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Abstract—Stochastic approximation techniques play an impor-
tant role in solving many problems encountered in machine
learning or adaptive signal processing. In these contexts, the
statistics of the data are often unknown a priori or their direct
computation is too intensive, and they have thus to be estimated
online from the observed signals. For batch optimization of an
objective function being the sum of a data fidelity term and
a penalization (e.g. a sparsity promoting function), Majorize-
Minimize (MM) methods have recently attracted much interest
since they are fast, highly flexible, and effective in ensuring
convergence. The goal of this paper is to show how these methods
can be successfully extended to the case when the data fidelity
term corresponds to a least squares criterion and the cost
function is replaced by a sequence of stochastic approximations
of it. In this context, we propose an online version of an
MM subspace algorithm and we study its convergence by using
suitable probabilistic tools. Simulation results illustrate the good
practical performance of the proposed algorithm associated with
a memory gradient subspace, when applied to both non-adaptive
and adaptive filter identification problems.

Keywords: stochastic approximation, optimization, subspace al-
gorithms, memory gradient methods, descent methods, recursive
algorithms, majorization-minimization, filter identification, Newton
method, sparsity, machine learning, adaptive filtering.

I. I NTRODUCTION

A classical problem in data sciences consists of inferring
the structure of a linear model linking some observed random
variables(Xn)n>1 in R

N×Q to some other observed random
variables(yn)n>1 in R

Q. Unless otherwise specified, we will
assume in this work that the following wide-sense stationarity
properties hold:

(∀n ∈ N \ {0}) E(‖yn‖2) = ̺ (1)

E(Xnyn) = r (2)

E(XnX
⊤
n ) = R, (3)

where̺ ∈ (0,+∞), r ∈ R
N , R ∈ R

N×N is a symmetric
positive semi-definite matrix,E(·) denotes the mathematical
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expectation, and‖ · ‖ is the Euclidean norm. We will then be
interested in the following optimization formulation:

minimize
h∈R

N

F (h), (4)

with1

(∀h ∈ R
N ) F (h) =

1

2
E
(
‖yn −X⊤

nh‖2
)
+Ψ(h), (5)

whereΨ is a function fromR
N to R, playing the role of a

regularization function. This penalty function may for instance
be useful to incorporate some prior knowledge about the
sought parameter vectorh, e.g. some sparsity requirement,
possibly in some transformed domain. In this paper, a family of
differentiable, non necessarily convex, regularization functions
[2] is considered.
Problem (4) is encountered in numerous applications such as
system identification, channel equalization, linear prediction
or interpolation, echo cancellation, interference removal, and
supervised classification. In the context of supervised classifi-
cation, (Xn)n>1 are vectors (Q= 1) which may correspond
to features obtained through some nonlinear mapping of the
data to be classified in a given training sequence, and(yn)n>1

may be the associated (discrete-valued) class label vector [3],
[4]. Although some other measures (e.g. the logistic regression
function) are often more effective in this context, the use of a
least squares criterion may still be competitive for simplicity
reasons [5], while the regularization term serves here to avoid
overfitting which could arise when the number of extracted
features is large [6]. Signal reconstruction constitutes another
application field of interest. Then, the vectorh corresponds
to an unknown signal related to some measurements(yn)n>1

obtained through products with matrices(X⊤
n )n>1, and addi-

tionally corrupted by some noise process [7]–[9]. Each matrix
X⊤

n with n ∈ N \ {0} corresponds toQ lines of the full
acquisition matrix and it is here considered as random. Under
suitable stationarity assumptions, the classical least squares
data fidelity term can be modeled asE

(
‖yn − X⊤

nh‖2
)
/2,

whereas due to the ill-posedness of the great majority of
such inverse problems, a regularization termΨ needs to be
introduced so as to obtain reliable estimates.

One of the difficulties encountered in machine learning or
adaptive processing is that Problem (4) cannot be directly
solved since the second-order statistical moments̺, r and

1The wide sense stationarity assumption makesF independent of the choice
of n ∈ N \ {0} .
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R are often unknown a priori or their direct computation
is too intensive, and they have thus to be estimated online.
In the simple case whenΨ = 0, the classical Recursive
Least Squares (RLS) algorithm can be used for this purpose
[10]. WhenΨ is nonzero, stochastic approximation algorithms
have been developed such as the celebrated stochastic gradient
descent (SGD) algorithm [11]–[13] and some of its proximal
extensions [14]–[17]. The convergence speed of SGD may
be relatively slow so that various extensions of it have been
developed to alleviate this problem (see [7], [18]–[20] and
the references therein). Many efforts have also been devoted
to developing adaptive variants of this algorithm [21], [22],
in particular when identifying filters having sparse impulse
responses (see e.g. [23]–[30]). In addition, in [31], a set
theoretic approach is adopted for online sparse estimation
based on projections onto weightedℓ1 balls, which is extended
in [32] by making use of generalized thresholding mappings.
It is worth noting that a sparse RLS algorithm was proposed
in [33] for complex-valued signals in the case whenΨ is anℓ1
norm. An online variant of the RLS algorithm corresponding
to a time weighted LASSO estimator was also designed in
[34] which relies on a coordinate descent approach. In [35], a
Bayesian interpretation of Problem (4) was given whenΨ is
an ℓ1 norm and an alternative formulation based on a novel
Bayes variational approach was proposed. Weak theoretical
convergence guarantees however exist for such approaches.

However, despite the aforementioned abundant literature,
several challenges still remain to be addressed for the resolu-
tion of Problem (4) in a stochastic context. First, it should be
emphasized that most of the online optimization approaches
based on the SGD scheme require the manual setting of a
stepsize (i.e., learning rate) parameter, which may have a
strong influence on the performance of the algorithm. Second,
it is worth mentioning that in almost all the works on sparse
adaptive filtering, the sparsity is directly imposed on the filter
coefficients, that is functionΨ is assumed to be a sum of terms
acting on each entry of vectorh in a separable manner. We
should however mention the work of [36] where an adaptive
primal-dual splitting is employed to deal with a total variation
penalization.

In this work, we propose to address these difficulties by
resorting to a Majorization-Minimization (MM) approach [37],
[38]. In such approaches, the iterates result from successive
minimizations of simple surrogates (e.g. quadratic surrogates)
majorizing the cost-function. MM algorithms are very flexible
and benefit from good theoretical and practical convergence
properties. However, the computation load resulting from the
minimization of the majorant function may be prohibitive in
the context of large scale problems. The strategy we will adopt
in this work is to account for subspace acceleration [39], i.e.,
to constrain the inner minimization step to a subspace of low
dimension, typically restricted to the gradient computed at
the current iterate and to a memory part (e.g. the difference
between the current iterate and a previous one). In a number of
recent works [2], [40], [41], MM subspace algorithms provide
fast numerical solutions to optimization problems involving
smooth functions, in particular in the case of large-scale
problems. Note that, although our approach will require that

Ψ is a differentiable function, it has been shown that tight
approximations of nonsmooth penalizations such asℓ1 (resp.
ℓ0) functions, namelyℓ2− ℓ1 (resp.ℓ2− ℓ0) functions, can be
employed and are often quite effective in practice [2], [41].
Another advantage of the class of optimization methods under
investigation is that their convergence can be established under
some technical assumptions, even in the case whenΨ is a
nonconvex function (see [2] for more details).

Designing Majorize-Minimize optimization algorithms in a
stochastic context constitutes a challenging task since most
of the existing works concerning these methods have been
focused on batch optimization procedures, and the related
convergence proofs usually rely on deterministic tools. We can
however mention a few recent works [42]–[44] where stochas-
tic MM algorithms have been investigated for general loss
functions under specific assumptions (e.g. the independence
of the involved random variables [42], [43]), but without in-
troducing any search subspace. Works which are more closely
related to ours are those based on Newton or quasi-Newton
stochastic algorithms [45]–[49], in particular the approaches in
[47], [48] provide extensions of BFGS algorithm, but proving
the convergence of these algorithms requires some specific
assumptions. Like BFGS approaches, MM subspace methods
use a memory of previous estimates so as to accelerate the
convergence.

Our main contributions in this paper are:

• to propose an online version of the MM subspace algo-
rithm from [2], [40], for a wide class of penalized least
squares problems;

• to derive a recursive form, with reduced complexity, of
the resulting online MM subspace method;

• to prove the almost sure convergence of the iterates
produced by our method in a stochastic context, in the
case of a non necessary convex regularization, without the
need for any averaging strategy, the convergence being
established under some stationarity assumptions;

• to show the good practical performance of this method
when it is combined with a memory gradient subspace.

In Section II, we show how Problem (4) can be reformulated
in a learning context. The MM strategy which is proposed
in this work is described in Section III-A. In Section III-C,
we give the form of the resulting recursive algorithm and,
in Section III-D, we evaluate its computational complexity.
A convergence analysis of the proposed stochastic Majorize-
Minimize subspace algorithm is performed in Section IV.
In Section V, two simulation examples in the context of
filter identification illustrate the good performance of our
algorithm when a memory gradient subspace is employed.
Some conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

In a learning context, functionF can be replaced by a
sequence(Fn)n>1 of stochastic approximations of it, which
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TABLE I
SMOOTH PENALTY FUNCTIONSψs FULFILLING ASSUMPTION1 AND THEIR ASSOCIATED WEIGHTING FUNCTIONSνs . ALL EXPRESSIONS ARE VALID FOR

t ∈ R, (λs, δs) ∈ (0,+∞)2 AND κs ∈ [1, 2].

λ−1
s ψs(t) λ−1

s νs(t) Type Name

|t| − δs log(|t|/δs + 1) (|t|+ δs)−1 ℓ2 − ℓ1
{

t2 if |t| < δs
2δs|t| − δ2s otherwise

{

2 if |t| < δs
2δs/|t| otherwise

ℓ2 − ℓ1 Huber

C
on

ve
x

log(cosh(t))

{

tanh(t)/t if t 6= 0

1 otherwise
ℓ2 − ℓ1 Green

(1 + t2/δ2s)
κs/2 − 1 κsδ

−2
s (1 + t2/δ2s)

κs/2−1 ℓ2 − ℓκs

1− exp(−t2/(2δ2s)) δ−2
s exp(−t2/(2δ2s)) ℓ2 − ℓ0 Welsch

t2/(2δ2s + t2) 4δ2s/(2δ
2
s + t2) ℓ2 − ℓ0

Geman

-McClure
{

1− (1− t2/(6δ2s))
3 if |t| 6

√
6δs

1 otherwise

{

δ−2
s (1− t2/(6δ2s))

2 if |t| 6
√
6δs

0 otherwise
ℓ2 − ℓ0 Tukey biweight

N
on

co
nv

ex

tanh(t2/(2δ2s)) δ−2
s (cosh(t2/(2δ2s))

−2 ℓ2 − ℓ0
Hyberbolic

tangent

log(1 + t2/δ2s) 2/(t2 + δ2s) ℓ2 − log Cauchy

1− exp(1− (1 + t2/(2δ2s))
κs/2) (κs/(2δ2s))(1 + t2/(2δ2s))

κs/2−1 exp(1− (1 + t2/(2δ2s))
κs/2) ℓ2 − ℓκs

− ℓ0 Chouzenoux

are defined as follows: for everyn ∈ N \ {0},

(∀h ∈ R
N ) Fn(h) =

1

2ϑn

n∑

k=1

ϑn−k‖yk −X⊤
k h‖2 +Ψ(h)

=
1

2
ρn − r⊤nh+

1

2
h⊤Rnh+Ψ(h),

(6)

whereϑ ∈ (0, 1],

ϑn =

n−1∑

k=0

ϑk =




n if ϑ = 1
1− ϑn

1− ϑ
if ϑ ∈ (0, 1),

(7)

andρn, rn, andRn are given by

ρn =
1

ϑn

n∑

k=1

ϑn−k‖yk‖2 (8)

rn =
1

ϑn

n∑

k=1

ϑn−kXkyk (9)

Rn =
1

ϑn

n∑

k=1

ϑn−kXkX
⊤
k . (10)

In the case whenϑ = 1, we retrieve the classical sample
estimates of̺ , r, andR. Whenϑ ∈ (0, 1), it can be interpreted
as an exponential forgetting factor [10] which may be useful
in adaptive processing scenarios (see Section VI).

Hereafter, we will assume that the regularization function
Ψ has the following form:

(∀h ∈ R
N ) Ψ(h) =

1

2
h⊤V0h−v⊤

0 h+

S∑

s=1

ψs(‖Vsh−vs‖)

(11)
wherev0 ∈ R

N , V0 ∈ R
N×N is a symmetric positive semi-

definite matrix, and, for everys ∈ {1, . . . , S}, vs ∈ R
Ps ,

Vs ∈ R
Ps×N , andψs : R → R is a smooth function. The first

two terms in (11) can be viewed as an elastic net penalty [50],
while various choices can be made for the last term. As shown

in Table I, in addition to quadratic regularization functions
(obtained whenS = 1 and ψ1 = 0), ℓ2 − ℓ1 functions and
smoothedℓ2 − ℓ0 functions constitute standard choices. The
matrices(Vs)16s6S may be set to identity or they may serve to
model possible transforms or discrete differentiation operators,
and vectors(vs)16s6S may be used to define reference values.

Note that the regularization strategy adopted in [34] amounts
to replacing Ψ in (6) by λnΨ where Ψ is a (possibly
weighted) ℓ1 norm andλn ∈ [0,+∞). Consistency results
can then be established under the assumption thatϑ = 1 and
limn→+∞ λn = 0. Our approach here is different, not only
because we are interested in a wide class of regularization
functions, but also in the sense that we are looking for a
solution to the fully regularized problem (4) instead of a
solution to the mean square criterion.

Our objective in the next section will be to propose an
efficient recursive method for minimizing functions(Fn)n>1.

III. PROPOSED METHOD

A. Majorization property

At each iterationn ∈ N\{0}, we propose to replaceFn by a
surrogate functionΘn(·,hn) based on the current estimatehn

(computed at the previous iteration). More precisely, a tangent
majorant function is chosen such that

(∀h ∈ R
N ) Fn(h) 6 Θn(h,hn) (12)

Fn(hn) = Θn(hn,hn). (13)

For the so-defined MM strategy to be worthwhile, the surro-
gate function has to be built in such a way that its minimization
is simple.

For this purpose, similarly to [40], [51], [52], the following
assumptions will be made on the regularization functionΨ
defined in (11):

Assumption 1.
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(i) For every s ∈ {1, . . . , S}, ψs is an even lower-
bounded function, which is continuously differentiable,
and limt→0

t 6=0

ψ̇s(t)/t ∈ R, whereψ̇s denotes the deriva-

tive ofψs.
(ii) For every s ∈ {1, . . . , S}, ψs(

√
.) is concave on

[0,+∞).
(iii) There existsν ∈ [0,+∞) such that(∀s ∈ {1, . . . , S})

(∀t ∈ [0,+∞)) 0 6 νs(t) 6 ν, whereνs(t) = ψ̇s(t)/t.2

These assumptions are satisfied by a wide class of functions
Ψ [53], in particular those corresponding to the choices of the
potential functions(ψs)16s6S listed in Table I.

Assumption 1 implies that each functionψs is majorized at
every t ∈ R, by a quadratic function, such that

(∀t′ ∈ R) ψs(t
′) 6 ψs(t) + ψ̇s(t)(t

′ − t) +
1

2
νs(|t|)(t′ − t)2.

(14)
Note that the above inequality is at the core of iterative
reweighted least-squares algorithms [54] and of half quadratic
methods [51], [53], [55] for the minimization of penalized
quadratic functions. In particular, it can be shown that the
resulting majorization is tighter than the one obtained by the
descent lemma, using the Lipschitz differentiability ofψs [51,
Sec.IV]. The following majorization then straightforwardly
results from (14):

Proposition 1. [51] Under Assumption 1, for everyn ∈
N \ {0} andh ∈ R

N , a tangent majorant ofFn at h is

(∀h′ ∈ R
N ) Θn(h

′,h) = Fn(h) +∇Fn(h)
⊤(h′ − h)

+
1

2
(h′ − h)⊤An(h)(h

′ − h),

(15)

whereAn(h) is given by

An(h) = Rn + V0 + V ⊤Diag
(
b(h)

)
V ∈ R

N×N (16)

V = [V ⊤
1 . . .V ⊤

S ]⊤ ∈ R
P×N (17)

v = [v⊤
1 . . .v

⊤
S ]

⊤ ∈ R
P (18)

with P = P1 + · · ·+ PS , andb(h) =
(
bi(h)

)
16i6P

∈ R
P is

such that

b(h) =
[
ν1(‖V1h− v1‖)1⊤

P1
. . . νS(‖VSh− vS‖)1⊤

PS

]⊤
,

(19)
where1P ∈ R

P denotes a vector of sizeP with all entries
equal to one.

If, we define, for everyn ∈ N\{0}, hn+1 as the minimizer
of Θn(·,hn), we obtain an online form of a half-quadratic
algorithm. Half-quadratic algorithms are known to be effective
batch optimization methods, but the use of such method
requires the inversion of matrixAn(hn) at each iteration
n, which may be intractable in the context of large scale
problems. Subsequently, following [40], [56], we propose a
subspace acceleration strategy so as to reduce the computa-
tional cost of the proposed method.

B. Subspace acceleration strategy

The main idea of subspace acceleration is to restrict the
minimization space to a subspace spanned by a small number
of vectors, instead of minimizing the majorant over the whole
space. The proposed MM subspace algorithm consists of
defining the following sequence of random vectors(hn)n>1:

(∀n ∈ N \ {0}) hn+1 ∈ argmin
h∈ranDn

Θn(h,hn), (20)

whereh1 has to be set to an initial value, andranDn denotes
the range of a matrixDn ∈ R

N×Mn that should satisfy the
assumption below:

Assumption 2. For everyn ∈ N \ {0}, {∇Fn(hn),hn} ⊂
ranDn.

Several approaches can be considered to constructDn

fulfilling Assumption 2. The simplest choice is to setDn =
[−∇Fn(hn),hn], so that (20) reads

hn+1 = un,2hn − un,1∇Fn(hn), (21)

where(un,1, un,2) is a pair of real-valued random variables. In
the special case whenun,2 = 1, we recover the form of a SGD-
like algorithm with step-sizeun,1. In the machine learning
literature, various forms of the step-size for SGD have been
proposed [20], which often require to tune up some parameters
(e.g. a multiplicative factor) so as to get the best convergence
profile on the available dataset. On the contrary, the MM
strategy allows us to automatically adjust(un,1, un,2) at each
iteration. Another possibility is to take, for everyn ∈ N\{0},
ranDn = R

N . In that case, we recover the online half-
quadratic method mentioned earlier, which may have a high
computational cost. A more efficient strategy that is at the roots
of many works in the context of batch optimization is to adopt
an intermediate size subspace matrix, gathering the gradient
subspace[−∇Fn(hn),hn] complemented with few vectors
containing information regarding the previous iterates (e.g.,
previous gradient directions, previous iterates,...) [57]–[59].
Of particular interest is the memory gradient subspace [60],
defined as:

Dn =

{
[−∇Fn(hn),hn,hn − hn−1] if n > 1

[−∇Fn(h1),h1] if n = 1,
(22)

so that, forn > 1, Mn = 3 and (20) takes the form

hn+1 = un,2hn − un,1∇Fn(hn) + un,3(hn − hn−1), (23)

where (un,1, un,2, un,3) are some real-valued random vari-
ables. The iterative scheme (23), similar to the momentum-
based acceleration technique from the machine learning area
[61], was observed to lead to fast convergence on several
examples in the field of signal and image restoration [41],
[62]. Other examples for the subspace construction are given
in Table II.

2The function is extended by continuity whent = 0.
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Acronym Subspace name Set of directionsDn

GD Gradient [hn,−∇Fn(hn)]

MG Memory gradient [hn,−∇Fn(hn),hn − hn−1]

SMG Supermemory gradient [hn,−∇Fn(hn),hn − hn−1, . . . ,hn−Mn+3 − hn−Mn+2]

GS Gradient subspace [hn,−∇Fn(hn),−∇Fn−1(hn−1), . . . ,−∇Fn−Mn+2(hn−Mn+2)]

NEST Nesterov’s subspace [hn,−∇Fn(hn),hn − hn−1,∇Fn(hn)−∇Fn−1(hn−1)]

TABLE II
EXAMPLES OF SET OF DIRECTIONSDn THAT CAN BE EMPLOYED FOR THE SUBSPACE ACCELERATION APPROACH. THE SUBSPACE SIZEMn IS STRICTLY

GREATER THAN TWO.

C. Recursive MM strategy

We derive in this section a recursive form of the proposed
stochastic MM subspace algorithm in (20), with the objective
to limit its complexity. First, note that, according to (6), (11),
and the definition of functions(νs)16s6S in Assumption 1(iii),
for everyn ∈ N \ {0}, the gradient ofFn is given by

(∀h ∈ R
N ) ∇Fn(h) = An(h)h− cn(h), (24)

where

cn(h) = rn + v0 + V ⊤Diag
(
b(h)

)
v ∈ R

N . (25)

Thus, using (15), we can rewrite (20) as

hn+1 = Dnun, (26)

whereun is anRMn -valued random vector such that:

un = B†
nD

⊤
n

(
An(hn)hn −∇Fn(hn)

)

= B†
nD

⊤
n cn(hn), (27)

with
Bn = D⊤

nAn(hn)Dn (28)

and(·)† denoting the pseudo-inverse operation. It is important
to note that, asBn is of dimensionMn ×Mn whereMn is
small (typicallyMn = 3 for the choice of the subspace in (22)
whenn > 1), this pseudo-inversion is light. This constitutes
the key advantage of the proposed approach.

By using (7), (9) and (10), the following recursive updates
of (rn)n>1 and (Rn)n>1, can be performed

(∀n ∈ N \ {0}) rn = rn−1 +
1

ϑn
(Xnyn − rn−1) (29)

Rn = Rn−1 +
1

ϑn
(XnX

⊤
n −Rn−1),

(30)

where we have setr0 = 0 andR0 = ON and we have used
the identity:ϑϑn−1/ϑn = 1−ϑ−1

n . Then, it follows from (16),
(28) and (30) that

(∀n ∈ N \ {0}) Bn = D⊤
n

(
DR

n +DV0

n

)

+
(
DV

n

)⊤
Diag

(
b(hn)

)
DV

n , (31)

where

(∀n ∈ N \ {0}) DR

n = RnDn ∈ R
N×Mn (32)

DV0

n = V0Dn ∈ R
N×Mn (33)

DV

n = V Dn ∈ R
P×Mn . (34)

Finally, let us assume, without loss of generality, that the
algorithm is initialized withh1 = D0u0, whereD0 ∈ R

N×M0

andu0 ∈ R
M0 . Then, (24) and (26) yield

(∀n ∈ N \ {0}) ∇Fn(hn) = DA

n−1un−1−cn(hn), (35)

where we have set

(∀n ∈ N) DA

n = An+1(hn+1)Dn ∈ R
N×Mn . (36)

By using (16), (30) and (32)-(34), the latter variable can be
reexpressed as

DA

n = Rn+1Dn +DV0

n + V ⊤Diag
(
b(hn+1)

)
DV

n

= (1− 1

ϑn+1

)DR

n +
1

ϑn+1

Xn+1(X
⊤
n+1Dn) +DV0

n

+ V ⊤Diag
(
b(hn+1)

)
DV

n . (37)

The resulting relations are summarized in Algorithm 1, which
can be understood as a recursive implementation of Algo-
rithm (20).

Algorithm 1: Stochastic MM subspace method

r0 = 0,R0 = ON

Initialize D0 ∈ R
N×M0 andu0 ∈ R

M0 with M0 > 0

h1 = D0u0,D
R
0 = ON×M0

,DV0

0 = V0D0,D
V
0 = V D0

for n = 1, . . . do
1rn = rn−1 +

1

ϑn

(Xnyn − rn−1)

2cn(hn) = rn + v0 + V ⊤Diag
(
b(hn)

)
v

3DA
n−1 = (1− 1

ϑn

)DR
n−1 +

1

ϑn

Xn(X
⊤
nDn−1)

+DV0

n−1 + V ⊤Diag
(
b(hn)

)
DV

n−1

4∇Fn(hn) = DA
n−1un−1 − cn(hn)

5Rn = Rn−1 +
1

ϑn

(XnX
⊤
n −Rn−1)

6Using∇Fn(hn), setDn satisfying Assumption 2
7DR

n = RnDn,D
V0

n = V0Dn,D
V
n = V Dn

8Bn = D⊤
n

(
DR

n +DV0

n

)
+
(
DV

n

)⊤
Diag

(
b(hn)

)
DV

n

9un = B†
nD

⊤
n

(
cn(hn)

)

10hn+1 = Dnun

end

D. Complexity

Provided that the subspace dimensions(Mn)n∈N are small,
Algorithm 1 has a low complexity, as shown in Table III.

Indeed, the global complexity of a direct implementation of
Algorithm 1, evaluated in terms of multiplications at iteration
n, is of the order of

N
(
P (Mn +Mn−1 + 1) +N(4Mn +Q)/2

)
,
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TABLE III
COMPLEXITY IN TERMS OF MULTIPLICATIONS FOR ITERATIONn OF

ALGORITHM 1.

Step Complexity Complexity
for V ∈ R

P×N arbitrary whenV = IN

1 N(Q+ 1)
2 (N + 1)P N
3 Mn−1

(

N(2Q+ P + 1) + P +Q
)

Mn−1

(

N(2Q+ 1) +Q
)

4 NMn−1

5 N(N + 1)Q/2
7 NMn(2N + P ) 2N2Mn

8 Mn
(

(Mn + 1)(N + P )/2 + P
)

NMn(Mn + 3)/2
9 O(M3

n) +Mn(N +Mn)
10 NMn

if we assume thatN ≫ max{Mn,Mn−1, Q}. The first term
NP (Mn + Mn−1 + 1) corresponds to an upper bound on
the complexity induced by the use of matrices(Vs)16s6S

within the regularization term. Note that these matrices often
have a sparse structure (in particular when discrete derivative
operators are employed) which may lead to a much lower
computational cost. Moreover, whenV = IN , the identity
matrix of RN×N , which is a scenario frequently encountered
in adaptive filtering [33], [34], this term merely vanishes in
the evaluation of the global complexity.

The computational complexity can also be reduced by
taking advantage of the specific form of matrices(Dn)n>1.
Here, we focus our analysis on the example of the memory
gradient subspace defined in (22) although it should be noticed
that the ideas hereinbelow could be easily generalized to a
wide class of subspaces where matrices(Dn)n>1 represent
memory features (e.g. [40, Tab. II].). For the particular case
of subspace (22), we obtain:

(∀n > 1) DV

n = [−V ∇Fn(hn),V hn,V hn − V hn−1].
(38)

Since, for everyn > 1,

V hn = V Dn−1un−1 = DV

n−1un−1, (39)

a recursive formula holds to compute the last two components
of DV

n in (38). The initial complexity of3NP multiplications
is thus reduced toN(P +3). Similar recursive procedures can
be employed to compute(DV0

n )n>1 allowing the complexity
to be reduced toN(N + 3) from 3N2. In addition, we have,
for everyn > 1,

DR

n = [−Rn∇Fn(hn),h
R

n ,h
R

n −Rnhn−1], (40)

where, by using (30),

hR

n = Rnhn = (1− 1

ϑn
)Rn−1hn +

1

ϑn
XnX

⊤
nhn

= (1− 1

ϑn
)DR

n−1un−1 +
1

ϑn
XnX

⊤
nhn (41)

Rnhn−1 = (1− 1

ϑn
)hR

n−1 +
1

ϑn
XnX

⊤
nhn−1. (42)

It can be further observed that last term(ϑn)−1XnX
⊤
nhn−1

has already been computed in Step 3 of Algorithm 1. There-
fore, instead of3N2 multiplications, we have now to perform
N(N+2Q+4) ones. These simplifications lead to the so-called

stochastic MM memory gradient (S3MG) Algorithm 2. Note
that, in the case whenV0 andV are null matrices, the global
complexity of the S3MG algorithm is equal toN2(Q+2)/2.
When Q = 1, we thus recover the order of complexity of
the classical RLS algorithm. Since the objective function then
reduces to a quadratic function, Sherman-Morrison-Woodbury
formula can be invoked to compute iteratively the minimizer
on the whole space in an efficient manner.

Note finally that the computation ofXnX
⊤
n with

n ∈ N \ {0}, which needs to be performed in Step 5 of
Algorithm 1, remains a main source of complexity. However,
if (∀n > Q) Xn = [xn−Q+1, . . . ,xn] where xn ∈ R

N

(as it is the case in affine projection based algorithms for
adaptive processing [63]), then a recursive computation of
XnX

⊤
n only requiresxnx

⊤
n to be computed at each iteration

n > Q. If we further assume that the model is a one-
dimensional convolutive one, i.e.xn corresponds to shifted
samples of a signal

(
x(n)

)
n>1

, then (∀n > N) xn =

[x(n−N +1), . . . , x(n)]⊤ andxnx
⊤
n can be itself computed

recursively with a complexity ofN operations. Such ideas
have been deeply investigated in the literature on fast RLS
algorithms [64].

Algorithm 2: Stochastic MM Memory Gradient method

r0 = 0,R0 = ON

Initialize D0 ∈ R
N×M0 andu0 ∈ R

M0 with M0 > 0

h1 = D0u0,D
R
0 = ON×Mn

,DV0

0 = V0D0,D
V
0 = V D0

for n = 1, . . . do
1rn = rn−1 +

1

ϑn

(Xnyn − rn−1)

2cn(hn) = rn + v0 + V ⊤Diag
(
b(hn)

)
v

3DA
n−1 = (1− 1

ϑn

)DR
n−1 +

1

ϑn

Xn(X
⊤
nDn−1)

+DV0

n−1 + V ⊤Diag
(
b(hn)

)
DV

n−1

4∇Fn(hn) = DA
n−1un−1 − cn(hn)

5Rn = Rn−1 +
1

ϑn

(XnX
⊤
n −Rn−1)

if n = 1 then
SetDn = [−∇Fn(h1),h1]

else
6Set Dn = [−∇Fn(hn),hn,hn − hn−1]

end
7hR

n = (1− 1

ϑn

)DR
n−1un−1 +

1

ϑn

XnX
⊤
nhn

hV
n = DV

n−1un−1

hV0

n = DV0

n−1un−1

DR
n = [−Rn∇Fn(hn),h

R
n ,

hR
n − (1− 1

ϑn

)hR
n−1 − 1

ϑn

XnX
⊤
nhn−1]

DV
n = [−V ∇Fn(hn),h

V
n ,h

V
n − hV

n−1]

DV0

n = [−V ∇Fn(hn),h
V0

n ,hV0

n − hV0

n−1]

8Bn = D⊤
n

(
DR

n +DV0

n

)
+
(
DV

n

)⊤
Diag

(
b(hn)

)
DV

n

9un = B†
nD

⊤
n

(
cn(hn)

)

10hn+1 = Dnun

end

IV. CONVERGENCE STUDY

Establishing the convergence of stochastic approximation
algorithms is challenging [11], [16], [65]–[67]. Throughout
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this section and the related appendices, it is assumed that
ϑ = 1. The underlying probability space being denoted by
(Ω,F,P), we will say in short that a property isP-a.s. satisfied
if this property holds almost surely.

A. Assumptions

For everyn ∈ N\{0} , let Xn = σ
(
(Xk,yk)16k6n

)
be the

sub-sigma algebra ofF generated by(Xk,yk)16k6n. In order
to give a proof of convergence of the proposed stochastic MM
subspace algorithm, we will make the following additional
assumption:

Assumption 3.

(i) R+ V0 is a positive definite matrix.
(ii)

(
(Xn,yn)

)
n>1

is a stationary ergodic sequence and,
for every n ∈ N \ {0}, the elements ofXn and the
components ofyn have finite fourth-order moments.

(iii) For everyn ∈ N \ {0},

E(‖yn+1‖2 |Xn) = ̺ (43)

E(Xn+1yn+1 |Xn) = r (44)

E(Xn+1X
⊤
n+1 |Xn) = R. (45)

(iv) h1 is X1-measurable and, for everyn ∈ N \ {0} , Dn

is Xn-measurable.

The following asymptotic results will then be useful in the
rest of our developments.

Lemma 1. Under Assumptions 3(ii) and 3(iii), the following
properties hold:

(i) (ρn)n>1, (Rn)n>1, and (rn)n>1 convergeP-a.s. to ̺,
R and r, respectively

(ii)
+∞∑

n=1

n−1|ρn − ̺| < +∞ P-a.s.

+∞∑

n=1

n−1‖rn − r‖ < +∞ P-a.s.

+∞∑

n=1

n−1|||Rn −R||| < +∞ P-a.s.,

where||| · ||| denotes the spectral matrix norm.

Proof: See Appendix A.

Remark 1.

(i) Assumptions 3(ii) and 3(iii) are more general than
assuming that

(
(Xn,yn)

)
n>1

is an independent iden-
tically distributed (i.i.d.) sequence and, for everyn ∈
N \ {0} , the elements ofXn and the components ofyn

have finite fourth-order moments.
(ii) Assumption 3(iv) is satisfied as soon ash1 is X1-

measurable (e.g.h1 is deterministic) and the subspace
directions, i.e., the columns ofDn, only depend on(
(Xk,yk,hk)

)
16k6n

. This is actually the case for the
various subspace constructions listed in II, and, in par-
ticular, for the memory gradient subspace given by(22).

B. Almost sure convergence

Let us give the following preliminary property:

Lemma 2. Under Assumptions 1, 2 and 3(ii)-3(iii),(hn)n>1

is P-a.s.bounded.3

Proof: See Appendix B.

Combining the previous lemma with classical results on the
asymptotic behaviour of almost supermartingales, the conver-
gence of the sequence

(
Fn(hn)

)
n>1

can be established:

Lemma 3. Under Assumptions 1-3,
(
Fn(hn)

)
n>1

is P-a.s.
convergent and

(
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)
)
n>1

is
P-a.s.summable.

Proof: See Appendix C.

Lemma 3 allows us to deduce the following result on the
sequence of gradients computed at each iteration of the al-
gorithm:

Lemma 4. Under Assumptions 1-3,(‖∇Fn(hn)‖)n>1 is
P-a.s.square-summable.

Proof: See Appendix D.

By gathering all the previous results, our main convergence
results can now be stated:

Proposition 2. Assume that Assumptions 1-3 hold. Then, the
following hold:

(i) The set of cluster points of(hn)n>1 is almost surely a
nonempty compact connected set.

(ii) Any element of this set is almost surely a critical point
of F .

(iii) If the functions(ψs)16s6S are convex, then(hn)n>1

convergesP-a.s.to the unique (global) minimizer ofF .

Proof: See Appendix E.

It can be noticed that the conclusion of Proposition 2(iii) is
valid as soon as functionF is strongly convex. For instance,
it holds when the functions(ψs)16s6S are nonconvex, they
are twice continuously differentiable, and the regularization
constants(λs)16s6S as defined in Table I are small enough.

C. Convergence rate

Based on our recent results in [68], we provide a conver-
gence rate result for Algorithm (20) in the case when the
functions(ψs)16s6S are convex and twice differentiable.

Proposition 3. Suppose that Assumptions 1-3 hold. Letǫ ∈
(0,+∞) be such thatǫIN ≺ R+V0. Then, there exists almost
surelynǫ ∈ N\{0} such that, for everyn > nǫ, ∇2Fn(hn) �
R− ǫIN + V0 and

Fn(hn+1)− inf Fn 6 θ
(
Fn(hn)− inf Fn

)
(46)

whereθ ∈ [0, 1).

3We say that a sequence of random vectors is almost surely bounded when
the norms of all these vectors can be bounded by some random variable with
probability 1.
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More details about the expression of the decay rate can
be found in [68]. In particular, our convergence rate analysis
illustrates that the slowest convergence is obtained in the case
of a gradient-like algorithm, i.e., when the GD subspace is
employed. This worst case rate is highly related to the spectral
properties of the Hessian ofFn, the slower convergence arising
when its eigenvalues are dispersed. In contrast, a fast conver-
gence rateθ = O(ǫ) is obtained whenDn is full rank and the
majorant matrixAn(hn) can be chosen equal to∇2Fn(hn).
Finally, an intermediate decay rate is obtained when a mid-
size subspace is chosen (as in the S3MG algorithm) with the
potential advantage of a reduced computational complexity per
iteration.

V. A PPLICATION TO 2D SYSTEM IDENTIFICATION

A. Problem statement

We first demonstrate the efficiency of the proposed stochas-
tic algorithm in a 2D system identification problem. We
consider the following observation model:

y = S(h)x+w, (47)

wherex ∈ R
L andy ∈ R

L represent the original and degraded
versions of a given image,h ∈ R

N is the vectorized version
of an unknown two-dimensional blur kernel,S is the linear
operator which maps the kernel to its associated Hankel-block
Hankel matrix form, andw ∈ R

L represents a realization of
an additive noise. When the imagesx andy are of very large
size, finding an estimatêh ∈ R

N of the blur kernel can be
quite memory consuming, but one can expect good estimation
performance by learning the blur kernel through a sweep of
blocks in the dataset.

Let us denote byX ∈ R
L×N the matrix such that

S(h)x = Xh. Then, we propose to definêh as a solution
to (4), where, for everyn ∈ N \ {0}, yn ∈ R

Q and
X⊤

n ∈ R
Q×N , are subparts ofy andX, respectively, corre-

sponding toQ ∈ {1, . . . , L} lines of this vector/matrix. For the
regularization termΨ, we consider, for everys ∈ {1, . . . , N}
(S = N ), an isotropic penalization on the gradient between
neighboring coefficients of the blur kernel, i.e.,Ps = 2 and

Vs =
[
∆h

s ∆v
s

]⊤
, where∆h

s ∈ R
N (resp.∆v

s ∈ R
N ) is the

horizontal (resp. vertical) gradient operator applied at pixels.
The smoothness ofh is then enforced by choosing, for every
s ∈ {1, . . . , S} and u ∈ R, ψs(u) = λ

√
1 + u2/δ2 with

(λ, δ) ∈ (0,+∞)2. Finally, in order to guarantee the existence
of a unique minimizer, the strong convexity ofF is imposed
by takingv0 = 0 andV0 = τIN , whereτ is a small positive
value (typicallyτ = 10−10).

B. Simulation results

The original image, presented in Figure 1(a), is a satellite
image, of size4096 × 4096 pixels. The original blur kernel
h with size 21 × 21, and the resulting blurred image, which
has been corrupted with a zero-mean white Gaussan noise
with standard deviationσ = 0.03 (the blurred signal-to-
noise ratio equals 25.7 dB), are displayed in Figures 1(b)(c).

Figure 1(d) presents the estimated kernel, using the S3MG Al-
gorithm 2. Parameters(λ, δ) were adjusted so as to minimize
the normalized root mean square estimation error, here equal
to 0.064. Figure 2 illustrates the variations of this estimation
error with respect to the computation time for the proposed
algorithm, the SGD algorithm with a decreasing stepsize
proportional ton−1/2, the regularized dual averaging (RDA)
method with a constant stepsize from [42], and the accelerated
stochastic gradient averaging SAGA method with a constant
stepsize from [69]. Tests were running on an Intel(R) Xeon(R)
E5-2630 @ 2.6GHz using a Matlab 7 implementation. A null
vector has been used to initialize all the methods. Note that
for SGD, RDA and SAGA algorithms, the stepsize parameter
was optimized manually so as to obtain the best performance
in terms of convergence speed. We have also compared S3MG
with the Stochastic MM Subspace Algorithm 1 using the
alternative choices forDn listed in Table II, leading to the
so-called S2M-GD, S2M-SMG, S2M-GS and S2M-NEST
methods. It should be emphasize that the algorithm S2M-
GD is actually a special form of the SGD, with a varying
stepsize automatically tuned according to the MM strategy.
One can observe on Figure 3(top) that S2M-GD is slower
than S3MG, while remaining much faster than the standard
SGD approach. Moreover, it appears that the use ofMn > 3
in S2M-SMG does not yield any practical acceleration, which
means that the main descent information is already gathered
within the three S3MG directions. The evolution of the error
for S2M-NEST (not shown here) was observed to be very
similar to that of S3MG, showing that adding the difference
of previous gradients in the subspace does not bring any
substantial improvement in the algorithm performance. Finally,
Figure 3(bottom) shows that the performance of the S2M-GS
method depends on the parameterMn, the best compromise
being obtained here whenMn = 12 for which S2M-GS
and S3MG seem to be equivalently good. It is interesting
to point out that these observations, regarding the subspace
influence, are in total agreement with the study that was
performed in the batch case in [40]. Finally, note that all tested
algorithms were observed to provide asymptotically the same
estimation quality, whatever the size of the blocks. In this
example, as illustrated in Figure 4, the best trade-off in terms
of convergence speed is obtained forQ = 256× 256.

VI. A PPLICATION TO SPARSE ADAPTIVE FILTERING

A. Problem statement

As emphasized in Sections II and III, one of the advantages
of Algorithm 1 (and its particular case Algorithm 2) compared
with some other online optimization algorithms is that it is
able to deal with adaptive data processing problems. In this
section, we apply the S3MG Algorithm 2 to the identification
of a sparse time-varying system. Given a real-valued discrete-
time input signal

(
x(n)

)
n∈Z

, the output of the system at time
n > 1 is defined as

yn = X⊤
n hn + wn, (48)

whereXn = [x(n − N + 1), . . . , x(n)]⊤, wn models some
measurement noise, andhn ∈ R

N gathers the unknown filter



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2709265, IEEE
Transactions on Signal Processing

IEEE TRANS. SIGNAL PROCESSING 9

(a) (b)

(c) (d)

Fig. 1. (a) Original image. (b) Blurred and noisy image. (c) Original blur
kernel. (d) Estimated blur kernel, with relative error0.064.
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Fig. 2. Comparison of S3MG algorithm (solid black line), SGD algorithm
with decreasing stepsize∝ n−1/2 (dashed-dotted red line), RDA algorithm
with constant stepsize (dashed blue line) and SAGA algorithm with constant
stepsize (turquoise thin line).

taps at timen. Then, the objective is to provide an estimate
of the vectorhn at each time by solving Problem (4) where
the regularization functionΨ is chosen in order to promote
the sparsity of the impulse response of the time-varying filter.

B. Simulation results

We generate data according to Model (48) where the input
signal

(
x(n)

)
n∈Z

consists of identically and independent
random binary values{−1,+1}. The measurement noise
(wn)n∈Z is white Gaussian with zero mean and variance0.05.
In order to evaluate the tracking capability of the proposed
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Fig. 3. Comparison of S3MG Algorithm 2 (solid black line) with the
Stochastic MM subspace Algorithm 1 whenDn is chosen according to GD
and SMG models (top) or the GS model (bottom), with various values of
Mn. Note that S2M-SMG withMn = 3 identifies with S3MG. An enlarged
version of the plots is provided on the top right of both figures.
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Fig. 4. Effect of the block sizeQ on the convergence speed of S3MG.

S3MG method, the following time-varying linear system is
considered:

hn =

{
h1 if n 6 L/2,

hL/2+1 if n > L/2 + 1.
(49)
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The filter lengthN is equal to 200 and the output of the system
is observed at every timen ∈ {1, . . . , L} with L = 5000.
The sparse impulse responses corresponding to vectorsh1 and
hL/2+1 are represented in Figure 5.

We compute, for everyn ∈ {1, . . . , L}, the Euclidean norm
of the error between the current estimatehn and the true filter
coefficient vectorhn. The minimal estimation error is obtained
for the nonconvex Welsch penalty function (see Table I) and
a smoothedℓ2 − ℓ0 regularization function is thus employed
by settingS = N , v0 = 0, V0 = ON , and, for everys ∈
{1, . . . , N}, Ps = 1, vs = 0, while Vs ∈ R

1×N is the s-th
vector of the canonical basis ofRN .

We present the results generated by S3MG in Figure 6 for
two values of the forgetting factorϑ, namelyϑ = 1 which
corresponds to a non adaptive strategy, andϑ = 0.995 which
appears to be the best choice in terms of tracking properties
for this example.

We also show the results obtained with several state-of-
the-art approaches in the context of sparse adaptive filtering,
namely SPAL [31], RLMS [30], RZAAPA [28] and SM-
PAPA [29]. Note that, for each tested method, the involved
parameters (stepsize, regularization weight, blocksize) have
been tuned manually in order to optimize the performance
in terms of error decay. Moreover, the complexity reduction
strategy relying on the convolutive form of the forward model,
as discussed at the end of Section III-D, has been employed
in all the methods.
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Fig. 5. Values of the coefficients of the considered sparse filtersh1 (top)
andhL/2+1 (bottom).

VII. C ONCLUSION

In this work, we have proposed a stochastic MM subspace
algorithm for online penalized least squares estimation prob-
lems. The method makes it possible to use large-size datasets
the second-order moments of which are not known a priori.
We have shown that the proposed algorithm is of the same
order of complexity as the classical RLS algorithm and that
its computational cost can be reduced by taking advantage of
specific forms of the search subspace. The choice of a memory
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Fig. 6. Quadratic estimation error on the filter coefficients asa function of
time indexn for various adaptive algorithms.

gradient subspace led to the S3MG algorithm whose good
numerical performance has been demonstrated in the context
of 2D system identification for large scale image processing
problems. In the context of sparse adaptive filtering, S3MG
has also been shown to be competitive with respect to recent
methods. Although an analysis of the convergence of the pro-
posed method has been carried out, it would be interesting to
extend the obtained results to weaker assumptions. In addition,
in a nonstationary context, a theoretical study of the tracking
abilities of the algorithm should be conducted. Finally, let us
emphasize that a detailed analysis of the convergence rate
of the proposed method has been undertaken in our recent
paper [68].

APPENDIX A
PROOF OFLEMMA 1

Property (i) is a consequence of the ergodic theorem [70,
Theorem 13.12]. In addition, the law of the iterated logarithm
for martingale difference sequences [71] ensures that

lim sup
n→+∞

|∑n
k=1

(‖yk‖2 − ̺)|
(
n log(log n)

)1/2 < +∞ P-a.s. (50)

lim sup
n→+∞

‖
∑n

k=1
(Xkyk − r)‖

(
n log(log n)

)1/2 < +∞ P-a.s. (51)

lim sup
n→+∞

|||∑n
k=1

(XkX
⊤
k −R)|||

(
n log(log n)

)1/2 < +∞ P-a.s. (52)

that is

lim sup
n→+∞

n1/2|ρn − ̺|
(
log(log n)

)1/2 < +∞ P-a.s. (53)

lim sup
n→+∞

n1/2‖rn − r‖
(
log(log n)

)1/2 < +∞ P-a.s. (54)

lim sup
n→+∞

n1/2|||Rn −R|||
(
log(log n)

)1/2 < +∞ P-a.s. (55)
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Consequently, for everyn0 ∈ N with n0 > 2,

+∞∑

n=n0

n−1|ρn − ̺|

6 sup
n>n0

(
n1/2|ρn − ̺|
(
log(log n)

)1/2

)( +∞∑

n=n0

n−3/2| log(log n)|1/2
)
.

(56)

Since
∑+∞

n=2
n−3/2| log(log n)|1/2 < +∞, it follows from

(53) that
∑+∞

n=n0
n−1|ρn − ̺| convergesP-a.s. to 0 asn0 →

+∞, which means that the first line in Property (ii) is satisfied.
By proceeding similarly, (54) and (55) allow us to establish
the remaining two assertions in Property (ii).

APPENDIX B
PROOF OFLEMMA 2

For everyn ∈ N \ {0}, minimizing Θn(·,hn) is equivalent
to minimizing the function

(∀h ∈ R
N ) Θ̃n(h,hn) =

1

2
h⊤An(hn)h− cn(hn)

⊤h.

(57)
It follows from Assumption 3(ii)-3(iii) and Lemma 1(i) that
there existsΛ ∈ F such thatP(Λ) = 1 and, for everyω ∈ Λ,

lim
n→+∞

rn(ω) = r (58)

lim
n→+∞

Rn(ω) = R. (59)

Let ω ∈ Λ. According to Assumption 1(iii) and Eq. (19),b(h)
is bounded as a function ofh. It is then deduced from (25)
and (58) that

(
cn(hn)(ω)

)
n>1

is bounded, i.e. there exists
η ∈ [0,+∞) such that

(∀n ∈ N \ {0}) ‖cn(hn)(ω)‖ 6 η. (60)

In addition, as a consequence of (19) and Assumption 1(iii),
for everyn ∈ N\{0}, Diag

(
b(hn)

)
is a positive semidefinite

matrix. Hence, because of (16), Assumptions 1(iii) and 3(i),
and (59), there existsǫ ∈ (0,+∞) andn0 ∈ N\{0} such that

(∀n > n0) An(hn)(ω) � R− ǫIN + V0 ≻ ON . (61)

(It suffices to chooseǫ lower than the minimum eigenvalue
of R + V0). As a consequence of (57), (60), (61), and the
Cauchy-Schwarz inequality, we have

(∀n > n0)(∀h ∈ R
N )

1

2
h⊤(R− ǫIN + V0)h− η‖h‖ 6 Θ̃n(h,hn). (62)

SinceR − ǫIN + V0 is a positive definite matrix, the lower
bound corresponds to a coercive function with respect toh.
There thus existsζ ∈ (0,+∞) such that, for everyh ∈ R

N ,

‖h‖ > ζ ⇒ (∀n > n0) Θ̃n(h,hn)(ω) > 0. (63)

On the other hand, since0 ∈ span
(
Dn(ω)

)
, we have

Θ̃n(hn+1,hn)(ω) 6 Θ̃n(0,hn)(ω) = 0. (64)

The last two inequalities allow us to conclude that

(∀n > n0) ‖hn+1(ω)‖ 6 ζ. (65)

APPENDIX C
PROOF OFLEMMA 3

According to Assumption 2, the proposed algorithm is
actually equivalent to

(∀n ∈ N \ {0}) hn+1 = hn +Dnũn (66)

ũn = argmin
ũ∈RM

Θn(hn +Dnũ,hn).

(67)

By using (15) and cancelling the derivative of the function
ũ 7→ Θn(hn +Dnũ,hn),

D⊤
n∇Fn(hn) +D⊤

nAn(hn)Dnũn = 0. (68)

Hence,

Θ(hn+1,hn)

= Fn(hn)−
1

2
ũ⊤
nD

⊤
nAn(hn)Dnũn

= Fn(hn)−
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn). (69)

In view of (12) and Proposition 1, this yields

(∀n ∈ N\{0}) Fn(hn+1)+
1

2
(hn+1−hn)

⊤An(hn)(hn+1−hn)

6 Fn(hn). (70)

In addition, the following recursive relation holds

(∀h ∈ R
N ) Fn+1(h) = Fn(h) +

1

2
(ρn+1 − ρn)

− (rn+1 − rn)
⊤h+

1

2
h⊤(Rn+1 −Rn)h.

(71)

As a consequence of Assumption 3(iv), for everyn ∈ N\{0},
hn+1 is Xn-measurable. It can thus be deduced from (70) and
the previous two relations that

E(Fn+1(hn+1) |Xn)+
1

2
(hn+1−hn)

⊤An(hn)(hn+1−hn)

6 Fn(hn) + χn (72)

where

χn =
1

2
E(ρn − ρn+1 |Xn)− E(rn − rn+1 |Xn)

⊤hn+1

+
1

2
h⊤
n+1E(Rn −Rn+1 |Xn)hn+1. (73)

By using (8)-(10) withϑ = 1 and Assumption 3(iii), we have

χn =
1

2(n+ 1)

(
ρn − E(‖yn+1‖2 |Xn)

)

− 1

n+ 1

(
rn − E(Xn+1yn+1 |Xn)

)⊤
hn+1

+
1

2(n+ 1)
h⊤
n+1

(
Rn − E(Xn+1X

⊤
n+1 |Xn)

)
hn+1

=
1

2(n+ 1)

(
ρn − ̺

)
− 1

n+ 1

(
rn − r

)⊤
hn+1

+
1

2(n+ 1)
h⊤
n+1

(
Rn −R

)
hn+1 (74)
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which yields

|χn| 6
1

2(n+ 1)
|ρn − ̺|+ 1

n+ 1
‖rn − r‖‖hn+1‖

+
1

2(n+ 1)
|||Rn −R||| ‖hn+1‖2. (75)

According to Lemma 2,(hn)n>1 is P-a.s. bounded, and
Assumptions 3(ii)-3(iii) and Lemma 1(ii) thus guarantee that

+∞∑

n=1

|χn| < +∞ P-a.s. (76)

Assumption 1(i) entails that, for everyn ∈ N \ {0}, Fn is
lower bounded byinf Ψ > −∞. Furthermore, (72) leads to

E(Fn+1(hn+1)− inf Ψ |Xn)

+
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)

6 Fn(hn)− inf Ψ + |χn|. (77)

Since, for everyn ∈ N \ {0}, Fn(hn) − inf Ψ and (hn+1 −
hn)

⊤An(hn)(hn+1 − hn) are nonnegative,(Fn(hn) −
inf Ψ)n>1 is a nonnegative almost supermartingale [72]. By
invoking now Siegmund-Robbins lemma [73], it can be de-
duced from (76) that the desired convergence results hold.

APPENDIX D
PROOF OFLEMMA 4

According to (15), we have, for everyφ ∈ R and n ∈
N \ {0},

Θn

(
hn − φ∇Fn(hn),hn

)
= Fn(hn)− φ‖∇Fn(hn)‖2

+
φ2

2

(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn). (78)

Let
Φn ∈ Argmin

φ∈R

Θn

(
hn − φ∇Fn(hn),hn

)
. (79)

The following optimality condition holds:
(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn) Φn = ‖∇Fn(hn)‖2. (80)

As a consequence of Assumption 2,(∀φ ∈ R) hn −
φ∇Fn(hn) ∈ spanDn. It then follows from (20) and (80)
that

Θn

(
hn+1,hn

)
6 Θn

(
hn − Φn∇Fn(hn),hn

)

6 Fn(hn)−
Φn

2
‖∇Fn(hn)‖2 (81)

which, by using (69), leads to

Φn‖∇Fn(hn)‖2 6 (hn+1−hn)
⊤An(hn)(hn+1−hn). (82)

Let ǫ > 0. Assumption 1(iii) and (16) yield, for everyn ∈
N \ {0} ,

An(hn) � (|||Rn + V0|||+ ν|||V |||2)IN . (83)

Therefore, according to Assumptions 3(i) and 3(ii), and
Lemma 1(i), there existsΛ ∈ F such thatP(Λ) = 1 and,
for everyω ∈ Λ,

(∃n0 ∈ N \ {0})(∀n > n0) ON ≺ An(hn)(ω) � α−1
ǫ IN

(84)

where

αǫ = (|||R+ V0|||+ ν|||V |||2 + ǫ)−1 > 0. (85)

Let ω ∈ Λ. By using now (80), it can be deduced from (84)
that, if n > n0 and∇Fn(hn)(ω) 6= 0, then

Φn(ω) > αǫ. (86)

Then, it follows from (82) that

αǫ

+∞∑

n=n0

‖∇Fn(hn)(ω)‖2

6

+∞∑

n=n0

(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)
.

(87)

By invoking Lemma 3, we can conclude that
(‖∇Fn(hn)‖2)n>1 is P-a.s. summable.

APPENDIX E
PROOF OFPROPOSITION2

It follows from Lemma 3 that
(
(hn+1 −

hn)
⊤An(hn)(hn+1 − hn)

)
n>1

converges P-a.s. to 0.
In addition, we have seen in the proof of Lemma 2 that there
existsΛ ∈ F such thatP(Λ) = 1 and, for everyω ∈ Λ, (61)
holds with ǫ ∈ (0,+∞) andn0 ∈ N \ {0}. This implies that,
for everyn > n0,

|||R− ǫIN + V0||| ‖hn+1(ω)− hn(ω)‖2

6
(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)

(88)

where|||R−ǫIN +V0||| > 0. Consequently,(hn+1−hn)n>1

convergesP-a.s. to0. In addition, according to Lemma 2,
(hn)n>1 belongs almost surely to a compact set. The result is
then obtained by invoking Ostrowski’s theorem [74, Theorem
26.1].
(ii) By using (24)-(25), we have

(∀n ∈ N \ {0}) ∇Fn(hn)−∇F (hn) = (Rn−R)hn−rn+r.
(89)

Since (hn)n>1 is almost surely bounded, it follows from
Lemma 1(i) that

(
∇Fn(hn)−∇F (hn)

)
n>1

convergesP-a.s.
to 0. Since Lemma 4 ensures that

(
∇Fn(hn)

)
n>1

converges
P-a.s. to0,

(
∇F (hn)

)
n>1

also convergesP-a.s. to0. There
thus existsΛ ∈ F such thatP(Λ) = 1 and, for every
ω ∈ Λ, ∇F

(
hn(ω)

)
→ 0. Let ĥ be a cluster point of(

hn(ω)
)
n>1

. There exists a subsequence
(
hkn

(ω)
)
n>1

such

that hkn
(ω) → ĥ. As we have assumed that the regulariza-

tion functions(ψs)16s6S are continuously differentiable (see
Assumption 1(i)),F is also continuously differentiable, and

∇F (ĥ) = lim
n→+∞

∇F
(
hkn

(ω)
)
= 0. (90)

This means that̂h is a critical point ofF .
(iii) Because of Assumption 3(i), when the functions
(ψs)16s6S are convex,F is a strongly convex function. It
thus possesses a unique critical pointĥ, which is the global
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minimizer ofF . It follows from (i) and (ii) that, almost surely,
the unique cluster point of(hn)n>1 is ĥ, which shows that
hn → ĥ P-a.s.
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