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Transformed Subspace Clustering 
Jyoti Maggu, Angshul Majumdar and Emilie Chouzenoux 

Abstract— Subspace clustering assumes that the data is separable into separate subspaces. Such a simple assumption, does 

not always hold. We assume that, even if the raw data is not separable into subspaces, one can learn a representation 

(transform coefficients) such that the learnt representation is separable into subspaces. To achieve the intended goal, we 

embed subspace clustering techniques (locally linear manifold clustering, sparse subspace clustering and low rank 

representation) into transform learning. The entire formulation is jointly learnt; giving rise to a new class of methods called 

transformed subspace clustering (TSC). In order to account for non-linearity, kernelized extensions of TSC are also proposed. 

To test the performance of the proposed techniques, benchmarking is performed on image clustering and document clustering 

datasets. Comparison with state-of-the-art clustering techniques shows that our formulation improves upon them. 

Index Terms—Transform Learning, Subspace Clustering, Image Clustering, Document Clustering.  

——————————   ◆   —————————— 

1 INTRODUCTION

HE problem of clustering is well known. It studies how 

signals are naturally grouped together. Perhaps the sim-

plest and most widely used clustering technique is the K-

means [1].  It groups the samples such that the total distance 

of the data points within the cluster are minimized. The prob-

lem is NP hard, and hence is usually solved greedily.  

One of the limitations of K-means is that it operates on the 

raw data and hence fails to capture non-linear relationships. 

The simple fix to that is the kernel K-means [2]. The concept 

remains the same as in any kernel trick; operationally instead 

of Euclidean distances between the samples, its kernelized 

version is used for K-means.  

Related to the kernel K-means is spectral clustering [2, 3]. 

The kernelized data matrix is the same as the affinity matrix 

for spectral clustering. It just generalizes the kernels to be any 

similarity measure and not necessarily based on Mercer ker-

nels.  

Subspace clustering techniques [4] assume that the samples 

from the same cluster will lie in the same subspace. Opera-

tionally, it involves expressing each data point as a linear 

combination of other data points. These linear weights serve 

as inputs for creating the affinity matrix. The factorization 

based techniques prevalent in clustering (such as [5-7]) tech-

nically belong to the subspace clustering paradigm.  

In the past, it has been found that instead of applying sub-

space clustering on the raw data, a projection can be learnt 

such that the clustering is carried out in the projected domain. 

In [8, 9] a tight-frame was learnt from the data along with the 

subspace clustering formulation. The fundamental assump-

tion behind such formulations is that even if the original data 

do not fall on separate sub-spaces, their projected versions 

will. 

Our work is based on similar assumptions. Instead of 

applying subspace clustering on the original space, we will 

learn the subspace clustering in the transformed space. There-

fore, even if the data cannot be segmented / clustered in the 

original domain, its transformed representation can be clus-

tered into separate subspaces. The work proposes to incorpo-

rate three variants of subspace clustering – i) Locally linear 

manifold clustering (LLMC), ii) sparse subspace clustering 

(SSC), and iii) low rank representation (LRR).  

We compared our proposed formulations with state-of-the-

art representation learning and clustering techniques. We 

show that our method improves over the rest by a considera-

ble margin in terms the clustering metrics used here.  

2 LITERATURE REVIEW 

2.1 Subspace Clustering 

Subspace clustering techniques like locally linear manifold 
clustering (LLMC) [11, 12], sparse subspace clustering 
(SSC) [13-15] and low rank representation (LRR) [16, 17] 
express the samples as a linear combination of other sam-
ples. This is expressed as, 

,  in {1,..., }ci ii
x X c i n=       (1) 

Here xi (
m ) denotes the ith sample and ci

X ( 1m n − ) all 

other samples; ci ( 1n− ) is the corresponding linear 
weight vector.  

For all the sub-space clustering techniques the general 

learning formulation can be expressed as follows,  
2

2
min ( ),  in {1,..., }c

i

i i iic
x X c R c i n− +    (2) 

Here R is the regularization term. Depending on its nature 
there are three formulations. For LLMC there is no regu-
larization. For sparse subspace clustering, R is a sparsity 
promoting l1-norm [13] or l0-norm [14, 15]. For LRR, R is a 
low-rank penalty usually in the form of nuclear norm.  

For each formulation, once the coefficient matrix 

1[ | ... | ]nC c c=  is obtained for all n samples, the affinity ma-

trix is computed. Note that ic ( n ) is defined from ic (
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1n− ) by putting zero in the ith position. There is no unique 

definition to the affinity matrix; the only requirement is that 

it needs to be symmetric. Several variants have been proposed 

[4]. For example one option can be –  
TA C C= +      (3) 

This is usually used in SSC.  
Another option for LRR is to form the affinity matrix 

from the scaled left singular values of C; this is defined as,  

( )
2

T

ij
ij

A UU =        (4) 

where 1/2U US= and TC USV= .  
Yet another way to generate the affinity matrix (usually 

for LLMC) is by. 
T TA C C C C= + −     (5) 

Once the affinity matrix is defined (by using any suitable 
formula), one needs to segment the clusters. Usually spec-
tral clustering algorithm (Normalized-Cuts) [18] is used 
for this purpose. 

Related to subspace clustering are the matrix factoriza-
tion based approaches. Some of them have been referred 
before. For a review one can peruse [19]. The basic idea 
there in, is to identify arbitrary subspaces from the data by 
factoring it.  

2.2 Transform Learning 

Transform learning analyses the data by learning a trans-
form / basis to produce coefficients. Mathematically this is 
expressed as, 
TX Z=       (6) 

Here T is the transform, X is the data and Z the correspond-
ing coefficients. The following transform learning formu-
lation was proposed in [4]: 

( )2 2

1,
min + log det +

F FT Z
TX Z T T Z − −   (7) 

The parameters (λ and μ) are positive. The factor 

log detT− imposes a full rank on the learned transform; 

this prevents the degenerate solution (T=0, Z=0). The ad-

ditional penalty 
2

F
T is to balance scale.  

In [4], an alternating minimization approach was pro-
posed to solve the transform learning problem. This is 
given by: 

2

1
min

FZ
Z TX Z Z − +    (8a) 

( )2 2
min + log det

F FT
T TX Z T T − −   (8b) 

Updating the coefficients (8a) is straightforward using 
one step of soft thresholding, 

( )( ) max 0, ( )Z signum TX abs TX   −   (9) 
Here ' ' indicates element-wise product.  

The update for the transform (8b) also has a closed form 
solution. This is given as,   

T TXX I LL+ =      (10a) 
1 T TL XZ USV− =      (10b) 

( )2 1/2 10.5 ( 2 ) TT U S S I V L −= + +    (10c) 

The proof for convergence of such an alternating update 
algorithm can be found in [21]. 

3 PROPOSED FORMULATIONS 

We have discussed in the previous sections the existing 
concepts of subspace clustering and transform learning. 
Our contribution in this paper is to embed three subspace 
clustering formulations, associated to three distinct choices 
for the regularization term R, into the transformed space, 
that is, instead of learning the affinity matrix from the raw 
data, we propose to learn it from the (transform) coefficient 
space. 

The trend of learning representations for machine learn-
ing has been used rampantly in supervised problems. For 
example consider [22, 23]. In [22] it is assumed that even if 
the data cannot be discriminated in the original domain, 
they can be learnt to be discriminative in the feature do-
main using dictionary learning. Similarly, in [23], it is as-
sumed that even though one cannot linearly project the 
raw samples to their corresponding class labels, the learnt 
dictionary coefficients can be. Similar ideas are echoed in 
[24] using the transform learning approach. As mentioned 
before, similar ideas have been explored for clustering as 
well [18, 19]. In [25], it has been assumed that even if the 
data is not clustered on subspaces, its deeply (stacked au-
toencoder) learnt representation will be. Our work follows 
the same trend; we assume that even if the original data do 
not lie on separate subspaces, the (transform) learnt coeffi-
cients will lie on different subspaces and hence the ensuing 
affinity matrix can be segmented for clustering. 

 

 
Fig. 1. Top – Piecemeal Solution. Bottom – Proposed Solution 

 

A naïve piecemeal solution (Fig. 1, top) would be to 
learn the transform on the data and then use the coeffi-
cients as inputs for subspace clustering. But such a piece-
meal formulation will not yield the best results. This can be 
seen from [25] and [26]. In [26], a deep representation is 
first learnt and then a third-party clustering algorithm is 
used on the learnt representation; the results improve in 
[25] when the deep representation and the clustering are 
jointly learnt.  

We propose to formulate a joint solution instead (Fig. 1, 
bottom). Mathematically, our formulation is expressed as, 

( )2 2

, ,

2

1 2

min + log det

+ ( )c

F FT Z C

i ii
i

TX Z T T

Z z Z c R C



 

− −

+ − +
  (11)  

Alternating minimization [27] approach is used for 
solving (11). It can be segregated into the following sub-
problems.  

( )2 2
P1:min + log det

F FT
TX Z T T− −  
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22

1 2
P2:min + ci iF iZ

i

TX Z Z z Z c − + −  

2

2
P3:min ( )ci iiC

i

z Z c R C− +  

The update for the transform (P1) remains the same as 
in (10). The update for the transform coefficients can also 
be shown to be the same as in (9). Indeed we have, 

( )

( )

( )

22

1

22

1

2

1

min + )

min +

min +
0

F FZ

TT T T T T

FZ F

T T

T T

T
Z

F

TX Z Z Z I C

X T Z Z I C Z

IX T
Z Z

I C

 

 




− + −

 − + −

  
 −    −   

 (12) 

The update for P3 will be dependent on the regulariza-
tion term R(C). For transformed locally linear manifold 
clustering (TLLMC) there is no regularization, hence it 
takes the form:  

2

2
min ci iiC

i

z Z c−     (13) 

This can be solved for each ci via a pseudo-inverse opera-
tion.   

For transformed sparse subspace clustering (TSSC), the 
regularization is a sparsity enhancing penalty. Here, we 
make use of the l1-norm, so that P3 becomes equivalent to 

1
min
C
Z ZC C− +     (14) 

This is a standard l1-minimization for which we have used 
the iterative soft thresholding algorithm [28].  

For transformed low rank representation (TLLR) for-
mulation, a low rank penalty is imposed on C. Here we will 
consider the nuclear norm penalty (defined as the sum of 
singular values of the matrix), so that P3 reads 

*
min
C
Z ZC C− +     (15) 

The above problem can be solved using singular value 
shrinkage [29].  

Once the matrix C is obtained, the affinity matrix can be 
created using either of (3), (4) or (5); here we have retained 
(3) since it appears to yield the best practical results. Spec-
tral clustering is then applied to the affinity matrix in order 
to segment the data X. 

It is worth noting that, assuming each sub-problem is 
solved in an exact manner, the proposed alternating opti-
mization method is guaranteed to converge to a stationary 
point of our objective function [27].  

3.1 Kernelization 

An efficient strategy to handle non-linearity in data in ma-
chine learning is to employ the so-called kernel trick. If the 
(transform) learnt coefficients are not linearly separable 
into subspaces, we assume that projecting them non-line-
arly to a higher dimension can make them separable into 
subspaces. This can be achieved by kernelizing the trans-
form subspace clustering formulation. Kernelizing the 
basic transform learning has been proposed in [30]. In this 
work, we incorporate subspace clustering into the kernel 
transform learning formulation.  

In kernel transform learning, a non-linear version of the 

data is represented in terms of a transform made up of lin-
ear combination of non-linear version of itself. This is ex-
pressed as: 

( ) ( )T

transform

B X X Z  =     (17) 

One can immediately identify the kernel defined by  
( ) ( )TK X X = . This allows us to express the kernel ver-

sion of transform learning in the known (transform learn-
ing) form: 
BK Z=       (18) 

Here, the kernel matrix K plays the role of the data ma-
trix X in the original transform learning formulation; B is 
the linear weights (similar to transform) that needs to be 
learnt and Z is the corresponding coefficient matrix. 

Under this notation, we can formulate all our versions 
of transformed subspace clustering using the generic nota-
tion: 

( )2 2

, ,

2

1 2

min + log det

+ ( )c

F FB Z C

i ii
i

BK Z B B

Z z Z c R C



 

− −

+ − +
  (19) 

The solution for (19) remains the same as in the previous 
linear case. We can expect improvements over the basic 
transform learning version with the kernel trick, since the 
later accounts for non-linearities. 

4 EXPERIMENTAL EVALUATION 

4.1 Image Clustering 

In this sub-section we compare our method with two state-
of-the-art techniques in image clustering. The first one is a 
deep learning based approach called deep sparse subspace 
clustering (DSC) [25]. The second one is the sparse sub-
space clustering is based on orthogonal matching pursuit 
(OMP) [14, 15]. We have also compared our proposed 
(jointly learnt) solution with the piecemeal solution (dis-
cussed in section 3).   

We follow the experimental protocol from [25, 15]. Ex-
periments were carried out on the COIL20 (object recogni-
tion) [31] and Extended YaleB (face recognition) [32] da-
tasets. The COIL20 database contains 1,440 samples dis-
tributed over 20 objects. The used YaleB consists of 2,414 
samples from 38 individuals. For both the datasets DSIFT 
(dense scale invariant feature transform) features were ex-
tracted. They were further reduced by PCA to a dimen-
sionality of 300. We experiment on these input features; on 
top of that we also conduct experiments on raw pixel val-
ues. Since the ground truth (class labels) for these datasets 
are available, clustering accuracy was measured in terms 
of Accuracy, NMI (normalized mutual information), ARI 
(adjusted rand index), Precision and F-score. The results 
are shown in Table 1 (COIL20) and Table 2 (YaleB). Since 
the last stage of clustering involves K-means, we ran the 
experiment 100 times and report the average values. 

The parametric settings for the methods compared 
against have been taken from the respective papers. For 
our proposed technique, we have kept λ=μ=0.1 and γ=1. 
TLLMC does not require specification of any other param-
eter. TSC has μ=0.1 as the sparsity promoting term and 
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TLLR has μ=0.01 as the rank deficiency term. The algo-
rithms are robust to these parametric values.  

 

TABLE 1 

Comparison showing improvement of proposed variants over the state-of-the-art on COIL 20 
Metric DSIFT RAW 

DSC OMP TLLMC TSSC TLRR DSC OMP TLLMC TSSC TLRR 

Jt. PM Jt. PM Jt. PM Jt. PM Jt. PM Jt. PM 

Accuracy .85 .82 .90 .88 .90 .88 .79 .75 .76 .92 .98 .95 .97 .92 .78 .72 

NMI .91 .50 .97 .86 .98 .86 .89 .80 .81 .76 .94 .90 .90 .86 .83 .74 

ARI .84 .50 .86 .82 .88 .83 .78 .71 .68 .72 .94 .91 .92 .87 .72 .67 

Precision .82 .85 .85 .78 .88 .79 .69 .67 .68 .96 .99 .92 .97 .80 .72 .66 

F-measure .85 .81 .90 .84 .92 .86 .79 .72 .70 .90 .97 .90 .96 .87 .74 .70 

*Jt. – Jointly Learnt; PM - piecemeal 

TABLE 2 

Comparison showing improvement of proposed variants over the state-of-the-art on Yale B 
Metric DSIFT RAW 

DSC OMP TLLMC TSSC TLRR DSC OMP TLLMC TSSC TLRR 

Jt. PM Jt. PM Jt. PM Jt. PM Jt. PM Jt. PM 

Accuracy .88 .98 .98 .94 .98 .94 .81 .79 .74 .94 .97 .95 .99 .95 .69 .66 

NMI .90 .97 .97 .95 .98 .94 .89 .85 .87 .80 .85 .82 .94 .90 .74 .72 

ARI .83 .95 .96 .90 .96 .91 .73 .71 69 .82 .91 .89 .96 .91 .75 .74 

Precision .79 .97 .97 .91 .98 .91 .65 .65 .65 .92 .95 .91 .98 .92 .72 .70 

F-measure .83 .94 .92 .88 .95 .92 .74 .71 .69 .87 .90 .88 .95 .92 .74 .71 

*Jt. – Jointly Learnt; PM - piecemeal 

TABLE 3 

Comparison of Different Kernels on proposed variants for COIL 20 
Metric DSIFT Raw 

Linear Poly-2 Poly-3 Laplacian Gaussian Linear Poly-2 Poly-3 Laplacian Gaussian 

Accuracy .90 .81 .80 .90 .93 .98 .82 .72 .95 .95 

NMI .97 .91 .89 .95 .97 .94 .87 .81 .93 .92 

ARI .86 .81 .78 .86 .87 .94 .81 .80 .92 .91 

Precision .85 .80 .77 .84 .85 .99 .89 .76 .93 .91 

F-measure .90 .83 .80 .89 .90 .97 .83 .82 .95 .94 

TABLE 4 

Comparison of Different Kernels on proposed variants for YALE B 
 DSIFT Raw 

 Linear Poly-2 Poly-3 Laplacian Gaussian Linear Poly-2 Poly-3 Laplacian Gaussian 

Accuracy .98 .92 .91 .98 .98 .97 .88 .76 .96 .96 

NMI .97 .87 .95 .96 .97 .85 .83 .80 .82 .81 

ARI .96 .95 .88 .96 .96 .91 .90 .85 .89 .88 

Precision .97 .90 .87 .97 .98 .95 .87 .79 .95 .95 

F-measure .92 .86 .85 .92 .92 .90 .81 .76 .90 .90 

 

From Tables 1 and 2, we also observe that the TLLR for-
mulation does not yield good results. This follows from the 
findings in [25]; there in it was find that LRR based formu-
lations yield poor results on these datasets. This maybe be-
cause well performing TLLR formulations accounts for 
outliers, which the basic version does not. Our formulation 
is based on the basic version and consequently yields poor 
results.  

Our joint TSSC and TLLMC formulations always yields 
the best results (except for DSIFT features where OMP 
based SSC sometimes yields slightly better results than 
TLLMC). 

The aforesaid results are shown for linear kernels. We 
have discussed in III.A how our method can be kernelized. 
In the following Tables 3 and 4, we show results of kernel-
ized versions for COIL 20 and Yale B respectively. Note 
that these results are shown for the jointly learnt variants 

since they yield better results than their corresponding 
piecemeal versions. 

The results are shown for some typical kernels like lin-
ear, Gaussian, Laplacian and polynomial kernels of order 
2 and 3. We show results on the TLLMC algorithm since 
this is the basic subspace clustering algorithm without any 
prior (sparsity or rank deficiency). The results show that 
for DSIFT features, the RBF kernel yields the best results, 
but for the raw pixel values, the linear one still is the best. 
Results from polynomial kernels are worse than the simple 
linear technique; the results deteriorate with the increase 
in the order of the polynomial. The Laplacian kernel is 
slightly worse than the Gaussian one on average. 

All the experiments were run on an Intel i7 processor 
with 32 GB RAM running a 64 bit Windows 10. The pro-
posed techniques and OMP was based on Matlab, DSC was 
based on Python. The run-times are shown in Table 5. 
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TABLE 5 

Comparison of Runtime in Seconds 
Technique Coil 20 Yale B 

DSC 62.1 60.6 

OMP 4.7 3.9 

TLLMC 11.0 8.6 

TLLMC-Kernel 44.3 37.9 

TSSC 12.1 10.7 

TSSC-Kernel 50.0 41.6 

TLRR 15.6 13.2 

TLRR-Kernel 57.9 48.2 

 
The OMP based sparse subspace clustering is under-

standably the fastest one. Our transformed versions (with 
linear kernel) are relatively slower because of the additional 
computational cost of updating the transform in every iter-
ation. Among the linear techniques, TLLMC is the fastest as 
it has no regularization term. TSC is slightly slower owing 
to the requirement of the thresholding step in every itera-
tion. TLRR is even slower, because one needs to threshold 
the singular values; and computing singular values in every 
iteration is time consuming. The kernelized versions are 
slower, because the size of the kernel matrix is larger than 
the original data matrix (larger number of samples than di-
mensions). DSC is the slowest of them all, since it is a deep 
technique requiring updating of multiple layers of autoen-
coders. 

4.2 Document Clustering 

Our second example focuses on document clustering. For 

this application, we follow the protocol defined in (the most 
recent) [33]. For our experiments, we use three data sets TDT2 
corpus [34], Reuters-21578 corpus [34], and 20 Newsgroup 
[34].  

The TDT2 English document data set includes six months 
of material drawn on a daily basis from six English language 
news sources. In this set, the total number of samples is 9394, 
the feature dimension is 36771, and the number of clusters is 
30. The Reuters-21578 document set is a collection of manu-
ally categorized newswire stories from Reuters Ltd. In this set, 
the total number of samples is 8293, the feature dimension is 
18933, and the number of clusters is 65. The 20 Newsgroups 
data set is a collection of approximately 20,000 newsgroup 
documents. In this set, the total number of samples is 18846, 
the feature dimension is 26214, and the number of clusters is 
20.  

Following [33], we report the result in terms of two metrics 
namely entropy and purity. For good clustering, one requires 
small entropy and high purity. In [33], the metrics are re-
ported by varying the number of clusters from 2 to 10. We fol-
low the same protocol.  

Our proposed method has been compared with [33] and 
with [35]; to the best of our knowledge these are two of the 
most recent works in this area and are known to yield the best 
possible results on document clustering.  

We found that the kernelized versions yield better results 
than the linear counterparts; and the best results are obtained 
from the Gaussian kernel. These results are shown here.  

 
TABLE 6 

Comparison showing improvement of proposed method over existing techniques on TDT2 
Clusters Entropy (lower is better) Purity (higher is better) 

CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR 

2 .0000 .0000 .0000 .0000 .0000 1.0000 1.0000 1.0000 1.0000 1.0000 

4 .0000 .0159 .0000 .0000 .1659 1.0000 .9956 1.0000 1.0000 .9229 

6 .0526 .0889 .0063 .0013 .0431 .9435 .8954 .9481 .9963 .8917 

8 .0552 .0941 .0329 .0465 .0506 .9476 .8801 .9490 .9013 .9661 

10 .0808 .0685 .0188 .0178 .0631 .9153 .9224 .9265 .9775 .9254 

Avg. .0312 .0582 .0126 .0103 .0682 .9682 .9285 .9673 .9736 .9527 

TABLE 7 

Comparison showing improvement of proposed method over existing techniques on REUTERS 
Clusters Entropy (lower is better) Purity (higher is better) 

CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR 

2 .0651 .0651 .0651 .0493 .0651 .9912 .9912 .9912 .9735 .9912 

4 .3751 .3700 .3257 .2103 .2508 .7934 .8035 .8618 .8984 .8061 

6 .2029 .2521 .3268 .1905 .2435 .8719 .8380 .8040 .8855 .8595 

8 .2258 .2829 .1646 .2811 .2279 .8586 .8076 .9252 .9135 .8524 

10 .3677 .4464 .3166 .2579 .3286 .6690 .6288 .7586 .8069 .7331 

Avg. .2360 .2701 .2213 .1978 .2334 .8502 .8260 .8777 .8950 .8605 

TABLE 8 

Comparison showing improvement of proposed method over existing techniques on NewsGroup 
Clusters Entropy (lower is better) Purity (higher is better) 

CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR CFAN [33] SNMF-PCA [35] TLLMC TSSC TLLR 

2 .8556 .9843 .8841 .8172 .8131 .6867 .5500 .6500 .7233 .7233 

4 .6065 .7301 .6114 .5911 .5755 .6083 .5183 .6540 .6567 .6575 

6 .5441 .6492 .4835 .4697 .5711 .6017 .5322 .6806 .7050 .6028 

8 .5505 .6562 .4989 .4673 .5942 .5708 .4700 .6338 .6721 .5259 

10 .5395 .6025 .4602 .4449 .5399 .5543 .4977 .6433 .6690 .5600 

Avg. .6037 .7010 .5664 .5490 .6120 .6002 .5176 .6554 .6793 .6013 

The results show that only for the easiest dataset 
(TDT2), CFAN yields slightly better results than some of 

our proposed variants. Note that, by easiest we mean the 
dataset where all the algorithms yield good results. But 

Authorized licensed use limited to: INRIA. Downloaded on April 26,2020 at 13:48:43 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TKDE.2020.2969354, IEEE Transactions on Knowledge and Data Engineering

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  MANUSCRIPT ID 

 

even for this dataset the best result is obtained from TSSC. 
For the more difficult datasets, all our proposed methods 
excel over the ones compared against; that too by a signif-
icant margin. 

5 CONCLUSION 

In this work, we have incorporated subspace clustering 
formulations into the transform learning framework. This 
results in three variants – transformed locally linear mani-
fold clustering, transformed sparse subspace clustering 
and transformed low rank representation. We have also 
propose kernelized versions of the aforesaid three variants.  

Experiments have been carried out on two benchmark 
problems – image and document clustering. For each prob-
lem, state-of-the-art techniques are compared against. In 
all cases, our proposed method excels over these in terms 
of the metrics used here. 
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