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1. NMR Relaxation

How to identify the molecular structure of a material by observing its dynamics?

1.1 Principle
Z e Static field By = nuclear spin alignment
B (z axis)
WT) e Short magnetic pulse B; = flip angle ®

T T 0 . _
e Relaxation: return to the equilibrium state

1. Longitudinal dynamics (z axis)

= T relaxation: x1(71) = M,(11)

2. Transverse dynamics (xy plane)

= T, relaxation: xo(7) = My,(71)
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1) One-dimensionnal analysis

v. Find T1 or T2 relaxation time constants distribution
zi(7:) = /ki(TiaTz’) S(T;)dT; — y=Ks+e

with k1(71) = 1—(1—cos ®)e~ /71 in T} relaxation and ks (72) = e~72/T2 for T, relaxation

Longitudinal relaxation signal T1 distribution
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2) Two-dimensional analysis [English 1991]

v" Apply two successive magnetic pulses with a predefined time spacing 7;
r(T1,T2) = //k1(T1,T1)S(T1,T2)7€2(T2,T2) d1y d1s
Y:K15K5+E<:>y: (K1®K2)S—|—€

v" Find the joint distribution S(71,75) of the relaxation time constants

T1-T2 data
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1.2 Relaxation time estimation ... problem statement

e |ll-conditioned matrices K, KK5. The singular values of K1 and K5 decay exponentially

< Direct inversion yields unstable results

e Large-size problem in the case of T1-T2 analysis
® Typical setup

1. my = 50 repetition time values 7
2. mo = 5000 echo time instants 7
3. N1 = Ny = 300 values of T} and 15

< Matriz K := K, ®@ K4 of size myma X N1 Ny contains over 100 elements !!
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1.3 Relaxation time estimation ... regularization framework

e [ he relaxation time distribution is a solution of

min (F(s) = 5K -yl + 5R())

SERN+
where R(s) is a convex and differentiable regularization criterion
— Solve a non-negativity constrained optimization problem
— Avoid the storing of matrix K in the 2D case
e Previous works
1. Data compression and Tikhonov regularization [Venkataramanan, 2002]

2. Maximum entropy and truncated Newton algorithm [Chouzenoux, 2010]

e Qur proposal

Adopt and adapt an inexact primal-dual interior-point method
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2. Primal-dual interior point optimization

2.1 Problem formulation

S

\ - 7

min F'(s) s.t. s =0 and mfxg(k) st. A>=0

G 7

. Vv v
Primal problem Dual problem

where g(A) is the Lagrange dual function: g(\) = inf(’) (L(s) := F(s) — ATs)
S=

1) Optimality conditions (Karush Kuhn Tucker)
(C1) VF(s) —A=0, (C2)As=0, (C3)s>=0, (C4H x>0

But in practice, take:
(C2) As = p,

with p > 0 a perturbation parameter such that lim px = 0.

k— o0
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2) Interior point-algorithm ... four steps [Armand, 2000]

0 Calculate the primal and dual directions (d; , d3))

di|
dy|

< System of large size ... infeasible in 2D NMR !

A Newton step on (C1) and (C2) gives:

)\k — VF(Sk)
My — AkSk

VQF(SR) —TI
AkI Diag(sk)

[1  Find a step-size ay, by a backtracking linesearch and Armijo’s condition on:

N
F.(8,A) = F(s)+ ATs — g, > log(\,s2)
n=1

[1 Update primal and dual variables: (3k+1 = Sk + apdi, Ap11 = A + akd2>

T
A[C_|_18k—|—1

[1  Decrease the perturbation parameter value: pxy1 =06
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3) Primal and dual direction calculation
A variable substitution gives: d; = Diag(s) ™' [, — Apsi — Ard;], and
\VZF(sy,) + Diag(sg) " Ag]dj, = =V F(sy) + Diag(sy)

where VQF(Sk) = (KIKl) % (K;KQ) + V2R(Sk)

< Still remains a huge system in 2D relaxation

< Approximate resolution using a preconditioned conjugate gradient algorithm

1. Perform TSVDs of K1 and K5 to construct an efficient preconditioner,

2. Calculate with a low complexity Hessian-vector and Preconditioner-vector products,

3. See the paper for the stopping criteria.

< The convergence proof is established when dj is obtained by an approximate

resolution.
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3. llustration

3.1 Synthetic data

e Mixture of two Gaussian distributions, T1-T2 distribution T1-T2 data
3
2.5
e (m1 = 50, my=5000) values of (1q, ™), I
'ﬂ',. 1.5
e A flip angle ® = 90° in the T1-T2 model, O: °
0 5
o _ _ _ 0 05 1 Tl.[ss] 2 25 3 ©[s] T, [s]
e Additive Gaussian noise with SNR=20 dB. 2
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% Reconstruction
1. (N1 =300, No = 300) with uniform spacing
2. Use a Tikhonov regularization criterion R(s) = ||s||3

3. Set the regularization parameter 5 = 100 (unsupervised tuning [Chouzenoux, 2010])

Estimated S(Tl’TZ) sl(Tl): Est.(-) vs. Ref. (—-)
3 2
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4. Computation time: (20 it., 1s) in 1D and (36 it., 55 s) for 2D reconstruction.
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3.2 Real data: Analysis of an organic matter (apple)

e Measurements: (m; = 50, my = 10000)
e Reconstruction for Ny = N, = 300

e The flip angle is set to & = 85°

e T1-T2 Computation time: 260 s for 61

Iterations.

e T1 (resp. T2) computation time: 0.3 s for

21 iterations (resp. 9 s for 35 iterations).
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Est.T1 and T2 distributions
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Summary

& Main contributions

e Address the inverse problem of 2D NMR relaxation times estimation

e Propose an efficient optimization algorithm for a differentiable convex regularization
e Exploit de forward model structure to reduce the computational complexity.

® Future investigations

1. Estimate the flip angle

2. Gaussian noise assumption is not valid on the nuclear spin module

3. Compare with alternative constrained optimization methods.
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