown to provide a lower variance
in UIS estimator compared to those of Eq. (6) of the original
PMC method. We can call these weights spatial DM-MIS
weights, since the proposals involved in the mixture of the
denominator belong to the iteration t (see other options with
temporal or spatial-temporal mixtures in [6], [9]).

B. Resampling

The resampling step is the first adaptive procedure (Step 2c)
in Table II) which is then followed by the optimization step. In
the resampling step, we select a set of N proposals, including a
set of new location parameters {µ̃(t)

n }Nn=1 and the associated
(inherited) scale parameters {Σ̃(t)

n }Nn=1. The resampling can
be interpreted as a sampling procedure from one or several
particle approximations of the target distribution.

Here we present a novel resampling framework, for which
existing resampling schemes are particular cases, while novel
schemes can be derived (we propose one new scheme). Note
that in all existing resampling schemes, only the location
parameters are resampled, while here we also resample the
associated scale parameters (which is equivalent to resam-
pling the proposals). In our novel framework, the set of N
resampled proposals with location parameters µ̃(t)

n , x
(t)

i
(t)
n ,j

(t)
n

and scale parameters Σ̃
(t)
n , Σ

(t)

i
(t)
n

are obtained by sampling
(randomly) or choosing (deterministically) N pairs of indexes
{i(t)n , j

(t)
n }Nn=1. The index i

(t)
n ∈ {1, ..., N} points to the

ancestor proposal which generated the sample that has been re-
sampled, while the index j(t)n ∈ {1, ...,K} selects the specific
sample in the set {x

i
(t)
n ,k
}Kk=1. Note that the resampled scale

parameter is selected by using only the ancestor index i
(t)
n .

Let us now propose three particular and interesting choices
for the resampling strategies, encompassed within our versatile
framework.

Global resampling (GR): The N location parameters
are simulated i.i.d. from a single particle approximation
π̂NKt (x) =

∑N
n=1

∑K
k=1 wn,kδ (x− xn,k), constructed by the

set of NK weighted samples xn,k obtained from Step 2a),

and the normalized weights w(t)
n,k =

w
(t)
n,k∑N

i=1

∑K
j=1 w

(t)
i,j

. There-

fore the two indexes are simulated jointly (but each pair
is independent from other pairs), leading to n-th pair of
indexes { i(t)n , j

(t)
n } = {`, k} with associated probabilities

w
(t)
`,k, ` = 1, ..., N and k = 1, ...,K. Note that, for such

choice, the resampled particles are strongly correlated (e.g.,
if one weight wn,k dominates, all resampled particles can be
identical). This scheme is closely related to the resampling
step in the seminal PMC method [14] and it has been recently
proposed in [17], although in both aforementioned works it
only applied to the location parameters.

Local resampling (LR): An alternative strategy consists in
simulating exactly one sample per ancestor (i.e., proposal). In
this case, alternative re-normalized weights w̃n,k =

wn,k∑K
j=1 wn,j

are required, in such a way that
∑K
k=1 w̃n,k = 1 for all

n = 1, . . . , N . Then, the index of the n-th resampled proposal,
i
(t)
n = n, is chosen deterministically, while the index j(t)n = k

is sampled with probability w̃n,k, for each k = 1, ...,K. The
advantage of the LR scheme is that the N resampled parti-
cles are different, preserving the diversity in the exploration
through N paths that interact only due to the denominator in
(10). The drawback is that it also preserves paths that are in
non-relevant parts of the space. The limitations of both GR
and LR strategies are closely linked to the tradeoff between
particle degeneracy and path degeneracy, which is well-known
in particle filtering [45], [46].

‘Glocal’ resampling (GLR): We introduce an original
hybrid resampling approach, particularly tailored for the
optimization-based adaptation that follows after the resampling
step. The resampling step is done by following an LR step (i.e.,
using the w̃n,k weights and preserving the diversity), except
for the iterations with t multiple of a given period parameter
∆ ∈ N∗, where a GR step is performed instead. The rationale
of this novel scheme is explained in Section IV-B.

Finally, note that other existing schemes, such as the inde-
pendent resampling (IR) of [46], are also encompassed in this
framework.

C. Optimization

1) General rule: The second adaptive feature of our al-
gorithm lies in Step 2c)ii). Here, in order to improve the
exploration performance, we propose to adopt a Newton-based
strategy for the construction of the proposal used to draw the
next KN samples. The proposal density for iteration t+ 1, is
modified, with a new adapted mean, given by

µ(t+1)
n = µ̃(t)

n + A(µ̃(t)
n )∇ log π(µ̃(t)

n ), (11)

where A(µ̃
(t)
n ) is an SDP matrix of Rdx×dx . The scale matrix

of the proposal is also adapted, in order to be consistent with
the above location update, i.e.,

Σ(t+1)
n = A(µ̃(t)

n ). (12)

As can been seen from (11)-(12), the scale matrix parameter
A(·) plays an important role in our scheme, since it drives the
direction and length of the adapted jump. In the following, we
present our simple yet efficient strategy for the setting of this
parameter.

2) Scaling matrix: Newton-based strategy amounts to in-
tegrating information of the inverse of the Hessian of log π,
in the update rule for A(µ̃

(t)
n ). However, in general cases, π̃

may not be log-concave so that numerical issues can arise
in the inversion of the Hessian matrix. Furthermore, even
when the inversion is well defined, one Newton iteration with
unit stepsize does not necessarily yield an increase of log π
[47]. We thus propose to overcome those issues by adopting a
damped Newton strategy, incorporating two specific features
that aim at enforcing the numerical stability of the proposed
scheme. The scaling matrix is defined as:

A(µ̃(t)
n ) = θ(t)n Γ(µ̃(t)

n ), (13)
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with

Γ(µ̃(t)
n ) =


(
−∇2 log π(µ̃

(t)
n )
)−1

, if ∇2 log π(µ̃
(t)
n ) � 0,

Σ̃
(t)
n , otherwise.

(14)
Otherwise stated, the covariance of the n-th proposal is set
by using second order information when it yields to a definite
positive matrix; otherwise, it inherits the covariance of the
i
(t)
n -th proposal that generated the sample. Moreover, we

introduced θ(t)n ∈ (0, 1], which is a stepsize tuned according to
a backtracking scheme in order to avoid the degeneracy of the
Newton iteration, and thus of our adaptation scheme. Starting
with unit stepsize value, we reduce it by factor τ = 1/2 until
the condition below is met:

π
(
µ̃(t)
n + A(µ̃(t)

n )∇ log π(µ̃(t)
n )
)
≥ π

(
µ̃(t)
n

)
. (15)

D. Related works in the literature

The PMC algorithms perform the adaptation of the pro-
posals via a resampling scheme. This step can be viewed
as a stochastic procedure, since it is based on a multinomial
resampling with replacement. However, since the set of pro-
posals in the next iteration is parametrized by the resampled
particles, this procedure can be alternatively seen as an implicit
optimization procedure (in general, this perspective is not
mentioned in the literature). In this paper, we propose, for
the first time up to our knowledge, an explicit optimization
procedure incorporated within the adaptation part of the al-
gorithm, more precisely after the resampling step is done.
Moreover, we design a suitable resampling step that allows
the optimization step to exploit the benefits of stochastic and
deterministic adaptation.

The introduction of optimization-based rules for improving
the exploration properties of other AIS methods, not belonging
to the PMC family, has been explored in the recent works [18],
[19], [20], [48]. In [19], the authors propose a gradient descent
with decreasing stepsize update for the location parameters,
while the covariance update relies on the calculation of the
empirical covariance of the past samples. Moreover, there is
only one proposal. In GAPIS [18], the location parameters
are updated according to a Newton step while the covariance
remains static. Finally, in NIMIS and LIMIS [20], a temporal
mixture is constructed, in the spirit of AMIS [7] but using
a mixture that increases the number of components with the
iterations (instead of remembering the whole mixture simply
for the calculation of the importance weight). In LIMIS, the
location parameters move along a gradient direction while the
covariance adaptation relies on second-order approximation
of the target, both updates being evaluated using Runge-
Kutta numerical integration. Up to our knowledge, the use
of a Newton-based adaptation for both location/covariance
parameters, has never been considered in PMC literature.

IV. DISCUSSION

In the following, we discuss the key elements of the novel
O-PMC algorithm.

A. Importance weights

In O-PMC K samples are simulated from N proposals at
each iteration. Then, the importance weights are computed
in Eq. (10). First, note that these weights do not follow the
standard functional consisting on the ratio between the target
and the proposal distributions, e.g., the sample x

(t)
n,k is simu-

lated from the n-th proposal but in the denominator of w(t)
n,k,

the whole mixture
∑N
i=1 q

(t)
i (x) is evaluated (instead of just

q
(t)
n ). This alternative choice for the weights, called balance

heuristic [49] or deterministic weights [50], has been shown
to be unbiased and even more, to provide IS estimators with
reduced variance [5]. The benefits of such alternative weights
go beyond the superior performance of the estimators, and
provide advantages in the resampling adaptation, compared
to the standard weights. The reason is that, when evaluating
the whole mixture in the denominator, the importance weight
captures the mismatch between the target and the whole
mixture of proposals at the iteration t (and not only the
particular proposal that generated the sample). The resampling
stage done with these weights allows to over-sample regions
that are under-represented (see next section).

Finally, note that a mixture with the whole set of proposals
{q(τ)n }1≤n≤N,1≤τ≤t, could be placed in the denominator of the
importance weight, in the spirit of the AMIS algorithm [7].
We have however discarded this option as it would increase
the computational complexity, particularly when T is large [6].

B. Resampling schemes

PMC algorithms adapt the set of proposals via a resampling
step. In the seminal PMC algorithm from [14], the resampling
is done at each time step using the standard weights. New
resampling schemes have been proposed in [17], [46]. Note
that by ‘resampling scheme’, we do not only refer to the
way the sampling of the indexes that will be replicated is
done (as in [12], [13]). In PMC algorithms, the samples
are not i.i.d., and hence it is possible to enforce different
adaptation behaviors. It is important to note that unlike in
adaptive MCMC methods, where modifying the adaptation can
endanger the convergence of the method, in AIS the needed
assumptions are milder, since the validity of the estimators is
ensured by the importance weights.

In O-PMC we propose two possible resampling schemes
that are designed so as to exploit the optimization step (see the
step 2)c)ii) in Table II). The local resampling (LR), proposed
in [17] is particularly suitable for the optimization step that
follows the resampling. As described in Section III-B, the LR
scheme ensures that one (and only one) sample simulated
from the n-th proposal survives. This is advantageous for
the Newton-based step that follows the resampling, since
in practice there are N chains or threads, corresponding to
the resampled particle among the set {x(t)

n,k}Kk=1 for each
n = 1, ..., N , that is later adapted using the geometry of
the target. It is interesting to see that these N chains interact
only in the importance weights calculation (because the whole
mixture is in the denominator, as explained in the previous
section). This interaction is very effective, since it can give
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a lower weight to specific samples that are in over-populated
areas (i.e., other proposals are covering that region), even if
this part of the target has high probability mass. In O-PMC, we
have discarded the use of the standard global resampling (GR)
[14], [17] since it is known to reduce the diversity, endangering
the exploration of the target (after the GR step, all resampled
particles can come from the same proposal, and even more,
can be exactly the same).

Moreover, in O-PMC we present another variant called
‘glocal’ resampling (GLR). The GLR scheme can be seen as
a modified LR scheme, where, at every ∆ ∈ N∗ iterations, a
GR step is performed instead of an LR one. The rationale is
to preserve for most iterations the diversity in the exploration
of each proposal (with a mild interaction in the denominator
of the importance weights). Periodically, every ∆ iterations,
the GR step enforces a stronger cooperation among paths,
killing those who are in irrelevant parts of the space, and
replicating those who are more promising (which allows for a
more exhaustive local exploration in the next iterations). The
GLR strategy keeps clear ties with the adaptive resampling
[51], allowing to find a good balance between an accurate
local approximation of the target and a global exploration.

C. Newton-based adaptation

1) Improvement w.r.t. Newton scheme: In the optimization
step, a straightforward approach may be simply choosing the
scaling metric by relying on the information of the Hessian of
log π. In this approach, we might set A(µ̃

(t)
n ) as the invert of

∇2 log π(µ̃
(t)
n ). In such a way, (11) would read as one Newton

iteration applied to the maximization of function log π, and
initialized at µ̃(t)

n . However, there are two drawbacks for the
Newton optimization method, namely (i) the requirement for
convexity of − log π for proper definition of the iteration, (ii)
the local convergence behavior, i.e., convergence only when
initialized “sufficiently close” to a mode. We thus propose
two controlling rules, to avoid these difficulties. First, our
proposed scheme in (14) introduces a test, taking into account
the fact that log π might not be necessarily log-concave at
µ̃

(t)
n , so that ∇2 log π(µ̃

(t)
n ) might be non invertible. We take

here advantage of the trajectory tracking inherent to the AIS
method, by re-using the past scaling matrix from the particle
ancestors. This is particularly advantageous, since the samples
are in general close from the location parameter of the density
where they were simulated. Hence, O-PMC either accounts for
the second-order information at the sample location or inherits
a more stable one from a close location. Second, a stepsize
is introduced in (13), which is computed following a simple
backtracking procedure. The idea is to constrain the Newton
step within a region in which we believe that the second order
model, inherent from the Newton approximation on log π is
reliable, using iterative trials for the stepsize. If a notable
increase of log π is gained, then the model is believed to be a
good representation of the original objective function. If there
is not significant improvement, the model is considered invalid,
and a new step is tried. It is worth noting that the fulfillment
of the descent condition (15) in finite time is ensured under
mild assumptions on log π (e.g., Lipschitz differentiability, see

[47]). Moreover, under the same assumptions, the unit stepsize
satisfies (15) as soon as µ̃(t)

n is sufficiently close to a local
maximum of log π [47]. Otherwise stated, the classical (fast)
Newton move of the location parameters is retrieved as soon
as the particles get close to the modes of the target.

2) Connection with scaled Langevin dynamics: Our scaled
gradient adaptation scheme (11)-(12) keeps interesting con-
nections with the discretized version of the scaled Langevin
diffusion, mentioned for instance in [25], [33] in the context
of MCMC sampling. This discretized Langevin diffusion can
be expressed as (using similar notations as in (7)):

(∀t ∈ N) x(t+1) = x(t)+ε2b(x(t))+εA1/2(x(t))ω(t). (16)

Hereabove, b : Rdx → Rdx is the so-called drift term such
that, for every 1 ≤ i ≤ dx and every x ∈ Rdx ,

bi(x) =
1

2

dx∑
j=1

Ai,j(x)
∂ log π(x)

∂xj
+

|A(x)| 12
Q∑
j=1

∂

∂xj

(
Ai,j(x)|A(x)|− 1

2

)
, (17)

with A(x) ∈ Rdx×dx a symmetric definite positive (SDP)
matrix with determinant |A(x)|. A typical approximation,
adopted in [33], consists in ignoring the second term in (17),
leading to the simplified sampling scheme:

(∀t ∈ N) x(t+1) =

x(t)+θ(t)A(x(t))∇ log π(x(t))+(2θ(t))1/2A1/2(x(t))ω(t),
(18)

where (θ(t),A(x(t)))t≥0 are positive stepsize and symmet-
ric definite positive scale parameters, respectively, possibly
varying over the discrete time iterates indexed by t ∈ N.
Ergodicity of the chain generated by (18), combined with a
Metropolis-Hasting step, was established in [33], for a large
class of choices for (θ(t),A(x(t)))t≥0. It is noticeable that
our optimization-based adaptation scheme in Eq. (11)-(12) is
closely related to (18). Note that the factor 2 is not present in
our covariance adaptation rule in Eq. (12), in a similar fashion
as in the Newton MH sampler from [29], [28]. In this way,
the scale parameter of the proposal adapts, in a robust way,
to the curvature of the target distribution, as we show in the
next toy example.

D. Toy example

We illustrate the behavior of O-PMC along iterations on
a simple example where the target is a mixture of bivariate
Gaussian distributions, with means [−5,−5]> and [6, 4]>,
covariances [0.25, 0; 0, 0.25] and [0.52, 0.48; 0.48, 0.52], and
mixture weights 0.7 and 0.3, respectively. We run T = 10
O-PMC iterations with (N,K) = (50, 20), and resampling
schemes LR and GLR (with period ∆ = 5). We initialize
the location parameters of the proposals randomly in the
square [−5, 5] × [−5, 5], and the initial covariance is set to
Σ

(1)
n = I2. We also run the GR-PMC and LR-PMC algorithms

[17] with the same parameters for a fair comparison. We
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display in Fig. 1 the evolution along the iterations of the
proposals, including the location parameters (black dots) and
scale parameters (green ellipses). We also show the two
marginal pdfs of the target distribution (blue line) and the
equally weighted mixture of proposals (red line). We notice
that O-PMC algorithm moves rapidly the proposal locations
to the two modes. Moreover, it fits the scale parameters of the
proposals to the scale parameters of each mode (depending
on the part of the space where the proposal is located). The
target is thus very accurately estimated, in few iterations, as
can be seen in the 2D plots as well as in the marginals. In
contrast, both GR-PMC and LR-PMC schemes struggle to
reach a reasonably good target approximation. We also observe
the benefits offered by GLR, our novel resampling scheme, as
it can be easily noticed the improved performance of O-PMC
w.r.t. the LR variant. This is particularly visible between t = 5
and t = 6, as t = 6 corresponds to the first (periodic) callback
to the GR resampling (see Sec. III-B for more details).

V. NUMERICAL RESULTS

In this section, we present several sets of experiments,
in order to assess the performance of the proposed O-
PMC algorithm. Three examples will be considered for the
target, namely (i) two-dimensional Gaussian mixture, (ii)
multi-dimensional banana-shaped distribution, (iii) posterior
distribution arising in a spectral analysis problem. These
examples are representative as they incorporate challenging
features related to multi-modality and high dimensionality. In
all examples, we compare with competitive state-of-the-art
adaptive importance sampling techniques, namely GR-PMC
and LR-PMC that are two variants of the DM-PMC algorithm
[17] (GR-PMC and LR-PMC), AMIS [7] and GAPIS [18].

A. Mixture of Gaussians

In this first example, we consider a multimodal target which
is a mixture of five bivariate Gaussian pdfs (i.e. dx = 2):

(∀x ∈ R2) π̃(x) =
1

5

5∑
i=1

N (x; γi,Ci). (19)

Here, we set the means γ1 = [−10,−10]>, γ2 = [0, 16]>,
γ3 = [13, 8]>, γ4 = [−9, 7]>, γ5 = [14,−4]>, and the covari-
ance matrices C1 = [5, 2; 2, 5], C2 = [2, −1.3;−1.3, 2],
C3 = [2, 0.8; 0.8, 2], C4 = [3, 1.2; 1.2, 0.5] and C5 =
[0.2, −0.1;−0.1, 0.2]. The main challenge in this exam-
ple is the ability in discovering the 5 different modes of
π̄(x) ∝ π(x). We focus in our tests on the approximation of
three quantities, namely the target mean Eπ̃[X] = [2.4, 3.4]

>,
the second moment Eπ̃[X2] = [101.04, 98.94]

>, and the
normalizing constant Z = 1. Since we know the ground
truth for these quantities, we can easily assess qualitatively the
performance of the different techniques. Furthermore, since the
problem is low dimensional, it is possible to approximate the
posterior with a very thin grid, allowing to compare visually
the performance of the different sampling schemes.

Except for AMIS, in all other algorithms we set N = 50
proposals (randomly initialized in the square [−15, 15] ×

[−15, 15]), T = 20 iterations, and K = 20 samples per
proposal and iteration. Since AMIS has a single proposal,
we set N = 1, T = 500 and K = 40, i.e., keeping the
same number of target evaluations for a fair comparison.
For all algorithms we use isotropic Gaussian proposals with
standard deviation σ ∈ {1, 3, 5}, except for O-PMC, where
the proposals are initialized using Σ

(1)
n = σ2I2, with σ = 5

and then adapted over the iterations. In the GLR version of
O-PMC, we set the period ∆ = 5. In Table III we display the
relative mean square error (RMSE) of the AIS estimators. We
build the estimators by averaging all the weighted samples
of the second half of the iterations, which allows to better
determine the adaptive capabilities of each algorithm. We see
that the novel O-PMC outperforms all other algorithms, in
most cases by several orders of magnitude.

B. High-dimensional banana-shaped distribution

The second example focuses on the banana-shaped distri-
bution [52], [53]. This target shape has been widely used in
the past for assessing the performance of sampling methods,
as it is particularly challenging to approximate precisely,
especially when the dimension of the problem increases.
Let us consider a dx-dimensional multivariate Gaussian r.v.
X̄ ∼ N (x; 0dx ,C) with C = diag(c2, 1, ..., 1). The banana-
shaped distribution is defined as the pdf of the transformed
multivariate variable (Xj)1≤j≤dx such that Xj = X̄j for
j ∈ {1, ..., dx} \ 2, and X2 = X̄2 − b(X̄2

1 − c2). Hereabove,
b and c are shape parameters set in the sequel to be equal to
c = 1 and b = 3. We evaluate the performance of different
AIS methods in estimating Eπ̃[X], for different dimensions
dx ∈ {2, 5, 10, 15, 20, 30, 40, 50 }. All algorithms initialize the
location parameters of the proposals randomly and uniformly
within the square [−4, 4] × [−4, 4], and 1000 independent
runs are performed. In all algorithms, except AMIS, we set
N = 50, K = 20, and T = 20. In AMIS, we set N = 1,
K = 500 and T = 40, for a fair comparison in terms of
total number of target evaluations (we recall AMIS imposes a
unique proposal). In O-PMC, the initial proposal covariances
are isotropic, Σ

(1)
n = σ2Idx , with σ = 3, and we implement

the resampling strategies LR and GLR (with ∆ = 5). The
other algorithms are initialized also with isotropic covariances
with σ ∈ {1, 3, 5}. In Table IV we show the MSE of the
proposed O-PMC and its competitors in the estimation of the
target mean for dimensions dx ∈ {5, 20, 50}. We also display
in Fig. 2 the performance of O-PMC, LR-PMC and GR-
PMC, measured in terms of MSE averaged across dimensions.
In this example, the best performance is reached with the
LR version of the O-PMC, followed by the GLR version of
the same algorithm. AMIS is the second best algorithm in
most cases, possibly due to the covariance adaptation that it
incorporates (unlike the GR-PMC and LR-PMC schemes). The
competitors GR-PMC and LR-PMC degrade when the dimen-
sion decreases. Note that the MSE of our O-PMC decreases
with the dimension. This can be explained by the particular
structure of the target, which is conditionally Gaussian in all
dimensions except one, and hence it represents a challenge for
O-PMC only in that particular dimension.
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LR-PMC (t = 2) LR-PMC (t = 5) LR-PMC (t = 6) LR-PMC (t = 10)

GR-PMC (t = 2) GR-PMC (t = 5) GR-PMC (t = 6) GR-PMC (t = 10)

O-PMC - LR (t = 2) O-PMC - LR (t = 5) O-PMC - LR (t = 6) O-PMC - LR (t = 10)

O-PMC - GLR (t = 2) O-PMC - GLR (t = 5) O-PMC - GLR (t = 6) O-PMC - GLR (t = 10)

Fig. 1. Toy example. Evolution of the reconstructed target along iterations for LR-PMC, GR-PMC and O-PMC for both LR and GLR (with ∆ = 5). One
can notice the fast convergence of the proposed O-PMC. The great impact of GLR can be seen, by comparing both O-PMC variants (LR / GLR) between
time t = 5 to time t = 6, i.e. after and before applying the GR step in the GLR approach.

GR-PMC LR-PMC GAPIS AMIS O-PMC
σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 LR GLR

Z 0.0432 0.0066 0.0073 0.0025 0.0031 0.0161 0.4882 0.0409 0.0481 0.9836 0.9814 0.9487 4 ·10−4 4 ·10−4

Eπ̃ [X] 2.4280 0.4846 0.3599 0.2229 0.2291 0.6367 2.5397 1.7318 1.2595 54.5381 51.0631 23.4267 0.03532 0.03583
Eπ̃ [X

2] 4.4581 0.4571 0.5014 0.2244 0.2203 0.7778 2.7414 1.4743 2.1444 31.9803 30.1377 21.4783 0.0426 0.0434

TABLE III
EXAMPLE V-A. RELATIVE MSE IN THE ESTIMATION OF Z , Eπ̃ [X], AND Eπ̃ [X2] IN GM2D EXAMPLE. FOR O-PMC, WE SET THE INITIAL PROPOSAL

VARIANCE TO σ = 5. THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS, (N,K, T ) = (50, 20, 20) WHILE
(N,K, T ) = (1, 500, 40) FOR AMIS.

GR-PMC LR-PMC GAPIS AMIS O-PMC
σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 LR GLR

dx = 5 0.2515 0.1350 0.2299 0.3418 0.5289 0.5925 0.3007 0.3631 0.7790 0.1758 0.1783 0.1572 0.0308 0.1014
dx = 20 0.3818 3.1430 11.1921 0.5340 6.4936 23.3693 1.5299 1.6555 1.5640 0.1901 0.1574 0.2673 0.0098 0.0180
dx = 50 1.3134 9.6571 42.6815 2.3963 21.7097 6.3350 2.5524 2.5632 2.8486 0.6074 0.7992 1.5334 0.0051 0.0104

TABLE IV
EXAMPLE V-B. RELATIVE MSE IN THE ESTIMATION OF Eπ̃ [X] OF THE BANANA-SHAPED DISTRIBUTION FOR DIMENSIONS dx = 5, 20 AND 50. FOR

O-PMC, WE SET THE INITIAL PROPOSAL VARIANCE TO σ = 3. THE PERIOD FOR GLR IS SET TO 5. IN ALL PMC-BASED METHODS,
(N,K, T ) = (50, 20, 20) WHILE (N,K, T ) = (1, 500, 40) FOR AMIS.

C. Spectral analysis

Our last example addresses the problem of estimated the
parameters of a multi-sinusoidal signal from noisy and un-
dersampled acquisitions of it. We consider the following
observation model:

(∀j ∈ {1, . . . , dy}) yj =

S∑
s=1

as sin(2πωsτj + ϕs) + nj ,

(20)
where (τj)1≤j≤dy defines a discrete uniform time grid,
(nj)1≤j≤dy a noise assumed to be i.i.d. Gaussian with known
variance σ2

n, and (as, ωs, ϕs)1≤s≤S the amplitude, frequency

and phase parameters, respectively, of S sinusoidal compo-
nents. We focus on the problem of identifying the unknown
frequencies and amplitudes, i.e. dx = 2S, and for all i ∈ {1 ≤
i ≤ dx}, xi = ωs and xi+S = as.

Given the Gaussian model on the noise, the posterior
distribution of x given y reads π(x) ∝ exp(−f(x)) with

f(x) =
1

2σ2
n

J∑
j=1

(
yj −

S∑
s=1

as sin(2πωsτj + ϕs)

)2

−log(p0(x)),

(21)
with p0 the prior distribution on x. This prior factorizes as
p0(x) = pω(x1:S)pa(xS+1:2S), where x1:S contains the first
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Fig. 2. Example V-B. MSE in the estimation of Eπ̃ [X] of the banana-shaped
distribution versus the dimension dx, with GR-PMC (brown square), LR-PMC
(red square) with σ = 1, and the proposed O-PMC method with LR (green
triangle) or GLR (blue triangle) schemes.

S dimensions of x (i.e., corresponding to the S unknown
frequencies), and xS+1:2S corresponds to the S unknown
amplitudes. The prior pω is uniform in the support {x1:S :
0 ≤ x1 ≤ x2... ≤ xS ≤ 0.5}, i.e., we restrict the frequencies
to be defined in increasing order. The prior pa factorizes across
all dimensions and is a uniform distribution in [0,+∞[. The
data is generated by simulating dy = 30S points regularly
spaced over [1, dy]. We explore the case with S ∈ {2, 3, 4, 5}
(i.e., dx ∈ {4, 6, 8, 10}). We set the observation noise variance
to σ2

n = 0.52, and the phases ϕs = 0, for s = 1, ..., S.
All algorithms simulate the initial location parameters as

the prior p0, and the initial covariance matrices are chosen to
be isotropic with σ ∈ { 10−3, 10−2, 10−1}, except O-PMC ,
where the initialization is done only with σ = 10−2 since
the covariance is adapted. Table V shows the median MSE
in the estimation of the target mean, considering as ground
truth the true frequencies and amplitudes that we have set to
generate the data. Note that the target mean can be significantly
different from those parameters, and for this reason, we also
displayed in Table VI the averaged MSE between the signal
reconstructed with the estimated parameters w.r.t. the noiseless
sequence generated with the true parameters. We observe that
with both figures of merit, O-PMC obtains the best results
for most setups. While all methods obtain reasonable results
for S = 2 (dx = 4), their performance degrade faster than in
O-PMC when the dimension of the problem is increased.

In Fig. 3, we display the evolution with the number of
iterations of the MSE in the target mean estimator for GR-
PMC, LR-PMC, and O-PMC (LR, GLR with ∆ = 2, and
GLR with ∆ = 5) algorithms. At each iteration t, we compute
the estimator with all simulated samples from the beginning,
re-normalizing the importance weights to build a unique
estimator as it is done, for instance, in [54]. We use the same
parameters as those of Tables V and VI, setting σ = 10−2.
We observe that all algorithms improve when the number of
iterations grows, and that all versions of our proposed O-PMC

algorithm adapt faster than the competitors. We observe that
the GLR version of O-PMC with ∆ = 5 adapts faster than the
case with ∆ = 2, while the best adaptation for this particular
setup is obtained by the LR version of O-PMC.

Finally, Fig. 4 displays the ground truth and the estimators
obtained by GR-PMC and LR-PMC (left subplots) and the
LR and GLR versions of O-PMC(right subplots). We explore
the cases with S = 2 (dx = 4; top subplot), S = 3
(dx = 6; middle subplot), and S = 4 (dx = 8; bottom
subplot). The vertical bars represent the median estimate ±
the mean absolute deviation (MAD). We observe that in all
dimensions, the O-PMC obtains closer estimates to the ground
truth, both in the frequencies and in the amplitudes. We note
that when the dimension is increased (bottom subplots), the
problem becomes more challenging but O-PMC still performs
successfully unlike GR-PMC and LR-PMC.

0 2 4 6 8 10 12 14 16 18 20
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Fig. 3. Example V-C. Evolution of the median MSE with respect to ground
truth amplitudes and frequencies for dimension dx = 4 as function of the
number of iterations of GR-PMC, LR-PMC, and O-PMC.

VI. CONCLUSION

We have proposed the O-PMC algorithm, an AIS sampler
of the family of PMC algorithms that incorporates geometric
information of the target distribution. O-PMC exploits the
benefits of the PMC framework, incorporates suitable resam-
pling schemes, and includes efficient adaptive mechanisms. In
particular, the novel algorithm adapts the location and scale
parameters of a set of proposals. At each iteration, the location
parameters are adapted through a suitable resampling strat-
egy combined with an advanced optimization-based scheme.
The local second-order information of the target is exploited
through a preconditioning matrix that acts as a scaling metric
onto a gradient direction. This metric is also used in order
to adapt the scale parameters of the proposals. We have
discussed the choice of parameters, included an illustrative
toy example, and evaluated numerically the performance of the
novel algorithm in three challenging problems, comparing the
results with state-of-the-art competitive methods. As a future
work, we may explore the implementation of low-complexity
approximations of the Hessian to adapt the scale parameters
of the proposals.
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GR-PMC LR-PMC GAPIS AMIS O-PMC
σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 LR GLR

dx = 4 0.1083 0.0479 0.0249 0.0516 0.0185 0.0299 0.8422 0.4176 0.3342 0.0623 0.0384 0.0504 0.0017 0.0024
dx = 6 0.0929 0.0568 0.0544 0.0808 0.0598 0.0621 3.9936 4.9897 4.0805 0.0881 0.0956 0.0806 0.0076 0.0014
dx = 8 0.1163 0.0906 0.1022 0.1041 0.0718 0.1128 13.0336 10.4020 7.3938 0.1837 0.1459 0.1261 0.0418 0.0343
dx = 10 0.0671 0.0804 0.0671 0.0609 0.0933 0.0757 18.7525 18.5906 14.8404 0.1279 0.1284 0.1811 0.1027 0.0560

TABLE V
EXAMPLE V-C. MEDIAN MSE WITH RESPECT TO GROUND TRUTH AMPLITUDES AND FREQUENCIES PARAMETERS, FOR DIMENSIONS dx = 4, 6, 8 AND
10. FOR O-PMC, WE SET THE INITIAL PROPOSAL VARIANCE TO σ = 10−2 . THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS,

(N,K, T ) = (50, 20, 20) WHILE (N,K, T ) = (1, 500, 40) FOR AMIS.

GR-PMC LR-PMC GAPIS AMIS O-PMC
σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 LR GLR

dx = 4 0.4206 0.1715 0.1122 0.3670 0.2453 0.5379 0.5538 0.3475 0.3810 0.2956 0.2697 0.3185 0.2081 0.3043
dx = 6 0.7301 0.3572 0.2677 0.6632 0.3745 0.4739 0.8761 0.6995 0.6757 0.6480 0.6631 0.6811 0.3859 0.1681
dx = 8 1.3138 0.6910 0.8157 1.2692 0.7238 1.0867 1.5086 1.2156 1.5075 3.9607 3.3690 3.2748 0.5733 0.4259
dx = 10 2.6353 1.0050 2.8790 2.1628 1.1288 2.8382 1.4591 1.5012 1.5146 4.5971 4.5016 4.7863 1.1124 0.7351

TABLE VI
EXAMPLE V-C. RECONSTRUCTED MSE FOR DIMENSIONS dx = 4, 6, 8 AND 10. FOR O-PMC, WE SET THE INITIAL PROPOSAL VARIANCE TO σ = 10−2 .

THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS, (N,K, T ) = (50, 20, 20) WHILE (N,K, T ) = (1, 500, 40) FOR AMIS.
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Fig. 4. Example V-C. Ground truth (blue) and estimated values (median ±
MAD of the mean estimator) for frequencies and amplitudes in dimension 4
(top), 6 (middle) and 8 (bottom), for GR-PMC, LR-PMC, and O-PMC using
either LR or GLR scheme.
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