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ABSTRACT The first one consists in splitting the data into different
In many applications, problems widely considered rely Onblocks of reduced dimension which can be processed sepa-

finding the minimizer of a sum of smooth and/or non smoothratmy ata given time. By doing so, data lengths of the order

convex functions and/or involving linear operators. In theOf the blocksize can be kept in RAM. Early techniques for

last years, primal-dual methods have shown their efficiencgocessmg large-size images, which are actually stikluse

RN . . ractitioners, partition the target image into non-ovepia
to solve such minimization problems, their main advantag locks. each o?‘ them being degalt withgin an indeper\f?gntgman—

being their ability to deal with linear operators with no dee : .
to invert them. However, when the problem size becomes iaer. The drawback of these approaches is that they introduce

creasingly large, the implementation of these algorithars c artifacts around the _borders of the_ blO.CkS' These l_mdéeirab
be complicated, due to memory limitation issues. A simplee‘mfeCtS can be_allewated by considering _overlappmg tock
way to overcome this difficulty consists in splitting thegpri and/or by ’.“ak'.”g use of a p‘?St'prOC"tSS'F‘g smoothing step,
inal numerous variables into blocks of reduced dimensionbUI the optimality of the resulting solution is no longer gua

corresponding to the available memory, and to process Sepgrjteed. Note that block-coordinate strategies can alsottea

rately each of them. In this paper we propose a random blocl%)n !mp;roveme_ntlénbtet:ms gf c;);;/ergienceofstr;]eedl as .tth?: may.,
coordinate primal-dual algorithm, converging almost sure rinstance, yieid betier adapted values € algorithais

to a solution of the considered minimization problem. More_rame.ters (e.g. larger stepsize values in the case of a gtadie
over, an application on a very large 3D mesh denoising is proé—llgor'thm) [1.2]. ) . ) i
vided to show the numerical efficiency of our method. _ The second |de_a for efficiently solvmg_ large-scale opt-
mization problems is to make use of massively parallel com-
Index Terms— convex optimization, nonsmooth opti- puting architectures. Due to the current technological-lim
mization, primal-dual algorithm, stochastic algorithray@-  tations in terms of CPU speed, designing parallel algorithm
lel algorithm, random block-coordinate approach, progmi allowing to benefit from multicore systems or GPGPU boards
operator, mesh denoising. often is of paramount importance to obtain fast implementa-
tions. For this reason, in the last decade, a great deal of ef-
fort has been devoted to proximal splitting algorithms veher
the computation of the proximity operators and the gradient

steps can be performed in a parallel manner [3-6]. These

In the last years, the curse of dimensionality has become 30ori : .
. . L algorithms can be viewed as extensions of the parallel al-
prevailing concern in a number of application areas. One cap

mention large-scale graph processing applications, asawel gorithms developed earlier for solving convex admisgipili

3D imaging, or machine learning using huge databases. Ngtroblems [7,8]. Although they are able to solve more general

. S . ?onvex optimization problems, they are less flexible in the
only the number of data is becoming increasingly large, busense that they require the proximity or gradient operdtors
there is also a need to process them with fast methods. Ma yred b yorg P

n . . . e
. " Il h h llel
of the problems of interest are actually related to optitidra e all activated at eac lteration, whereas parallel phoec

; X . : based methods make it possible to activate only a subset of th
tasks involving cost functions which are often nonsmooth sg " L . .
required projections. If the number of available processor

as tq leverage sparsity _as_sumptions on the S.OUth varjableigss than the number of operations to be performed in paral-
In this context, two basic ideas can be exploited in order t?el most of the existing parallel proximal algorithms be
lower the memory requirements and computational cost irﬁwén of limited interest
high-dimensional optimization methods. ) i oo

g P In this work, we overcome the latter limitation by propos-
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1. INTRODUCTION




a stochastic manner, and the computations can be performé&tiis dual problem involves thEenchel-Legendre conjugate

in a parallel manner by adjusting the computation load to théunctions of (h;)1<;<p. (8k)1<k<q @and (lx)1<k<4, here de-

number of available processors. Our approach is groundetbted by a star symbol. We recall that the conjugétef a

on recent developments concerning primal-dual convex opproper lower-semicontinuous convex functiois defined as

timization methods [9-13] as well as on novel convergencgvx € H) f*(x) = sup ¢y ({y | x) — f(y)).

results on stochastic fixed point algorithms [14]. Subsequently, we denote IBy(resp. F*) the set of solu-

This paper is organized as follows. Section 2 gives theions to Problem (1) (resp. (4)).

formulation of the considered optimization problem and in-

troduces our notatiqn. Sef:tion 3 descripes the_p_roposed 3. BLOCK-COORDINATE PRIMAL-DUAL

random block-coordinate primal-dual proximal splitting a ALGORITHM

gorithm, discusses its merits with respect to existing imesh

and states its convergence properties. Section 4 illesttae 3 1 Proposed algorithm

good performance of our method on a 3D mesh denoising

problem. Finally, some conclusions are drawn in Section 5. We propose a primal-dual proximal splitting approach for
solving Problem (1). Our method is based on a randomized

2. PROBLEM FORMULATION b-IOCk'Coor-dinate Strategy, descr-ibed in Algorlthm 1. Famc

ciseness, in the remainder of this wokk,= H, @ --- @ H,

In this paper, we consider a quite general form of convex opdenotes the Hilbert direct sum 6fl;)1<;<,. A generic ele-

timization problems which can be expressed as ment ofH is denoted by = (x;)1<;<, With, for every; €
{1,...,p},x; € H;. Similarly, we defineG = G, ®--- ® G,

o P 4 P with generic elemenv = (vi)i1<k<, Where, for every
N rsoxr T ;hi(xﬂ') +’;(g’fmlk)<ZL’“xjxﬂ’> ke {l,...,q} vi € Gg. MoreoverD = {0,1}?*+7 < {0}

is the set of nonzero binary vectors of length- ¢. Finally,
(1) the proximity operator of a proper lower-semicontinuous
where for everyj € {1,...,p}, H, is a separable real Hilbert functionf defined on a Hilbert spads, relative to the metric
spaceh;: H; — ]—o0, +0o0] is a convex differentiable func- induced by some strongly positive self-adjoint boundeeidin
tion with a Lipschitzian gradient, for evely € {1,...,q}, operatolU: H — H, is defined as
Gy is a separable real Hilbert spagg, € I'o(Gp)!, I € 1
I'o(Gr) is assumed to be strongly convex, dnd; is a linear proxf H — H: x — argmin f(y) + 5 —(x—y|U(x—y)),

bounded operator fromi; to G, satisfying yeH
Li={j €{1,...,p} | Liy #0} # o, (2)  where(- | ) is the scalar product endowirtfy We refer the
L} = (K efl,....q} ‘ Ly #0} # 2. ©) reader to [15] for further mathematical details.

_ _ _ We now discuss the main advantages offered by the pro-
We recall that thenf-convolution of two functions g: H —  posed algorithm:

| — 00, 4+0o0] andl: H —] — oo, +o0] is defined ag Ol: y —
inf, 1 (g(z) + I(y — z)). The identity element of the inf-
convolution is the indicator function 0}, denoted by ¢, .
Then, ifl = 10y, g0l reduces te.

In the remaining of th_e paper, it is assumed that P_roblem These operators are assumed to be bounded, self-adjoint
(1) has at least one solution and that one of the following two

. " and strongly positive.
technical conditions holds: (i) A ) g)bllp ot " rat e
Vi€ {1...., vk e {1.... A ([ random block alternating strategy over indicgse
* (Z% Lk{ s éﬁr)je(ctive { D Kiissso {1,...,p}andk € {1,...,q} is adopted in order to take
J=1 I . ' _ advantage of the block structure of the problem. More
o (Vke{l,...,q}) eitherg, orly is real-valued. precisely, at each iteratiomof Algorithm 1, (£;.,)1<j<p
The dual prOblem associated to Problem (1) is then given by (resp_ (Ep—&-k:,n)lgkgq) are Boolean variables Signa”ng
» q the primal variables(xj,n)lgjgp (resp. _QUaI va_riable_s
minimize Z h;f ( _ Z Lt ij> (vk,n)1<k<q) that are activated. In add|t|0n,_ at iteration
V1€Gy,...,vgEGy £ ' n, for everyj € {1,...,p}, the Booleam,,, is chosen

(i) In view to accelerate the practical convergence speed of
the method, we modify the underlying space metrics in

a similar manner than in [16, 17], by introducing precon-

ditioning linear operator§W; )<<, and (Ux)i<r<q-

such thats; , andy;, are updated only if there exists

q
+ Z gi(vie) +15(vi). (@) somek € {1,...,q} such that botl,, , andL, ; are

P nonzero.
1T (Gy) denotes the set of proper lower-semicontinuous convex furldll) For everyj € {1,...,p}, andk € {1,...,q}, the ran-

tions fromGy, to ] —oo, +-00]. dom variablega; »)nen, (bk,n)nen and(cy,n)nen Mmodel



some possible errors arising in the computatiorvof;,

—1

prox:lf and VI3, respectively. The algorithm is robust

restrictive convergence conditions than those provided in
the next section.

k
to such stochastic errors as soon as they fulfilled, almost

surely (a.s.),

> VE(laal?1X0) < +oo, Y VE([bal2]Xn) < oo,

neN neN

Z V E(HCWH2 |xn) < +007W|th xn = (mn’avn’)Ogn/gn

neN

Algorithm 1 Randomized Block Primal-Dual Algorithm.
Initialization: Let (\,),en be a sequence ifd, 1] such
thatinf,,cy A, > 0.

Letxg, (a,)nen beH-valued random variables, and tef,
(by)nen, and(e;, )nen be G-valued random variables.

Iterations:
forn=0,1,...
Select randomly a vectar,, = (¢;.n)1<i<p+q € D
foryj=1,....,p

Nin =max {eppn | k€L

Sjn = Njm (xj,n — W, (Vhj(z),) + aj,n))
yj7n = ,'77777’ (Sj)n - WJ Z L;::)jvk;)n)

i kel

ork=1,...,q

U
Uk,n = Ep+k,n (prOng (Uk,n + Uk § I—k,jyj,n
JELk
~U (T (0hn) + b)) + b )
L Vkn+1 = Vkn + )\n5p+k,n(uk,n - Uk,n)
orj=1,...,p
*
Pjn = Ejn <Sj7n -W; > Lk,jukm/)
kG]LJ’f
L @jin+1 = Tjn + A€jin(Djn — Tjn)-

3.2. Link with existing works

It can be noticed that, whem = 1 and(¥n € N) Ple;,, =
1] = 1, Algorithm 1 is related to a number of existing primal-
dual algorithms :

3.3. Convergence result

The following theorem, deduced from [21], guarantees that
the sequencéx,,, v, ),cn asymptotically provides a pair of
primal-dual solutions to the problems (1)-(4).

Theorem 3.1. Suppose that the following assumptions hold:
(i) (en)nen are identically distributed D-valued random
variables and, for every n € N, ¢,, and X,, are indepen-
dent. In addition, (Vj € {1,...,p}) Ple; o = 1] > 0, and
(Vk e {1,...,q}) eptr,n = max {Ejm ’ je ]Lk}.
Forevery j € {1,...,p} andfor every k € {1,...,q},
h; o W;/2 and [} o U,lc/2 have Lipschitzian gradients with
respective constants (115", v ") € 0, +oo[*. Moreover,

(i)

min {M,V (1 - ||U1/2LW1/2||2) } >1/2, (5)

where L: (Xj)lgjgp —
U: (vi)icksg = (Uivi, o Ugvg)s W (X5)1<5<p
(Wixq, ..., Wpx,), = min{pq,...,pu,}, and v
min{ry,...,v4}.
Then, (x,,)nen converges weakly a.s.to an F-valued random
variable, and (v,,),cn converges weakly a.s.to an F*-valued
randomvariable.

)

Note that in the case when, for evernye {1, ...
L0}, the condition (5) simplifies into

yq) e =

|UY2LWY?| <1 and > 1/2. (6)

Finally, let us emphasize that the assumption we make on
(en)nen is very weak, so that our method benefits from a very
high flexibility on the way to select the blocks. Basically,
almost any arbitrary random sampling strategy fits into our
framework.

4. APPLICATION TO 3D MESH DENOISING

4.1. Problem statement

(i) The deterministic algorithms proposed in [18, 19] are ré \yq tocys on the inverse problem of restoring the spatial-posi

covered whery = 1, (Vn € N) Ple2,, = 1] =1, H; and
G, are finite dimensional spacés,= ¢(p;, W; = 7l and
U = pl, with (7, p) €]0,+oc[?, no relaxation ,, = 1)
or a constant one\(, = A < 1) is performed, and in the
absence of errors.

(i) The deterministic fully parallel algorithm proposed [,
Prop. 4.3]is recovered whehn € N) (Vk € {1,...,¢})
Plep+k.n = 1] = 1, and the errorg$a,, ) nen, (by)nen and
(¢n)nen are deterministic and summable.

(iif) A different stochastic block primal-dual algorithmas re-

cently proposed in [20] but this algorithm requires more

tionsx = (3, %) ,%7)1<j<p € RP*? of the nodes of a large

3D mesh from measurements= (zX,z¥,z%) corrupted

with an i.i.d. noise. The topology of the observed mesh
is assumed to be similar to the onexdi.e. both meshes have
the same adjacency matrix).

We propose to define the estimatec RP*3 of x as a
solution to Problem (1) [22], where:

e The sum overj € {1,...,p} of functions (h;)i<;<p
represents the data fidelity term incorporating some in-
formations regarding the observation model. For ev-
ery x; = (X‘7<D)D€{X7y7z} S R3, we Sethj(Xj) =



© G

(b)

Fig. 1. (a) Original meskx, (b) noisy meshe with MSE =2.89 x 10~%, and reconstructed mest®sising (c) Algorithm 1 with MSE =
8.09 x 10~% and (d) Laplacian smoothing with MSE523 x 107",

(@)

2 pe{x,v.2} U (xP —zF), whereW is the Huber function  rithm. At each iteratiom € N, the(e;.,)1<;<, Must thus be
with threshold > 0, defined as chosen so as to satisfy some budget constraint, which can be
expressed aEle €jn =1, Withr < p. To this aim, we pro-
pose to divide the considered mesh ipfe: non overlapping
blocks, and to sefs; ,,)1<<p.nen SO as to activate a single
block chosen randomly at every iteration.

& if €] <0,
8l¢| — 262 otherwise.

(VE€eR) () = { (7)

Note thatV is 1-Lipschitz differentiable.

e The sumovek € {1,...,q}, with ¢ = 2p, of functions ~ 4.3. Numerical results
(gr)1<k<q Models a hybrid regularization term introduc-
ing some a priori knowledge on the sought node position
(we takel, = 1(qy). First, following [23, 24], we promote

the smoothness of the restored mesh by defining, for a . D
x € R forall k € {1,....p}, gk(Zé-):l Lisx;) = 00250 nodes and01207 edges, displayed in Figure 1(a).

i The positions of the original mesh are corrupted through a
82 peix,v.z) 1" = xP)icv, [[2with B >0, andVi  Gaussian mixture noise model. The resulting observed mesh
the set of neighbors of node Moreover, we constrain s gisplayed in Figure 1(b). The restored mesh obtained us-
the spatial positions of the estimated nodes to belonghg Algorithm 1, with\,, = 1, is represented in Figure 1(c).
to the bo>_< with bound$x£irl’?(ﬁax)De{X>Y~,Z} € R We choose the regularization parametgtsd) so as to min-
by choosing, for alk € RP*®, forall k € {1,....p}  imize its Mean Square Error (MSE). For comparison, Fig-

To show the performance of the proposed method, we con-
Zidera large 3D mesh, namely the standardgon available
t http://graphics.stanford.edu/data/3Dscanrep/with p =

gk (=1 LiiXi) = Yoperxyzy tx?,, <. OF)- ure 1(d) displays the estimated mesh obtained using Lapla-
cian smoothing [26].
4.2. Implementation Figure 2 illustrates the time necessary to reach the stop-

ping criterion||z,, — || < 1073 ||Z||, wherez has been pre-
computed using a large number of iterations, as a function of
the number of blockg/r. The memory space required for
running the algorithm in Matlab R2013a is also reported. As
one could expect, the best reconstruction time (equéistd

is obtained for = p, i.e. with a deterministic strategy. The
choice of smaller blocks leads to a decrease of the occupied
- memory, at the price of a decrease of the convergence speed.
form [4], from which the expression qfrong can be de- A major advantage of our method is that it allows the user
duced by applying the Moreau decomposition theorem [25]t0 select the random sampling strategy leading to a minimal
Moreover the proximity operators of functiogg. ; relative reconstruction time, without exceeding the available mgmo

to the metric induced by, ; correspond to the projection Of its own computer architecture.

onto[xX, xX ] x [xX. ,x¥. ] x[xZ. ,xZ. ]

In our simulations, we simply takg/j € {1,...,p}) W, =
7l, U; = p1landU,; = pol, where(r, p1, p2) are positive
constants satisfying Condition (6).

At each iteratiomm € N, for everyk € {1,...,q}, we
need for updating variable;, ,, to compute the proximity op-
erator ofg;. Since, for everyj € {1,...,p}, g; identifies

with a separable sum of norms,proxgj has an explicit

min’ “max . min’ “max min’ “max
Note that the inner loops over € {1,...,p} andk € 5. CONCLUSION
{1,...,q}in Algorithm 1 can be computed in a parallel man-
ner. In this paper, we proposed a random block-coordinate versio

Finally, when one deals with very large amount of data,of a primal-dual algorithm for solving minimization prolhe
memory requirement becomes a more limiting factor than théwvolving convex (non) differentiable functions and linexp-
computational time. This implies that only a limited num- erators, whose convergence is established. Our approaeh ge
ber of variables can be handled at each iteration of the alg@ralizes existing primal-dual methods, by allowing to upda
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