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ABSTRACT
We discuss in this paper the influence of line search on the
performances of interior point algorithms applied for con-
strained signal restoration. Interior point algorithms ensure
the fulfillment of the constraints through the minimization of
a criterion augmented with a barrier function. However, the
presence of the barrier function can slow down the conver-
gence of iterative descent algorithms when general-purpose
line search procedures are employed. We recently proposed a
line search algorithm, based on a majorization-minimization
approach, which allows to handle the singularity introduced
by the barrier function. We present here a comparative study
of various line search strategies for the resolution of a sparse
signal restoration problem with both primal and primal-dual
interior point algorithms.

Index Terms— Interior point methods, line search,
majorize-minimize algorithm, signal restoration

1. INTRODUCTION

Let us consider the inverse problem of recovering an image or
a signal xo ∈ RN from a set of noisy observations y ∈ RT ,
where the forward model is represented by as

y =Hxo + ε (1)

with H a known matrix that represents the physical effect of
the measurement process and ε an additive noise term repre-
senting data acquisition errors and model uncertainties. This
simple formalism covers many real situations of signal and
image restoration [1]. A usual approach is to recover x by
minimizing a composite criterion F , which combines a data-
fidelity term and a regularization term, under some linear con-
straints. For example, for image reconstruction problems, a
classical constraint concerns non-negativity of pixel intensi-
ties [2]. Linear constraints can also arise in sparse signal re-
construction [3] as illustrated in section 4.

Interior points methods transform the constrained opti-
mization problem into a sequence of unconstrained problems
by introducing a barrier function in F , which makes the gra-
dient of the augmented criterion unbounded at the boundary

of the feasible domain so that its minimizers fulfill the con-
straints [4, Chap.11].

When an iterative descent method is used for the mini-
mization of the augmented criterion, a search along the line
supported by the descent direction must be performed at each
iteration. However, the presence of the barrier function may
cause the inefficiency of general-purpose line search methods
and, thus, the slowdown of the algorithm convergence [5].
We proposed in [6] a majorization-minimization (MM) strat-
egy well suited for stepsize determination when minimizing
a criterion which contains a barrier function. The proposed
method has been shown to outperform standard line search
procedures when applied to the minimization of penalized
criteria containing a barrier term, such as Poissonian log-
likelihoods [7] and maximum entropy criteria [8]. The aim
of this paper is to analyze the impact of the MM line search
when it is employed inside interior point algorithms for solv-
ing a linearly constrained signal restoration problem and to
compare its performances with usual line search approaches.

After introducing the optimization framework in Section
2, we give in Section 3 an overview of the line search methods
that have been proposed in the literature to account for the
singular behavior of barrier functions. Section 4 analyzes the
efficiency of those methods through the resolution of a large-
scale signal restoration problem.

2. INTERIOR POINT ALGORITHMS

We consider the constrained optimization problem

min
x∈RN

F (x) s.t C(x) = Cx+ ρ > 0 (2)

where C is a M ×N matrix and ρ ∈ RM . We present in the
following two main families of interior point methods allow-
ing to solve such problem.

2.1. Primal methods

Primal interior point methods, introduced by Fiacco and Mc-
Cormick [9], find the solution to the constrained optimization
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problem (2) by solving a sequence of unconstrained optimiza-
tion subproblems

min
x∈RN

(Fµ(x) = F (x) + µB(x)) (3)

for barrier parameter values µ that decrease to 0. The un-
constrained subproblems involve an auxiliary function B(x),
called barrier function, that penalizes closeness to the con-
straint boundaries. The most widely used auxiliary function
is the logarithmic barrier

B(x) = −
M∑
i=1

log (Ci(x)) , (4)

with Ci(x) = [Cx+ ρ]i, which makes the augmented crite-
rion Fµ unbounded at the boundary of the feasible region so
that its minimizers x∗µ fulfill Ci(x∗µ) > 0 for all i.

2.2. Primal-dual methods

Primal-dual methods are another class of interior-point meth-
ods and have only recently been considered for practical
large-scale nonlinear optimization. Unlike the classical pri-
mal method, primal-dual methods simultaneously estimate
both the primal variables x and dual Lagrange multipliers λ
associated to the constraints [10]. Exact primal-dual solution
(x∗µ,λ

∗
µ) at a given parameter µ is obtained by solving the

following perturbed Karush-Kuhn-Tucker (KKT) equations{
∇F (x)−CTλ = 0
λiCi(x) = µ, i = 1, ...,M

(5)

under the constraint (C(x),λ) > 0.

2.3. Practical implementation

For large problems, solving (3) or (5) exactly would be pro-
hibitive. In practice, for a given µ, primal or primal-dual
subproblems are solved iteratively using Newton’s algorithm
with a line search strategy [4]. The stepsize value is chosen
in such a way as to maintain feasibility and to encourage the
convergence of the iterates. One of the most popular choices
is to require a sufficient decrease in a merit function that mea-
sures the progress toward the solution. A common strategy is
to use Fµ as a merit function for primal variables and, when
primal-dual method is considered, a separate measure to safe-
guard the dual variables after the primal step has been taken
[2]. The merit function can also include both primal and dual
variables [11].

A major inconvenient feature of barrier functions is that
they tend to cause inefficiencies of standard line search tech-
niques. Therefore, special-purpose line search procedures
have to be designed, which we discuss in the next section.

3. LINE SEARCH FOR BARRIER FUNCTION
MINIMIZATION

3.1. Problem statement

The line search problem can be described as follows. Given
the current point xk and a direction dk, find an approximate
minimizer αk of the following single variable function1

fµ(α) = Fµ(xk + αdk). (6)

The stepsize αk is usually obtained by iteratively minimiz-
ing fµ(α) until some convergence conditions are met [12,
Chap.3]. Typically, the strong Wolfe conditions are consid-
ered

fµ(αk) 6 fµ(0) + c1αkḟµ(0), (7)

|ḟµ(αk)| 6 c2|ḟµ(0)|, (8)

where (c1, c2) ∈ (0, 1) are tuning parameters that do not
depend on k. There exist several procedures to find an ac-
ceptable stepsize: exact minimization of fµ, backtracking,
approximation of fµ using cubic interpolations [13, 12] or
quadratic majorizations [14]. However, the barrier term im-
plies that the derivative of fµ is unbounded when α is such
that Ci(xk + αdk) is negative for some i. Since the con-
straints are linear, this happens when α is outside an interval
(α−, α+) where

α− = max
i|[Cdk]i>0

− [Cxk+ρ]i
[Cdk]i

,

α+ = min
i|[Cdk]i<0

− [Cxk+ρ]i
[Cdk]i

,
. (9)

Therefore, one must ensure that, during the line search, the
stepsize values remain in the interval (α−, α+). Moreover,
because of the vertical asymptotes at α− and α+, standard
methods using cubic interpolations or quadratic majorizations
are not well suited.

3.2. Damped backtracking strategy

A simple approach is the damped backtraking method ([4,
11]) that consists in performing a backtracking procedure ini-
tialized with α0 = θα+, where θ ∈ (0, 1) is close to one. The
stepsize values αj+1 = ταj (with typically τ = 1

10 ) are then
tried out until the fulfillment of the first Wolfe condition (7).
However, since the sequence

{
αj
}

is unaffected by the be-
havior of fµ, such a strategy may be inefficient in the context
of barrier function optimization [5].

3.3. Interpolation-based line search

A second technique is to define the trial steps
{
αj
}

from an
interpolation procedure that minimizes fµ within a specified

1Although the definition of the merit function may vary between algo-
rithms, for simplicity Fµ and the associated one-variable function fµ will
always denote the generic functions in which a sufficient decrease is sought.
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interval of uncertainty. Specific interpolating functions have
been proposed to account for the barrier singularity [5]. Mur-
ray et coll. propose a log-quadratic interpolating function of
the form

fµ(α) ≈ f0 + f1α+ f2α
2 − µ log(f3 − α) (10)

where the coefficients fi are chosen to fit f and its derivative
at two or three trial points. Interpolating function (10) is then
incorporated in a standard line search scheme based on the
fulfillment of Wolfe conditions (7)-(8) [15].

3.4. Majorization-based line search

Another strategy is to perform the minimization of fµ using
the Majorization-Minimization (MM) principle [16]. In this
procedure, the stepsize results from successive minimizations
of majorant functions for fµ. Function h(α, α′) is said to be
majorant for fµ(α) at α′ if for all α, h(α, α′) > fµ(α) and
h(α′, α′) = fµ(α

′). In [6], we proposed a majorant function
h(., αj) well suited to the minimization of barrier functions.
It is piecewise defined under the following form

h(α, αj) =


f−0 + f−1 α+ f−2 α

2 − f−3 log (α− α−)
for all α ∈ (α−;α

j ]

f+0 + f+1 α+ f+2 α
2 − f+3 log (α+ − α)
for all α ∈ [αj ;α+)

The initial minimization of fµ(α) is then replaced by a se-
quence of easier subproblems, corresponding to the MM up-
date rule αj = argminα h(α, α

j−1), j = 1, . . . , J , initial-
ized with α0 = 0 and parameterized with its number of iter-
ates J > 1.

We shown in previous experiments that the MM line
search method outperforms both damped backtracking and
interpolation-based strategies in term of time efficiency, when
it is used in a descent algorithm for the minimization of a cri-
terion containing a barrier function [6, 8]. In the next section,
we propose to analyze the performances of primal and primal-
dual interior point algorithms when the stepsize is computed
by our MM line search procedure.

4. APPLICATION TO SPARSE SIGNAL
RECONSTRUCTION

Let us consider the signal processing problem of recovering a
sparse spike train sequence x ∈ RN from an observation vec-
tor y ∈ RM which results from the noisy convolution of x
with a filter h of length L and a white centered Gaussian ad-
ditive noise. The `1 norm is a suited regularization function to
account for the sparseness of x, which leads to the following
optimization problem

min
x∈RN

‖y − h ? x‖22 + η ‖x‖1 . (11)

Primal Primal-Dual

D
B

c1 K T K T

0.5 502 1104 9 5.5

0.2 169 381 9 5.5

0.1 151 365 9 5.5

0.01 144 358 9 5.5

IN
T

E
R

P

c1 c2 K T K T

10−1 0.5 66 174 9 5.7

10−1 0.9 78 180 9 5.8

10−1 0.99 86 216 9 6

10−2 0.5 67 175 9 5.5

10−2 0.9 81 181 9 5.8

10−2 0.99 91 202 9 6

M
M

J K T K T

1 73 185 10 6.6

2 62 168 9 5.3

5 62 173 9 5.5

10 60 175 9 5.9

Table 1. Comparison between different line search strategies for
both primal and primal-dual interior point algorithms, onto a sparse
signal reconstruction problem. K denotes the sum of inner itera-
tions and T the time before convergence, with tolerance parameter
µmin = 10−8.

To tackle the non differentiability of the `1 norm, prob-
lem (11) is reformulated as a quadratic programming prob-
lem [3]

min
x,u

F (x,u) = ‖y − h ? x‖22 + λ
∑
i

ui

subject to − ui 6 xi 6 ui, i = 1, . . . , N. (12)

The purpose of this study is to compare several line search
procedures in interior point methods for solving (12). To
this end, the primal interior point algorithm [4, Alg.11.1] and
the primal-dual interior point algorithm NOPTIQ from [11]
are considered. For the latter algorithm, we use the Mat-
lab code from P. Carbonetto available at www.cs.ubc.ca/
~pcarbo/convexprog.html.

In our experiment, M = 1020, L = 20, N = 1000, the
spike train sequence is simulated from a Bernoulli-Gaussian
distribution with parameter β = 0.06, and the signal to noise
ratio is 13dB. The regularization parameter is set to η =
0.01 to get the best result in terms of similarity between the
simulated and the estimated signals (in the sense of quadratic
error). The two signals are illustrated in Figure 1.

The barrier parameter µ is initially set to 1 and both pri-
mal and primal-dual algorithms are stopped when µ 6 µmin.
Table 1 summarizes the computational results in terms of it-
eration number K and computation time T on an Intel Core
7 2.67 GHz, 4 GB RAM. The performances of the follow-
ing line search strategies are reported: the damped backtrack-
ing line search (DB) with θ = 0.99 and Wolfe parameter c1,
the Wolfe line search [13] with parameters c1 and c2 asso-
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(a) Simulated spike train sequence

(b) Reconstruction with similarity error 4%

Fig. 1. Sparse signal reconstruction with interior point method.

ciated with the interpolation scheme (10) (INTERP), and the
Majorize-Minimize (MM) line search with parameter J .

According to Table 1, the primal algorithm performs bet-
ter when the stepsize is obtained with the MM search. The
best performances in terms of time efficiency are obtained
when J is larger or equal to 2. When dealing with INTERP
and DB strategies, the better results are obtained for small
c1 and high c2, which indicates that the best stepsize strat-
egy for primal interior point methods corresponds to a very
rough minimization of the barrier function. On this partic-
ular problem, very similar performances of the primal-dual
interior point algorithm have been obtained with the different
stepsize strategies.

5. CONCLUSION

In this work, we have considered the resolution of linearly
constrained signal reconstruction problems with interior-
point methods. In [6], we proposed a simple MM line search
method for barrier function optimization. In a sparse sig-
nal restoration application, we showed that this approach
outperforms state-of-the-art line search methods, in term of
convergence speed, as far as the primal interior point algo-
rithm is concerned. In contrast, the choice of the line search
procedure has very little impact on the performances of the
primal-dual algorithm. Such a conclusion meets that of [17,
Sec.20.6.2] in the context of linear programming.
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