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ABSTRACT

The estimation of abundance maps in hyperspectral imaging (HSI)
requires the resolution of an optimization problem subjectto non-
negativity and sum-to-one constraints. Assuming that the spectral
signatures of the image components have been previously deter-
mined by an endmember extraction algorithm, we propose here
a primal-dual interior point algorithm for the estimation of their
fractional abundances using a penalized least squares approach. In
comparison with the reference method FCLS, our algorithm has
the advantage of a reduced computational cost, especially in the
context of large scale images and allows to deal with a penalized
criterion favoring the spatial smoothness of abundance maps. The
performances of the proposed approach are discussed with the help
of a synthetic HSI example.

Index Terms— Spectral unmixing, non-negativity, sum-to-one,
interior point optimization, primal-dual algorithm.

1. INTRODUCTION

The main goal of any hyperspectral image (HSI) analysis method
is the identification of the observed scene components (endmem-
bers) from their spectral signatures and the determinationof their
fractional abundances inside each pixel area [1]. In a supervised
approach, the endmember spectra are supposed to be known from
a spectral library or estimated using an endmember extraction al-
gorithm [2]. Thus, the remaining step of spectral unmixing is the
estimation of the fractional abundances.

Let us considerN pixels of a hyperspectral image acquired in
L spectral bands and assume a linear mixing model. Thus, each
observed spectrumyn ∈ R

L×1 in then-th pixel can be explained as
a linear combination ofP endmember spectra and corrupted by an
additive noiseǫn,

yn = S an + ǫn, (1)

whereSp = (s1, . . . , sP ) contains the endmember spectra and
an = [an,1, . . . , an,P ]

t is the vector of endmember abundances
in then-Th. pixel. The abundance vectors{an;∀n = 1, . . . , N},
should satisfy the non-negativity constriant and may also be con-
strained to sum-to-one,

an,p > 0, ∀ p = 1, . . . , P, (2a)
P
∑

p=1

an,p = 1. (2b)

Using matrix notations, the mixing model is rewritten as,

Y = SA+E, (3)

whereY ∈ R
L×N is the observation data matrix,S ∈ R

L×P the
spectral signatures,A ∈ R

P×N the fractional abundance matrix and
E ∈ R

L×N the measurement noise. Available algorithms for solv-
ing the inverse problem of estimatingA fromY andS consist on the
minimizing a least squares objective function under constraint (2a)
(NNLS [3], non-negative least squares) or (2b) (SCLS [4],sum-to-
one constrained least squares) or under both constraints (2a) and
(2b) (FCLS [5],fully constrained least squares). In [6], a Bayesian
inference algorithm incorporating constraints (2a) and (2b) is pro-
posed. It is based on Monte Carlo Markov chain methods and offers
the advantage of estimating the number of components. However,
all the mentioned methods suffer from a significant increaseof the
computation time in the case of large data sets (in terms of image
size or number of components).

We propose in this paper a spectral unmixing algorithm based
on penalized least squares estimation and interior point optimiza-
tion [7, 8] using a primal-dual approach [9]. While the penalized
least squares approach aims at introducing a prior knowledge on the
abundance maps, the interior point optimization approach allows to
minimize any convex objective function under equality (sum-to-one)
and inequality (non-negativity) constraints. Therefore,it can be ap-
plied for the minimization of the least squares criterion augmented
by a regularization term allowing to introduce a spatial smoothing
of the abundance maps. From the numerical optimization point of
view, the interior point algorithm needs to a solve a large linear sys-
tem of equations at each iterate. We will show that an approximate
resolution of such system using a preconditioned bi-conjugate gradi-
ent [10] reduces significantly the computation cost withoutaltering
the unmixing performances.

2. PRIMAL-DUAL OPTIMIZATION FOR ABUNDANCE
MAPS ESTIMATION

The estimation ofA is firstly formulated as the minimization of a
convex criterionF (·),

minF (A)
A∈RP×N

s.t. (2a) and (2b). (4)

An interior point algorithm based on a primal-dual approachis then
used for the resolution. While the image pixels can be unmixed sep-
arately in the least squares criterion case, the optimization algorithm
should be applied jointly to all the pixels in the case of a criterion
accounting for spatial dependencies between pixels.

2.1. Criterion formulation

The criterionF (·) results from the statistical modeling of the obser-
vation process and the sought abundance maps. A usual approach is



to assumeF (·) as the least squares criterion [4],

F (A) =
1
2
‖Y − SA‖2F , (5)

where‖·‖F represents the Frobenius norm. A penalization criterion
R(·), can also be considered to get a solution where the abundance
maps presents some spatial regularity. For example,

R(A) =

P
∑

p=1

ϕ
(

∆ap

)

, (6)

where∆ represents the gradient operator andϕ a regularization
function. A quadratic (ℓ2) function can be used for a denosing pur-
pose, but a half-quadratic(ℓ2− ℓ1) regularization function would be
preferred to preserve the image edges [11]. Finally, the composite
criterion takes the form,

F (A) =
1
2
‖Y − SA‖2F + β R(A), (7)

whereβ is the regularization weight.

2.2. Accounting for the sum-to-one constraint

As suggested by [9], the equality constraint (2b) can be implicitly
handled by introducing a reparametrization so that (4) is reduced
to an inequality constrained problem. For each initial vector a(1)

satisfying the equality constraint (2b), the transformed vectora =
a(1) + Zc, wherecn ∈ R

P−1, also satisfies the sum-to-one con-
straint if the columns of matrixZ ∈ R

P×P−1 are formed from the
null space of11×P . In our case, such matrix can be defined by,

Zij =







1 if i = j,
−1 if i = j + 1,
0 otherwise.

(8)

Thus, problem (4) is rewritten as

min
C∈R(P−1)×N

F
(

A
(1) +ZC

)

, (9)

subject toZcn + a
(1)
n > 0, ∀n = 1, . . . , N. By introducing the

operatorm = vect
(

M
)

which corresponds to the transformation
of a matrixM to a vectorm in the lexicographic order, the problem
also reads

min
c∈R(P−1)N

Φ(c)
∆
= F (A(1) +ZC) s. t. Tc+ t > 0, (10)

wherec = vect(C) and t = vect(A(1)). The matrixT equals
to IN ⊗ Z where⊗ is the Kronecker product andIN theN × N
identity matrix.

2.3. Primal-dual interior point optimization

The main feature of interior point optimization is to keep the solution
inside the feasible domain. In fact, at each iteration, the constraint
fulfillment is ensured by adding a logarithmic barrier function mak-
ing the criterion unbounded at the boundary of the feasible solution
domain [7]. The primal-dual approach consists in jointly estimating
c, and their associated Lagrange multipliersλ thought the resolution
of a sequence of optimization problems obtained from perturbed ver-
sions of the Karush-Kuhn-Tucker (KKT) optimality conditions:

{

• ∇Φ(c)− T tλ = 0, • Λ(Tc+ t) = µk,
• Tc+ t > 0, • λ > 0

(11)

whereΛ = Diag(λ) andµk = µk1N(P−1)×1 is a the sequence of
perturbation parameters{µk} converging to0 whenk tends to+∞.
At each iterationk of the primal-dual algorithm,ck+1 andλk+1

are firstly calculated from the KKT conditions and the perturbation
parameterµk+1 is then updated in order to ensure the algorithm con-
vergence.

In the case of large-scale problems, only an approximate solu-
tion of (11) is retained from a Newton algorithm step coupledwith a
linesearch strategy [8, Chap.11], according to:

(ck+1,λk+1) = (ck + αkd
c
k,λk + αkd

λ
k). (12)

Primal-dual directions. The directions(dc
k,d

λ
k) are obtained from

[

∇2Φ(ck) −T t

ΛkT Diag(Tck + t)

] [

dc
k

dλ
k

]

=

[

T tλk −∇Φ(ck)
µk −Λk(Tck + t)

]

where∇Φ(·) and∇2Φ(·) are, respectively, the gradient and the Hes-
sian of criterionΦ(·), given in (10). In the case of criterion (7),
derivatives calculation yield,

∇Φ(c) = vect
(

−Z
t
S

t(Ỹ − SZC)
)

+ βD
tϕ̇

(

Dc+ d
(1)

)

∇2Φ(c) = IN ⊗ (Zt
S

t
SZ) + βD

tDiag
(

ϕ̈
(

Dc+ d
(1)

))

D,

where Ỹ = Y − SA(1), ϕ̇ and ϕ̈ stand, respectively, for the
first and the second derivatives ofϕ, D = (∆ ⊗ Z) andd(1) =

vect
(

A(1)∆t
)

.

Rather than solving directly this system, [9] propose to make a
variable substitution,

d
λ
k = Diag(Tck + t)−1 [µk −Λk(Tck + t)−ΛkTd

c
k] , (13)

in order to calculate the primal directiondc
k from a reduced system

Hkd
c
k = T

tDiag(Tck + t)−1
µk −∇Φ(ck) (14)

whereHk = ∇2Φ(ck) + T tDiag(Tck + t)−1
ΛkT .

In order to reduce the computation cost, we also propose to
perform an approximate resolution of this system using a precondi-
tioned bi-conjudate gradient algorithm [10]. The preconditioning is
based on an incomplete LU factorization of matrixHk. Finally (13)
is used to calculate the dual directiondλ

k .

Linesearch. The stepsize valueαk should be chosen to ensure the
convergence of the algorithm and the fulfillment of the inequalities
of the pertubed KKT system (11). The employed condition requests
a sufficient decrease of the primal-dual merit functionΨµ(a,λ) de-
fined as in [9],

Ψµ(c,λ) = Φ(c)− µ
NP
∑

i=1

ln([Tc+ t]i)

+ λ
t(Tc+ t)− µ

NP
∑

i=1

ln(λi[Tc+ t]i). (15)

One can note that this function contains two logarithmic barrier func-
tions associated to the KKT inequalities. The sufficient decrease is
assessed using the Armijo condition,

ψµk
(αk)− ψµk

(0) 6 σ αk∇ψµk
(0) with σ ∈ (0, 1), (16)

whereψµk
(α) = Ψµk

(ck + αdc
k,λk + αdλ

k). The stepsizeαk

satisfying (16) is obtained by a backtracking algorithm [8].



Perturbation parameter update. The parameterµk is updated us-
ing theµ-criticity rule [12] defined by:

µk = θ
δk
NP

, (17)

whereδk = (Tck + t)tλk is the duality gap andθ ∈ (0, 1).

Stopping criteria. The main steps of the optimization method leads
to algorithm 1. The calculation of the primal and dual direction (in-
ner loop) is controlled by two conditions [9]:

‖rprim
µk

‖∞ 6 ǫprim
k and‖rdual

µk
‖1/NP 6 ǫdual

k , (18)

whererprim
µk

(ck,λk) andrdual
µk

(ck,λk) are the primal and dual resid-
uals. ǫprim

k = ηprimµk, ǫdual
k = ηdualµk whereηprim andηdual are two

positive parameters. The outer iterations of algorithm 1 are run until
the fulfillment of the following condition [8, Chap.11]

µk 6 µmin or
(

‖rprim
µk

‖+ ‖rdual
µk

‖
)

6 ǫ0. (19)

Initializeλ0 > 0 andc0 such thatTc0 + t > 0

While ((19) is not satisfied)do
While ((18) is not satisfied)do

Calculatedc
k by solving the system (14)

Deducedλ
k from (13)

Searchαk satisfying (16) by backtracking
Update(ck+1,λk+1) according to (12)

done
Defineµk+1 according to (17).

done

Algorithm 1: Primal-dual interior point algorithm.

3. EXPERIMENTAL RESULTS

In this section we illustrate the applicability of the interior point
primal-dual optimization algorithm 1 to spectral unmixing. We an-
alyze its performances in terms of computation time in the case of
least squares and penalized least squares criteria. We alsoanalyze
the resulting computation time gain when the primal direction is cal-
culated using few iterations of the bi-conjugate gradient algorithm.

In order to simulate realistic HSI data, we pick up randomlyP
spectra form the USGS (U.S. Geological Survey) library [13]. This
library contains21 spectra ofL = 224 spectral bands from 383 nm
to 2508 nm. The abundances are simulated as the superposition of
K = 30 2D gaussian patterns with random location and variance
parameters. These images are then normalized to ensure the sum-to-
one constraint.
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Fig. 1. Example of three endmember spectra (reflectance) taken
from the USGS library.
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Fig. 2. Example of simulated abundance maps for three components.

Figures 1 and 2 give an example of endmember spectra and abun-
dance maps. A random Gaussian noise is added to each resulting
hyspectral image, according to the linear mixing model, in order
to get a signal to noise ratio (SNR) of 20 dB. The unmixing algo-
rithms are implemented on Matlab 2007b and the calculationsare
performed using a MacbookPro having an Intel Core 2 Duo 2.4 GHz
processor and 4 GB of RAM (667 MHz).

3.1. Least squares spectral unmixing

In the non penalized case (i.e.,β = 0), the proposed primal-dual
optimization approach, referred to as IPLS (forInterior point least
squares), can be compared with the FCLS algorithm. Different im-
age sizes have been considered (fromN = 642 to 2562) and the num-
ber of endmembers is taken asP = 3, 5 or 10. For all the tests
(Monte Carlo simulation with 30 realizations), the solutions obtained
by the FCLS and the IPLS are very similar. However, as illustrated
by figure 3, the proposed approach presents a reduced computation
time as compared to FCLS. For example, the gain factor is about 5
for an image of size2562 andP = 10 endmembers. For this image
size, this gain factor is about7 for P = 5 and11 for P = 3.
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Fig. 3. (left) Computation time of the FCLS algorithm and (right )
gain factor in computation time of the IPLS with respect to the FCLS
for different image sizes and number of endmembers.

3.2. Penalized least squares spectral unmixing

A regularization criterion is added by settingβ > 0 and a quadratic
functionϕ(·) in (6) in order to account for the spatial smoothness of
the abundance maps. In this situation, only the proposed primal-dual
algorithm, referred to as IPPLS (forInterior point penalized least
squares), can be applied. The discussion concerns the influence of
an approximate resolution of the primal system (14) on the compu-
tation time of the algorithm. Once again, for all the tests (Monte



Carlo simulation with 30 realizations), the results were very similar
in terms of final criterion value and obtained solution. As shown in
figure 4, the approximate calculation of the primal direction allows
to reduce significantly the computation time of the algorithm.
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Fig. 4. (left) Computation time of the IPPLS-1 algorithm with exact
resolution of (14) and (right ) gain factor of computation time when
only an approximate resolution of (14) is performed (IPPLS-2).

3.3. Effect of the noise level

Table 1 presents the obtained results of FCLS, IPLS and IPPLSal-
gorithms in terms of estimated abundance maps quality and com-
putation time for different noise levels.The number of endmembers
is set toP = 5 and the image size toN = 2562 pixels. In this
experiments, the endmembers have been estimated using the VCA
method [14]. Finally, the quality of the estimated abundance maps is
assessed using the normalized mean square error

NMSE(%) =
100
P

P
∑

p=1

(

‖ap − âp‖
2/‖ap‖

2
)

, (20)

which measures the dissimilarity between the reference abundances
ap and the estimated oneŝap. The regularization parameterβ is
set to0.1 in order to minimize this error in the case of penalized
least squares estimation. On can note that adding the regularization
criterion leads to better results as compared to the non penalized
least squares case. This enhancement is more significant when the
noise level increases. On the other hand, thanks to the approximate
resolution of (14), the penalized approach only increases moderately
the computation time of the algorithm.

Method SNR (dB) 20 15 10 5

FCLS
Time (sec.) 91.12 91.19 92.29 92.80
NMSE (%) 0.18 0.46 1.34 3.64

IPLS
Time (sec.) 10.56 10.63 10.85 10.86
NMSE (%) 0.18 0.46 1.33 3.63

IPPLS
Time (sec.) 20.20 20.39 20.43 20.45
NMSE (%) 0.08 0.23 0.68 2.01

Table 1. Computation time and abundance estimation errors of the
unmixing algorithms forP = 5 andN = 2562.

4. CONCLUSION

We have proposed in this paper a spectral unmixing algorithmal-
lowing to estimate the abundance maps using a primal dual interior
point optimization. The main feature of the proposed optimization
approach is to fully satisfy the non-negativity and sum-to-one con-
straint. The second advantage is the possibility to minimize a general
criterion including a spatial information on the sought abundances.
Future studies will be directed at analyzing the theoretical conver-
gence of the proposed algorithm and its application to the case of
non-linear mixing models.
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