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Abstract—Stochastic approximation techniques play an impor- expectation, and - || is the Euclidean norm. We will then be
tant role in solving many problems encountered in machine jnterested in the following optimization formulation:
learning or adaptive signal processing. In these contexts, the
statistics of the data are often unknown a priori or their direct minimize F(h), 4)
computation is too intensive, and they have thus to be estimated heRrY
online from the observed signals. For batch optimization of an . 1
objective function being the sum of a data fidelity term and with
a penalization (e.g. a sparsity promoting function), Majorize- N 1 Tio
Minimize (MM) methods have recently attracted much interest (Vh e RY) F(h)= §E(\|Yn — X} h|?) +¥(h), (5)
since they are fast, highly flexible, and effective in ensuring
convergence. The goal of this paper is to show how these methodsyhere ¥ is a function fromRY to R, playing the role of a
can be successfully extended to the case when the data fidelity,eqarization function. This penalty function may for instance

term corresponds to a least squares criterion and the cost - .
function is replaced by a sequence of stochastic approximations be useful to incorporate some prior knowledge about the

of it. In this context, we propose an online version of an SOught parameter vectds, e.g. some sparsity requirement,
MM subspace algorithm and we study its convergence by using possibly in some transformed domain. In this paper, a family of
suitable probabilistic tools. Simulation results illustrate the good differentiable, non necessarily convex, regularization functions
practical perforr_nance of the proposed algorithm associated wi_th [2] is considered.
Znn(]e;;g%%aﬁl'tzrr'tizgﬁzﬁggﬁ(’)r‘?’ gfgb?gngfd to both non-adaptive Problem (4) is encountered in numerous applications such as
system identification, channel equalization, linear prediction
Keywords: stochastic approximation, optimization, subspace ak interpolation, echo cancellation, interference removal, and
gorithms, memory gradient methods, descent methods, recursiygpervised classification. In the context of supervised classifi-
algorithms, majorization-minimization, filter identification, Newtoncation, (X,,)n>1 are vectors (@= 1) which may correspond

method, sparsity, machine learning, adaptive filtering. to features obtained through some nonlinear mapping of the
data to be classified in a given training sequence,(gnd,,>1
I. INTRODUCTION may be the associated (discrete-valued) class label vector [3],

4]. Although some other measures (e.g. the logistic regression

A classical problem in data sciences consists of inferri g cii RN
. s nction) are often more effective in this context, the use of a
the structure of a linear model linking some observed randqm

variables(X,.),s1 in R¥*@ to some other observed randoni€ast squares criterion may S.tl|| pe competitive for S|mpI|C|ty_
. O . e . reasons [5], while the regularization term serves here to avoid
variables(y,,)»>1 in R®. Unless otherwise specified, we will

assume in this work that the following wide-sense stationari yerfitting which could arise when the number of extracted
properties hold: 9 Xatures is large [6]. Signal reconstruction constitutes another

application field of interest. Then, the vecthrcorresponds

(Vn € N\ {0}) E(lly.l*) = o (1) to an unknown signal related to some measurem@nis,>1
E(X,y,) =T @) obtained through products with matriceX,! ),,~;, and addi-
T tionally corrupted by some noise process [7]-[9]. Each matrix
E(X.X,) =R, ®3) X, with n € N\ {0} corresponds taQ lines of the full

where o € (0,+00), r € RN, R € RV*N is a symmetric acquisition matrix and it is here considered as random. Under

positive semi-definite matrixE(-) denotes the mathematicaiSuitable stationarity assumptions, the classical least squares
data fidelity term can be modeled &y, — X, h[?)/2,
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R are often unknown a priori or their direct computationl is a differentiable function, it has been shown that tight
is too intensive, and they have thus to be estimated onlimgaproximations of nonsmooth penalizations suct;agesp.

In the simple case whew = 0, the classical Recursive {y) functions, namelys — ¢; (resp./; — ¢y) functions, can be
Least Squares (RLS) algorithm can be used for this purpasmployed and are often quite effective in practice [2], [41].
[10]. WhenV is nonzero, stochastic approximation algorithmAnother advantage of the class of optimization methods under
have been developed such as the celebrated stochastic gradiwestigation is that their convergence can be established under
descent (SGD) algorithm [11]-[13] and some of its proximaome technical assumptions, even in the case wheds a
extensions [14]-[17]. The convergence speed of SGD magnconvex function (see [2] for more details).

be I’elatively slow so that various extensions of it have beenDesigning Majorize_Minimize Optimization a|gorithms in a

developed to alleviate this problem (see [7], [18]-[20] angkochastic context constitutes a challenging task since most
the references therein). Many efforts have also been devoggdihe existing works concerning these methods have been
to developing adaptive variants of this algorithm [21], [22kocused on batch optimization procedures, and the related
in particular when identifying filters having sparse impulsgonvergence proofs usually rely on deterministic tools. We can
responses (see e.g. [23]-[30]). In addition, in [31], a S@bwever mention a few recent works [42]-[44] where stochas-
theoretic approach is adopted for online sparse estimatigg MM algorithms have been investigated for general loss
based on projections onto weightédballs, which is extended fynctions under specific assumptions (e.g. the independence
in [32] by making use of generalized thresholding mappingsf the involved random variables [42], [43]), but without in-

It is worth noting that a sparse RLS algorithm was proposeghducing any search subspace. Works which are more closely
in [33] for complex-valued signals in the case whefis an?;  related to ours are those based on Newton or quasi-Newton
norm. An online variant of the RLS algorithm correspondingtochastic algorithms [45]-[49], in particular the approaches in
to a time weighted LASSO estimator was also designed (7], [48] provide extensions of BFGS algorithm, but proving
[34] which relies on a coordinate descent approach. In [35]ge convergence of these algorithms requires some specific
Bayesian interpretation of Problem (4) was given whetis  assumptions. Like BFGS approaches, MM subspace methods

an /; norm and an alternative formulation based on a novgke a memory of previous estimates so as to accelerate the
Bayes variational approach was proposed. Weak theoretig@hvergence_

convergence gua(antees however gxist for such appr_oaches.Our main contributions in this paper are:
However, despite the aforementioned abundant literature,
several challenges still remain to be addressed for the resolue to propose an online version of the MM subspace algo-
tion of Problem (4) in a stochastic context. First, it should be rithm from [2], [40], for a wide class of penalized least
emphasized that most of the online optimization approaches squares problems;
based on the SGD scheme require the manual setting of a to derive a recursive form, with reduced complexity, of
stepsize (i.e., learning rate) parameter, which may have a the resulting online MM subspace method;
strong influence on the performance of the algorithm. Seconds to prove the almost sure convergence of the iterates
it is worth mentioning that in almost all the works on sparse produced by our method in a stochastic context, in the
adaptive filtering, the sparsity is directly imposed on the filter  case of a non necessary convex regularization, without the
coefficients, that is functio is assumed to be a sum of terms  need for any averaging strategy, the convergence being
acting on each entry of vectdr in a separable manner. We established under some stationarity assumptions;
should however mention the work of [36] where an adaptivee to show the good practical performance of this method
primal-dual splitting is employed to deal with a total variation ~ when it is combined with a memory gradient subspace.

penalization. )
In Section Il, we show how Problem (4) can be reformulated

In this work, we propose to address these difficulties b | X h hich i d
resorting to a Majorization-Minimization (MM) approach [37]1" @ léarning context. The MM strategy which is propose
0, this work is described in Section IlI-A. In Section 1lI-C,

[38]. In such approaches, the iterates result from successive™ he f f th " . lqorith d
minimizations of simple surrogates (e.g. quadratic surrogat&?sg've t T” grm of t el resu_tlng recursive algorlt ml and,
majorizing the cost-function. MM algorithms are very flexibld" ection llIl-D, we evaluate its computational complexity.

and benefit from good theoretical and practical convergerfcecOnvergence analysis of the proposed stochastic Majorize-

properties. However, the computation load resulting from tiéinimize subspace algorithm is performed in Section IV.
minimization of the majorant function may be prohibitive iH_n Se.ctlon. _V’ ,tWO .S|mulat|on examples in the context of
the context of large scale problems. The strategy we will ad(ig!{er '|dent|f|cat|on illustrate the 'good performapce of our
in this work is to account for subspace acceleration [39], i. _I'gorlthm whe_n a memory gradlent_subspace is employed.
to constrain the inner minimization step to a subspace of loa?™e conclusions are drawn in Section VII.

dimension, typically restricted to the gradient computed at
the current iterate and to a memory part (e.g. the difference
between the current iterate and a previous one). In a number of
recent works [2], [40], [41], MM subspace algorithms provide
fast numerical solutions to optimization problems involving
smooth functions, in particular in the case of large-scaleln a learning context, functiorf” can be replaced by a
problems. Note that, although our approach will require thaequencgF,,),>; of stochastic approximations of it, which

Il. PROBLEM FORMULATION
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TABLE |
SMOOTH PENALTY FUNCTIONSM)S FULFILLING ASSUMPTION1 AND THEIR ASSOCIATED WEIGHTING FUNCTIONS/s. ALL EXPRESSIONS ARE VALID FOR
t € R, (As,d5) € (0,+00)% AND £ € [1,2].

[ X5 Ths(t) \ s s (t) Type Name
[t| — &5 log(|t|/ds + 1) (Jt] +65)~1 by — 0y
2 if |t] < &s 2 if |t] < 8s
3 {265|t6§ otherwise {255/t| otherwise b-b Huber
c
o tanh(t)/t ift#0
(@) —
log(cosh(t)) 1 otherwise Oy — ¥ Green
(1+12/62)5s/2 — 1 Kksb5 (14 12/82)rs/2-1 by — 0,
1 — exp(—t2/(262)) 552 exp(—t2/(262)) £y — Lo Welsch
Geman
t2/(262 + 2 462 /(262 +t2 by — £
; /(262 4 12) 2/(202 4 12) 2 lo oGl
> — 1 _ 42 2\y3 i < ) T2(1—¢2 2))2 < ;
c L—(1—2/(662) it |t] < /65, 62 (1—2/(662)) it Jt] < VG5 bt Tukey biweight
e 1 otherwise 0 otherwise
o
z Hyberbolic
tanh(t2 /(262 5;2 h(#2/(262))—2 0y — 0
anh(12/(262)) (cosh(2/(253)) 2= Lo tangent
log(1 +t%/62) 2/(t? + 62) ly —log Cauchy
1 —exp(l — (14 t2/(262))%=/2) (ks/(262))(1 4 t2/(262))"s/2= L exp(1 — (1 4 t2/(262))"/2) | €3 — £,, — Lo | Chouzenoux

are defined as follows: for eveny € N\ {0},

1 o o
ﬁzﬂ *llyk — X[ k| + ¥(h)

" k=1

(Vh e RY) F,(h)

1 1
= 3P = r, h+ 5hTRnh +U(h),
(6)
whered € (0, 1],
- TS . n if v=1
’19»” - 9" = 1—9" . (7)
— T if 9 €(0,1),
andp,, r,, andR,, are given by
N
pn==>_ 9" Flyil’ ®)
Un k=1
1 n
r=— Y 9" Xy ©)
Un i1
R, — Ei S0 EXX] (10)
k=1

in Table I, in addition to quadratic regularization functions
(obtained whenS = 1 and; = 0), ¢; — ¢; functions and
smoothed/, — ¢y functions constitute standard choices. The
matrices(V;)1<s<s may be set to identity or they may serve to
model possible transforms or discrete differentiation operators,
and vectorsv;)1<s<s may be used to define reference values.

Note that the regularization strategy adopted in [34] amounts
to replacing U in (6) by A,V where ¥ is a (possibly
weighted)/; norm and),, € [0,4+00). Consistency results
can then be established under the assumptionithatl and
lim, 100 A = 0. Our approach here is different, not only
because we are interested in a wide class of regularization
functions, but also in the sense that we are looking for a
solution to the fully regularized problem (4) instead of a
solution to the mean square criterion.

Our objective in the next section will be to propose an
efficient recursive method for minimizing functiofB,,),,>.

I1l. PROPOSED METHOD
A. Majorization property

At each iteratiom € N\ {0}, we propose to repladg, by a

In the case when) = 1, we retrieve the classical samplesyrrogate functiom®,, (-, h,,) based on the current estimate

estimates o, r, _andR. Whenﬂ €(0,1),it can be interpreted (computed at the previous iteration). More precisely, a tangent
as an exponential forgetting factor [10] which may be usefyiajorant function is chosen such that

in adaptive processing scenarios (see Section VI).

Hereafter, we will assume that the regularization function

¥ has the following form:

S
1
(th €RY) W(h) = ShTVoh—vlht ) w(||Vih—w.])

s=1
11)

wherev, € RY, V; € RV*N is a symmetric positive semi-

definite matrix, and, for every € {1,...,S}, v, € R,

(vh eRY)  Fn(h) < O,(h,h,)

12)
(13)

For the so-defined MM strategy to be worthwhile, the surro-
gate function has to be built in such a way that its minimization
is simple.

For this purpose, similarly to [40], [51], [52], the following
assumptions will be made on the regularization functibn

V, € RF=*N "andy: R — R is a smooth function. The first defined in (11):

two terms in (11) can be viewed as an elastic net penalty [50
while various choices can be made for the last term. As sho

Ssumption 1.
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() For every s € {1,...,S}, 9, is an even lower-

bounded function, which is continuously differentiable,

and lim,_.o 95 (t)/t € R, wherey, denotes the deriva-
t£0

tive of ¢,.

(i) For everys € {1,...,S}, 9¥s(,/) is concave on
[0, +00).

(iii)y There existw € [0, +o0) such that(vs € {1,...,5})
(Vt € [0,400)) 0 < vy(t) < 7, wherev,(t) = v, (t)/t.2

These assumptions are satisfied by a wide class of funct

ignal Processing

B. Subspace acceleration strategy

The main idea of subspace acceleration is to restrict the
minimization space to a subspace spanned by a small number
of vectors, instead of minimizing the majorant over the whole
space. The proposed MM subspace algorithm consists of
defining the following sequence of random vect@ss, ), >1:

(Vn e N\ {0}) h,; € argmin 6,,(h,h,),

heranD,,

(20)
ions

¥ [53], in particular those corresponding to the choices of thghereh; has to be set to an initial value, angh D,, denotes

potential functiongvy,)1<s<s listed in Table I.
Assumption 1 implies that each functign is majorized at
everyt € R, by a quadratic function, such that

. 1
(Vt' € R) 95 (t') < s(t) + s (8) (¢ — ) + Svs([E)(H — 1)
2
(14)
Note that the above inequality is at the core of iterati

reweighted least-squares algorithms [54] and of half quadral

methods [51], [53], [55] for the minimization of penalize

guadratic functions. In particular, it can be shown that the
resulting majorization is tighter than the one obtained by t

descent lemma, using the Lipschitz differentiabilityof [51,
Sec.lV]. The following majorization then straightforwardl
results from (14):

Proposition 1. [51] Under Assumption 1, for every €
N\ {0} and h € R", a tangent majorant of,, at h is
(Vh' € RY)

0,(h',h) =F,(h) + VF,(h)" (W — h)

—~

‘1
+ 5 (0 = h)TAL(R) (W h),
(15)
where A, (h) is given by
A, (h) =R, + V, + V' Diag(b(h))V € R"*N  (16)
V=[V,".. . VJ]T e RPXN (7)
v=[v] .. vl eR” (18)
with P = Py +---+ P, andb(h) = (b;(h)),_,., € R is
such that o
.
b(h) = [n([Vih — vi)1}, ... vs([Vsh —vs|)1p,]

(19)
where1p € RP denotes a vector of sizB with all entries
equal to one.

If, we define, for everyr € N\ {0}, h, 1, as the minimizer

the range of a matriD,, €¢ RV>*M~ that should satisfy the
assumption below:

Assumption 2. For everyn € N\ {0}, {VF, (h,),h,} C
ran D,,.

Several approaches can be considered to consiyct
Vf Ifilling Assumption 2. The simplest choice is to SBt, =
i—CVFn(hn),hn], so that (20) reads

d

hn+1 - un,2hn - un,1VFn(hn), (21)

r\'/vehere(umh uy,2) is a pair of real-valued random variables. In
the special case whem, » = 1, we recover the form of a SGD-
Yiike algorithm with step-sizeu, ;. In the machine learning
literature, various forms of the step-size for SGD have been
proposed [20], which often require to tune up some parameters
(e.g. a multiplicative factor) so as to get the best convergence
profile on the available dataset. On the contrary, the MM
strategy allows us to automatically adjuyst, 1,u, ) at each
iteration. Another possibility is to take, for everye N\ {0},
ranD, = RY. In that case, we recover the online half-
guadratic method mentioned earlier, which may have a high
computational cost. A more efficient strategy that is at the roots
of many works in the context of batch optimization is to adopt
an intermediate size subspace matrix, gathering the gradient
subspace]-VF,, (h,),h,] complemented with few vectors
containing information regarding the previous iterates (e.g.,
previous gradient directions, previous iterates,...) [57]-[59].
Of particular interest is the memory gradient subspace [60],
defined as:

|

so that, forn > 1, M,, = 3 and (20) takes the form

if n>1
if n=1,

[_VFn (hn)a hn7 hn
[=VE,(h1), hy]

- hn— 1] (22)

hn+1 = un,Zhn - un,IVFn(hn) + un,B(hn - hnfl)a (23)

where (u,, 1, U, 2,u,,3) are some real-valued random vari-

of ©,(-,h,), we obtain an online form of a half-quadraticables. The iterative scheme (23), similar to the momentum-
algorithm. Half-quadratic algorithms are known to be effectivieased acceleration technique from the machine learning area
batch optimization methods, but the use of such meth@ll], was observed to lead to fast convergence on several
requires the inversion of matriA,(h,) at each iteration examples in the field of signal and image restoration [41],
n, which may be intractable in the context of large scal§2]. Other examples for the subspace construction are given
problems. Subsequently, following [40], [56], we propose ia Table II.

subspace acceleration strategy so as to reduce the computa-

tional cost of the proposed method. 2The function is extended by continuity when= 0.
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Acronym Subspace name | Set of directionsD,, ‘
GD Gradient [hy,, —VF,(hy)]
MG Memory gradient h,,—-VF,(h,), h, —h,_1]
SMG Supermemory gradient [hn, —VFn(hy),hy —hy1,...,hy_pr, 43 — Dy, 40]
GS Gradient subspace | [h,,—VFy,(hy),—VF,_1(hn_1),...,—VFn_nr,+2(hn_nr, 4+2)]
NEST Nesterov’s subspace (h,,—VF,(h,),hy —h,_1,VF,(h,) — VF,_1(h,_1)]
TABLE I

EXAMPLES OF SET OF DIRECTION®D,, THAT CAN BE EMPLOYED FOR THE SUBSPACE ACCELERATION APPROACHHE SUBSPACE SIZEM,, IS STRICTLY
GREATER THAN TWO.

C. Recursive MM strategy Finally, let us assume, without loss of generality, that the
We derive in this section a recursive form of the proposédgorithm |sM|n|t|aI|zed withh; = Douy, whereD, € R
stochastic MM subspace algorithm in (20), with the objectiv@d 1o € R™°. Then, (24) and (26) yield

to limit its complexity. First, note that, according to (6), (11), (vn € N\ {0}) VF,(h,) =D ju,_;—c,(h,), (35)
and the definition of function&’s )1<s<s in Assumption 1(iii),
for everyn € N\ {0}, the gradient off,, is given by

where we have set
(VTL € N) Drl? = AnJrl(thrl) D, € RV *Mn, (36)
By using (16), (30) and (32)-(34), the latter variable can be

where reexpressed as
¢, (h) =1, + vy + V' Diag(b(h))v e RN.  (25) DA = R, 11D, + DY + V Diag(b(h,,)) DY
Thus, using (15), we can rewrite (20) as =(1- - )DE 4+ = Xn+1(XI+1Dn) +DY
h,11 = Dnu,, (26) T (g
+ V ' Diag(b(h,+1)) Dy, . (37)

i My, _ . . . . . . .
whereu,, is anR™-valued random vector such that: The resulting relations are summarized in Algorithm 1, which

u, = B{D, (A, (h,)h, — VF,(h,)) can be understood as a recursive implementation of Algo-

— BiD ¢, (hy), @7) rithm (20).
with Algorithm 1. Sfochastic MM subspace method
B,=D'A,(h,)D, (28) | ro=0,Ro =0y

40t d i th doi on. Itis i Initialize Dy € RY*Mo anduy € RMo with My > 0
and(-)" denoting the pseudo-inverse operation. It is important h; = Douo, D = ONxMO,D(‘)/“ — V;Do,DY = VD,

to note that, a®B,, is of dimensionlM,, x M, where M, is for m—1 do

small (typically M,, = 3 for the choice of the subspace in (22 T = Tt + 2 (Xoyn — Fnt) L
whenn > 1), this pseudo-inversion is light. This constitutes PN e
the key advantage of the proposed approach. anghn) =TIn +1"’0 +RV Dl?g(b(hn)T)’U
By using (7), (9) and (10), the following recursive updates D= (1~ ?,L)Dn—l + ETLX"(XH Dy-1)
of (ry)n>1 and(R,,),>1, can be performed +D}", + V' Diag(b(h,))DY_,
1 VFn(hn) = Dy?_lun—l - Cn(hn) 4
(vn € N\{0})  rn=rp_1+=—(Xpyn —Tn1) (29) R, =Rpo1+ 5 (XaX] — Roo1) 5
19’1 Using VF,, (h,), setD,, satisfying Assumption 2 6
R,=R,_1+—(X, X! —-R,_1), DR =R,D,, DY =V;D,,DY =VD, 7
Un (30) B, = D] (DR + DY) + (DY) Diag(b(h,))DY s
u, =BID/ (c,(h,)) 9
where we hal/e safy = 0 anggo = Op and we have used h,.1 = D,u, 10
the identity:99,,_1 /9, = 1—4,, . Then, it follows from (16), end
(28) and (30) that
(¥n € N\ {0}) B, = D, (D} + D) ,
+ (DY) Ding(b(h,))DY, (31) O ComPlexiy o
Provided that the subspace dimensidié, ),y are small,
where Algorithm 1 has a low complexity, as shown in Table lll.
, Indeed, the global complexity of a direct implementation of
(vn € N\ {0}) Dg =R.D, € R]]::jz §32; Algorithm 1, evaluated in terms of multiplications at iteration
D;* =WD, e R"*"" 33) n, is of the order of
D) =VD, eR"M (34) N(P(M, + M,_1 +1) + N(4M, + Q)/2),
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TABLE III . . .
COMPLEXITY IN TERMS OF MULTIPLICATIONS FOR ITERATIONR, OF stochastic MM memory gradient (S3MG) Algorithm 2. Note
ALGORITHM 1. that, in the case whelj and V' are null matrices, the global
_ _ complexity of the S3MG algorithm is equal 182(Q + 2)/2.
St Complexit Complexit .
&P for v e%@%@q;mafy Wheonm‘E e:X'IyN When @ = 1, we thus_ recover the order of complexlty of
1 INCESY the classical RLS algorithm. Since the objective function then
2 (N+ )P N reduces to a quadratic function, Sherman-Morrison-Woodbury
3 [Myi(NCQ+P+1)+P+Q) | Mpr (N2Q+1)+Q) | formula can be invoked to compute iteratively the minimizer
4 NMp—1 on the whole space in an efficient manner.
5 NN +1)Q/2 N finally th h ; X XT with
v N, 2N T P) SNZIL. ote finally that the computation ofX,X, wit
8 Mn((Mn +1)(N + P)/2+ P) NM,, (M, + 3)/2 n € N\ {0}, which needs to be performed in Step 5 of
9 O(M3) + My (N + Mn) Algorithm 1, remains a main source of complexity. However,
10 N My, it (Vo > Q) X, = [Xn_q41,---,X,] Wherex, € RV

(as it is the case in affine projection based algorithms for

_ : adaptive processing [63]), then a recursive computation of
if we assume thalv' > max{M,, M,_1,Q}. The first term x T gnjy requiresx, x| to be computed at each iteration

NP(M, + M, + 1) corresponds to an upper bound on, '~ " |t we further assume that the model is a one-

the complexity induced by the use of matric€&;)i<s<s dimensional convolutive one, i.e, corresponds to shifted
within the regularization term. Note that these matrices Oﬁ%\mples of a S|gna(x ) then (Yo > N) x, =
L}l’ n

have a sparse structure (in particular when discrete derlvatv? N+1),....2n)]" andx,x] can be itself computed
n

operators are employed) which may lead to a much IOWrecurslvely Wlth a complexity ofN operations. Such ideas

computaﬂo}r\\[aXINcost Moreover, whei = Iy, the identity have been deeply investigated in the literature on fast RLS
matrix of R which is a scenario frequently encountere‘,jllgon,[hms [64].

in adaptive f||ter|ng [33], [34], this term merely vanishes in
the evaluation of the global complexity.

The computational complexity can also be reduced I
taking advantage of the specific form of matrigd@3,,),>1. ro =0, Ro = On )
Here, we focus our analysis on the example of the memgry!Nitialize Do & RA> Mo andug € R with My > 0
gradient subspace defined in (22) although it should be notiged?: = Douo, DoR = Onxwm,, Dy* = VyDo, DY = VDy
that the ideas hereinbelow could be easily generalized tg dor n=1,... do

Algorithm 2: Stochastic MM Memory Gradient method

wide class of subspaces where matri¢gs,),>1 represent I'n =Tp-1+ 5= (Xnyn ry-1) 1
memory features (e.g. [40, Tab. l].). For the particular case | c,(h,) =r, + vo + VTDlag(b(h ))v
of subspace (22), we obtain: DA |, =(1- )Df,‘ 1+ 5 Xa (X Dyot) 3
V T \ %
(Vn>1) DY =[-VVF,(h,), Vh,, Vh, — Vh,_i]. +D °A1 +VDiag{b(h,))DY,
(38) VF ( ) Dn 1Un—1 — - Cn(hn) 4
Since, for everyn > 1 Ry =Rp—1+ 5- (X"X —Ru-1) 5
v if n =1 then
Vh, =VD,_ju,_; = anlunflv (39) ‘ SetDn = [—VFn(hl), hl]
. else
a recursive formula holds to compute the last two components -
of DY in (38). The initial complexity o8N P multiplications e‘ndsm Dy = [=VFn(hn), i, by =T 6
is thus reduced t&v (P +3). Similar recursive procedures car hR —(1- 1)DR u, 4+ 1X,XTh ,
be employed to computéDY?),,~; allowing the complexity v 9,/ n-1in—1 T S B
to be reduced taV(N + 3) from 3N2. In addition, we have, V =D, n1tn—1
for everyn > 1, h;> =D/ u, 1
D}} [— R VF (h,),h®,
D = [-R,VF,(h,), b, b —R,h, 1], (40) —(1—2)hB — LX, X h,_]
where, by using (30), DY =~ VVF (h,),hY hY —hY ]
) ) DY = [-VVF,(h,), hVo hVo hY? ]
h; =R,h, = (1 - 5 JRn-thn + E—anlhn B, = D, (DR + DY) + (DY) 'Diag(b(h,))DY s
5 " = B}D] (c.(h,)) o
=(1-=—)D® u, +—X,X'h, (41) hn+1 D,u, 10
191" 1 Un end
R,h, ;= (1- ?)hR L+ ;anghn_l. (42)

It can be further observed that last tem,) X, X h,,_;

has already been computed in Step 3 of Algorithm 1. There-
fore, instead oBN? multiplications, we have now to perform Establishing the convergence of stochastic approximation
N(N+2Q+4) ones. These simplifications lead to the so-calleglgorithms is challenging [11], [16], [65]-[67]. Throughout

IV. CONVERGENCE STUDY
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this section and the related appendices, it is assumed tBatAlmost sure convergence

Y = 1. The underlying probability space being denoted by | ot s give the following preliminary property:

(Q,F, P), we will say in short that a property B-a.s. satisfied _ T

if this property holds almost surely. Lemma 2. Under Assumptions 1, 2 and 3(ii)-3(iii}h,, ),>1
is P-a.s.bounded®

) Proof: See Appendix B. [ ]
A. Assumptions o ) ) )
Combining the previous lemma with classical results on the

For everyn € N\ {0} , letX,, = o ((Xk,yx)1<k<n) be the asymptotic behaviour of almost supermartingales, the conver-
sub-sigma algebra of generated byX, yx)i1<k<n- In Order gence of the sequend® ., (h,,)) ., can be established:
to give a proof of convergence of the proposed stochastic MM ~
subspace algorithm, we will make the following additiondremma 3. Under Assumptions 1-3F,(h,)), ., is P-as.
assumption: convergent and (h,,+1 — h,) " A, (h,,)(h,+1 — hy,)) is

n>1
. P-a.s.summable.
Assumption 3.

(i) R+ Vy is a positive definite matrix. Proof: See Appendix C. .

(if) ((men))@l is a stationary ergodic sequence andLemma 3 allows us to deduce the following result on the
for everyn € N\ {0}, the elements oK, and the sequence of gradients computed at each iteration of the al-
components of,, have finite fourth-order moments.  gorithm:

(i For everyn € N {0}, Lemma 4. Under Assumptions 1-3(||VF, (h,)|)n>1 is

P-a.s.square-summable.

E(lyns1l*[Xn) = o (43) _
EXpi1yni1|Xn) =7 (44) Proof: See Appendix D. ]
E(XnHXLrl |X,) = R. (45) By gathering all the previous results, our main convergence

results can now be stated:
(iv) h; is X;-measurable and, for every € N\ {0} , D,

is %, -measurable. Proposition 2. Assume that Assumptions 1-3 hold. Then, the

following hold:
The following asymptotic results will then be useful in the (i) The set of cluster points ¢h,,),>1 is almost surely a

rest of our developments. nonempty compact connected set.
Lemma 1. Under Assumptions 3(ii) and 3(ii), the following (i) Any element of this set is almost surely a critical point
properties hold: of I, .
_ (iii) If the functions(v)1<s<s are convex, ther(h,,),>1
) (pn)n>1, (Rn)n>1, and (ry)n>1 convergeP-a.s.to o, convergesP-a.s.to the unique (global) minimizer of.
R and r, respectively )
400 Proof: See Appendix E. ]
s _1
i n — 9| <400 P-as. . . . N
(i) 7;1 [P = ol It can be noticed that the conclusion of Proposition 2(iii) is
+00 valid as soon as functiof’ is strongly convex. For instance,
Zn*1||rn —7r|| < +oo P-as. it holds when the function$iy;s)1<s<s are nonconvex, they
n=1 are twice continuously differentiable, and the regularization
= constantg \) as defined in Table | are small enough
Y 0 Y[R, - RI|| < +o0 P-as., s)1<s<s gn
n=1
where||| - ||| denotes the spectral matrix norm. C. Convergence rate
Proof: See Appendix A. - Based on our recent results in [68], we provide a conver-

gence rate result for Algorithm (20) in the case when the
Remark 1. functions (¢s)1<s<s are convex and twice differentiable.

(i) Assumptions 3(ii) and 3(iii) are more general tharProposition 3. Suppose that Assumptions 1-3 hold. ket
assuming that((X,,yx)),, is an independent iden- (0, +co) be such thatIy < R+ V. Then, there exists almost
tically distributed (i.i.d.) sequence and, for everyc surelyn. € N\ {0} such that, for every, > n., V2F,, (h,,) =
N\ {0} , the elements dX,, and the components ¢, R — cIy + V, and
have finite fourth-order moments. ) )

(i) Assumption 3(iv) is satisfied as soon hs$ is X;- Fp(hpi1) —inf B, < 0(Fu(hy) — inf F) (46)
measurable (e.gh, is deterministic) and the subspacyhereq  [0,1).
directions, i.e., the columns db,, only depend on

X h . This is actually the case for the
(( ko Yk k)) 1Sksn y SWe say that a sequence of random vectors is almost surely bounded when

\{arious subspace ConStrUCt.ions listed in I, _and' IN Pakne norms of all these vectors can be bounded by some random variable with
ticular, for the memory gradient subspace given(Bg). probability 1.
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More details about the expression of the decay rate chigure 1(d) presents the estimated kernel, using the S3MG Al-
be found in [68]. In particular, our convergence rate analysiorithm 2. Parameter§\, §) were adjusted so as to minimize
illustrates that the slowest convergence is obtained in the c#éise normalized root mean square estimation error, here equal
of a gradient-like algorithm, i.e., when the GD subspace is 0.064. Figure 2 illustrates the variations of this estimation
employed. This worst case rate is highly related to the specteator with respect to the computation time for the proposed
properties of the Hessian &f,, the slower convergence arisingalgorithm, the SGD algorithm with a decreasing stepsize
when its eigenvalues are dispersed. In contrast, a fast conygoportional ton~'/2, the regularized dual averaging (RDA)
gence raté = O(¢) is obtained wherD,, is full rank and the method with a constant stepsize from [42], and the accelerated
majorant matrixA,, (h,,) can be chosen equal §6°F,,(h,,). stochastic gradient averaging SAGA method with a constant
Finally, an intermediate decay rate is obtained when a mistepsize from [69]. Tests were running on an Intel(R) Xeon(R)
size subspace is chosen (as in the S3MG algorithm) with t6&-2630 @ 2.6GHz using a Matlab 7 implementation. A null
potential advantage of a reduced computational complexity pexctor has been used to initialize all the methods. Note that
iteration. for SGD, RDA and SAGA algorithms, the stepsize parameter
was optimized manually so as to obtain the best performance
in terms of convergence speed. We have also compared S3MG
with the Stochastic MM Subspace Algorithm 1 using the
A. Problem statement alternative choices foD,, listed in Table Il, leading to the

We first demonstrate the efficiency of the proposed stoch&-called S2M-GD, S2M-SMG, S2M-GS and S2M-NEST
tic algorithm in a 2D system identification problem. Wenethods. It should be emphasize that the algorithm S2M-

V. APPLICATION TO 2D SYSTEM IDENTIFICATION

consider the following observation model: GD is actually a special form of the SGD, with a varying
- stepsize automatically tuned according to the MM strategy.
y=S(h)z +w, (47) One can observe on Figure 3(top) that S2M-GD is slower

h RL andw € RE t the original and d d guan S3MG, while remaining much faster than the standard
wherer < andy € rEpres]eVn_ € originaland degradeg 5, approach. Moreover, it appears that the usd/gf> 3
versions of a given imagéy € R" is the vectorized version

f K wo-di ional blur kernad. is the li in S2M-SMG does not yield any practical acceleration, which
ol an unknown two-dimensional biur kernes, 1S e liN€ar o544 that the main descent information is already gathered
operator which maps the kemel to its associated Hankel-bl hin the three S3MG directions. The evolution of the error
Hankel matrix form, andw € R” represents a realization of

dditi ise. When the i q ¢ | for S2M-NEST (not shown here) was observed to be very
an additve noise. When INe Imagesandy are of VEry 1arg€ gjmjjar to that of S3MG, showing that adding the difference
size, finding an estimatb € R™ of the blur kernel can be

: ; .~ of previous gradients in the subspace does not bring any
quite memory consuming, but one can expect good estimatigiy, ;- ntia| improvement in the algorithm performance. Finally,
performance by learning the blur kernel through a sweep Iggure 3(bottom) shows that the performance of the S2M-GS
blocks in the dataset. N _ method depends on the parameldy,, the best compromise
Let us denote byX < R the matrix such that being obtained here when/,, = 12 for which S2M-GS
S(h)z = Xh. Then, we propose to definfe as a solution .4 °g3MG seem to be equivalently good. It is interesting

tOT(A')’ gt\(?\;’e, for everyn € N\ {0}, y,» € R? and point out that these observations, regarding the subspace
Xn E,R , are subparts_ of andX ' respectwgly, COIe influence, are in total agreement with the study that was
sponding toQ € {1,..., L} lines of this vector/matrix. For the o o med in the batch case in [40]. Finally, note that all tested
regularization terml, we consider, for every € {1,..., N} 5 55rithms were observed to provide asymptotically the same
(S_: N)’_ an |sotr_op|c penalization on the Qfad'e”t betWee&timation quality, whatever the size of the blocks. In this
neighboring coefficients of the blur kemel, i.€; =2 and o, mpje as illustrated in Figure 4, the best trade-off in terms
V, = {Afj AZ} , whereA;1 € RY (resp.AY € RY) is the of convergence speed is obtained &r= 256 x 256.

horizontal (resp. vertical) gradient operator applied at pixel

The smoothness di is then enforced by choosing, for every VI. APPLICATION TO SPARSE ADAPTIVE FILTERING

s € {l,...,S} andu € R, ¢s(u) = Ay/1+u?/6% with
(A, 8) € (0,+00)2. Finally, in order to guarantee the existenceA' Problem statement

of a unique minimizer, the strong convexity &fis imposed ~AS émphasized in Sections Il and Ill, one of the advantages

by takingw, = 0 and V;, = 7T, wherer is a small positive ©f Algorithm 1 (and its particular case Algorithm 2) compared
value (typicallyr = 10~19). with some other online optimization algorithms is that it is

able to deal with adaptive data processing problems. In this
. _ section, we apply the S3MG Algorithm 2 to the identification
B. Simulation results of a sparse time-varying system. Given a real-valued discrete-

The original image, presented in Figure 1(a), is a satellif§ne input signal(z(n)), _,, the output of the system at time
image, of size4096 x 4096 pixels. The original blur kernel n > 1 is defined as
h with size 21 x 21, and the resulting blurred image, which
has been corrupted with a zero-mean white Gaussan noise
with standard deviatiorr = 0.03 (the blurred signal-to- where X,, = [#(n — N + 1),...,2(n)]", w, models some
noise ratio equals 25.7 dB), are displayed in Figures 1(b)(cheasurement noise, ad, € RY gathers the unknown filter

Yn = X;I,rﬁn + W, (48)

1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2709265, IEEE
Transactions on Signal Processing

IEEE TRANS. SIGNAL PROCESSING 9
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Fig. 1. (a) Original image. (b) Blurred and noisy image. (c) Original blur
kernel. (d) Estimated blur kernel, with relative ern64.
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Fig. 3.  Comparison of S3MG Algorithm 2 (solid black line) withet
Stochastic MM subspace Algorithm 1 whép, is chosen according to GD
5 and SMG models (top) or the GS model (bottom), with various values of
g 10t M,,. Note that S2M-SMG with\/,, = 3 identifies with S3MG. An enlarged
o version of the plots is provided on the top right of both figures.
£
[}
T 00
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- : : : : : : ———Q=128x128
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Fig. 2. Comparison of S3MG algorithm (solid black line), SG@althm -% Q = 2048x2048
with decreasing stepsiz& n—1/2 (dashed-dotted red line), RDA algorithm °
with constant stepsize (dashed blue line) and SAGA algorithm with constant &
stepsize (turquoise thin line).
. L . . 10°
taps at timen. Then, the objective is to provide an estimate ‘ ‘ ; ; ‘ : :
of the vectorh,, a each time by solving Problem (4) where 0 500 1000 1500 2000 2500 3000 3500

the regularization function? is chosen in order to promote Time (s.)

the sparsity of the impulse response of the time-varying filtgfig. 4. Effect of the block siz€) on the convergence speed of S3MG.

B. Simulation results

We generate data according to Model (48) where the inp%?MG method, the following time-varying linear system is

signal (z(n)), , consists of identically and independen?ons'derEd:
random binary values{—1,+1}. The measurement noise _
(wn ) nez IS white Gaussian with zero mean and variafg¥. h hy

=<{_ 49
In order to evaluate the tracking capability of the proposed hr/oq1 (49)

if n < L/2,
=

if n>L/2+1.
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The filter lengthV is equal to 200 and the output of the system
is observed at every time € {1,...,L} with L = 5000.
The sparse impulse responses corresponding to veetomsd
EL/QH are represented in Figure 5.

We compute, for every. € {1, ..., L}, the Euclidean norm
of the error between the current estimate and the true filter
coefficient vectoih,,. The minimal estimation error is obtained
for the nonconvex Welsch penalty function (see Table I) and
a smoothed’s — ¢, regularization function is thus employed
by settingS = N, vg = 0, V; = Oy, and, for everys €
{1,...,N}, Py = 1, v, = 0, while V, € R*¥ is the s-th
vector of the canonical basis &" .

We present the results generated by S3MG in Figure 6 for
two values of the forgetting facta#, namely¥ = 1 which
corresponds to a non adaptive strategy, dnd 0.995 which
appears to be the best choice in terms of tracking properties
for this example. Fig.

the-art approaches in the context of sparse adaptive filtering,
namely SPAL [31], RLMS [30], RZAAPA [28] and SM-

—— S3MG (9 = 0.995)
- - =-S3MG (9=1)

Errorin dB

-50 -
0 500
n

I I I I I I I I
1000 1500 2000 2500 3000 3500 4000 4500 5000

10

6. Quadratic estimation error on the filter coefficientsadsnction of
We also show the results obtained with several state-§f indexn for various adaptive algorithms.

PAPA [29]. Note that, for each tested method, the involv
parameters (stepsize, regularization weight, blocksize) ha
been tuned manually in order to optimize the performan
in terms of error decay. Moreover, the complexity reductio
strategy relying on the convolutive form of the forward model,
as discussed at the end of Section IlI-D, has been emplo

in all the methods.

15
1k
05}
\ ! l ‘
0 T T I
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a s s s s s s s s
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0 I “H‘ Tt . ‘\‘ T
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1 ‘ ‘ ‘ ‘ ‘ ‘ s s s
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Fig. 5. Values of the coefficients of the considered sparserdil; (top)

andhy 541 (bottom).

VIl. CONCLUSION

egfadient subspace led to the S3MG algorithm whose good

merical performance has been demonstrated in the context

2D system identification for large scale image processing
roblems. In the context of sparse adaptive filtering, S3MG
as also been shown to be competitive with respect to recent

thods. Although an analysis of the convergence of the pro-
posed method has been carried out, it would be interesting to
extend the obtained results to weaker assumptions. In addition,
in a nonstationary context, a theoretical study of the tracking
abilities of the algorithm should be conducted. Finally, let us
emphasize that a detailed analysis of the convergence rate
of the proposed method has been undertaken in our recent
paper [68].

APPENDIXA
PROOF OFLEMMA 1

Property (i) is a consequence of the ergodic theorem [70,
Theorem 13.12]. In addition, the law of the iterated logarithm
for martingale difference sequences [71] ensures that

| >k (lyel® = o)

In this work, we have proposed a stochastic MM subspace
algorithm for online penalized least squares estimation prob-
lems. The method makes it possible to use large-size datasets
the second-order moments of which are not known a priori.
We have shown that the proposed algorithm is of the same
order of complexity as the classical RLS algorithm and that
its computational cost can be reduced by taking advantage of
specific forms of the search subspace. The choice of a memory

lim sup 72 < 400 P-a.s. (50)
n=+oo  (nlog(logn))
n X_ _
Jim sup | 2k=1(XeYe 1/72')” <400 Pas. (51
n—+oc (nlog(logn))
(XX —
lim sup 12y (XX, l/f)m <400 P-as. (52)
n—+00 (nlog(logn))
that is
/21, _
lim sup % < +00 P-a.s (53)
n=+eo (log(logn))
1/2)p
lim sup Lﬂ?ﬂ/‘z < +00 P-a.s (54)
n—+oo (log(logn))
2||R, — R
lim sup L’LU!' < 400 P-a.s. (55)
n—+eo  (log(logn))
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Consequently, for everyy € N with ng > 2, APPENDIXC
PROOF OFLEMMA 3

+o00

> 0 pn — ol According to Assumption 2, the proposed algorithm is

n=ng actually equivalent to

1/2 _ foo ~

< sup <”|Pn@1|/2> ( S 092 1og(1ogn)\1/2). (vn e N\ {0})  h,y; =h, +D,u, (66)

n2no (log(log n)) n=ng u, = argmin 0, (h,, + D,u,h,,).

(56) wERM
(67)

Since 32 n=3/2|log(logn)|'/? < 4o, it follows from , ling th ative of the func
(53) that>" ">, n=L|p, — o| convergesP-a.s. to 0 asip — I%y using (15) and cancelling the derivative of the function

+00, which means that the first line in Property (ii) is satisfied” = On(hy +Dyu, hy),

By proceeding similarly, (54) and (55) allow us to establish D VF,(h,) + D] A,(h,)D,d, = 0. (68)
the remaining two assertions in Property (ii). " "

Hence,
APPENDIXB
PROOF OFLEMMA 2 O(hni1, hnl)
For everyn € N\ {0}, minimizing ©,,(-,h,) is equivalent ~ =F,(h,) — EﬁIDZAn(hn)Dnﬁn
to minimizing the function 1

~ 1 =Fy,(hy,) — Q(hn-&-l - hn)TAn(hn)(hn-H —h,). (69)
(Vvh e RY) ©,(h,h,)==h"A,(h,)h —c,(h,) h.
2 (57) In view of (12) and Proposition 1, this yields
It follows from Assumption 3(ii)-3(iii) and Lemma 1(i) that 1
there exists\ € J such thatP(A) = 1 and, for everyw € A, (Vn € N\{0}) Fn(hn+1)+§(hn+1_hn>TAn(hn)(hn+1_hn)

lirf rp(w)=r (58) <F,(h,). (70)
n—-+0oo

lirf R,(w)=R. (59) In addition, the following recursive relation holds
n—-+0o0

Letw € A. According to Assumption 1(iii) and Eq. (19(h) (Vh eRY) F,i1(h)=F,(h)+ l(ﬂn+1 — Pn)

is bounded as a function di. It is then deduced from (25) %

and (58) that(c,(h,)(w)) ., is bounded, i.e. there exists — (Cpg1 — 1) R+ 5hT(RnH —R,)h.

1 € [0,400) such that (71)
(VR e N\ {0})  lea(hy) ()] <. (60) As a consequence of Assumption 3(iv), for everg N\ {0},

In addition, as a consequence of (19) and Assumption 1(iilf}p-+1 1S Xn-measurable. It can thus be deduced from (70) and
for everyn € N\ {0}, Diag(b(h,,)) is a positive semidefinite the previous two relations that

matrix. Hence, because of (16), Assumptions 1(iii) and 3(i), 1

and (59), there exists€ (0, +-00) andng € N\ {0} such that ~ E(Fy41(hy41) |xn)+§(hn+1_hn)TAn(hn)(hn+l —h,)

(Vn>ng)  An(hy)(w)>= R—ely+Vy > Oy. (61) < Fo(hn) +xn (72)

(It suffices to choose lower than the minimum eigenvaluewhere
of R 4+ V). As a consequence of (57), (60), (61), and the

Cauchy-Schwarz inequality, we have Xn = §E(pn — a1 | X)) —E(rn — 11 | X,) Thy g
(Vn >1no)(Vh eRY) + %hLlE(Rn — Ry |X)hy1. (73)
T ~
oh (R—ely +Vo)h —n|[h] < On(h.hn). (62) gy ysing (8)-(10) withd = 1 and Assumption 3(iii), we have
SinceR — eIy + Vj is a positive definite matrix, the lower 1 E 9
bound corresponds to a coercive function with respedh.to  Xn = 2(n+1) (P = E(llyns1]”1X0))
There thus existg € (0, +o00) such that, for everyh € RY, 1 T
~ - (rn - E(Xn+1yn+1 ‘xn)) hn+1
|h]|>¢ = (¥n=np) O,(h,h,)(w)>0. (63) n +11
T T
On the other hand, sind@ € span (D,,(w)), we have HETCE) 1)hn+1(R” — E(Xp1 X1 %0)) gt
~ P 1 1
O, (hyt1,hy,)(w) < ©,(0,h,)(w) = 0. (64) = m(pn - 9) T 1 (I'n — T‘)Tthrl
The last two inequalities allow us to conclude that 1 -
+-———=—h,; (Rn — R)hnH (74)
(Vn>no)  [hasa(w)] <C. (65) 2(n+1)
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which yields where
1 — 2 -1
<, _ _ ac = (|||[R+Vo|[| +7||V]IP+€¢)~ ' >0.  (85)
|Xn|\2(n+1)\pn ol + v = 7l | (Il olll + ZIVIIIT +€)
1 ) Let w € A. By using now (80), it can be deduced from (84)
* 55 1y I1Bn = Bl (75)  that, if n. > no and VF,,(h,,)(w) # 0, then
According to Lemma 2,(h,),>1 is P-a.s. bounded, and D (w) = . (86)
Assumptions 3(ii)-3(iii) and Lemma 1(ii) thus guarantee tha‘}hen, it follows from (82) that
+oo
IXn| < 400 P-as. (76) =
ngl Qe Z ||VFn(hn)(W)||2
Assumption 1(i) entails that, for every € N\ {0}, F,, is n;:;)
7 _ T
lower bounded byinf ¥ > —oo. Furthermore, (72) leads to < Z (hn+1(w) _ hn(w)) An(hn)(w)(hnﬂ(w) _ hn(w)).
E(F,.11(h, —inf ¥ |X, n=no
( 1+1( +1) 1i |Xn) (87)
+ §(h"+1 —hy) " An(hn)(hnsy —hy) By invoking Lemma 3, we can conclude that
< Fu(h,) —inf O + |x,]. (77)  (IVFa(hy)|*)n>1 is P-a.s. summable.

Since, for everyn € N\ {0}, F,,(h,,) —inf ¥ and (h,,4+1 —
h,)"A,(h,)(h,.; — h,) are nonnegative,(F,(h,) —
inf ¥),,>1 is a nonnegative almost supermartingale [72]. By
invoking now Siegmund-Robbins lemma [73], it can be de- It follows from Lemma 3 that ((h,41 -

duced from (76) that the desired convergence results hold.hn) " Ay (hy,)(hpy1 — hn))n21 converges P-a.s. to O.
In addition, we have seen in the proof of Lemma 2 that there

APPENDIXE
PROOF OFPROPOSITION2

APPENDIXD exists A € F such thatP(A) = 1 and, for everyw € A, (61)
PROOF OFLEMMA 4 holds withe € (0, +00) andng € N\ {0}. This implies that,
According to (15), we have, for every € R andn e for everyn = ng,
O 1B — el + Volll [ () — by )
O (hy, — ¢VF,(hy), hy,) = Fp(hy,) — ¢ VE, (hy,)|? < (M1 (@) = 1y (@) | A (hy) (@) (g1 (@) — Dy ()
(VP (0n) T AL () VE (B, (78) (88)

2 where|||R —eIn + Vp||| > 0. Consequently(h,, 11 —hy,,),>1

Let . convergesP-a.s. t00. In addition, according to Lemma 2,

O € Afbgerﬁm On (hy — ¢V (hn), hy). (79) (h,,),>1 belongs almost surely to a compact set. The result is
. L . then obtained by invoking Ostrowski's theorem [74, Theorem
The following optimality condition holds: 26.1]
(VF,(h,)) " A, (hy)VF,(h,) @, = | VF,(h,)|>. (80) (i) By using (24)-(25), we have

As a consequence of Assumption 2y¢p € R) h, — (VneN\{0}) VF,(h,)-VF(h,)=(R,—R)h,—r,+7.

¢VF,(h,) € spanD,,. It then follows from (20) and (80) (89)

that Since (h,,),>1 is almost surely bounded, it follows from

Lemma 1(i) that(VF,,(h,) — VF(h,)) _, convergesP-a.s.
On (b1, ) < O (b - (I:I:LVF"(h")’h") to 0. Since Lemma 4 ensures th@Wl«“n(fll))n>1 converges
< F,(h,) - %HVFH(hn)H2 (81) P-as. to0, (VF(h,)) _, also converge®-a.s. t00. There
thus existsA € F such thatP(A) = 1 and, for every
w € A, VF(h,(w)) — 0. Let h be a cluster point of
®,||VF,(h,)|? < (hpy1—h,) " A, (hy,)(h, 11 —h,). (82) (hy(w)),s,- There exists a subsequengey,, (w)),,, such
Let ¢ > 0. Assumption 1(jii) and (16) yield, for every ¢ thathy, (w) — h. As we have assumed that the regulariza-
N\ {0}, tion functions(vs)1<s<s are continuously differentiable (see
Assumption 1(i)),F' is also continuously differentiable, and

~

VF(h)= nEI—Eoc VF (b, (w)) =0. (90)

which, by using (69), leads to

An(hy) = ([[Rn + Vol + ZIVI[*)Iy.  (83)

Therefore, according to Assumptions 3(i) and 3(ii), and
Lemma 1(i), there existd. € F such thatP(A) = 1 and,

This means thak is a critical point of F'.
for everyw € A,

(i) Because of Assumption 3(i), when the functions
(Ing € N\ {0})(Vn =ng) On < A,(h,)(w) =a 'In  (¥s)i<s<s are convex,F is a strongly convex function. It
(84) thus possesses a unique critical pdigtwhich is the global
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minimizer of F'. It follows from (i) and (1|\) that, almost surely, [22] O. Macchi, Adaptive Processing: The Least Mean Squares Approach

the unlque cluster point ofh,,),,>1 is h, which shows that
h,, — h P-a.s.

(23]
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