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ABSTRACT

Inverse problems encountered in video processing often
require to minimize criteria involving a high number of vari-
ables. Among available optimization techniques, proximal
methods have shown their efficiency in solving large scale
possibly nonsmooth problems. When some of the proxim-
ity operators involved in these methods do not have closed
form expressions, they may constitute a bottleneck in terms
of computational complexity and memory requirements. In
this paper, we address this problem and propose acceler-
ated techniques for solving it. A new dual block-coordinate
forward-backward algorithm computing the proximity op-
erator of a sum of convex functions composed with linear
operators is proposed and theoretically analyzed. The nu-
merical performance of the approach is assessed through an
application to deconvolution and super-resolution of inter-
laced video sequences.

Index Terms— Proximity operator, duality, forward-backward,
convex optimization, block-coordinate approach, video processing,
deconvolution, super-resolution, deinterlacing.

1. INTRODUCTION

A wide range of inverse problems in image processing re-
quires to find a solution to a large scale optimization problem.
In the context of video processing, one has to process massive
datasets therefore it is of paramount importance to limit the
memory and complexity requirements of optimization algo-
rithms (see e.g. [1, 2]). In the last decades, there has been
a growing interest in efficient convex optimization methods
grounded on the use of the proximity operator [3, 4]. In these
splitting methods, a minimizer of a sum of convex functions
is obtained iteratively by evaluating, for each involved func-
tion, either its gradient (provided that the function is differen-
tiable) or its proximity operator (especially when the function
is nonsmooth). Among the class of algorithms of interest,
one can mention the Forward-Backward algorithm (including
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iterative thresholding methods as special cases) [5], the Al-
ternating Direction Method of Multipliers and its parallelex-
tensions [6], the Douglas-Rachford algorithm and its parallel
extensions [7, 8], the Generalized Forward-Backward algo-
rithm [9], as well as more recent primal-dual strategies [10].

The proximity operator of a number of functions has a
closed form expression [3, 11], but when the form of a func-
tion is more involved or, when the metric in which the prox-
imity operator is computed is not the standard Euclidean one,
one often needs to resort to iterative strategies in order tocom-
pute it. Attention must be paid to this problem since the over-
all computation cost of the optimization method becomes then
strongly dependent on the efficiency of the subiterations im-
plemented for computing the proximity operator.

In this paper, we focus on the computation of the prox-
imity operator at a point̃x ∈ R

N of a function g =
f +

∑J
j=1 hj ◦ Aj , where f is a convex function from

R
N to ] − ∞,+∞] and, for everyj ∈ {1, . . . , J}, hj is

a convex function fromRMj to ] − ∞,+∞] andAj is an
Mj × N real-valued matrix. Although generic optimization
algorithms can be used to compute the proximity operator
of g, tailored algorithms have been proposed for this pur-
pose. Among available techniques, the primal-dual splitting
algorithm in [12] has the ability of handling a finite sum of
functions composed with arbitrary linear operators, without
requiring any matrix inversion step. This latter feature turns
out to be a main advantage in video processing where these
matrices often are of high dimensions. A special case of the
algorithm in [12] is the Dykstra-like algorithm in [13], which
constitutes an extension of a popular algorithm for finding
the projection of a signal onto an intersection of convex con-
straint sets. An appealing strategy, initially proposed inthe
area of machine learning [14, 15], and recently applied to
image restoration problems [16], is to combine these primal-
dual techniques (sometimes called dual ascent methods) with
a block-coordinate approach. In [14, 15], a stochastic dual
block-coordinate Forward-Backward (FB) algorithm is pro-
posed to compute the proximity operator ofg in the particular
case when, for everyj ∈ {1, . . . , J}, Mj = 1. A determin-
istic version of this algorithm, associated with a FISTA-like
acceleration technique [17], is proposed in [16].



However, as we will see, few of the aforementioned
block-coordinate algorithms fully exploit the flexibilityof-
fered by the dual formulation of the problem. Moreover,
their convergence guarantees are somewhat limited, in the
sense that only decay properties on the dual of the objective
function are available. The main contribution of our paper
is to bring this new class of algorithms in the arena of video
processing. Another contribution is to propose a new form
of the dual block FB algorithm for computing the proxim-
ity operator of functiong for arbitrary matrices(Aj)16j6J

and to establish the convergence of this algorithm for both
the primal and dual iterates. It is worth noticing that the
proposed algorithm can be practically accelerated thanks to
the introduction of preconditioning matrices. In a similar
manner, variable metric approaches have been found to be
useful for accelerating the convergence of the standard FB
algorithm in [18, 19, 20]. The numerical performance of the
proposed method will be illustrated by means of simulations
for deblurring and deinterlacing video sequences.

The rest of the paper is organized as follows: Section 2
introduces some useful optimization tools and the problem
formulation. Section 3 describes the proposed algorithm and
investigates its convergence properties. Section 4 addresses
the application of this algorithm to deconvolution and super-
resolution of interlaced video sequences.

2. PROBLEM STATEMENT

2.1. Proximity operator

Let us first introduce some notation which will be useful in
the sequel. LetB ∈ R

N×N be some positive definite ma-
trix and let〈 · | · 〉 denote the standard inner product ofR

N .
We define the weighted norm‖ · ‖B = 〈 · |B · 〉

1/2, and its
associated inner product〈 · | · 〉B . Let Γ0(R

N ) designate the
class of lower-semicontinuous convex functions fromRN to
] − ∞,+∞] with a nonempty domain. The computation of
the proximity operator ofg ∈ Γ0(R

N ) at x̃ ∈ R
N amounts to

solving the following optimization problem:

minimize
x∈R

N
g(x) +

1

2
‖x− x̃‖2B . (1)

Problem (1) admits a unique solution denoted by proxB,g(x̃).

2.2. Dual formulation

Let us define the conjugate of a functionψ ∈ Γ0(R
N ) as

ψ∗ : RN → [−∞,+∞] : x→ sup
ν∈RN

(〈ν|x〉 − ψ(ν)) . (2)

The dual problem associated to Problem (1) whenB is equal
to IN (the identity matrix ofRN ) reads

minimize
(yj)16j6J∈R

M
ϕ
(
−

J∑

j=1

A⊤
j y

j + x̃
)
+

J∑

j=1

h∗j (y
j), (3)

whereM = M1 + · · · + MJ , ϕ is the Moreau envelope
of parameter 1 off∗, which has a nonexpansive (i.e. 1-
Lipschitzian) gradient [21] andf∗ (resp.h∗j , j ∈ {1, . . . , J})
is the conjugate function off (resp.hj , j ∈ {1, . . . , J}). Un-
der the following qualification condition, there always exists
a solution to Problem (3) [21]:

Assumption 1 ri
(
A(domf)

)
∩ ri (domh) 6= ∅, whereri

denotes the relative interior of a set.

3. PROPOSED ALGORITHM

We propose the following dual block preconditioned FB al-
gorithm to solve the considered optimization problem.

Algorithm 1 Dual Block Preconditioned Forward-Backward
Initialization⌊
Bj ∈ R

Mj×Mj with Bj � AjA
⊤
j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , z0 = −

∑J
j=1A

⊤
j y

j
0.

Forn = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
jn ∈ {1, . . . , J}
xn = proxf (x̃+ zn)

ỹjnn = yjnn + γnB
−1
jn
Ajnxn

y
jn
n+1 = ỹjnn − γnB

−1
jn

proxγnB
−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = yjn, ∀j ∈ {1, . . . , J} \ {jn}

zn+1 = zn −A⊤
jn
(yjnn+1 − yjnn ).

The above algorithm performs, at each iterationn ∈ N,
the selection of a block indexjn defining the dual variable
yjnn which is updated, while all the other dual variables with
indicesj 6= jn are kept unchanged. The update only involves
matrix Ajn and the proximity operator of functionhjn , for
which a proximal step is performed in a suitable metric de-
fined by matrixBjn . This algorithm can be derived from the
block-coordinate variable metric FB algorithm from [19] ap-
plied to the dual problem (3).

Although the preconditioning matrices(Bj)16j6J can
be chosen in a flexible manner in Algorithm 1, a simpler
(non-preconditioned) version of the algorithm is obtainedby
choosing, for everyj ∈ {1, . . . , J}, Bj = ‖Aj‖

2IMj
. If,

additionally,f is anℓ1 norm and, for everyj ∈ {1, . . . , J} hj
is the indicator function of a singleton{bj} with bj ∈ R

Mj ,
an algorithm similar to the one studied in [22] is retrieved.

3.1. Particular case whenf = 0

Let us discuss some connexions existing between Algorithm 1
and previous methods in the literature. First note that the ex-
isting works are restricted to the case whenf = 0. We will
make this assumption in this section. In this case, Algorithm 1
can be simplified as follows.



Algorithm 2 Dual Block Preconditioned FB whenf = 0

Initialization⌊
Bj ∈ R

Mj×Mj with Bj � AjA
⊤
j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , x0 = x̃−

∑J
j=1A

⊤
j y

j
0.

Forn = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
jn ∈ {1, . . . , J}
ỹjnn = yjnn + γnB

−1
jn
Ajnxn

y
jn
n+1 = ỹjnn − γnB

−1
jn

proxγnB
−1

jn
,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = yjn, ∀j ∈ {1, . . . , J} \ {jn}

xn+1 = xn −A⊤
jn
(yjnn+1 − yjnn ).

It appears interesting to compare the previous algorithm
with the one previously proposed in [12] which, in the ab-
sence of error terms and relaxation factor, reads:

Algorithm 3 Parallel Dual Block FB [12]
Initialization

(ωj)16j6J ∈]0, 1]J such that
∑J

j=1 ωj = 1,

β > maxj∈{1,...,J} ‖Aj‖
2,

Bj = βω−1
j IMj

, ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , x0 = x̃−

∑J
j=1A

⊤
j y

j
0.

Forn = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
For j = 1, . . . , J⌊
ỹjn = yjn + γnB

−1
j Ajxn

y
j
n+1 = ỹjn − γnB

−1
j proxγnB

−1

j
,hj

(
γ−1
n Bj ỹ

j
n

)

xn+1 = xn −
∑J

j=1A
⊤
j (y

j
n+1 − yjn).

Algorithms 2 and 3 exhibit some obvious similarities in
their structure. It should be however pointed out that thereex-
ist two main differences between them. First, one can observe
that the whole set of dual variables(yjn)16j6J is updated in a
parallel manner at iterationn of Algorithm 3, followed by an
update of the primal variablexn. Conversely, in Algorithm 2,
the dual variables are updated one at a time, according to a
coordinate ascent strategy, and after each update, the primal
variable is also updated. The second difference is that the
conditions required on matrices(Bj)16j6J are less restric-
tive in the case of Algorithm 2. Indeed, the matrices involved
in Algorithm 3 are such that, for everyj ∈ {1, . . . , J},

Bj � ωjBj = βIMj
� ‖Aj‖

2IMj
� AjA

⊤
j . (4)

Since the preconditioning matrices(Bj)16j6J usually play a
critical role in the convergence speed of proximal algorithms
[18, 19, 23], more freedom in their choice should be beneficial
to the algorithm performance.

3.2. Convergence results

Convergence properties of iterates generated by the proposed
Dual Block Preconditioned FB Algorithm 1 can be estab-

lished under the additional assumption:

Assumption 2
(i) The functionsf and(hj)16j6J are semi-algebraic.1

(ii) For everyj ∈ {1, . . . , J}, the restriction ofh∗j to its do-
main is continuous.
(iii) For everyj ∈ {1, . . . , J}, matrixBj is definite positive.
(iv) The sequence(jn)n∈N is chosen according to a quasi-
cyclic rule, i.e. there existsK > J such that, for everyn ∈ N,
{1, . . . , J} ⊂ {jn, . . . , jn+K−1}.

The following result can then be deduced from [19]:

Theorem 1 Under Assumptions 1 and 2, if the sequence
(yn)n∈N =

(
(yjn)16j6J

)
n∈N

is bounded, then this sequence
converges to a solution to the dual problem(3). In addition,
the sequence(xn)n∈N converges to the proximity operator of
g evaluated at̃x.

4. APPLICATION TO VIDEO RESTORATION

4.1. Observation model

Interlaced scan has been the main sampling pattern for TV
recording, broadcasting, and displaying. This scan format
was initially retained because of its efficiency with regardto
the time response of the CRT screens and the persistence of
the human visual system [24]. The recent development of HD
flat LCD and plasma screens has raised the problem of video
deinterlacing, i.e. computing the missing even or odd rows of
each interlaced field to recover the initial progressive video
sequences. With the development of higher quality displays,
the difficulty of the problem increases since interlacing arte-
facts are more visible on large TV screens with high bright-
ness and contrast [25]. In this part, we focus on the joint de-
blurring and deinterlacing problem where an interlaced frame
sequence(yt)16t6T ∈ R

TL is related to the sought progres-
sive sequence(xt)16t6T ∈ R

TN through the model:

(∀t ∈ {1, . . . , T}) yt = St (h ∗ xt) + wt, (5)

whereT is the number of time frames,L (resp. N = 2L)
is the number of pixels in each image of the interlaced (resp.
progressive) sequence, St = So for odd values oft (resp.
St = Se for even values oft) is a row decimation operator,
h ∈ R

P corresponds to a convolution kernel accounting for
spatial blur, and(wt)16t6T is an unknown additive noise. An
estimate of the original sequence can then be obtained by min-
imizing a penalized criterionF = Φ+Ψ whereΦ is the least
squares data fidelity term:

(∀x ∈ R
TN ) Φ(x) =

1

2

T∑

t=1

‖St(h ∗ xt)− yt‖
2, (6)

1Semi-algebraicity is a property satisfied by a wide class of functions,
which means that their graph is a finite union of sets defined by afinite num-
ber of polynomial inequalities.



andΨ is a regularization term incorporating some a priori
knowledge on the sought video sequence.

Here, we propose to define the regularization term as

(∀x ∈ R
TN ) Ψ(x) =

T∑

t=1

Ψt(xt) + M(x), (7)

where, for everyt ∈ {1, . . . , T}, Ψt = η sltv+ι[xmin,xmax]N

with η ∈]0,+∞[, sltv is the semi-local total variation from
[26], andιC denotes the indicator function of a setC. More-
over, M is a nonsmooth temporal regularization term which
favors the similarity between successive video frames while
taking into account motion estimation, similarly to the strat-
egy proposed in [4] .

4.2. Optimization algorithm

A minimizer of the objective functionF is computed by us-
ing the PALM algorithm recently proposed in [27]. In this
method, each imagext is updated in a sequential manner
thanks to a FB iteration consisting of a gradient step onΦ
with respect toxt and a proximal step on the restriction to
xt of Ψ. Since the proximity operator ofΨ does not have
an explicit form and involves discrete differences and motion
related linear operators, we resort to a dual FB algorithm to
compute it. More precisely, the performance of Algorithms
1, 2, and 3 are compared for performing this task. Note that,
when implementing Algorithm 1, the functionf is chosen
equal toι[xmin,xmax]N .

4.3. Experimental results

To evaluate the performance of the methods, two video se-
quences are considered: the synthetic sequenceClaire from
http://www.cipr.rpi.edu/resource/sequences/cif.html, with
N = 256×256, from whichT = 14 images are extracted and
then blurred, interlaced, and corrupted with a white Gaussian
noise resulting in an initial SNR value of27.25 dB, and a
real blurry interlaced video sequence extracted from a French
broadcast archive programmeAu théâtre ce soir provided
by INA from which we read outT = 10 interlaced frames of
sizeL = 720×288. For both examples, the motion operators
involved in M are computed over the observed sequences
and then interpolated to reach the desired resolution. The
SNR for the restoredClaire sequence is equal to30.90 dB.
No ground truth is available for the INA recording, the good
restoration quality on this example can be analysed through
visual inspection of the images displayed in Figure 1.

Table 1 illustrates, for three different frames of the video
sequences, the averaged time spent for the computation of
proxΨ when running100 iterations of PALM in association
with either the proposed Algorithm 1, its variant in Algo-
rithm 2, or Algorithm 3 from [12]. The three algorithms are
stopped when‖xn+1−xn‖ 6 5×10−6‖xn+1‖. The provided

Fig. 1. 5th frame of the INA sequence: Noisy blurred interlaced
field (top) and restored progressive image (bottom).

time values correspond to tests run on an Intel(R) Core(TM)
i7-3770 CPU @ 3.4 GHz using a Matlab 7 implementation.

Algorithm 1 2 3

Frame 1 2.50 0.96 5.71
Claire Frame 6 2.53 0.82 7.66

Frame 13 2.51 1.14 7.08
Au théâtre Frame 1 1.98 2.21 21.05

ce soir Frame 5 2.08 2.06 28.14
Frame 10 1.89 2.23 19.17

Table 1. Comparison between Algorithms 1, 2 and 3 in terms of
computation time (in s.).

One can note that, depending on the example, the best
performance in terms of computation time are obtained either
with Algorithm 1 or Algorithm 2. On the opposite, the dual
FB Algorithm 3 from [12] needs up to 10 more time to meet
the stopping criterion.

5. CONCLUSION

This paper presents a new primal-dual splitting algorithm that
handles efficiently the computation of the proximity opera-
tor for composite functions. The convergence of both its pri-
mal and dual iterates is guaranteed. The experimental results
show the good performance of the proposed algorithm for de-
blurring and deinterlacing video sequences. Note that more
sophisticated preconditioning strategies could be applied to
further accelerate the convergence of the method.
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