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The filter lengthN is equal to 200 and the output of the system
is observed at every timen ∈ {1, . . . , L} with L = 5000.
The sparse impulse responses corresponding to vectorsh1 and
hL/2+1 are represented in Figure 5.

We compute, for everyn ∈ {1, . . . , L}, the Euclidean norm
of the error between the current estimatehn and the true filter
coefficient vectorhn. The minimal estimation error is obtained
for the nonconvex Welsch penalty function (see Table I) and
a smoothedℓ2 − ℓ0 regularization function is thus employed
by settingS = N , v0 = 0, V0 = ON , and, for everys ∈
{1, . . . , N}, Ps = 1, vs = 0, while Vs ∈ R

1×N is the s-th
vector of the canonical basis ofRN .

We present the results generated by S3MG in Figure 6 for
two values of the forgetting factorϑ, namelyϑ = 1 which
corresponds to a non adaptive strategy, andϑ = 0.995 which
appears to be the best choice in terms of tracking properties
for this example.

We also show the results obtained with several state-of-
the-art approaches in the context of sparse adaptive filtering,
namely SPAL [31], RLMS [30], RZAAPA [28] and SM-
PAPA [29]. Note that, for each tested method, the involved
parameters (stepsize, regularization weight, blocksize) have
been tuned manually in order to optimize the performance
in terms of error decay. Moreover, the complexity reduction
strategy relying on the convolutive form of the forward model,
as discussed at the end of Section III-D, has been employed
in all the methods.
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Fig. 5. Values of the coefficients of the considered sparse filtersh1 (top)
andhL/2+1 (bottom).

VII. C ONCLUSION

In this work, we have proposed a stochastic MM subspace
algorithm for online penalized least squares estimation prob-
lems. The method makes it possible to use large-size datasets
the second-order moments of which are not known a priori.
We have shown that the proposed algorithm is of the same
order of complexity as the classical RLS algorithm and that
its computational cost can be reduced by taking advantage of
specific forms of the search subspace. The choice of a memory
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Fig. 6. Quadratic estimation error on the filter coefficients asa function of
time indexn for various adaptive algorithms.

gradient subspace led to the S3MG algorithm whose good
numerical performance has been demonstrated in the context
of 2D system identification for large scale image processing
problems. In the context of sparse adaptive filtering, S3MG
has also been shown to be competitive with respect to recent
methods. Although an analysis of the convergence of the pro-
posed method has been carried out, it would be interesting to
extend the obtained results to weaker assumptions. In addition,
in a nonstationary context, a theoretical study of the tracking
abilities of the algorithm should be conducted. Finally, let us
emphasize that a detailed analysis of the convergence rate
of the proposed method has been undertaken in our recent
paper [68].

APPENDIX A
PROOF OFLEMMA 1

Property (i) is a consequence of the ergodic theorem [70,
Theorem 13.12]. In addition, the law of the iterated logarithm
for martingale difference sequences [71] ensures that

lim sup
n→+∞

|∑n
k=1

(‖yk‖2 − ̺)|
(
n log(log n)

)1/2 < +∞ P-a.s. (50)

lim sup
n→+∞

‖
∑n

k=1
(Xkyk − r)‖

(
n log(log n)

)1/2 < +∞ P-a.s. (51)

lim sup
n→+∞

|||∑n
k=1

(XkX
⊤
k −R)|||

(
n log(log n)

)1/2 < +∞ P-a.s. (52)

that is

lim sup
n→+∞

n1/2|ρn − ̺|
(
log(log n)

)1/2 < +∞ P-a.s. (53)

lim sup
n→+∞

n1/2‖rn − r‖
(
log(log n)

)1/2 < +∞ P-a.s. (54)

lim sup
n→+∞

n1/2|||Rn −R|||
(
log(log n)

)1/2 < +∞ P-a.s. (55)
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Consequently, for everyn0 ∈ N with n0 > 2,

+∞∑

n=n0

n−1|ρn − ̺|

6 sup
n>n0

(
n1/2|ρn − ̺|
(
log(log n)

)1/2

)( +∞∑

n=n0

n−3/2| log(log n)|1/2
)
.

(56)

Since
∑+∞

n=2
n−3/2| log(log n)|1/2 < +∞, it follows from

(53) that
∑+∞

n=n0
n−1|ρn − ̺| convergesP-a.s. to 0 asn0 →

+∞, which means that the first line in Property (ii) is satisfied.
By proceeding similarly, (54) and (55) allow us to establish
the remaining two assertions in Property (ii).

APPENDIX B
PROOF OFLEMMA 2

For everyn ∈ N \ {0}, minimizing Θn(·,hn) is equivalent
to minimizing the function

(∀h ∈ R
N ) Θ̃n(h,hn) =

1

2
h⊤An(hn)h− cn(hn)

⊤h.

(57)
It follows from Assumption 3(ii)-3(iii) and Lemma 1(i) that
there existsΛ ∈ F such thatP(Λ) = 1 and, for everyω ∈ Λ,

lim
n→+∞

rn(ω) = r (58)

lim
n→+∞

Rn(ω) = R. (59)

Let ω ∈ Λ. According to Assumption 1(iii) and Eq. (19),b(h)
is bounded as a function ofh. It is then deduced from (25)
and (58) that

(
cn(hn)(ω)

)
n>1

is bounded, i.e. there exists
η ∈ [0,+∞) such that

(∀n ∈ N \ {0}) ‖cn(hn)(ω)‖ 6 η. (60)

In addition, as a consequence of (19) and Assumption 1(iii),
for everyn ∈ N\{0}, Diag

(
b(hn)

)
is a positive semidefinite

matrix. Hence, because of (16), Assumptions 1(iii) and 3(i),
and (59), there existsǫ ∈ (0,+∞) andn0 ∈ N\{0} such that

(∀n > n0) An(hn)(ω) � R− ǫIN + V0 ≻ ON . (61)

(It suffices to chooseǫ lower than the minimum eigenvalue
of R + V0). As a consequence of (57), (60), (61), and the
Cauchy-Schwarz inequality, we have

(∀n > n0)(∀h ∈ R
N )

1

2
h⊤(R− ǫIN + V0)h− η‖h‖ 6 Θ̃n(h,hn). (62)

SinceR − ǫIN + V0 is a positive definite matrix, the lower
bound corresponds to a coercive function with respect toh.
There thus existsζ ∈ (0,+∞) such that, for everyh ∈ R

N ,

‖h‖ > ζ ⇒ (∀n > n0) Θ̃n(h,hn)(ω) > 0. (63)

On the other hand, since0 ∈ span
(
Dn(ω)

)
, we have

Θ̃n(hn+1,hn)(ω) 6 Θ̃n(0,hn)(ω) = 0. (64)

The last two inequalities allow us to conclude that

(∀n > n0) ‖hn+1(ω)‖ 6 ζ. (65)

APPENDIX C
PROOF OFLEMMA 3

According to Assumption 2, the proposed algorithm is
actually equivalent to

(∀n ∈ N \ {0}) hn+1 = hn +Dnũn (66)

ũn = argmin
ũ∈RM

Θn(hn +Dnũ,hn).

(67)

By using (15) and cancelling the derivative of the function
ũ 7→ Θn(hn +Dnũ,hn),

D⊤
n∇Fn(hn) +D⊤

nAn(hn)Dnũn = 0. (68)

Hence,

Θ(hn+1,hn)

= Fn(hn)−
1

2
ũ⊤
nD

⊤
nAn(hn)Dnũn

= Fn(hn)−
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn). (69)

In view of (12) and Proposition 1, this yields

(∀n ∈ N\{0}) Fn(hn+1)+
1

2
(hn+1−hn)

⊤An(hn)(hn+1−hn)

6 Fn(hn). (70)

In addition, the following recursive relation holds

(∀h ∈ R
N ) Fn+1(h) = Fn(h) +

1

2
(ρn+1 − ρn)

− (rn+1 − rn)
⊤h+

1

2
h⊤(Rn+1 −Rn)h.

(71)

As a consequence of Assumption 3(iv), for everyn ∈ N\{0},
hn+1 is Xn-measurable. It can thus be deduced from (70) and
the previous two relations that

E(Fn+1(hn+1) |Xn)+
1

2
(hn+1−hn)

⊤An(hn)(hn+1−hn)

6 Fn(hn) + χn (72)

where

χn =
1

2
E(ρn − ρn+1 |Xn)− E(rn − rn+1 |Xn)

⊤hn+1

+
1

2
h⊤
n+1E(Rn −Rn+1 |Xn)hn+1. (73)

By using (8)-(10) withϑ = 1 and Assumption 3(iii), we have

χn =
1

2(n+ 1)

(
ρn − E(‖yn+1‖2 |Xn)

)

− 1

n+ 1

(
rn − E(Xn+1yn+1 |Xn)

)⊤
hn+1

+
1

2(n+ 1)
h⊤
n+1

(
Rn − E(Xn+1X

⊤
n+1 |Xn)

)
hn+1

=
1

2(n+ 1)

(
ρn − ̺

)
− 1

n+ 1

(
rn − r

)⊤
hn+1

+
1

2(n+ 1)
h⊤
n+1

(
Rn −R

)
hn+1 (74)



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2709265, IEEE
Transactions on Signal Processing

IEEE TRANS. SIGNAL PROCESSING 12

which yields

|χn| 6
1

2(n+ 1)
|ρn − ̺|+ 1

n+ 1
‖rn − r‖‖hn+1‖

+
1

2(n+ 1)
|||Rn −R||| ‖hn+1‖2. (75)

According to Lemma 2,(hn)n>1 is P-a.s. bounded, and
Assumptions 3(ii)-3(iii) and Lemma 1(ii) thus guarantee that

+∞∑

n=1

|χn| < +∞ P-a.s. (76)

Assumption 1(i) entails that, for everyn ∈ N \ {0}, Fn is
lower bounded byinf Ψ > −∞. Furthermore, (72) leads to

E(Fn+1(hn+1)− inf Ψ |Xn)

+
1

2
(hn+1 − hn)

⊤An(hn)(hn+1 − hn)

6 Fn(hn)− inf Ψ + |χn|. (77)

Since, for everyn ∈ N \ {0}, Fn(hn) − inf Ψ and (hn+1 −
hn)

⊤An(hn)(hn+1 − hn) are nonnegative,(Fn(hn) −
inf Ψ)n>1 is a nonnegative almost supermartingale [72]. By
invoking now Siegmund-Robbins lemma [73], it can be de-
duced from (76) that the desired convergence results hold.

APPENDIX D
PROOF OFLEMMA 4

According to (15), we have, for everyφ ∈ R and n ∈
N \ {0},

Θn

(
hn − φ∇Fn(hn),hn

)
= Fn(hn)− φ‖∇Fn(hn)‖2

+
φ2

2

(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn). (78)

Let
Φn ∈ Argmin

φ∈R

Θn

(
hn − φ∇Fn(hn),hn

)
. (79)

The following optimality condition holds:
(
∇Fn(hn)

)⊤
An(hn)∇Fn(hn) Φn = ‖∇Fn(hn)‖2. (80)

As a consequence of Assumption 2,(∀φ ∈ R) hn −
φ∇Fn(hn) ∈ spanDn. It then follows from (20) and (80)
that

Θn

(
hn+1,hn

)
6 Θn

(
hn − Φn∇Fn(hn),hn

)

6 Fn(hn)−
Φn

2
‖∇Fn(hn)‖2 (81)

which, by using (69), leads to

Φn‖∇Fn(hn)‖2 6 (hn+1−hn)
⊤An(hn)(hn+1−hn). (82)

Let ǫ > 0. Assumption 1(iii) and (16) yield, for everyn ∈
N \ {0} ,

An(hn) � (|||Rn + V0|||+ ν|||V |||2)IN . (83)

Therefore, according to Assumptions 3(i) and 3(ii), and
Lemma 1(i), there existsΛ ∈ F such thatP(Λ) = 1 and,
for everyω ∈ Λ,

(∃n0 ∈ N \ {0})(∀n > n0) ON ≺ An(hn)(ω) � α−1
ǫ IN

(84)

where

αǫ = (|||R+ V0|||+ ν|||V |||2 + ǫ)−1 > 0. (85)

Let ω ∈ Λ. By using now (80), it can be deduced from (84)
that, if n > n0 and∇Fn(hn)(ω) 6= 0, then

Φn(ω) > αǫ. (86)

Then, it follows from (82) that

αǫ

+∞∑

n=n0

‖∇Fn(hn)(ω)‖2

6

+∞∑

n=n0

(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)
.

(87)

By invoking Lemma 3, we can conclude that
(‖∇Fn(hn)‖2)n>1 is P-a.s. summable.

APPENDIX E
PROOF OFPROPOSITION2

It follows from Lemma 3 that
(
(hn+1 −

hn)
⊤An(hn)(hn+1 − hn)

)
n>1

converges P-a.s. to 0.
In addition, we have seen in the proof of Lemma 2 that there
existsΛ ∈ F such thatP(Λ) = 1 and, for everyω ∈ Λ, (61)
holds with ǫ ∈ (0,+∞) andn0 ∈ N \ {0}. This implies that,
for everyn > n0,

|||R− ǫIN + V0||| ‖hn+1(ω)− hn(ω)‖2

6
(
hn+1(ω)− hn(ω)

)⊤
An(hn)(ω)

(
hn+1(ω)− hn(ω)

)

(88)

where|||R−ǫIN +V0||| > 0. Consequently,(hn+1−hn)n>1

convergesP-a.s. to0. In addition, according to Lemma 2,
(hn)n>1 belongs almost surely to a compact set. The result is
then obtained by invoking Ostrowski’s theorem [74, Theorem
26.1].
(ii) By using (24)-(25), we have

(∀n ∈ N \ {0}) ∇Fn(hn)−∇F (hn) = (Rn−R)hn−rn+r.
(89)

Since (hn)n>1 is almost surely bounded, it follows from
Lemma 1(i) that

(
∇Fn(hn)−∇F (hn)

)
n>1

convergesP-a.s.
to 0. Since Lemma 4 ensures that

(
∇Fn(hn)

)
n>1

converges
P-a.s. to0,

(
∇F (hn)

)
n>1

also convergesP-a.s. to0. There
thus existsΛ ∈ F such thatP(Λ) = 1 and, for every
ω ∈ Λ, ∇F

(
hn(ω)

)
→ 0. Let ĥ be a cluster point of(

hn(ω)
)
n>1

. There exists a subsequence
(
hkn

(ω)
)
n>1

such

that hkn
(ω) → ĥ. As we have assumed that the regulariza-

tion functions(ψs)16s6S are continuously differentiable (see
Assumption 1(i)),F is also continuously differentiable, and

∇F (ĥ) = lim
n→+∞

∇F
(
hkn

(ω)
)
= 0. (90)

This means that̂h is a critical point ofF .
(iii) Because of Assumption 3(i), when the functions
(ψs)16s6S are convex,F is a strongly convex function. It
thus possesses a unique critical pointĥ, which is the global
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minimizer ofF . It follows from (i) and (ii) that, almost surely,
the unique cluster point of(hn)n>1 is ĥ, which shows that
hn → ĥ P-a.s.
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