Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion
0000 000000 0000000 0000000000 [e]e]

GDR ISIS 1/30

An Overview of Stochastic Methods
for Solving Optimization Problems

Emilie Chouzenoux

Laboratoire d’'Informatique Gaspard Monge - CNRS
Univ. Paris-Est Marne-la-Vallée, France

26 Nov. 15

UNIVERSITE
PARIS-EST
MARNE-LA-VALLEE




Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion
@000 000000 0000000 0000000000 [e]e]

GDR ISIS 2/30

Introduction

STOCHASTIC PROBLEM

minimize (2, (h, @ ;) + g(Dx)
zeRN ' 4

where j € N*, h; e RV, y; € R, pp;: R x R —] — 00, +00] is a loss
function, and g o D is a regularization function, with
g: RP =] — 00, +o0] and D € RFXV,
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Introduction

STOCHASTIC PROBLEM

minimize (2, (h, @ ;) + g(Dx)
zeRN ' 4

where j € N*, h; e RV, y; € R, pp;: R x R —] — 00, +00] is a loss
function, and g o D is a regularization function, with
g: RP =] — 00, +o0] and D € RFXV,

BATCH PROBLEM
M

1
minimize — ©; h,-T:E,zyz + g(Dx
weRN M ;w (h; @ y) + g(Dx)

where, foralli € {1,..., M}, ¢;: R x R =] — 00, +oc], h; € RY and
y; € R.
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Link between stochastic and batch problems

STOCHASTIC PROBLEM
j € N* isdeterministic,
(Vi €{2,....M}) ¢i = o1,
and (h;);>1, (y));>1 are

i.i.d random variables.

BATCH PROBLEM
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Link between stochastic and batch problems

STOCHASTIC PROBLEM

y and H are deterministic,
and j isuniformly distributed
over {1,..., M}.

BATCH PROBLEM
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Introduction

NUMEROUS EXAMPLES:
» supervised classification

v

inverse problems

v

system identification, channel equalization

v

linear prediction/interpolation
echo cancellation, interference removal

v

In the context of large scale problems, how to find an
optimization algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement?
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* FUNDAMENTAL TOOLS IN CONVEX ANALYSIS

x  OPTIMIZATION ALGORITHMS FOR SOLVING
STOCHASTIC PROBLEM

» Stochastic forward-backward algorithm
» A brief focus on sparse adaptive filtering

* STOCHASTIC ALGORITHMS FOR SOLVING
BATCH PROBLEM

» Incremental gradient algorithms
» Block coordinate approaches

Conclusion
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Fundamental tools in convex
analysis
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rLetf: RY — ]—o00, +o0].
» The domain of function f is
dom f = {z € RY | f(z) < +00}
If dom f # &, function f is said to be proper .
» Function f is convex if
(V(z,y) € ®RY)*)(YA € [0,1])
fOz 4+ (1=Ny) < Af(x) + (1 - N f(y).

» Function f is lower semi-continuous (Isc) on RY if, for all
x € RY, for all sequence (xy)ren Of RY,

xy —x = liminf f(zx) > f(x).
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Notation and definitions

[ et f: RN =] — 00, +-00]. Function f is said v-strongly convex if
(V(z,y) € (RV)?)(YA € [0,1])
FO@ + (01— A)y) < Af(@) + (1= V() — 5oA1 - llz g,

| with v/ €]0, +00].
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[ et f: RN =] — 00, +-00]. Function f is said v-strongly convex if
(V(z,y) € (RV)?)(YA € [0,1])
FO@ + (01— A)y) < Af(@) + (1= V() — 5oA1 - llz g,

| with v/ €]0, +00].

rLet f: RN —] — 0o, +00[. Function f is said B-Lipschitz differentiable
if it is differentiable over RN and its gradient fulfills

(V(z,y) € RY)?) [|[Vf(x) - VI(y)l <Blz—yl,

| with 3 €]0, +00[.
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~

The subdifferential of a convex function f: RY — ]—oo, +oc] at x is
the set

Of(x) ={teRY | (vy eR") f(y) > f(@)+ (t |y — =)}

An element t of 9f(x) is called a subgradient of f at x.

\.

| tedf(x)

flx) + (y —x|t)

X
[z Yy |

» If £ is differentiable at x € RY then 9f(x) = {V f(x)}.
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Let f : RV ] — 0o, +-00] a proper, convex, |.s.c function.

CHARACTERIZATION OF PROXIMITY OPERATOR

(Ve € RY) g =prox,(z) & -y <€ of(y).

The proximity operator of f at x € RY is the unique vector
€ RY such that

. 1.
F@)+ 5y - x| =
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Properties of proximal operator

| /(@)

prox, (x)

translation
zeRN

flx—z)

Z + prox(z — z)

guadratic perturbation
zGRN,a>0,'y€R

f@) +alz|?/2+ (x| 2)+~

z—z
prox%“ (aJrl)

scaling p € R”

[ (pz)

2Prox 2, (p)

guadratic function

LeR™N 450 2cRM VL — =[|*/2 (Id +7LL*) " (x — yL*z2)
semi-unitary transform R (o
LeR™N LI = ud, 4> 0 f(Lx) z—p 'L (z proxuf(Lw))
reflexion f(—z) —prox;(—z)
N
separability sz(z(”) (4
i= ) (proxw (@ )> 1<iKN
T = (Z('))K <N
indicator function tc(x) Pc(x)
support function () = oc(x) x — Pc(x)
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Optimization algorithms for solving
stochastic problem
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Stochastic forward-backward algorithm

STOCHASTIC PROBLEM

minimize E(goj(h x.y;)) +g(Dx)
xRN

= At each iteration j > 1, assume that an estimate «; of the gradient
Of d(-) = Elp;(h, - y;)) at z; is available.
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Stochastic forward-backward algorithm

STOCHASTIC PROBLEM

minimize E(W(h, x.y;)) +g(Dx)
zeRN

= At each iteration j > 1, assume that an estimate «; of the gradient
Of d(-) = Elp;(h, - y;)) at z; is available.

The SFB algorithm reads:

(v5)j=1 €]0, 400, (A5);>1 €]0,1]
forj=1,2,...
zj = proxwoD <$]’ = ’yjuj)
zjp1 = (1—Aj)z; + Ajz;

» When g = 0, the stochastic gradient descent (SGD) algorithm is
recovered.
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Convergence theorem [Rosasco et al., 2014]

(LetF # @ denote the set of minimizers of ® + g o D. Assume that:

(i) ® has a B-Lipschitzian gradient with 3 €]0, +o00|, g is a proper,
lower-semicontinuous convex function, and ® + g o D is strongly
convex.

(i) Foreveryj>1,

E({llw;lI*}) < +oo, E{u; | Xj—1} = VO(x;),
E{llu; — V&(z))lI* | Xj-1} < 0 (1 + ;]| VE(zy)[|)
where X; = (i, hi)1<i<j » and «; and o are positive values such that
v < (2= €)/(B(1 + 20%a;)) with € > 0.
(iii) We have
Z)\j'}’j =400 and Zx? < +oo

jz1 jz1

where, for every j > 1, x3 = A\jv7 (1 + 204||V®(Z)|®) and = € F.

Then, (x;);>1 converges almost surely to an element of F.
\

14/30
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Bibliographical remarks

RELATED APPROACHES
» Methods relying on subgradient steps [Shalev-Shwartz et al., 2007],
» Regularized dual averaging methods [Xiao, 2010],
» Composite mirror descent methods [Duchi et al., 2010].
WHAT IF PROX OF g o D IS NOT SIMPLE?
> Stochastic proximal averaging strategy [Zhong et al., 2014],
» Conditional gradient (~ Franck-Wolfe) techniques [Lafond, 2015],
Stochastic ADMM [Ouyang et al., 2013],
Block alternating strategy [Xu et al., 2014],

Stochastic proximal primal-dual methods (also for varying g) [Combettes
etal., 2015].

HOW TO ACCELERATE CONVERGENCE?
» Subspace acceleration techniques [Hu et al., 2009][Atchadé et al., 2014],

v

v

v

» Preconditioning techniques [Duchi et al., 2011],
» Mixing both strategies (smooth case) [Chouzenoux et al., 2014].
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A brief focus on sparse adaptive filtering

RANDOM INPUT SIGNAL

(hj)j>1 - UNKNZVN FILTER (yj)j?l

(Wj)j=1

~ Previous stochastic problem, with (Vj > 1) p;(h, z,y;) = (h] z —y;)%
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A brief focus on sparse adaptive filtering

RANDOM INPUT SIGNAL

(hj)j21 UNKNOWN FILTER (y]')j21
€L

(Wj)j=1
~ Previous stochastic problem, with (Vj > 1) p;(h, z,y;) = (h] z —y;)%
EXISTING WORKS IN CASE OF SPARSE PRIOR:

« Proportionate least mean square methods (~ Preconditioned SGD) [Paleologu
et al., 2010],

x Zero-attracting algorithms (~ subgradient descent) [Chen et al, 2010],

« Proximal-like algorithms: SFB [Yamagashi et al., 2011] or primal-dual approach
[Ono et al., 2013],

+ Penalized versions of recursive least squares [Angelosante et al.,2011],

x Over-relaxed projection algorithms [Kopsinis et al., 2011],

x Time-varying filters ~ affine projection strategy (~ mini-batch in machine
learning) [Markus et al., 2014].
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Simulation results

x : Time-variant linear system with 200 sparse coefficients,

h : Input sequence of 5000 random independent variables
uniformly distributed on {—1, +1},

w : White Gaussian noise with zero mean and variance 0.05.

15

-1 L L L L L L L L
[ 20 40 60 80 100 120 140 160 180 200

Values of the coefficients of the true sparse filter = for 1 < j < 2500

Conclusion
[e]e]

17/30
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Estimation error along time, for various sparse adaptive filtering strategies

» The parameters of each tested method (forgetting factor,
stepsize, regularization weight, affine projection blocksize) are
optimized manually,

» The Stochastic Majorize-Minimize Memory gradient (SSMG)
algorithm from [Chouzenoux et al., 2014] leads to a minimal
estimation error, while benefiting from good tracking properties.
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Stochastic algorithms for solving
batch problem
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Incremental gradient algorithms

BATCH PROBLEM

M
1
minimize E o (h x. v D
zerV M ,;:1M< i @.u) +9(De)

= At each iteration n > 0, some j, € {1,..., M} is randomly chosen,
and only the gradient of ijn(h; -.y;, ) at x, is computed.
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Incremental gradient algorithms

BATCH PROBLEM

minimize + g(Dx)
xRN
At each iteration n > 0, some j, € {1,..., M} is randomly chosen,
and only the gradient of at x,, is computed.

For instance, the SAGA algorithm [Defazio et al., 2014] reads:

v €]0,+oc[, and (Vi € {1,...,M})z;0 = zo € RV.
forn=0,1,...
Select randomly j,, € {1,..., M},
un = h;, Vo, (h] Tn,y;,.) — h;, Vo, (B] 25, n,0;,)
+3 ity BiVi(h] 25, 9)
Tpt1 = ProX, oo p | Tn — YUn
Zj, n+1 = Tnt1, and (V’L S {1, 5008 M}) Zin+l = Zin
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Convergence theorem [Defazio et al., 2014]

Let ®() = = S°M ¢i(h{ -, y;). Denote by F # o the set of minimizers of
®+goD.If:
(i) @ is convex, B-Lipschitz differentiable on RY, and g is proper,
lower-semicontinuous convex on RY,

(i) Foreveryn €N, j, is drawn from an i.i.d. uniform distribution on
{1) ] M}y
Then, for v = 1/33, for n € N*,
E((2+ g0 D)(@n)) — (2 +g0D)(@) < %L (5Fllzo — 2|?
+&(z0) — VO(Z) " (20 — Z) — ®(2))

n
1%5-

where & € Fand , = . >

If, additionally, ® is »-strongly convex then, for v = 1/(2(vM + f3)),

B (lzn — %) < (1= 2)" (o — I+
2YM (®(z0) — VO(Z) " (0 — ) — B())) -
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Links between stochastic incremental methods existing in

the literature:

ALGORITHM

GENERAL IDEA

PROS/CoONS

REFs

Standard incremen-
tal gradient

=
un =h;, Vi, (hj @n,yj,)

simplicity / decreas-
ing stepsize required

[Bertsekas, 2010]

Variance reduction
approaches (SVRG/
mSGD)

At every K > O iterations, perform a full
gradient step (~ mini-batch strategy)

reduced memory /
more gradient evalu-
ations

[Kone¢ny, 2014],
[Johnson et al,
2014]

Gradient averaging
(SAG / SAGA)

Factor 1 /M in front of gradient difference
term

lower variance / in-
creasing bias (in gra-
dient estimates)

[Schmidt et al,
2014], [Defazio et
al, 2014]

Proximal averaging
(FINITO)

Tyl = proxwgoD(En - 'yun) with
'z, average of (Zi,n)lgigM

extra storage cost /
less gradient evalua-
tions

[Defazio et al,
2014]

Majorization-
Minimization
(MISO)

@, 41 mMinimizer of a majorant function of
T —
Pin (R, Yj,) +goDatzy

extra storage cost /
less gradient evalua-
tions

[Mairal, 2015]
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Block coordinate approaches
» Idea: variable splitting.

1 ¢ RM

/ T2 eRMW

T c RNk

Assumption: g(Dz) = Z,I::lng(wk) + g2 1 (Drxr) where, for every k €
{1,...,K}, Dy, € RPeXNk,
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Stochastic primal-dual proximal algorithm [pesquet et at., 2015]

T €]0, +00], v €]0, +00],
forn=1,2,...
fork=1,2,....K
with probability 5, €]0,1] do

Vi nt+l = (Id —proxT_lgzyk)('vk’n + kak’n)

Thn+1 = ProX,g, | (xk‘,n - 'Y(TDII (2410 — VEn)

M K
+ﬁ > im1 Pk Veoi(3 = hz:k/ﬂ?k',m yz)))

otherwise
L L Vin+l = Vkny Lentl = Tkn-

» When g2, = 0, the random block coordinate forward-backward
algorithm is recovered [Combettes et al., 2015],

» When g, , = 0 and g» ;, = 0, the random block coordinate
descent algorithm is obtained [Nesterov, 2012].
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Convergence theorem [Pesquet et al., 2015]

" Set, for every n € N*, X,, = (T, Un/ )1<n/ <nne
Let F # o denote the set of minimizers of & + g o D.
Assume that:

(i) @ is convex, B-Lipschitz differentiable on RY, g is
lower-semicontinuous convex on RV,

(i) The blocks activation is performed at each iteration n
independently of XC,,, with positive probabilities (e1,...,ex),

(iv) The primal and dual stepsizes (7,~) satisfy
1 — ymaxirgx | Dil? > %

Then, (x,)nen+ cOnverges weakly almost surely to an F-valued ran-
_dom variable.

J
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Bibliographical remarks

CONVERGENCE ANALYSIS
» Almost sure convergence [Pesquet et al., 2015],

» Worst case convergence rates [Richtarik et al., 2014] [Necoara et al., 2014]
[Lu et al., 2015].

VARIANTS OF THE METHOD
» Improved convergence conditions in some specific cases [Fercoq et al.,
2015],

» Dual ascent strategies in the strongly convex case (~ dual
forward-backward) [Shalev-Shwartz et al., 2014] [Jaggi et al., 2014] [Qu et al.,

2014],

» Douglas-Rachford/ADMM approaches [Combettes et al., 2015] [lutzeler et
al., 2013],

» Asynchronous distributed algorithms [Pesquet et al., 2014] [Bianchi et al.,
2014].

= Dual ascent strategies and asynchronous distributed methods are closely
related to incremental gradient algorithms.
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(ANR GRAPHSIP)

Original mesh, N = 100250.

Goal: Restore the nodes positions of an original mesh corrupted
through an additive i.i.d. zero-mean Gaussian mixture noise model,

Limited memory available — The mesh is decomposed into K /r
non-overlapping blocks with size » < K, and e is such that only one
block is updated at each iteration.



Introduction Fundamental tools in convex analysis Stochastic problem Batch problem Conclusion
0000 000000 0000000 000000000 e [e]e]

GDR ISIS 28/30

» Reconstruction results using the stochastic primal-dual
proximal algorithm for 3D mesh denoising from [Repetti et al., 2015]:

Proposed reconstruction Laplacian smoothing
MSE =8.09 x 1078 MSE =5.23 x 1077
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» Reconstruction results using the stochastic primal-dual
proximal algorithm for 3D mesh denoising from [Repetti et al., 2015]:

o o L

0 1 2 3

10 10 K /7" 10 10

(63
]
[ ]

Memory requirement, and computation time, for different number of blocks.
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Conclusion

Stochastic

block-
coordinate Distributed
strategies versions

Incremental available

gradient
methods

Special
case:
Stochastic Adaptive
forward- Acceleration filtering
backward via second-
strategies order and/or
subspace

information
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