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ABSTRACT

Tomography is an image reconstruction task that may be
viewed as a linear inverse problem akin to deconvolution.
Recent progresses in optimization methods have made it
possible to formulate this task so that fewer projections and
higher amounts of noise can be dealt with, making use of
a-priori information and domain constraints. In this arti-
cle, we investigate 3MG, a new optimization method that is
highly flexible and effective. In particular, we propose and
compare convex and non-convex regularization potentials on
both synthetic and real images. We further investigate the
possibility to deal with continuous angular integration, i.e.
where projections rays are no longer straight lines, but cones.
This is encountered in a variety of real-life situations, but is
difficult or impossible to deal with exactly using traditional
reconstruction algorithms. We show that in this situation it
may be beneficial to acquire fewer projections than would be
required using classical methods.

Index Terms— Image Reconstruction, Tomography, Op-
timization, Spatial Regularization, Segmentation.

1. INTRODUCTION

X-ray tomography [1] reconstructs dense 3-D volumes of ob-
jects from a set of projections measured at different angles.
The measurementsy ∈ R

Q and the sought absorption image
x ∈ R

N obey the linear relation

y = Hx+w, (1)

wherew is the measurement noise, that we assume i.i.d.
Gaussian with varianceσ2. The tomography matrixH ∈
R

M×N is sparse and encodes the geometry of the measure-
ments. In this paper, we focus on the case whenH models
parallel projections of a 2-D objectx. Moreover, two dif-
ferent acquisition schemes, shown in Fig. 1, are compared.
In the discrete acquisition scheme (Fig. 1-(a)), measures are
acquired at fixed and regularly sampled rotational positions
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between the sample and the detector so thatHmn models
the intersection length between themth light-ray and the
nth pixel. In the continuous acquisition scheme, the detec-
tor is continuously moving while the measures are acquired
over an angular sector[θ, θ + ∆θ) (Fig. 1-(b)). The latter
configuration, which has been little-studied in tomographic
reconstruction literature, is nonetheless commonly used in
materials science to reduce acquisition time while retaining
a sufficient signal to noise ratio [2]. In such a model,Hmn

corresponds to the intersection area between themth angular
light-beam and thenth pixel. Let us callNθ the number of
different angular positions of the detector in Fig. 1 andL
the linear size of the detector; the size of the image is then
N = L2 and the number of measurementsQ = L × Nθ.
In practice, the angular positions are regularly distributed on
[0, π) for both schemes, so that, in the continuous acquisition
scheme,∆θ = π/Nθ.

θ

L
∫ θ+∆θ

θ

(a) Discrete model (b) Continuous model

Fig. 1. Considered tomographic acquisition models

Traditional reconstruction methods such as the Filtered
Back-Projection [3] require the linear system (1) to be suf-
ficiently determined for good results, i.e.,Nθ ∼ L. However,
several applications could benefit from a smaller number of
projections, either in order to reduce the total dose for med-
ical applications [4], or to reduce the total acquisition time
for in-situ experiments where the sample is evolving [5, 6].
The under-determinacy of Eq. (1) can be overcome by adding
supplementary constraints to the data-fidelity term, whichex-
press prior information onx. Tomographic reconstruction is
expressed as an optimization problem. Since many samples



consist of a limited number of phases, with known and near-
constant absorption characteristics, a common prior is to en-
courage piecewise-constant results. This can be achieved by
enforcing the sparsity of the image in a wavelet basis [7], or
of its vertical and horizontal gradients [8]. In order to use
convex optimization techniques, theℓ1 norm is often used as
the convex relaxation of theℓ0 norm encoding sparsity. As
far as gradient sparsity is concerned, a common strategy is to
minimize the total variation semi-norm of the image [7, 8].

In this work, we apply a recently-developed memory-
gradient algorithm [9] to the problem of tomographic re-
construction. The versatility of the algorithm allows us to
compare different types of spatial regularization, both convex
and non-convex. The paper is organized as follows: Sec-
tion 2 presents the penalized criterion we considered, and
introduces the memory-gradient algorithm. Then, Section 3
illustrates the applicability of this algorithm through a set of
experiments in image reconstruction.

2. PROPOSED RECONSTRUCTION METHOD

2.1. Penalized criterion

An efficient strategy to address the reconstruction problem
is to definex as a minimizer of an appropriate cost function
F (x). More specifically, we focus on the following penalized
least-squares criterion:

F (x) =
1

2
‖Hx− y‖2 +R(x), (2)

whereR is a regularization function incorporating a-priori as-
sumptions to guarantee the robustness of the solution with re-
spect to noise. A hybrid regularization functionR = R1+R2,
is considered. First, since in practice, a reasonable guessof
the dynamic range[xmin, xmax] of the expected absorption
image is available, we define:

R1(x) = η
∑N

n=1
d2[xmin,xmax]

(xn), (3)

whered[xmin,xmax] denotes the distance to the closed convex
interval [xmin, xmax], andη > 0. Note that, whenη goes
to infinity, R1 becomes the indicator function of the convex
domain[xmin, xmax]

N . Furthermore, in order to promote im-
ages formed by smooth regions separated by sharp edges, we
set

R2(x) =
∑N

n=1
ψ

(

√

(V h
nx)

2 + (V v
nx)

2

)

, (4)

where (V h
n )

⊤ ∈ R
N (resp. (V v

n )
⊤ ∈ R

N ) corresponds
to a horizontal (resp. vertical) gradient operator with zero-
boundaries assumption, andψ is a potential function fulfilling
the following conditions:

(i) ψ is a differentiable function.

(ii) ψ(
√
.) is concave on[0,+∞).

(iii) There existsω ∈ [0,+∞) such that(∀t ∈ (0,+∞))
0 ≤ ψ̇(t) ≤ ωt whereψ̇ is the derivative ofψ. In
addition,limt→0

t6=0

ω(t) ∈ R with ω(t) , ψ̇(t)/t.

Two main families of such functionsψ are commonly used
for image reconstruction, namelyℓ2-ℓ1 functions, i.e. con-
vex, continuously differentiable, asymptotically linearfunc-
tions with a quadratic behavior near 0 [10], andℓ2-ℓ0 func-
tions, i.e. asymptotically constant functions with a quadratic
behavior near 0 [11].

2.2. Majorize-Minimize Memory Gradient algorithm

The Majorize-Minimize Memory Gradient (3MG) algorithm
[9, 12] is suitable for the minimization of (2). It consists of
building a sequence(xk)k∈N

according to the following up-
date scheme:

xk+1 = xk +Dkuk, (5)

whereDk is the Memory Gradient set of directions:

Dk =

{

−∇F (x0) if k = 0
[−∇F (xk) xk − xk−1] if k > 0

(6)

anduk ∈ R
2 is a multivariate stepsize that aims at partially

minimizingu 7→ fk(u) = F (xk +Dku). The convergence
of the recursive update equation (5) requires the design of a
proper strategy to determine the stepsizeuk. The compu-
tation ofuk relies on the Majorization-Minimization (MM)
principle. Letx′ ∈ R

N . FunctionQ(.,x′) is said to be a
tangent majorantfor F atx′, if

(∀x ∈ R
N ) Q(x,x′) ≥ F (x) and Q(x′,x′) = F (x′).

Following [12], the following quadratic function is a convex
quadratic tangent majorant of (2) atx′,

(∀x ∈ R
N ) Q(x,x′) = F (x′) +∇F (x′)⊤(x− x′)

+
1

2
(x− x′)⊤A(x′)(x− x′),

if, for everyx ∈ R
N , A(x) ∈ R

N×N is the symmetric posi-
tive matrix:

A(x) = H⊤H + V h⊤Diag {b(x)}V h

+ V v⊤Diag {b(x)}V v + 2η I,

andb(x) ∈ R
N with bn(x) = ω

(

√

(V h
n x)2 + (V v

n x)2
)

.

The MM stepsize is then obtained by minimizing the quadratic
functionu 7→ Q(xk + Dku,xk), leading to the following
update rule:

uk = −
(

D⊤
k A(xk)Dk

)−1
D⊤

k ∇F (xk). (7)



The 3MG algorithm runs through steps (6)-(7) and (5) for
k > 0. The convergence of 3MG to a critical point of (2)
was established in [12], under mild assumptions on the pe-
nalization termR. In particular, some non-convex potential
functionsψ are suitable. In practice, the algorithm is run until
the following stopping criterion is fulfilled:

‖∇F (xk)‖/
√
N 6 ǫ, (8)

where, typically,ǫ = 10−4.

3. RESULTS AND DISCUSSION

3.1. Comparison of regularization strategies

We first consider a set of2 circular images (Fig. 2) in order
to compare the reconstruction results with both smooth con-
vex (SC)ℓ2-ℓ1 penalty and smooth non-convex (SNC)ℓ2-ℓ0
penalty, given, respectively, byψ(t) = λ

√

1 + t2/δ2, and
ψ(t) = λ

(

1− (1 + t2/2δ2)−1
)

, (λ, δ) > 0. Note that, when
δ → 0, the regularization term (4) with SC penalty becomes
the total variation [13].

Projections were acquired using the discrete acquisition
model from Fig. 1-(a), withL = 128 andNθ = 16, 32, 64
or 128 angle values. The image diameter is chosen equal to
the detector sizeL, so that the number of pixels to estimate is
given by:

N = Card
{

(i, j) ∈ Z
2 ; (i+ 1/2)

2
+ (j + 1/2)

2
6 L2/4

}

,

≈ L2π/4.

Reconstruction was performed forxmin = 0, xmax = 1, η =
104, parameters(λ, δ) were adjusted to maximize the Signal
to Noise Ratio (SNR) between the original imagex and the
reconstructed imagêx, defined as:

SNR= 20 log10 (‖x‖/‖x̂− x‖) . (9)

The 3MG algorithm was able to reach the stopping criterion
(8) in about 300 iterations. Computational time was around
10s, using the EPD 7.3 Python distribution on an IBM HX5
blade computer with four 1.86GHz CPUs and 144GB of
RAM running Linux CentOS 6.2. Fig. 3 shows the evolution
of the reconstruction error, evaluated in terms of SNR, as a
function of the undersampling rateNθ/L, for noise standard
deviationσ = 1 or 2, and both SC and SNC regularizations.
In Fig. 5-(a) we show the relative classification error obtained
after thresholding of the reconstructed binary images.

As expected, the reconstruction quality decreases with a
smaller number of projections. Reconstruction quality is bet-
ter for the binary image than with the natural image, proba-
bly because the former is piecewise-constant at a larger scale,
with all pixels saturating the interval constraint (3). Note that
SNC regularization leads to higher SNR than SC for the bi-
nary image, especially for high values ofNθ/L. On the other

(a) Binary image (b) Natural image

Fig. 2. Original images. The natural image is a phase-separated
barium borosilicate glass imaged at the ESRF synchrotron (courtesy
of David Bouttes).
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Fig. 3. Quality of reconstruction, in terms of SNR, for SC and SNC
potential functions,L = 128.

hand, SC regularization appears to yield better results forthe
natural image. Regarding segmentation, different behaviors
are observed: While for a low noise level (σ = 1), the SNC
strategy gives the best results, for higher noise level (σ = 2),
SC penalty leads to a smallest number of misclassified pixels.

The absolute reconstruction error|x̂ − x| is shown in
Fig. 4. No particular spatial structure is visible for the syn-
thetic image; because the non-convex penalization resultsin
an almost binary image, the main contribution to the error
comes from isolated pixels that are wrongly labeled (abso-
lute error of the order of 1). On the other hand, a systematic
error is present on the boundary of the domains for the natu-
ral image. The natural image was acquired with some phase
contrast [14, 15] at a synchrotron light source (ESRF), re-
sulting in narrow contrasted fringes along the domain bound-
aries. The reconstruction error is concentrated in these re-
gions where the gradient is larger.

We note that similar results to the SC penalty, both in
terms of SNR and segmentation error, were obtained with
a standard total-variation penalization associated with range
constraints on[xmin, xmax], the minimization of (2) being
performed in that case with the proximal-based algorithm
from [16].
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(a) Binary image (b) Natural image

Fig. 4. Noisy sinograms (top) and absolute reconstruction error
(bottom) using the discrete model,L = 256, Nθ/L = 1/4, σ = 2.
SNC (resp. SC) penalty is employed for the binary (resp. natural)
image.
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Fig. 5. Segmentation errors in the reconstruction of the binary im-
age, for the experiments settings of Sec. 3.1 (left) and Sec.3.2
(right).

3.2. Comparison of acquisition models

We now compare the results obtained with the discrete and
continuous acquisition models. To this end, synthetic acqui-
sitions were simulated from the two images of Fig. 2, for
L = 256, andNθ = 16, 32, 64, 128 or 256 projections. Due
to angular integration, for a given imagex, the energy ofHx

is L/Nθ times greater in the continuous case than in the dis-
crete case. Two scenarii were considered for the tuning of the
noise standard deviationσ for the continuous model: The first
strategy, denoted after by C1, is to consider the same valueσ
for both the discrete and continuous cases. It implies that the
input SNR is higher in the continuous case than in the discrete
case. It corresponds to high flux cases when the readout noise
dominates. The second strategy, denoted after by C2, is to in-
crease the value ofσ in the continuous case, so that the input
SNR is the same for both models. The reconstruction error as
a function ofNθ/L is illustrated on Fig. 6. The SC penalty
was used for the natural image, while SNC was chosen for
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Fig. 6. Quality of reconstruction, in terms of SNR, for discrete and
continuous acquisition models,L = 256.

the binary image. The noise standard noise deviation was set
to σ = 2 for the discrete case. For a constant noise level
on the measurements (model C2), we observe that continuous
acquisition degrades the reconstruction vs. the discrete case,
for both images. This can likely be attributed to the angular
integration which can be viewed as an averaging of neighbor-
ing pixels inside a cone of angular width∆θ. On the other
hand, model C1 yields better results than the discrete acqui-
sition for both images, because the input signal to noise ratio
is improved. Interestingly, the best reconstruction is observed
not with the maximum number of projections (Nθ/L = 1)
but withNθ/L = 1/2. This expresses the fact that an optimal
trade-off must exist between the number of measurements and
the noise level in individual projections for a given globalac-
quisition time. Segmentation results in Fig. 5-(b) in the case
of the binary image lead to the same ranking between between
discrete, C1 and C2 acquisition models.

4. CONCLUSION

This paper addresses the problem of tomography reconstruc-
tion formulated as a penalized least-squares optimizationap-
proach. The proposed 3MG algorithm is highly flexible. It
is capable of solving convex or non-convex problem formu-
lations; it can be used with domain constraints; it can cope
with various acquisition settings and it is not restricted to one
particular type of image (e.g. binary data). We show on exper-
imental results that a non-convex penalization is preferable in
the case of a high gradient sparsity level, which confirms the
conclusions drawn in [17, 18] forℓp penalties with0 < p < 1.
For images presenting some phase contrast effect, the convex
strategy seems to provide better results. Furthermore, through
a simulation of the effects of a continuous rotation acquisition
model, we exhibit the existence of an optimal strategy to cal-
ibrate the angular acquisitions, which may not correspond,
surprisingly, to a maximization of the number of measure-
ments. Future work will be directed at pursuing this study for
a larger set of test images, considering various sparsity pat-
terns and more realistic acquisition simulations.
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