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ABSTRACT

In many applications, problems widely considered rely on
finding the minimizer of a sum of smooth and/or non smooth
convex functions and/or involving linear operators. In the
last years, primal-dual methods have shown their efficiency
to solve such minimization problems, their main advantage
being their ability to deal with linear operators with no need
to invert them. However, when the problem size becomes in-
creasingly large, the implementation of these algorithms can
be complicated, due to memory limitation issues. A simple
way to overcome this difficulty consists in splitting the orig-
inal numerous variables into blocks of reduced dimension,
corresponding to the available memory, and to process sepa-
rately each of them. In this paper we propose a random block-
coordinate primal-dual algorithm, converging almost surely
to a solution of the considered minimization problem. More-
over, an application on a very large 3D mesh denoising is pro-
vided to show the numerical efficiency of our method.

Index Terms— convex optimization, nonsmooth opti-
mization, primal-dual algorithm, stochastic algorithm, paral-
lel algorithm, random block-coordinate approach, proximity
operator, mesh denoising.

1. INTRODUCTION

In the last years, the curse of dimensionality has become a
prevailing concern in a number of application areas. One can
mention large-scale graph processing applications, as well as
3D imaging, or machine learning using huge databases. Not
only the number of data is becoming increasingly large, but
there is also a need to process them with fast methods. Many
of the problems of interest are actually related to optimization
tasks involving cost functions which are often nonsmooth so
as to leverage sparsity assumptions on the sought variables.
In this context, two basic ideas can be exploited in order to
lower the memory requirements and computational cost in
high-dimensional optimization methods.
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The first one consists in splitting the data into different
blocks of reduced dimension which can be processed sepa-
rately at a given time. By doing so, data lengths of the order
of the blocksize can be kept in RAM. Early techniques for
processing large-size images, which are actually still used by
practitioners, partition the target image into non-overlapping
blocks, each of them being dealt with in an independent man-
ner. The drawback of these approaches is that they introduce
artifacts around the borders of the blocks. These undesirable
effects can be alleviated by considering overlapping blocks
and/or by making use of a post-processing smoothing step,
but the optimality of the resulting solution is no longer guar-
anteed. Note that block-coordinate strategies can also lead to
an improvement in terms of convergence speed as they may,
for instance, yield better adapted values of the algorithmspa-
rameters (e.g. larger stepsize values in the case of a gradient
algorithm) [1,2].

The second idea for efficiently solving large-scale opti-
mization problems is to make use of massively parallel com-
puting architectures. Due to the current technological limi-
tations in terms of CPU speed, designing parallel algorithms
allowing to benefit from multicore systems or GPGPU boards
often is of paramount importance to obtain fast implementa-
tions. For this reason, in the last decade, a great deal of ef-
fort has been devoted to proximal splitting algorithms where
the computation of the proximity operators and the gradient
steps can be performed in a parallel manner [3–6]. These
algorithms can be viewed as extensions of the parallel al-
gorithms developed earlier for solving convex admissibility
problems [7,8]. Although they are able to solve more general
convex optimization problems, they are less flexible in the
sense that they require the proximity or gradient operatorsto
be all activated at each iteration, whereas parallel projection-
based methods make it possible to activate only a subset of the
required projections. If the number of available processors is
less than the number of operations to be performed in paral-
lel, most of the existing parallel proximal algorithms become
then of limited interest.

In this work, we overcome the latter limitation by propos-
ing a block-coordinate algorithm applicable to a wide array
of convex optimization problems. The blocks are activated in



a stochastic manner, and the computations can be performed
in a parallel manner by adjusting the computation load to the
number of available processors. Our approach is grounded
on recent developments concerning primal-dual convex op-
timization methods [9–13] as well as on novel convergence
results on stochastic fixed point algorithms [14].

This paper is organized as follows. Section 2 gives the
formulation of the considered optimization problem and in-
troduces our notation. Section 3 describes the proposed
random block-coordinate primal-dual proximal splitting al-
gorithm, discusses its merits with respect to existing methods,
and states its convergence properties. Section 4 illustrates the
good performance of our method on a 3D mesh denoising
problem. Finally, some conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

In this paper, we consider a quite general form of convex op-
timization problems which can be expressed as

minimize
x1∈H1,...,xp∈Hp

p∑

j=1

hj(xj) +

q∑

k=1

(gk � lk)

( p∑

j=1

Lk,jxj

)

(1)

where for everyj ∈ {1, . . . , p}, Hj is a separable real Hilbert
space,hj : Hj → ]−∞,+∞] is a convex differentiable func-
tion with a Lipschitzian gradient, for everyk ∈ {1, . . . , q},
Gk is a separable real Hilbert space,gk ∈ Γ0(Gk)

1, lk ∈
Γ0(Gk) is assumed to be strongly convex, andLk,j is a linear
bounded operator fromHj toGk satisfying

Lk =
{
j′ ∈ {1, . . . , p}

∣∣ Lk,j′ 6= 0
}
6= ∅, (2)

L
∗
j =

{
k′ ∈ {1, . . . , q}

∣∣ Lk′,j 6= 0
}
6= ∅. (3)

We recall that theinf-convolution of two functions g : H →
]−∞,+∞] andl : H →]−∞,+∞] is defined asg� l : y 7→
infz∈H

(
g(z) + l(y − z)

)
. The identity element of the inf-

convolution is the indicator function of{0}, denoted byι{0}.
Then, if l = ι{0}, g� l reduces tog.

In the remaining of the paper, it is assumed that Problem
(1) has at least one solution and that one of the following two
technical conditions holds:
• (∀j ∈ {1, . . . , p}) (∀k ∈ {1, . . . , q}), (xj)16j6p 7→∑p

j=1 Lk,jxj is surjective.

• (∀k ∈ {1, . . . , q}) eithergk or lk is real-valued.
The dual problem associated to Problem (1) is then given by

minimize
v1∈G1,...,vq∈Gq

p∑

j=1

h∗j

(
−

q∑

k=1

L∗k,jvk

)

+

q∑

k=1

(
g∗k(vk) + l∗k(vk)

)
. (4)

1Γ0(Gk) denotes the set of proper lower-semicontinuous convex func-
tions fromGk to ]−∞,+∞].

This dual problem involves theFenchel-Legendre conjugate
functions of (hj)16j6p, (gk)16k6q and (lk)16k6q, here de-
noted by a star symbol. We recall that the conjugatef∗ of a
proper lower-semicontinuous convex functionf is defined as
(∀x ∈ H) f∗(x) = supy∈H (〈y | x〉 − f(y)).

Subsequently, we denote byF (resp.F∗) the set of solu-
tions to Problem (1) (resp. (4)).

3. BLOCK-COORDINATE PRIMAL-DUAL
ALGORITHM

3.1. Proposed algorithm

We propose a primal-dual proximal splitting approach for
solving Problem (1). Our method is based on a randomized
block-coordinate strategy, described in Algorithm 1. For con-
ciseness, in the remainder of this work,H = H1 ⊕ · · · ⊕ Hp

denotes the Hilbert direct sum of(Hj)16j6p. A generic ele-
ment ofH is denoted byx = (xj)16j6p with, for everyj ∈
{1, . . . , p}, xj ∈ Hj . Similarly, we defineG = G1 ⊕ · · · ⊕Gq

with generic elementv = (vk)16k6q where, for every
k ∈ {1, . . . , q} vk ∈ Gk. Moreover,D = {0, 1}p+q

r {0}
is the set of nonzero binary vectors of lengthp + q. Finally,
the proximity operator of a proper lower-semicontinuous
functionf defined on a Hilbert spaceH, relative to the metric
induced by some strongly positive self-adjoint bounded linear
operatorU : H → H, is defined as

proxUf : H → H : x → argmin
y∈H

f(y) +
1

2
〈x− y | U(x− y)〉,

where〈· | ·〉 is the scalar product endowingH. We refer the
reader to [15] for further mathematical details.

We now discuss the main advantages offered by the pro-
posed algorithm:

(i) In view to accelerate the practical convergence speed of
the method, we modify the underlying space metrics in
a similar manner than in [16, 17], by introducing precon-
ditioning linear operators(Wj)16j6p and (Uk)16k6q.
These operators are assumed to be bounded, self-adjoint
and strongly positive.

(ii) A random block alternating strategy over indicesj ∈
{1, . . . , p} andk ∈ {1, . . . , q} is adopted in order to take
advantage of the block structure of the problem. More
precisely, at each iterationn of Algorithm 1, (εj,n)16j6p

(resp. (εp+k,n)16k6q) are Boolean variables signaling
the primal variables(xj,n)16j6p (resp. dual variables
(vk,n)16k6q) that are activated. In addition, at iteration
n, for everyj ∈ {1, . . . , p}, the Booleanηj,n is chosen
such thatsj,n and yj,n are updated only if there exists
somek ∈ {1, . . . , q} such that bothεp+k,n andLk,j are
nonzero.

(iii) For every j ∈ {1, . . . , p}, andk ∈ {1, . . . , q}, the ran-
dom variables(aj,n)n∈N, (bk,n)n∈N and(ck,n)n∈N model



some possible errors arising in the computation of∇hj ,

prox
U

−1

k

g∗
k

and∇l∗k, respectively. The algorithm is robust
to such stochastic errors as soon as they fulfilled, almost
surely (a.s.),
∑

n∈N

√
E(‖an‖2 |Xn) < +∞,

∑

n∈N

√
E(‖bn‖2 |Xn) < +∞,

∑

n∈N

√
E(‖cn‖2 |Xn) < +∞,with Xn = (xn′ ,vn′)06n′6n.

Algorithm 1 Randomized Block Primal-Dual Algorithm.

Initialization: Let (λn)n∈N be a sequence in]0, 1] such
thatinfn∈N λn > 0.
Letx0, (an)n∈N beH-valued random variables, and letv0,
(bn)n∈N, and(cn)n∈N beG-valued random variables.
Iterations:
for n = 0, 1, . . .

Select randomly a vectorεn = (εi,n)16i6p+q ∈ D

for j = 1, . . . , p

ηj,n = max
{
εp+k,n

∣∣ k ∈ L
∗
j

}

sj,n = ηj,n

(
xj,n −Wj

(
∇hj(xj,n) + aj,n

))

yj,n = ηj,n
(
sj,n −Wj

∑

k∈L∗

j

L∗k,jvk,n
)

for k = 1, . . . , q

uk,n = εp+k,n

(
prox

U
−1

k

g∗
k

(
vk,n + Uk

∑

j∈Lk

Lk,jyj,n

−Uk

(
∇l∗k(vk,n) + ck,n

))
+ bk,n

)

vk,n+1 = vk,n + λnεp+k,n(uk,n − vk,n)
for j = 1, . . . , p

pj,n = εj,n

(
sj,n −Wj

∑

k∈L∗

j

L∗k,juk,n

)

xj,n+1 = xj,n + λnεj,n(pj,n − xj,n).

3.2. Link with existing works

It can be noticed that, whenp = 1 and(∀n ∈ N) P[ε1,n =
1] = 1, Algorithm 1 is related to a number of existing primal-
dual algorithms :
(i) The deterministic algorithms proposed in [18, 19] are re-

covered whenq = 1, (∀n ∈ N) P[ε2,n = 1] = 1, H1 and
G1 are finite dimensional spaces,l1 = ι{0}, W1 = τ I and
U = ρI, with (τ, ρ) ∈]0,+∞[2, no relaxation (λn ≡ 1)
or a constant one (λn ≡ λ < 1) is performed, and in the
absence of errors.

(ii) The deterministic fully parallel algorithm proposed in [9,
Prop. 4.3] is recovered when(∀n ∈ N) (∀k ∈ {1, . . . , q})
P[εp+k,n = 1] = 1, and the errors(an)n∈N, (bn)n∈N and
(cn)n∈N are deterministic and summable.

(iii) A different stochastic block primal-dual algorithm was re-
cently proposed in [20] but this algorithm requires more

restrictive convergence conditions than those provided in
the next section.

3.3. Convergence result

The following theorem, deduced from [21], guarantees that
the sequence(xn,vn)n∈N asymptotically provides a pair of
primal-dual solutions to the problems (1)-(4).

Theorem 3.1. Suppose that the following assumptions hold:
(i) (εn)n∈N are identically distributed D-valued random

variables and, for every n ∈ N, εn and Xn are indepen-
dent. In addition, (∀j ∈ {1, . . . , p}) P[εj,0 = 1] > 0, and
(∀k ∈ {1, . . . , q}) εp+k,n = max

{
εj,n

∣∣ j ∈ Lk

}
.

(ii) For every j ∈ {1, . . . , p} and for every k ∈ {1, . . . , q},

hj ◦W
1/2
j and l∗k ◦ U

1/2
k have Lipschitzian gradients with

respective constants (µ−1
j , ν−1

k ) ∈ ]0,+∞[
2. Moreover,

min
{
µ, ν

(
1− ‖U1/2

LW
1/2‖2

)}
> 1/2, (5)

where L : (xj)16j6p 7→
(∑p

j=1 Lk,jxj
)
16k6q

,

U : (vk)16k6q 7→ (U1v1, . . . ,Uqvq), W : (xj)16j6p 7→
(W1x1, . . . ,Wpxp), µ = min{µ1, . . . , µp}, and ν =
min{ν1, . . . , νq}.

Then, (xn)n∈N converges weakly a.s.to an F-valued random
variable, and (vn)n∈N converges weakly a.s.to an F

∗-valued
random variable.

Note that in the case when, for everyk ∈ {1, . . . , q}, lk =
ι{0}, the condition (5) simplifies into

‖U1/2
LW

1/2‖ < 1 and µ > 1/2. (6)

Finally, let us emphasize that the assumption we make on
(εn)n∈N is very weak, so that our method benefits from a very
high flexibility on the way to select the blocks. Basically,
almost any arbitrary random sampling strategy fits into our
framework.

4. APPLICATION TO 3D MESH DENOISING

4.1. Problem statement

We focus on the inverse problem of restoring the spatial posi-
tionsx = (xXj , xYj , x

Z
j )16j6p ∈ R

p×3 of the nodes of a large
3D mesh from measurementsz = (zX , zY , zZ) corrupted
with an i.i.d. noise. The topology of the observed meshz

is assumed to be similar to the one ofx (i.e. both meshes have
the same adjacency matrix).

We propose to define the estimatex̂ ∈ R
p×3 of x as a

solution to Problem (1) [22], where:
• The sum overj ∈ {1, . . . , p} of functions (hj)16j6p

represents the data fidelity term incorporating some in-
formations regarding the observation model. For ev-
ery xj = (xDj )D∈{X,Y,Z} ∈ R

3, we sethj(xj) =



(a) (b) (c) (d)

Fig. 1. (a) Original meshx, (b) noisy meshz with MSE = 2.89 × 10
−6, and reconstructed meshesx̂ using (c) Algorithm 1 with MSE =

8.09× 10
−8 and (d) Laplacian smoothing with MSE =5.23× 10

−7.

∑
D∈{X,Y,Z} Ψ(xDj −zDj ), whereΨ is the Huber function

with thresholdδ > 0, defined as

(∀ξ ∈ R) Ψ(ξ) =

{
1
2ξ

2 if |ξ| 6 δ,

δ|ξ| − 1
2δ

2 otherwise.
(7)

Note thatΨ is 1-Lipschitz differentiable.

• The sum overk ∈ {1, . . . , q}, with q = 2p, of functions
(gk)16k6q models a hybrid regularization term introduc-
ing some a priori knowledge on the sought node positions
(we takelk ≡ ι{0}). First, following [23,24], we promote
the smoothness of the restored mesh by defining, for all
x ∈ R

p×3, for all k ∈ {1, . . . , p}, gk(
∑p

j=1 Lk,jxj) =

β
∑

D∈{X,Y,Z} ‖(x
D
k − xDi )i∈Vk

‖2,with β > 0, andVk

the set of neighbors of nodek. Moreover, we constrain
the spatial positions of the estimated nodes to belong
to the box with bounds(xDmin, x

D
max)D∈{X,Y,Z} ∈ R

3×2

by choosing, for allx ∈ R
p×3, for all k ∈ {1, . . . , p}

gp+k(
∑p

j=1 Lk,jxj) =
∑

D∈{X,Y,Z} ι[xD
min

,xD
max

](x
D
j ).

4.2. Implementation

In our simulations, we simply take(∀j ∈ {1, . . . , p}) Wj ≡
τ I, Uj ≡ ρ1I andUp+j ≡ ρ2I, where(τ, ρ1, ρ2) are positive
constants satisfying Condition (6).

At each iterationn ∈ N, for everyk ∈ {1, . . . , q}, we
need for updating variableuk,n to compute the proximity op-
erator ofg∗k. Since, for everyj ∈ {1, . . . , p}, gj identifies

with a separable sum ofℓ2 norms,proxUj

gj has an explicit

form [4], from which the expression ofprox
U

−1

k

g∗
k

can be de-
duced by applying the Moreau decomposition theorem [25].
Moreover the proximity operators of functionsgp+j relative
to the metric induced byUp+j correspond to the projection
onto[xXmin, x

X
max]× [xYmin, x

Y
max]× [xZmin, x

Z
max].

Note that the inner loops overj ∈ {1, . . . , p} andk ∈
{1, . . . , q} in Algorithm 1 can be computed in a parallel man-
ner.

Finally, when one deals with very large amount of data,
memory requirement becomes a more limiting factor than the
computational time. This implies that only a limited num-
ber of variables can be handled at each iteration of the algo-

rithm. At each iterationn ∈ N, the(εj,n)16j6p must thus be
chosen so as to satisfy some budget constraint, which can be
expressed as

∑p
j=1 εj,n = r, with r 6 p. To this aim, we pro-

pose to divide the considered mesh intop/r non overlapping
blocks, and to set(εj,n)16j6p,n∈N so as to activate a single
block chosen randomly at every iteration.

4.3. Numerical results

To show the performance of the proposed method, we con-
sider a large 3D mesh, namely the standardDragon available
at http://graphics.stanford.edu/data/3Dscanrep/, with p =
100250 nodes and301207 edges, displayed in Figure 1(a).
The positions of the original mesh are corrupted through a
Gaussian mixture noise model. The resulting observed mesh
z is displayed in Figure 1(b). The restored mesh obtained us-
ing Algorithm 1, withλn ≡ 1, is represented in Figure 1(c).
We choose the regularization parameters(β, δ) so as to min-
imize its Mean Square Error (MSE). For comparison, Fig-
ure 1(d) displays the estimated mesh obtained using Lapla-
cian smoothing [26].

Figure 2 illustrates the time necessary to reach the stop-
ping criterion‖xn − x̂‖ 6 10−3 ‖x̂‖, wherex̂ has been pre-
computed using a large number of iterations, as a function of
the number of blocksp/r. The memory space required for
running the algorithm in Matlab R2013a is also reported. As
one could expect, the best reconstruction time (equals to5 s.)
is obtained forr = p, i.e. with a deterministic strategy. The
choice of smaller blocks leads to a decrease of the occupied
memory, at the price of a decrease of the convergence speed.
A major advantage of our method is that it allows the user
to select the random sampling strategy leading to a minimal
reconstruction time, without exceeding the available memory
of its own computer architecture.

5. CONCLUSION

In this paper, we proposed a random block-coordinate version
of a primal-dual algorithm for solving minimization problems
involving convex (non) differentiable functions and linear op-
erators, whose convergence is established. Our approach gen-
eralizes existing primal-dual methods, by allowing to update



10
0

10
1

10
2

10
3

0
150
300

600

1200

2400

T
im

e
(s
.)

p/r

50

55

60

65

70

M
em

o
ry

(M
b
)

Fig. 2. Reconstruction time (circles) and required memory (squares)
for several block numbersp/r.

randomly, at each iteration, only a subset of the complete iter-
ate. This is particularly useful for the resolution of largescale
problems with limited allocated memory. The good perfor-
mance of our method has been illustrated through an applica-
tion on a large 3D mesh denoising problem.
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