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ABSTRACT iterative thresholding methods as special cases) [5], the A
o ) ternating Direction Method of Multipliers and its paralét-
Inverse problems encountered in video processing oftegnsions [6], the Douglas-Rachford algorithm and its peiral
require to minimize criteria involving a high number of vari extensions [7, 8], the Generalized Forward-Backward algo-

ables. Among available optimization techniques, proximalithm [9], as well as more recent primal-dual strategieg.[10
methods have shown their efficiency in solving large scale

possibly nonsmooth problems. When some of the proxim- 1he proximity operator of a number of functions has a
ity operators involved in these methods do not have close@losed form expression [3, 11], but when the form of a func-
form expressions, they may constitute a bottleneck in termton is more involved or, when the metric in which the prox-
of computational complexity and memory requirements. [rimity operator is computed is not the standard Euclidean one
this paper, we address this problem and propose acceléile often needs to resort to iterative strategies in ordesno
ated techniques for solving it. A new dual block-coordinatePute it. Attention must be paid to this problem since the over
forward-backward algorithm computing the proximity op- &ll computation cost of the optimization method becomes the
erator of a sum of convex functions composed with lineatrongly dependent on the efficiency of the subiterations im
operators is proposed and theoretically analyzed. The ndemented for computing the proximity operator.

merical performance of the approach is assessed through an | this paper, we focus on the computation of the prox-
application to deconvolution and super-resolution of inte jmity operator at a poine € RY of a functiong =

laced video sequences. f+ 3 hj o Aj, where f is a convex function from

I ndex Terms— Proximity operator, duality, forward-backward, RV to | — oo, +oc] and, for everyj € {1,...,J}, h; is
convex optimization, block-coordinate approach, video processinga convex function fromR™i to | — oo, +oc] and 4, is an
deconvolution, super-resolution, deinterlacing. M; x N real-valued matrix. Although generic optimization
algorithms can be used to compute the proximity operator
of g, tailored algorithms have been proposed for this pur-
pose. Among available techniques, the primal-dual spdjtti
_ _ o _ algorithm in [12] has the ability of handling a finite sum of
A wide range of inverse problems in image processing reg,qtions composed with arbitrary linear operators, witho
quires to find a solution to a large scale optimization proble requiring any matrix inversion step. This latter featunentu
In the context of video processing, one has to process neassiy, + 15 he a main advantage in video processing where these
datasets therefore it is of paramount importance to linet th ..o otten are of high dimensions. A special case of the
memory and complexity requirements of optimization algo-algorithm in [12] is the Dykstra-like algorithm in [13], wti

rithms (seg €.g. [1,’ 2])', I_n the last decaQeg, there has be?:%nstitutes an extension of a popular algorithm for finding
a growing interest in efficient convex optimization method he projection of a signal onto an intersection of convex-con

gro.uf‘ded on the use o_f t.he_ proximity operator [3, 4]. In t_hes§traint sets. An appealing strategy, initially proposedhie

splitting methods, a minimizer of a sum of convex functlonsarea of machine learning [14, 15], and recently applied to
is obtained iteratively by evaluating, for each involveddu image restoration problems [16], is to combine these primal
tion, either its gradient (provided that the function idekién- dual technigues (sometimes called dual ascent methods) wit
tiable) or its proximity operator (especially when the fioo a block-coordinate approach. In [14, 15], a stochastic dual

IS nonsmooth). Among the class of aIgor|thms Of, INteresty,|ck-coordinate Forward-Backward (FB) algorithm is pro-
one can mention the Forward-Backward algorithm (mcludmgposed to compute the proximity operatordh the particular

The research leading to these results has received fundingthe EC case when, for every & {1’ U J}’ M; = 1. A determin-

Seventh Framework Programme (FP7/2007-2013) under Granesgmt  IStC VerSi_On of thiS_ algorithm, aSSOCiateq with a FISTReli
n°600827 acceleration technique [17], is proposed in [16].

1. INTRODUCTION




However, as we will see, few of the aforementionedwhere M = M; + --- + M, ¢ is the Moreau envelope
block-coordinate algorithms fully exploit the flexibilitgf-  of parameter 1 off*, which has a nonexpansive (i.e. 1-
fered by the dual formulation of the problem. Moreover, Lipschitzian) gradient [21] and* (resp.h}, j € {1,...,J})
their convergence guarantees are somewhat limited, in the the conjugate function of (resp.h;, j € {1,...,J}). Un-
sense that only decay properties on the dual of the objectiveer the following qualification condition, there always ssi
function are available. The main contribution of our papera solution to Problem (3) [21]:
is to bring this new class of algorithms in the arena of video
processing. Another contribution is to propose a new for”hssumption 1ri (A(domf)) N ri (domh) # @, whereri
of the dual block FB algorithm for computing the proxim- jenotes the relative interior of a set.
ity operator of functiony for arbitrary matricegA4;)i<j<s
and to establish the convergence of this algorithm for both
the primal and dual iterates. It is worth noticing that the
proposed algorithm can be practically accelerated thamks t
the introduction of preconditioning matrices. In a similar We propose the following dual block preconditioned FB al-
manner, variable metric approaches have been found to [g®rithm to solve the considered optimization problem.
useful for accelerating the convergence of the standard FB
algorithm in [18, 19, 20]. The numerical performance of theAlgorithm 1 Dual Block Preconditioned Forward-Backward
proposed method will be illustrated by means of simulationsnitialization
for deblurring and deinterlacing video sequences. Bj € RMi*M; with By = A;A], Vje{l,...,J}

The rest of the paper is organized as follows: Section 2 ¢ €]0, 1], (yg)lgng ERM 2y =— Z}]:1 A]-Tyg.
introduces some useful optimization tools and the problenfForn =0, 1, ...
formulation. Section 3 describes the proposed algorithch an| ~,, € [e,2 — €]

3. PROPOSED ALGORITHM

investigates its convergence properties. Section 4 askelses
the application of this algorithm to deconvolution and supe
resolution of interlaced video sequences.

jn€{l,...,J}
Ty, = Prox; (T+ zn)
W =yl + B Ay, an

Jn

Yol = U — %BﬁlproxynB; vn, (' BB
2. PROBLEM STATEMENT Vo= vl Vie{l... JI\ L)
— _ T Jn _ adn
2.1. Proximity operator S A]n(ynH o)

Let us first introduce some notation which will be useful in
the sequel. Le3 € RY*N be some positive definite ma-
trix and let(-|-) denote the standard inner productRft .
We define the weighted north- ||z = (-|B-)"/?, and its
associated inner produ¢t|-) ;. LetIo(RY) designate the
class of lower-semicontinuous convex functions frBfi to

] — 00, +00] with a nonempty domain. The computation of
the proximity operator of € I'o(RY) atz € RY amounts to
solving the following optimization problem:

The above algorithm performs, at each iteratio N,
the selection of a block indey, defining the dual variable
yJ» which is updated, while all the other dual variables with
indices;j # j, are kept unchanged. The update only involves
matrix A;, and the proximity operator of functioh;, , for
which a proximal step is performed in a suitable metric de-
fined by matrixB;, . This algorithm can be derived from the
block-coordinate variable metric FB algorithm from [19}ap
plied to the dual problem (3).

Although the preconditioning matrices3;).<;<s can
be chosen in a flexible manner in Algorithm 1, a simpler
(non-preconditioned) version of the algorithm is obtaibgd
choosing, for everyi € {1,...,J}, B; = [|4;|*1n,. I,
additionally, f is an¢, norm and, for every € {1,...,J} h;
is the indicator function of a singletofd’ } with b7 € RMi,
an algorithm similar to the one studied in [22] is retrieved.

L 1 _
minimize g(x) + §Hx— 7)|%. (1)

z€RN

Problem (1) admits a unique solution denoted by pro&r).

2.2. Dual formulation
Let us define the conjugate of a functigne To(RY) as

P RY = [—o0, +00] sz — Selig’ ((v]x) —¥(v)) .

(@)

3.1. Particular case whenf =0

The dual problem associated to Problem (1) wiikis equal
to Iy (the identity matrix ofRY) reads

J J
so( =) ATy +§) +Y o), ()
J=1 J=1

Let us discuss some connexions existing between Algorithm 1
and previous methods in the literature. First note that #he e
isting works are restricted to the case wher= 0. We will
make this assumption in this section. In this case, Algorith

minimize S dsSst
can be simplified as follows.

(¥)1<j<sERM



Algorithm 2 Dual Block Preconditioned FB whefi= 0 lished under the additional assumption:
Initialization

B; € RM>M; with B; = A;jA], Vje{l,...,J} Assumption 2
€ €]0,1], (W)r1cjcs ERM, 29 =7 — Z}]:1 AjTy& (i) The functionsf and (h;)1<;< are semi-algebraié.
Forn = 0,1,... (i) For everyj € {1,...,J}, the restriction ofr} to its do-

Yn € [€6,2 — ¢ main is continuous.

jn€{l,...,J} (i) Foreveryj € {1,...,J}, matrix B; is definite positive.

gin = yin +%BJ»_1AJ- T (iv) The sequencéj,).cn is chosen according to a quasi-
in . n_ n _ ~i . .. ) . >

yor =g — ’ynBjnlprOX'y By (v B;, 50 ?{chc ruﬁ, |Ce{;here ejlstK /}J such that, for every € N,
: . . n . gee ey 'n,...,'n_A'_K_l.

Yns1 =Yoo Vi€{l.... TP\ {jn}

Tny1 =20 — Al (yiry —yir). The following result can then be deduced from [19]:

Theorem 1 Under Assumptions 1 and 2, if the sequence

_ It appears inte_resting to compare the preyioug algorithrr@yn)nGN = ((¥h)1<j<y), . Is bounded, then this sequence
with the one previously proposed in [12] which, in the ab-cqnyerges to a solution to the dual problé®). In addition,

sence of error terms and relaxation factor, reads: the sequenceér,, ),cy CONVerges to the proximity operator of
g evaluated afr.

Algorithm 3 Parallel Dual Block FB [12]
Initialization

(wj)lgng 6]07 1]‘] such thathzl wj = 1,
B> maxjcq,.. 5y |45

Bj = fw; Iy, Vie{l,...,J}

4. APPLICATION TO VIDEO RESTORATION

4.1. Observation model

| € €)0,1), ()i<i<s € RM g0=% — Z-jf:l A;Fyé Interlaced scan has been the main sampling pattern for TV

Forn=0,1,... recor.d!r?g, broac_jcastmg, and dls_playnjg. Th|s.scan format
Y € [6,2 — €] was initially retained because of its efficiency with regtod
Forj=1,...,J the time response of the CRT screens and the persistence of

T o=y + y,LB»_lijn the human visual system [24]. The recent development of HD
n Zan ” JBflprox o (1B flat LCD and plasma screens has raised the problem of video
Ynt1 = Yn Z" J Bk T Piln deinterlacing, i.e. computing the missing even or odd rofvs o
| Tntl = Tp — Zj:l A;r(yfbﬂ =) each interlaced field to recover the initial progressiveewid
sequences. With the development of higher quality displays
Algorithms 2 and 3 exhibit some obvious similarities in the difficulty of the problem increases since interlacinig-ar
their structure. It should be however pointed out that teare  [2CtS are more visible on large TV screens with high bright-
ist two main differences between them. First, one can olksen/1€SS and contrast [25]. In this part, we focus on the joint de-
that the whole set of dual variablég/ ). < ;< ; is updated in a blurring and delnterlacngLprobIem where an interlacethfa
parallel manner at iteration of Algorithm 3, followed by an ~ S€dUence&y)i<i<r € R s ]rvelated to the soughf progres-
update of the primal variable,,. Conversely, in Algorithm 2, S'V€ sequencer,)i<i<r € R™ through the model:
the dgal variables are updated one at a time, according toa (Vtef{l,....TY) y=S (hxT)+w, (5)
coordinate ascent strategy, and after each update, thalprim . .
variable is also updated. The second difference is that thehereT" is the number of time framed, (resp. N = 2L)
conditions required on matricéd3;),< ;< are less restric- is the number of pixels in each image of the interlaced (resp.
tive in the case of Algorithm 2. Indeed, the matrices invdive progressive) sequence; S S, for odd values oft (resp.

in Algorithm 3 are such that, for everye {1,...,J}, St = S for even values of) is a row decimation operator,
) . h € R corresponds to a convolution kernel accounting for
Bj = w;Bj = Iy, = | A", = AjA; . (4)  spatial blur, andw,);<;<7 is an unknown additive noise. An

estimate of the original sequence can then be obtained by min
imizing a penalized criteriot’ = & + ¥ where® is the least
JSquares data fidelity term:

Since the preconditioning matricéB; )<< s usually play a
critical role in the convergence speed of proximal algonish
[18, 19, 23], more freedom in their choice should be benéfici
to the algorithm performance. 1L

(Yz eR™) ®(x) =5 SIS —wl?,  (6)
3.2. Convergence results t=1

. . 1semi-algebraicity is a property satisfied by a wide class attions,
Convergence properties of iterates generated by the pedposynich means that their graph is a finite union of sets definedfmjta num-

Dual Block Preconditioned FB Algorithm 1 can be estab-ber of polynomial inequalities.



and ¥ is a regularization term incorporating some a priori
knowledge on the sought video sequence.
Here, we propose to define the regularization term as

(Ve e R™Y) W(x) =) Wi(z) +M(@), ()

t=1

where, forevery € {1,..., T}, Uy = nsltv+i, 00w
with n €]0, +o0], sltv is the semi-local total variation from
[26], and. denotes the indicator function of a s&t More-
over, M is a nonsmooth temporal regularization term which
favors the similarity between successive video framesewhil
taking into account motion estimation, similarly to theastr
egy proposed in [4] .

4.2. Optimization algorithm

A minimizer of the objective functiod is computed by us-
ing the PALM algorithm recently proposed in [27]. In this
method, each image; is updated in a sequential manner
thanks to a FB iteration consisting of a gradient stepdon
with respect taz; and a proximal step on the restriction 10 Fig. 1. 5th frame of the INA sequence: Noisy blurred interlaced

z; of ¥. Since the proximity operator of does not have field (top) and restored progressive image (bottom).
an explicit form and involves discrete differences and ooti

related linear operators, we resort to a dual FB algorithm to
compute it. More precisely, the performance of Algorithmstime values correspond to tests run on an Intel(R) Core(TM)
1, 2, and 3 are compared for performing this task. Note that/-3770 CPU @ 3.4 GHz using a Matlab 7 implementation.
when implementing Algorithm 1, the functiofi is chosen
equaltory, . o n.

Algorithm [ 1 [ 2 | 3
Frame 1 250|096 | 5.71

Claire Frame 6 253| 0.82| 7.66
4.3. Experimental results Frame 13 || 2.51 | 1.14 | 7.08

. Au théatre | Frame 1 1.98 | 2.21| 21.05
To evaluate the performance of the methods, two video se- ce soir Frame 5 208 | 2.06 | 28.14

guences are considered: the synthetic sequ€taiee from Frame 10 || 1.89 | 2.23 | 19.17

http://lwww.cipr.rpi.edu/resource/sequences/cif.html, with

N = 256 x 256, from whichT' = 14 images are extracted and Table 1. Comparison between Algorithms 1, 2 and 3 in terms of

then blurred, interlaced, and corrupted with a white Gaussi computation time (in s.).

noise resulting in an initial SNR value @f7.25 dB, and a

real blurry interlaced video sequence extracted from adfren ~ One can note that, depending on the example, the best

broadcast archive programm#ei théatre ce soir provided performance in terms of computation time are obtained eithe

by INA from which we read ouf” = 10 interlaced frames of With Algorithm 1 or Algorithm 2. On the opposite, the dual

sizeL = 720 x 288. For both examples, the motion operatorsFB Algorithm 3 from [12] needs up to 10 more time to meet

involved in M are computed over the observed sequence§e stopping criterion.

and then interpolated to reach the desired resolution. The

SNR for the restore€laire sequence is equal %90.90 dB. 5. CONCLUSION

No ground truth is available for the INA recording, the good

restoration quality on this example can be analysed throughhis paper presents a new primal-dual splitting algorithet t

visual inspection of the images displayed in Figure 1. handles efficiently the computation of the proximity opera-
Table 1 illustrates, for three different frames of the videotor for composite functions. The convergence of both its pri

sequences, the averaged time spent for the computation ofal and dual iterates is guaranteed. The experimentaltsesul

prox; when runningl00 iterations of PALM in association show the good performance of the proposed algorithm for de-

with either the proposed Algorithm 1, its variant in Algo- blurring and deinterlacing video sequences. Note that more

rithm 2, or Algorithm 3 from [12]. The three algorithms are sophisticated preconditioning strategies could be agptle

stopped whetjz,, 1 —z,|| < 5x107°||2,,,1]|. The provided further accelerate the convergence of the method.
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