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ABSTRACT

The estimation of abundance maps in hyperspectral imadi&d)
requires the resolution of an optimization problem subjeaton-
negativity and sum-to-one constraints. Assuming that geztsal
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whereY € RE*¥ is the observation data matri$, € RX*” the
spectral signaturest € R”*" the fractional abundance matrix and
E ¢ RY*Y the measurement noise. Available algorithms for solv-
ing the inverse problem of estimatizhfrom Y and.S consist on the
minimizing a least squares objective function under canstr(2a)

signatures of the image components have been previousty-det \nLs 3], non-negative least squares) or (2b) (SCLS [4].sum-to-

mined by an endmember extraction algorithm, we propose her

a primal-dual interior point algorithm for the estimatiof their
fractional abundances using a penalized least squaresagbprin

comparison with the reference method FCLS, our algorithm ha

the advantage of a reduced computational cost, especialtiid
context of large scale images and allows to deal with a pesli
criterion favoring the spatial smoothness of abundancesmdpe
performances of the proposed approach are discussed witieth
of a synthetic HSI example.

Index Terms— Spectral unmixing, non-negativity, sum-to-one,
interior point optimization, primal-dual algorithm.

1. INTRODUCTION

The main goal of any hyperspectral image (HSI) analysis oteth
is the identification of the observed scene components (endm
bers) from their spectral signatures and the determinaifaimeir
fractional abundances inside each pixel area [1]. In a siget

a spectral library or estimated using an endmember extracti-
gorithm [2]. Thus, the remaining step of spectral unmixiaghe
estimation of the fractional abundances.

Let us considerV pixels of a hyperspectral image acquired in

ne constrained least squares) or under both constraints (2a) and
(2b) (FCLS [5],fully constrained least squares). In [6], a Bayesian
inference algorithm incorporating constraints (2a) ara) (& pro-
posed. It is based on Monte Carlo Markov chain methods amasoff
the advantage of estimating the number of components. Hawev
all the mentioned methods suffer from a significant increzfste
computation time in the case of large data sets (in terms afjén
size or number of components).

We propose in this paper a spectral unmixing algorithm based
on penalized least squares estimation and interior poitingga-
tion [7, 8] using a primal-dual approach [9]. While the péred
least squares approach aims at introducing a prior knowledghe
abundance maps, the interior point optimization approdlows to
minimize any convex objective function under equality (stmrone)
and inequality (non-negativity) constraints. Thereférean be ap-
plied for the minimization of the least squares criteriograented
by a regularization term allowing to introduce a spatial sthing
of the abundance maps. From the numerical optimizationt din
view, the interior point algorithm needs to a solve a largedir sys-

Yem of equations at each iterate. We will show that an apprate

resolution of such system using a preconditioned bi-catgigradi-
ent [10] reduces significantly the computation cost withaltgring
the unmixing performances.

L spectral bands and assume a linear mixing model. Thus, each

observed spectrum,, € RE*! in then-th pixel can be explained as

a linear combination of” endmember spectra and corrupted by an

additive noisee,,,

Yn :San+6n7 (l)

where S, = (s1,...,sp) contains the endmember spectra and
is the vector of endmember abundances

an = lan1,...,an,p"

in the n-Th. pixel. The abundance vectofa,;vn=1,..., N},
should satisfy the non-negativity constriant and may alsacon-
strained to sum-to-one,

Gnp =0, Vp=1,...,P, (2a)
P

Z an,p = 1. (2b)
p=1

Using matrix notations, the mixing model is rewritten as,

Y =SA+E, 3)

2. PRIMAL-DUAL OPTIMIZATION FOR ABUNDANCE
MAPS ESTIMATION

The estimation ofA is firstly formulated as the minimization of a
convex criterionF'(-),

min F(A) s.t.

AcRPXN

(2a) and (2b) (4)

An interior point algorithm based on a primal-dual approectinen
used for the resolution. While the image pixels can be undhsap-
arately in the least squares criterion case, the optinozatigorithm
should be applied jointly to all the pixels in the case of decibn
accounting for spatial dependencies between pixels.

2.1. Criterion formulation

The criterionF (-) results from the statistical modeling of the obser-
vation process and the sought abundance maps. A usual appsoa



to assumé”(-) as the least squares criterion [4],

F(A) = S|[Y - SAl, )

whereA = Diag(\) andu;, = prlnp—1)x1 iS a the sequence of
perturbation parametefs:;, } converging td) whenk tends to+oo.
At each iterationk of the primal-dual algorithmey 1 and Agy1
are firstly calculated from the KKT conditions and the pdsaiion

where|| - || » represents the Frobenius norm. A penalization criterionparametey.x 1 is then updated in order to ensure the algorithm con-
R(+), can also be considered to get a solution where the abundansergence.

maps presents some spatial regularity. For example,

R(A) = (6)

NE

‘P(Aap)7

p=1

where A represents the gradient operator apda regularization
function. A quadratic{>) function can be used for a denosing pur-
pose, but a half-quadrat{€, — ¢1) regularization function would be
preferred to preserve the image edges [11]. Finally, theposite
criterion takes the form,

) =

whereg is the regularization weight.

F(A) = J|IY - S|+ B R(A), ™

2.2. Accounting for the sum-to-one constraint

As suggested by [9], the equality constraint (2b) can beititlyl
handled by introducing a reparametrization so that (4) duced
to an inequality constrained problem. For each initial oeet*)
satisfying the equality constraint (2b), the transformedtora =
a® + Zc, wheree,, € RP™1, also satisfies the sum-to-one con-
straint if the columns of matriZ € RT*F~! are formed from the
null space ofl; x p. In our case, such matrix can be defined by,

1 if i=j,
Zij =< —1 it i=j+1, 8)
0 otherwise
Thus, problem (4) is rewritten as
min  F(A" + z0), (9)

CeR(P—1)xXN
subject toZe,, + a$” > 0, Vn = 1,..., N. By introducing the
operatorm = vect( ) which corresponds to the transformation
of a matrix M to a vectorm in the lexicographic order, the problem
also reads

d(c) 2 F(AY + ZC) s.t. Te+t>

min
ceR(Pfl)N

0, (10)

wherec = vect{C) andt = vecf A"). The matrixT equals
to In ® Z where® is the Kronecker product anBly the N x N
identity matrix.

2.3. Primal-dual interior point optimization

The main feature of interior point optimization is to keep Holution
inside the feasible domain. In fact, at each iteration, trestraint
fulfillment is ensured by adding a logarithmic barrier fuontmak-
ing the criterion unbounded at the boundary of the feasibliation
domain [7]. The primal-dual approach consists in jointl§iraating
¢, and their associated Lagrange multiplidrhought the resolution
of a sequence of optimization problems obtained from peemiver-
sions of the Karush-Kuhn-Tucker (KKT) optimality conditia

{

e VO(c)
eTc+t>

—T'A =0,
o,

e A(Tc+1t)=
e A>0

H (11)

In the case of large-scale problems, only an approximate sol
tion of (11) is retained from a Newton algorithm step couplétth a
linesearch strategy [8, Chap.11], according to:

(Ck+17 Ak+1) = (Ck + Oékdi7 Ak + Oékdﬁ) (12)

Primal-dual directions. The directiongdg, d;) are obtained from

i it o] [ [0

whereV®(-) andV>®(-) are, respectively, the gradient and the Hes-
sian of criterion®(-), given in (10). In the case of criterion (7),
derivatives calculation yield,

Vd(c) = vect (fz‘st(if - SZC)) +8 Dtgb(D c+ d(”)
V2®(c) = In ® (2'S'SZ) + f D'Diag (¢ (D c+ d<1>)) D,

whereY = Y — SA®M & and ¢ stand, respectively, for the
first and the second derivatives of D = (A ® Z) andd!) =
vect (A(l)At).
Rather than solving directly this system, [9] propose to enak
variable substitution,
di = Diag(Tex + )" [,

— Ap(Teg +t) — AyTdg], (13)

in order to calculate the primal directiatf, from a reduced system

Hydj, = T'Diag(Tcy, +t) ' p;, — VO(cx) (14)

whereH;, = v2(I>(Ck) + T“Diag(Tck + t)ilAkT.

In order to reduce the computation cost, we also propose to
perform an approximate resolution of this system using aqnéi-
tioned bi-conjudate gradient algorithm [10]. The prectinding is
based on an incomplete LU factorization of matf.. Finally (13)
is used to calculate the dual directidy).

Linesearch The stepsize valua; should be chosen to ensure the
convergence of the algorithm and the fulfillment of the ireddies

of the pertubed KKT system (11). The employed condition estg!

a sufficient decrease of the primal-dual merit function(a, \) de-
fined asin [9],

NP
U, (c,A) =P(e uZln Tc+t])
+A°Tc+t Zln ([ Te+1t);). (15)

One can note that this function contains two logarithmicibafunc-
tions associated to the KKT inequalities. The sufficientrdase is
assessed using the Armijo condition,

1/1;% (ak) - w#k (0) <o akkuk (0)

where,, (o) = U, (cx + adf, Ay + ad}). The stepsizey,
satisfying (16) is obtained by a backtracking algorithm [8]

with o € (0,1), (16)



Perturbation parameter update. The parameter,, is updated us-
ing the p-criticity rule [12] defined by:
Ok
NP’
whered, = (T'ci, + t)' Ay, is the duality gap and € (0, 1).

pe =0 (7

ISR ]
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Stopping criteria. The main steps of the optimization method leads
to algorithm 1. The calculation of the primal and dual direct(in-

ner loop) is controlled by two conditions [9]: Fig. 2. Example of simulated abundance maps for three components.

primHoo < 6Zrim and||rd”a'||1/NP g Egual7 (18)

H’r,uk HE

il d | . .
wherer(i™(ck, Ax) andr;,;,*(ck, Ax) are the primal and dual resid-  Figyres 1 and 2 give an example of endmember spectra and abun-

uals. "™ = P My, @ = p2al, wherenP™ andn®® are two  dance maps. A random Gaussian noise is added to each rgsultin
positive parameters. The outer iterations of algorithmelran until  hyspectral image, according to the linear mixing model, ideo
the fulfillment of the following condition [8, Chap.11] to get a signal to noise ratio (SNR) of 20 dB. The unmixing algo
prim dual rithms are implemented on Matlab 2007b and the calculatiwas
Hk S fmin - OF (”er |+ 17 ||) < €o. (19) performed using a MacbookPro having an Intel Core 2 Duo 2.4 GH
processor and 4 GB of RAM (667 MHz).
Initialize Ao > 0 andco such thatl'co +t > 0 3.1. Least squares spectral unmixing
While ((19) is not satisfiedjio In the non penalized case (i.g1, = 0), the proposed primal-dual
While ((18) is not satisfiedjio optimization approach, referred to as IPLS (foterior point least
Calculated;; by solving the system (14) squares), can be compared with the FCLS algorithm. Different im-
Deduced;; from (13) age sizes have been considered (fivs 64 to 256) and the num-
Searchn, satisfying (16) by backtracking ber of endmembers is taken & = 3, 5 or 10. For all the tests
Update(ck+1, Ar+1) according to (12) (Monte Carlo simulation with 30 realizations), the solambtained
done ) by the FCLS and the IPLS are very similar. However, as ilatsul
Define 1 according to (17). by figure 3, the proposed approach presents a reduced cdinputa
done time as compared to FCLS. For example, the gain factor istabou
for an image of siz€56% and P = 10 endmembers. For this image

Algorithm 1: Primal-dual interior point algorithm. size, this gain factor is abodtfor P = 5 and11 for P = 3.

10 12
3. EXPERIMENTAL RESULTS AP=s 7

10y

In this section we illustrate the applicability of the irtarpoint
primal-dual optimization algorithm 1 to spectral unmixing/e an-
alyze its performances in terms of computation time in theeaaf
least squares and penalized least squares criteria. Weuadsyze
the resulting computation time gain when the primal diatis cal-
culated using few iterations of the bi-conjugate gradid¢go@thm.
In order to simulate realistic HSI data, we pick up randotRly

TFCLS / TIPLS
[=2}

spectra form the USGS (U.S. Geological Survey) library [Tiis %,
library contains21 spectra ofL = 224 spectral bands from 383 nm 107 (é
to 2508 nm. The abundances are simulated as the superpasitio 64 96 128 ffﬁo 192 224 256 4 96 128 f/GTO 192 224 256

K = 30 2D gaussian patterns with random location and variance
parameters. These images are then normalized to ensungnthios Fig. 3. (left) Computation time of the FCLS algorithm andght )

one constraint. gain factor in computation time of the IPLS with respect o BCLS
for different image sizes and number of endmembers.

Chlorite HS179.3B Almandine WS478 Ammonioalunite NMNH145596
0.8 1 1
0.6 ” 0.8| ' ' 0.8 . ..
3.2. Penalized least squares spectral unmixing

0.4 0.6] 0.6
s od od A regularization criterion is added by settifg> 0 and a quadratic

: ' ’ functiony(-) in (6) in order to account for the spatial smoothness of

%500 1000 1500 2000 2500 %500 1000 1500 2000 2500 2500 1000 1500 2000 2500 (€ @bundance maps. In this situation, only the proposedapdual

wavelength (nm) wavelength (nm) wavelength (nm) algorithm, referred to as IPPLS (fonterior point penalized least

] sguares), can be applied. The discussion concerns the influence of
Fig. 1. Example of three endmember spectra (reflectance) takegn approximate resolution of the primal system (14) on thepme
from the USGS library. tation time of the algorithm. Once again, for all the tests(ité



Carlo simulation with 30 realizations), the results wergy&milar
in terms of final criterion value and obtained solution. Aswh in
figure 4, the approximate calculation of the primal directadlows
to reduce significantly the computation time of the alganth

4. CONCLUSION

We have proposed in this paper a spectral unmixing algorahm
lowing to estimate the abundance maps using a primal dusdfiant

point optimization. The main feature of the proposed optation
approach is to fully satisfy the non-negativity and sunet@ con-
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Fig. 4. (left) Computation time of the IPPLS-1 algorithm with exact
resolution of (14) andr{ght) gain factor of computation time when
only an approximate resolution of (14) is performed (IPF)S-

3.3. Effect of the noise level

Table 1 presents the obtained results of FCLS, IPLS and IRPLS
gorithms in terms of estimated abundance maps quality and co
putation time for different noise levels.The number of epdtbers

is set toP = 5 and the image size t& = 2562 pixels. In this
experiments, the endmembers have been estimated usinghe V
method [14]. Finally, the quality of the estimated abundamaps is
assessed using the normalized mean square error

100
P

> (lap —anl*/llasl®)

p=1

NMSE(%) (20)

which measures the dissimilarity between the referencaddnces
a, and the estimated onés,. The regularization parametgris
set t00.1 in order to minimize this error in the case of penalized
least squares estimation. On can note that adding the regaiian
criterion leads to better results as compared to the nonlipeda
least squares case. This enhancement is more significant tvee
noise level increases. On the other hand, thanks to the xppate

(10]

straint. The second advantage is the possibility to miréraigeneral
criterion including a spatial information on the sought adances.
Future studies will be directed at analyzing the theorétoaver-
gence of the proposed algorithm and its application to tlse cd
non-linear mixing models.
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