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ABSTRACT

Mass spectrometry (MS) is a fundamental technology of analytical
chemistry for measuring the structure of molecules, with many appli-
cation fields such as clinical biomarker analysis or pharmacokinet-
ics. In the context of proteomic analysis with MS, the superposition
of the isotopic patterns of different proteins, in various charge-states
produces MS spectra difficult to decipher. The complexity of the
pattern models and the large size of the data again increase the diffi-
culty of the analysis step. In this paper, we propose to formulate the
problem of proteins characterization as the estimation of a positive-
valued sparse signal thanks to a dictionary-based approach relying
on the protein averagine concept. A proximal primal-dual splitting
convex optimization method is considered to solve the resulting vari-
ational problem. Moreover, the large size of the dictionary matrix is
circumvented by proposing a suitable block circulant approximation
of it, allowing to limit the computational burden of the method. Nu-
merical experiments on synthetic and real MS datasets illustrate the
good performance of our approach.

Index Terms— Mass spectrometry, Proteomic Analysis, Spar-
sity, Dictionary-based strategy, Primal-Dual algorithm.

1. INTRODUCTION

Mass Spectrometry (MS) is a powerful tool used for robust, accu-
rate, and sensitive detection and quantification of molecules of in-
terest. Thanks to its sensibility and selectivity, MS is widely used
in proteomics such anti-doping, metabolomics, medicine or struc-
tural biology [1, 2]. In particular, it has applications in clinical re-
search [3], personalized medicine [2], diagnosis process and tumours
profiling [4] and pharmaceutical quality control [5]. In a MS ex-
periment, the raw signal arising from the molecule ionization in an
ion beam is measured as a function of time via Fourier Transform-
based measures such as Ion Cyclotron Resonance (FT-ICR) and Or-
bitrap. A spectral analysis step is then performed, possibly involv-
ing a series of operations/algorithms [6, 7] to improve the quality of
data, transforming the time-domain data into the frequency domain.
The frequency spectrum is then converted to the so-called MS spec-
trum through a calibration function. This spectrum presents a set of
positive-valued peaks distributed according to the charge state and
the isotopic distribution of the studied molecule, generating several
typical patterns in the signal. The goal is then to determine from
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this observed pattern distribution the most probable chemical com-
position of the sample, through the determination of the monoiso-
topic mass, charge state and abundance of each present molecule.
Unfortunately, the superposition of the isotopic patterns in different
charge-states can produce MS spectra difficult to decipher, and the
complexity of the problem again increases with the number and the
size of molecules. Proteins, the family of molecules that will be
targeted in this work, present a particular challenge since they are
rather large molecules with wide isotopic patterns, ionized by Elec-
troSpray Ionization (E.S.I) leading to a mixture of several charge
states. Additionally, the usual high resolution and thus very large
size of the measurements in this context (usually> 500k data point)
make their analysis cumbersome. Peak-peaking and pattern recog-
nition approaches are the most common methods currently used for
MS spectrum analysis in the context of proteins samples [8, 9, 10].
Although these methods may be quite fast, they suffer from slow
performance, instability and sensitivity to high noise level since they
all require a preprocessing step to threshold the data. In particular,
their performance can be highly degraded when a strong peak over-
lap masks the position of other peaks, which usually happens when
several distinct proteins and/or several charge states are in presence
[9].

In this paper, we propose a new dictionary-based approach to
solve efficiently and automatically this problem. We start by in-
troducing in Section 2 the chemical problem statement, the mea-
surement model and our dictionary-based strategy. In Section 3,
we formulate the selection of the dictionary elements as the reso-
lution of a convex non-smooth optimization problem, and describe a
primal-dual proximal algorithm to solve it efficiently. In Section 4,
we discuss the practical implementation of our method, and propose
a block-circulant approximation of the dictionary matrix to reduce
the computational cost of the processing. Finally, an illustration of
the good performance of our method for recovering synthetic and
real data in the context of Mass Spectrometry is presented in Section
5.

2. PROBLEM STATEMENT

2.1. Some reminders on chemistry

An atom is the basic unit of matter and the smallest defining struc-
ture of elements, defined in the periodic table with a symbol and
a nucleon number. An atom can be present under different forms
with different numbers of neutron, called isotopes. Each stable iso-
tope is present in the nature with a specific abundance. Each unique
molecule presents thus a specific mass in Daltons, depending on the
sum of the masses of each of its constituting isotopes and on its
charge state z.



When a large number of samples with various charge states is
considered, for instance when measuring a MS spectrum, a distribu-
tion of peaks, named multi-charged isotopic pattern, is observed on
the mass over charge (i.e. (m/z)) axis, following the composition
of the elementary distributions of all atoms [11, 12] and their charge
distribution [13]. For a fixed charge state z > 0, the smallest (m/z)
position of the peaks is associated with the most abundant isotope
mass and allows to determine the monoisotopic mass at charge z.
This quantity is independent on the relative isotopic abundances, and
helps in a non-ambiguous determination of the molecule. However,
for large molecules, the probability of having a single charge state
and no isotopes is extremely low so that the peak intensity at the
monoisotopic masses can be vanishingly small and their direct de-
tection impossible.

The purpose of this work is to provide an automatic tool to
characterize monoisotopic mass and charge state quantities from
the measured MS data, in the context of proteomic analysis, i.e.
when the chemical sample to be studied is made of several proteins.
We recall that a protein is a large molecule having the generic for-
mula CNCHNHONONNNSNS where (NC , NH , NO, NN , NS) are
respectively the number of Carbon C, Hydrogen H, Oxygen O, Ni-
trogen N and Sulfur S. The most probable isotopes of the latter
atoms, along with their mass at the neutral state and their associated
abundances, are given in Table 1. Note that for z > 0, as it is the
case in MS data, the mass values are all shifted proportionally to z
and to the mass of the hydrogen adduct ions [13].

Atom Mass (in Dalton) Relative Abundance
12C 12 (by definition) 0.9893
13C 13.0033548378 0.0107
1H 1.00782503207 0.999885
2H 2.0141017778 0.000115
16O 15.99491461956 0.99757
17O 16.99913170 0.00038
18O 17.9991610 0.00205
14N 14.0030740048 0.99636
15N 15.0001088982 0.00364
32S 31.97207100 0.9499
33S 32.97145876 0.0075
34S 33.96786690 0.0425

Table 1: Isotopic mass and natural abundance of atoms found in
proteins [14, 15].

2.2. Observation model

Let us consider a given chemical sample, composed of P differ-
ent proteins with monoisotopic mass miso

p ∈ (0,+∞), charge state
zp ∈ N∗ and abundance ap ∈ (0,+∞), for p ∈ {1, . . . , P}. The
acquired MS spectrum y can be modeled as the weighted sum of
each individual isotopic pattern y =

∑P
p=1 apD(miso

p , zp)+nwhere
n models the acquisition noise and possible errors arising from the
spectral analysis preprocessing step. The measurements are taken on
a discrete grid of (m/z) values with size M , so that the observation
model finally reads:

y =

P∑
p=1

apd(miso
p , zp) + n (1)

with y ∈ RM , d(miso
p , zp) ∈ [0,+∞[M and n ∈ RM . The aim

of the MS spectrum analysis is then to reconstruct the set of coef-
ficients (ap,m

iso
p , zp)1≤p≤P from y. The lack of knowledge of the

complicated and nonlinear function d(m, z) and the large value of
M present the main locks of this problem.

2.3. Proposed dictionary-based strategy

The mass distribution function D(m, z), at a given (m, z) is actually
easy to evaluate from the molecular formula using a recursive pro-
gram [11]. We thus propose to adopt a dictionary-based approach
for solving the estimation problem, under the assumption that we
know approximately the range of mass and charge for the P proteins
present in the sample. To do so, let us define a search grid, with
size T := MZ which defines M possible values of isotopic masses
and Z possible values for the charges. From this grid, we build the
dictionary D ∈ RM×T so that each column i ∈ {1, . . . , T} of D
is d(mi, zi) where (mi, zi) is the couple charge-mass in the i-th
position of the grid. Then, the problem is reformulated as:

y = Dx + n′ (2)

where x is a sparse vector with positive entries, for which the P
non-zeros coefficients allow to determine the isotopic mass and
charge state of each protein, along with their abundance. Moreover,
n′ = n + e models the acquisition noise and possible errors arising
from the spectral analysis and discretization steps (e → 0 with high
accuracy).

3. OPTIMIZATION STRATEGY

3.1. Variational formulation

Because of the presence of noise in y and the ill-conditioning of
the dictionary matrix D, direct inversion is not suitable to find an
estimate of x. We propose instead to employ a penalized approach
that defines the estimate x̂ ∈ RT as a solution of the constrained
minimization problem:

minimize
x∈RT

Φ(x) subject to ‖Dx− y‖ ≤ η (3)

where Φ : RT 7→ (−∞,+∞] is a proper, lower semicontinuous,
convex regularization function used to enforce positivity and spar-
sity on the solution, and η > 0 is a parameter that depends on the
noise characteristics. When P is unknown, as it is usually the case
in practical MS experiments, a simple choice for Φ is to consider,
for every x ∈ RT , Φ(x) =

∑T
i=1 max(0, xi). More sophisticated

penalties can also be used, involving for instance block-sparsity reg-
ularizers [16], or entropy-like priors [17].

3.2. Primal-dual optimization strategy

To resolve Problem (3), we propose to use the proximal Primal-Dual
Splitting algorithm from [18] which is an efficient algorithm for con-
vex optimization. In particular, this approach allows to treat effi-
ciently the non-necessarily differentiable function Φ, and does not
require any inversion step on the linear operator D [19].

Hereabove, proxτΦ(x), x ∈ RT , τ > 0, states for the proximity
operator of function τΦ at x [20] which is defined as the unique min-
imizer of τΦ + 1/2‖ ·−x‖2 [21]. Moreover, the projection operator
proj‖·−y‖≤η is defined, for every (y, v) ∈ (RN )2, as:

proj‖·−y‖≤η(v) = v + (v− y) min

(
η

‖v− y‖ , 1
)
− y. (4)

The convergence of the iterates (x(k))k∈N to a solution of Problem
(3) is ensured, according to [18, 22].



Algorithm 1 Primal-Dual Splitting Algorithm

Initialization
u(0) ∈ RM , x(0) ∈ RT
0 < σ < ‖D‖2/τ, ρ ∈ (0, 2), τ > 0
Minimization
For k = 0, 1, . . .

x̃(k) = proxτΦ(x(k−1) − τD>(u(k−1)))

v(k) = u(k−1) + σD(2x̃(k) − x(k−1))

ũ(k) = v(k) − σproj‖·−y‖≤η(v(k)/σ)

x(k) = x(k−1) + ρ(x̃(k) − x(k−1))

u(k) = u(k−1) + ρ(ũ(k) − u(k−1))

4. PRACTICAL IMPLEMENTATION

We now discuss the practical implementation of our approach in the
applicative context of MS spectrum analysis. In particular, the ques-
tion of the computation and storage of matrix D is raised, and an
approximated strategy is proposed for dealing with very large di-
mension.

4.1. Dictionary construction

As already mentioned, for any given (m, z), it is possible to estimate
precisely the isotopic distribution D(m, z) of an average protein hav-
ing a monoisotopic mass m and charge state z using the so-called
averagine model [23]. Given a range of masses [mmin,mmax] and
charges [zmin, zmax], we define a regular grid:

(∀i ∈ {1, . . . , T}) mi = mmin + (j − 1)mmax, (5)
zi = zmin + (`− 1)zmax, (6)

with the convention i = `M + j, j ∈ {1, . . . ,M} and ` ∈
{1, . . . , Z}. Then, the i-th column of D is taken as d(mi, zi) which
corresponds to a sampled version of D(m, z) on the mass grid with
size M . Here, we propose to perform this sampling in the Fourier
domain, and we normalize the result, so as to preserve the sum of
squared amplitudes from D(m, z) to d(m, z).

4.2. Circulant approximation

Mass spectrometry aims at providing a very high mass accuracy, so
that the value of M can be very large. Even for small Z, the large
number of columns of D presents a computational challenge as large
memory resources may be needed to store this matrix. In order to
avoid such memory issues, we propose an approximation D of D
whose structure will allow the use of Fourier transform operations
for computing the products of D and D> with vectors. Our ap-
proximation relies on the important facts that (i) the isotopic pat-
terns for similar mass values mainly differs by a simple shift of
peaks positions, (ii) these patterns are sparse with non-zero elements
located in a limited range of indexes near the monoisotopic mass
value. Therefore, an alternative to the storage of isotopic patterns
for each mass/charge couple that was proposed in Section 4.1, is
to decompose the mass axis into windows onto which the isotopic
pattern is assumed to be constant up to a circular shift. Let us in-
troduce the notation D = [D1 |. . .|D` |. . .|DZ ] where, for every
` ∈ {1, . . . , Z}, D` ∈ RM×M maps for the dictionary associated to
charge zmin + (` − 1)zmax. Let L ≤ M the chosen window width
and ds,` the average isotopic pattern for a mass within the range
[(s − 1)L + 1, sL], and a fixed charge state zmin + (` − 1)zmax.

We propose to approximate each D` by the following block diagonal
(BDiag) matrix made of M/L blocks assumed to be circulant (Circ)
matrices with first line ds,`, s ∈ {1, . . . ,M/L}:

D` = BDiag
([

Circ
(
ds,`
)]

1≤s≤M/L

)
. (7)

As a consequence, for every charge value, the products D` and D>`
with vectors can be easily computed using Fourier operations. Under
this approximation, Algorithm 1 can still be used to estimate the
mass and charge positions, where D has now been replaced by D =[
D1 |. . .|D` |. . .|DZ

]
, and the norm of D is computed using power

iteration.

5. EXPERIMENTAL RESULTS

5.1. Synthetic data

In order to evaluate the performance of our method, we simulate two
synthetic sparse signals A and B. Signal A models a mono-charge
MS spectrum with M = 3000, Z = 1, zmin = zmax = 1 and
P = 10 proteins. Signal B represents a multi-charge MS spectrum
with M = 5000, containing Z = 3 charge values with zmin = 1,
zmax = 3, and P = 50 proteins. In both cases, mmin = 1000
Daltons, and mmax = 1100 Daltons. Noisy data are then created
using the linear model (2), where the noise is assumed to be zero-
mean Gaussian, i.i.d, with known standard deviation σ > 0. We
solve (3) with the penalty function Φ described in Section 3.1, and
η = θσ

√
M where θ > 0 is a weight closed to 1.

Tab. 2 presents the results obtained for several noise levels. The
quality of the results is evaluated in terms of signal to noise ratio
(SNR) in dB defined as 10 log10

(
‖x‖2/‖x̂− x‖2

)
, and in terms of

the number of recovered peaks P̂ . As one can observe, the exact dic-
tionary approach and its block-circulant approximation both allow to
recover the required number of peaks with good SNR values even for
high noise level. The reconstruction quality can also be confirmed
by a visual inspection of Fig. 1 which displays the input MS spec-
trum, the exact signal and the result of our method (using D or D) in
the case of the multi-charged dataset B, and σ = 10−2. Note that the
signals are represented here along the abscissa axis (m/z), which is
a standard representation in the context of MS. We also provide the
computation time when running our method on a Macintosh Mac Pro
Intel Xeon with a total of 8 cores, equipped with 12 GB of memory
and running MacOsX 10.7.5. Algorithm 1 is used with ρ = 1.99,
τ = ‖D‖−1, σ = 0.9τ , and it is stopped whenever the relative error
between two consecutive iterates is lower than 10−8. In our tests, a
maximum of 1000 iterations was sufficient to reach such precision.
As expected, when using the block-circulant approximation of the
dictionary matrix, the computation time depends on the value of L,
the fastest reconstruction being obtained with a large L. Moreover,
even if the reconstruction quality is slightly deteriorated, the SNR
values remain stable as soon as L is sufficiently large as it can be ob-
served on Fig. 2. According to our practical observations, the value
of Lmainly impacts on the peak intensity values, and has little effect
on the estimation quality of peak positions, which is of main inter-
est in the MS application. We also provide in Tab. 2 the memory
required for the storage of the dictionary elements when using the
exact matrix D. As expected, the memory requirement in that case
may be quite high, especially in the multi-charged case (dataset B).
In contrast, the block-circulant approximation we proposed allows
to avoid any dictionary storage, since the products with D and its
adjoint are performed using Fourier operators where the first lines of
each circulant term are computed on the fly.



Exact dictionary Block-circulant approximation
approach L = 2 L = 10 L = 50 L = 100

σ SNR Time P̂ Memory SNR Time P̂ SNR Time P̂ SNR Time P̂ SNR Time P̂
D

at
as

et
A

P=
10

1 15.07 10.18 10

72

15.05 15.16 10 11.31 3.31 10 13.88 0.95 10 11.37 0.61 10

0.1 35.09 10.40 10 34.98 15.22 10 31.95 3.32 10 32.60 0.27 10 32.28 0.24 10

0.01 38.38 10.46 10 34.33 15.14 10 34.44 3.35 10 34.92 0.94 10 36.91 0.61 10

D
at

as
et

B

P=
50

1 16.18 303.33 50

600

15.57 127.85 50 13.99 27.20 50 14.01 6.98 50 15.59 3.52 50

0.1 35.73 206.84 50 35.43 44.48 50 33.95 8.19 50 33.53 3.09 50 28.26 2.06 50

0.01 39.56 377.80 50 38.38 290.56 50 34.40 58.92 50 35.44 11.66 50 28.99 16.67 50

Table 2: SNR (in dB), computation time (in s), memory storage (in Mb) for matrix D and number P̂ of detected peaks for the restored signals
A and B for various values of noise level. Block-circulant approximation D is tested for four L values.

Fig. 1: Reconstruction results of the signal B with σ = 10−2: (top)
input data y, (bottom) exact spectrum (dots), restored spectrum with
exact dictionary (dashed line), and with its block-circulant approxi-
mation for L = 10 (asterisks).

Fig. 2: Reconstruction results of the signal A with σ = 10−2: SNR
of the restored spectrum using D for various values of L.

5.2. Real data

We also perform numerical tests on a real MS dataset mea-
sured on a Brucker Solarix 15 T, FT-ICR instrument with an
ESI source. The considered sample was constituted of 3µM
of the peptide EVEALEKKVAALESKVQALEKKVEALEHG-NH2
(C140H240N38O45) in its trimer form within 50 mM of NH4OAc,
acquired in native conditions. The input data is of size M =
8130981 with mmin = 153.57 Daltons, mmax = 4999.96 Dal-
tons, and Z = 5 with zmin = 1 and zmax = 5. Parameter η is set in
a similar manner than for the synthetic data, the noise level σ being
estimated from an empty frame of the measured signal.

Fig. 3(top) displays a zoom on the input signal y form/z within
[1890, 1920] Daltons. We also show on Fig. 3(bottom) the recovered

Fig. 3: Analysis of the real FT-ICR-MS spectrum of a peptide in
trimer form: (top) zoom on the acquired data; bottom) recovered
spectrum at z = 5 using block-circulant approximated dictionary
with L = 10.

signal along the monoisotopic mass axis, for the same mass range,
and z = 5 charge state. It is worth mentioning that, due to the very
large size of the dataset, such results were only made possible by the
block-circulant approximation we proposed, since the storage of a
dictionary would have required GigaBytes of memory. Here, the best
visual results were obtained using L = 10, with a processing time of
108 minutes. A major peak can be distinguished at m = 9526.439
Daltons which fits well with the theoretical monoisotopic mass of
the studied peptide equals to m = 9526.337 Daltons. A second
peak, shifted by -1 Dalton, is also observed, due to unavoidable grid
ambiguity. Finally, we observe a third important peak distant with
+21.959 Daltons of the main peak, which allows to identify the
sodium adduct (with theoretical relative position of +21.982 Dal-
tons), thus validating the faithfulness of our approach.

6. CONCLUSION

This work presents a new dictionary-based approach based on the av-
eragine function to solve the isotopic pattern analysis problem aris-
ing in Mass Spectrometry of proteins. We propose a sparsity-aware
variational strategy to determine the dictionary elements, associated
with a primal-dual splitting minimization strategy. To counteract
any computation burden, we propose a suitable block-circulant ap-
proximation of the dictionary. Our experimental results illustrate the
efficiency of our method to solve the MS problem. Future work will
address the extension of the approach to the processing of multi-
dimensional MS spectra [24, 25].
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