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ABSTRACT

Stochastic optimization plays an important role in solvingmany
problems encountered in machine learning or adaptive processing.
In this context, the second-order statistics of the data areoften un-
known a priori or their direct computation is too intensive,and they
have to be estimated on-line from the related signals. In thecontext
of batch optimization of an objective function being the sumof a
data !delity term and a penalization (e.g. a sparsity promoting func-
tion), Majorize-Minimize (MM) subspace methods have recently
attracted much interest since they are fast, highly "exibleand effec-
tive in ensuring convergence. The goal of this paper is to show how
these methods can be successfully extended to the case when the
cost function is replaced by a sequence of stochastic approximations
of it. Simulation results illustrate the good practical performance of
the proposed MM Memory Gradient (3MG) algorithm when applied
to 2D !lter identi!cation.

Index Terms— stochastic approximation, optimization, sub-
space algorithms, memory gradient methods, descent methods, re-
cursive algorithms, majorization-minimization, !lter identi!cation,
Newton method, sparsity, machine learning, adaptive !ltering.

1. INTRODUCTION

We consider a sequence of random variables(X n ; yn )n > 1

taking their values inRN � Q � RQ , de!ned on a probabil-
ity space(
 ; F; P). Our objective is to solve the following
minimization problem:

minimize
h 2 RN

F (h) (1)

where

(8h 2 RN ) F (h) =
1
2

E
 
kyn  X >

n hk2�
+ 	( h): (2)

Throughout this paper,E(�) denotes the mathematical expec-
tation,k�k is the Euclidean norm, and	 is a function fromRN

to R, which plays the role of a regularization function. In par-
ticular, this function may be useful to incorporate some prior
knowledge abouth, e.g. some sparsity requirement, possi-
bly in some transformed domain. We assume here that the

following wide-sense stationarity properties hold:

(8n 2 N� ) E(kyn k2) = % (3)

E(X n yn ) = r (4)

E(X n X >
n ) = R (5)

where%2]0; + 1 [, r 2 RN , andR 2 RN � N is a symmetric
positive semi-de!nite matrix.

Many optimization algorithms can be devised to solve
Problem (1) depending on the assumptions made on	
[1, 2, 3]. In this work, we will be interested in Majorize-
Minimize (MM) subspace algorithms [4]. These approaches
proceed by building at each iteration a simple majorant (e.g.a
quadratic majorant) of the cost-function, which is minimized
in a subspace of low dimension. This subspace is often re-
stricted to the gradient computed at the current iterate andto
a memory part (e.g. the difference between the current iterate
and a previous one). In a number of recent works [5, 6, 7],
these algorithms are shown to provide fast numerical solu-
tions to optimization problems involving smooth functions,
in particular in the case of large-scale problems. Note that,
although our approach will assume that	 is a differentiable
function, it has been shown that tight approximations of non-
smooth penalizations such as`1 (resp.`0) functions, namely
`2  `1 (resp. `2  `0) functions, can be employed and are
often quite effective in practice [6, 7]. Another advantageof
the class of optimization methods under investigation is that
their convergence can be established under some technical as-
sumptions, even in the case when	 is a nonconvex function
(see [6] for more details).

One of the dif!culties encountered in machine learning
or adaptive processing is that Problem (1) cannot be directly
solved since the second-order statistical moments%, r andR
are often unknown a priori or their direct computation is too
intensive, and they have thus to be estimated on-line from the
related time series. In the simple case when	 = 0 , the classi-
cal Recursive Least Squares (RLS) algorithm can be used for
this purpose [8]. When	 is nonzero, stochastic approxima-
tion algorithms have been developed such as the celebrated
stochastic gradient descent (SGD) algorithm [9]. This algo-
rithm has been at the origin of a tremendous amount of works.
It is known to be robust and easy to implement, but its con-



vergence speed may be relatively slow. Various extensions of
this algorithm have been developed to alleviate this problem
[10, 11], to make it adaptive, or to improve its performance
when estimating sparse vectors [12, 13]. When	 / k � k 1,
an on-line variant of the RLS algorithm was designed in [14]
which relies on a coordinate descent approach.

Designing Majorize-Minimize optimization algorithms in
a stochastic context constitutes a challenging task since most
of the existing works have been focused on batch optimiza-
tion procedures, and the related convergence proofs usually
rely on deterministic tools. We can however mention a few
recent works [15, 16] where stochastic MM algorithms are
investigated for general loss functions under an independence
assumption on the involved random variables, but without
introducing any search subspace. Works which are more
closely related to ours are those based on Newton or quasi-
Newton stochastic algorithms [17, 18, 19, 20], in particular
the approaches in [19, 20] provide extensions of BFGS al-
gorithm, but proving the convergence of these algorithms
requires some speci c assumptions. Like BFGS algorithm,
MM subspace methods use a memory of previous estimates
so as to accelerate the convergence.

In Section 2, we show how Problem (1) can be refor-
mulated in a learning context. The MM strategy which is
proposed in this work is described in Section 3.1. In Sec-
tion 3.2, we give the form of the resulting recursive algorithm
and, in Section 3.3, we evaluate its computational complexity.
In Section 4, we show the good performance of the proposed
stochastic Majorize-Minimize Memory Gradient (3MG) al-
gorithm for solving a two-dimensional  lter identi cation
problem. Some conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

In a learning context, functionF can be replaced by a se-
quence(Fn )n > 1 of stochastic approximations of it, which are
de ned as: for everyn 2 N� ,

(8h 2 RN ) Fn (h) =
1

2n

nX

k=1

ky k  X >
k hk2 + 	( h)

=
1
2

� n  r >
n h +

1
2

h> R n h + 	( h)

(6)

where� n , r n , andR n are the following classical sample esti-
mates of%, r , andR :

� n =
1
n

nX

k=1

ky k k2 (7)

r n =
1
n

nX

k=1

X k y k (8)

R n =
1
n

nX

k=1

X k X >
k : (9)

Our objective in the next section will be to propose an ef cient
method for minimizingFn , for everyn 2 N� .

3. PROPOSED METHOD

3.1. Majorization property

At each iterationn 2 N� , we propose to replaceFn by a
surrogate function� n (�; hn ) based on the current estimate
hn (computed at the previous iteration). More precisely, a
tangent majorant function is chosen such that

(8h 2 RN ) Fn (h) 6 � n (h ; hn ) (10)

Fn (hn ) = � n (hn ; hn ): (11)

For the so-de ned MM strategy to be worthwhile, the sur-
rogate function has to be built in such a way that its mini-
mization is simple. For this purpose, we will assume that the
regularization function	 has the following form:

(8h 2 RN ) 	( h) =
1
2

h> V0h v>
0 h+

SX

s=1

 s(kVsh vsk)

(12)
wherev0 2 RN , V0 2 RN � N is a symmetric positive semi-
de nite matrix, and, for everys 2 f 1; : : : ; Sg, vs 2 RPs ,
Vs 2 RPs � N , and s : R ! R. In addition, the following
assumptions will be made:

Assumption 1.

(i) R + V0 is a positive de•nite matrix.

(ii) For everys 2 f 1; : : : ; Sg,  s is a lower-bounded dif-
ferentiable function andlim t ! 0

t 6=0

_ s(t)=t 2 R, where _ s

denotes the derivative of s.

(iii) For every s 2 f 1; : : : ; Sg,  s(p :) is concave on
[0; + 1 [.

(iv) There exists� 2 [0; + 1 [ such that(8s 2 f 1; : : : ; Sg)
(8t 2]0; + 1 [) 0 6 � s(t) 6 � , where(8t 2 [0; + 1 [)
� s(t) = _ s(t)=t.1

These assumptions are satis ed by a wide class of func-
tions 	 , in particular quadratic regularization functions,
`2  `1 functions, and various forms of smooth`2  `0

functions [6].
Note that, for everyn 2 N� , the gradient ofFn is given

by

(8h 2 RN ) r Fn (h) = A n (h)h  cn (h) (13)

1The function is extended by continuity whent = 0 .



where

A n (h) = R n + V0 + V > Diag
 
b(h)

�
V 2 RN � N (14)

cn (h) = r n + v0 + V > Diag
 
b(h)

�
v 2 RN (15)

V = [ V >
1 : : : V >

S ]> 2 RP � N (16)

v = [ v>
1 : : : v>

S ]> 2 RP (17)

with P = P1 + � � � + PS , andb(h) =
 
bi (h)

�
16 i 6 P 2 RP

is such that(8s 2 f 1; : : : ; Sg) (8p 2 f 1; : : : ; Psg)

bP1 + ��� + Ps  1 + p(h) = � s(kVsh  vsk): (18)

We have then the following result:

Proposition 1. Under Assumptions 1(ii)-1(iv), for everyn 2
N� andh 2 RN , a tangent majorant ofFn at h is

(8h0 2 RN ) � n (h0; h) = F n (h) + r Fn (h)> (h0  h)

+
1
2

(h0  h)> A n (h)(h0  h)

(19)

whereA n (h) is given by(14).

The proposed MM subspace algorithm consists of de n-
ing the following sequence of random vectors(hn )n > 1:

(8n 2 N� ) hn +1 2 arg min
h 2 span D n

� n (h ; hn ) (20)

where spanD n is the vector subspace delineated by the
columns of matrixD n 2 RN � M n , andh1 has to be set to an
initial value. For example, we can choose, for everyn 2 N� ,

D n =

(
[ r Fn (hn ); hn ; hn  hn  1] if n > 1
[ r Fn (h1); h1] if n = 1

(21)

which yields the 3MG algorithm. Note that a similar choice
of subspace can be found in optimization algorithms such as
TWIST [21]. A common assumption for subspace algorithms
which will be adopted subsequently is thatr Fn (hn ) belongs
to spanD n .

3.2. Recursive MM strategy

By setting, for everyn 2 N, hn +1 = D n un whereun is an
RM n -valued random vector, we deduce from (13), (19) and
(20) that

un = B y
n D >

n

 
A n (hn )hn  r Fn (hn )

�

= B y
n D >

n cn (hn ) (22)

where
B n = D >

n A n (hn )D n (23)

and (�)y is the pseudo-inverse operation. It is important to
note that, asB n is of dimensionM n � M n whereM n is small

(typically M n = 3 ), this pseudo-inversion is not costly. This
constitutes the main advantage of the proposed approach.

Let us now introduce the intermediate variables:

(8n 2 N� ) D R
n = R n D n 2 RN � M n (24)

D V0
n = V0D n 2 RN � M n (25)

D V
n = V D n 2 RP � M n (26)

D A
n = A n +1 (hn +1 ) D n 2 RN � M n : (27)

By using (8), (9), (13) (14), (15), (22), (23), and by perform-
ing recursive updates of(r n )n > 1 and(R n )n > 1, Algorithm 1
is obtained.

Algorithm 1 Stochastic MM subspace method

r 0 = 0; R 0 = 0
Initialize D 0; u0

h1 = D 0u0; D R
0 = 0; D V0

0 = V0D 0; D V
0 = V D 0

For all n = 1 ; : : :6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

r n = r n  1 + 1
n (X n yn  r n  1)

cn (hn ) = r n + v0 + V > Diag
 
b(hn )

�
v

D A
n  1 = (1  1

n )D R
n  1 + 1

n X n (X >
n D n  1)

+ D V0
n  1 + V > Diag

 
b(hn )

�
D V

n  1
r Fn (hn ) = D A

n  1un  1  cn (hn )
R n = R n  1 + 1

n (X n X >
n  R n  1)

SetD n usingr Fn (hn )
D R

n = R n D n ; D V0
n = V0D n ; D V

n = V D n

B n = D >
n

 
D R

n + D V0
n + V > Diag

 
b(hn )

�
D V

n

�

un = B y
n D >

n cn (hn )
hn +1 = D n un

3.3. Complexity

SinceM n is small, the complexity of a direct implementa-
tion of this algorithm, evaluated in terms of multiplications at
iterationn, is of the order of

N
 
P(3M n + 1) + N (4M n + Q)=2

�

whenN is large. However, this complexity can be reduced
if matricesV0 or V have a speci c structure. In particular,
if they are null matrices, the algorithm has the same order
of complexity as the classical recursive least squares algo-
rithm. Since the criterion then reduces to a quadratic function,
Sherman-Morrison-Woodbury formula can be used in order to
calculate iteratively the minimizer on the whole space in an
ef cient manner. The computational complexity can also be
reduced by taking advantage of the speci c form of matrices
(D n )n > 1. For example, if the subspace is chosen according
to (21), for everyn > 1,

D V
n = [  V r Fn (hn ); V hn ; V hn  V hn  1]: (28)



On the other hand,

V hn = V D n  1un  1 = D V
n  1un  1; (29)

which shows that a recursive formula holds to compute the
last two components ofD V

n in (28). The initial complexity of
3P N multiplications is thus reduced to(P + 3) N . Similar
recursive procedures can be employed to compute(D V0

n )n> 1

and(D R n
n )n> 1.

4. APPLICATION TO 2D FILTER IDENTIFICATION

4.1. Problem statement

We now demonstrate the ef ciency of the proposed stochas-
tic algorithm in a  lter identi cation problem. Consider the
following observation model:

y = S(h)x + w ; (30)

wherex 2 RL andy 2 RL represent the original and de-
graded version of a given image,h 2 RN is the vector-
ized version of an unknown two-dimensional blur kernel,S
is the linear operator which maps the kernel to its associated
Hankel-block Hankel matrix form, andw 2 RL represents
a realization of an additive noise. When the imagesx andy
are of very large scale,  nding an estimatebh 2 RN of the
blur kernel can be very memory consuming, and one can ex-
pect good estimation performance by learning the blur kernel
through a sweep of blocks of the dataset.

Let us denote byX 2 RL � N the matrix such that
S(h)x = Xh . Then, we propose to de nebh as a solution
to (1), where, for alln 2 N� , yn 2 RQ andX >

n 2 RQ� N ,
are subparts ofy and X , respectively, corresponding to
Q 2 f 1; : : : ; Lg lines of this vector/matrix. For the regu-
larization term	 , we consider, for everys 2 f 1; : : : ; N g
(S = N ), an isotropic penalization on the gradient between
neighboring coef cients of the blur kernel, i.e.,Ps = 2 and

Vs =
h
� h

s � v
s

i >
, where� h

s 2 RN (resp.� v
s 2 RN ) is the

horizontal (resp. vertical) gradient operator applied at pixel s.
The smoothness ofh is then enforced by choosing, for every
s 2 f 1; : : : ; Sg and u 2 R,  s(u) = �

p
1 + u2=� 2 with

(�; � ) 2 ]0; + 1 [2. Finally, in order to guarantee the existence
of a unique minimizer, the strong convexity ofF is imposed
by takingv0 = 0 andV0 = � I N , where� is a small positive
value (typically� = 10  10).

4.2. Simulation results

The original image, presented in Figure 1(a), is theSan
Diego image, of size1024 � 1024 pixels, available at
http://sipi.usc.edu/database/. The original blur kernelh
with size21� 21, and the resulting blurred image, which has
been corrupted with a zero-mean Gaussan noise with stan-
dard deviation� = 0 :03 (blurred signal-to-noise ratio equal

to 24.8 dB), are displayed in Figures 1(b)(c). Figure 1(d)
presents the estimated kernel, using the proposed stochastic
algorithm with the subspace given by (21). Parameters(�; � )
were adjusted so as to minimize the normalized root mean
square estimation error, here equal to0:087. Figure 2 illus-
trates the variations of the estimation error with respect to
the computation time for the proposed algorithm, the SGD
algorithm with a decreasing stepsize proportional ton 1=2,
and the regularized dual averaging (RDA) method with a con-
stant stepsize from [15], when running tests on an Intel(R)
Core(TM) i7-3520M @ 2.9GHz using a Matlab 7 implemen-
tation. Note that for the latter two algorithms, the stepsize
parameter was optimized manually so as to obtain the best
performance in terms of convergence speed. Finally, note
that stochastic 3MG and RDA algorithms were observed to
provide asymptotically the same estimation quality, whatever
the size of the blocks. In this example, the best trade-off in
terms of convergence speed is obtained forQ = 64 � 64.

(a) (b)

(c) (d)

Fig. 1. (a) Original image. (b) Blurred and noisy image. (c)
Original blur kernel. (d) Estimated blur kernel, with relative
error0:087.

5. CONCLUSION

In this work, we have proposed a stochastic MM Memory
Gradient algorithm for on-line penalized least squares estima-
tion problems. The method makes it possible to use large-size
datasets the second-order moments of which are not known a
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Fig. 2. Comparison of stochastic 3MG algorithm (solid
black line), SGD algorithm with decreasing stepsize/ n1=2

(dashed-dotted red line) and RDA algorithm with constant
stepsize (dashed blue line).

priori. We have shown that the proposed algorithm is of the
same order of complexity as the classical RLS algorithm and
that its computational cost can be even reduced by taking ad-
vantage of speci•c forms of the search subspace. The good
numerical performance of the proposed algorithm has been
demonstrated in the context of 2D •lter identi•cation for large
size images. In our future work, a theoretical analysis of the
convergence properties of the proposed method will be con-
ducted. In addition, we plan to apply this technique to system
identi•cation or inverse modeling using adaptive •lters.
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