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Abstract Proximal splitting algorithms play a central
role in finding the numerical solution of convex opti-

mization problems. This paper addresses the problem of

stereo matching of multi-component images by jointly
estimating the disparity and the illumination variation.

The global formulation being non-convex, the prob-

lem is addressed by solving a sequence of convex re-
laxations. Each convex relaxation is non trivial and in-

volves many constraints aiming at imposing some reg-

ularity on the solution. Experiments demonstrate that

the method is efficient and provides better results com-
pared with other approaches.
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1 Introduction

Depth estimation has become an increasingly important

problem in computer vision as it constitutes a funda-

mental task in the reconstruction of realistic 3D scenes.
A large number of algorithms have been proposed to

perform this estimation. The problem being ill-posed,

prior information (e.g. smoothness of the desired solu-

tion) needs to be taken into account in order to obtain
reliable results.

In recent years, much progress has been made in stereo

matching with the development of i) powerful global
combinatorial optimization methods such as graph-cuts

[1,2] and belief propagation [3,4]; ii) variational ap-

proaches which have proven to be also very effective
for globally solving the matching problem [5–7].

In a majority of dense disparity estimation tech-
niques, the scene is assumed to be Lambertian. How-

ever, in the presence of illumination variation (that

often occurs in practice), this assumption is violated.
Several techniques have thus been proposed to either

derive illumination invariant features or to model the

illumination changes. Likewise, Cox et al. [8] proposed
a dynamic histogram warping that consists of directly

matching histogram values and performing a global op-

timization via dynamic programming. However, this ap-

proach is restricted to the case of a spatially invari-
ant relationship between the intensities of the two im-

ages. Otherwise, methods based on non-parametric lo-

cal transforms followed by normalized cross correla-
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tion (NCC) and rank-transform [9] have been used. In

[10], a new invariant for stereo reconstruction called
Light Transport Constancy was introduced to formu-

late a rank constraint and enable correspondence of

non-Lambertian surfaces. The work in [11] shows that
the intensities of two corresponding points are related

by a spatially varying multiplicative term. Following

this model, a stereo algorithm based on a nonconvex
cost function was developed. The minimization of the

cost function from the associated Euler-Lagrange equa-

tions becomes a difficult task. In the same context,

based on this multiplicative model, dense disparity map
estimation is formulated in [7] as a constrained opti-

mization problem in which a strictly convex quadratic

objective function is minimized under various convex
constraints. The resulting optimization problem is solved

via a parallel block iterative algorithm involving sub-

gradient projections.

In this paper, we present an alternative strategy re-

lying on a parallel proximal optimization approach [12].
Similarly to the subgradient based methods, we use the

multiplicative model by Gennert which allows us to de-

fine a global similarity measure which is minimized over
an intersection of convex constraint sets. The original

contributions of our paper not only consist of the ability

to consider multicomponent images in the presence of

illumination variation, but also in the flexibility in min-
imizing various (possibly nonsmooth) convex similarity

measures and combining them with various convex con-

straints.

The remaining of the paper is organized as follows.

The notation, background and considered model are
presented in section 2. Then, in section 3, we describe

the adopted parallel proximal algorithm that allows

us to solve the derived convex minimization problem.
Some simulation results are shown in section 4 on the

MiddleBury data set and other real images. Finally,

some conclusions are drawn in section 5.

2 Stereo matching model

We consider two multicomponent images of the same

scene acquired by a stereoscopic camera. The left (resp.

right) view is given by the function

IL : R
2 7→ RK

s 7→ IL(s) = (I
(1)
L (s), I

(2)
L (s), ..., I

(K)
L (s))⊤

(1)

(resp. IR : R2 7→ RK

s 7→ IR(s) = (I
(1)
R (s), I

(2)
R (s), ..., I

(K)
R (s))⊤).

For every k ∈ {1, . . . ,K}, I
(k)
R (s) (resp. I

(k)
L (s)) rep-

resents the k-th component of image IR (resp. IL) at
position s ∈ R2. Particular cases of this framework in-

clude color images by taking K = 3. Each component

then corresponds to one of the color channels of a spe-

cific color system (RGB, YUV, ...). Throughout this
paper, it will be assumed that IR and IL are differen-

tiable functions.

Corresponding points in the images of the stereo

pair tend to have similar values. The pixel at posi-
tion (x, y) ∈ R2 in the left image IL corresponds to

a pixel at position (x′, y′) ∈ R2 in the right image

IR, the disparity between these pixels being equal to
(x − x′, y − y′). When stereo images are rectified [13],

the vertical component of the disparity vector vanishes.

The disparity thus reduces to u(x, y) = x− x′. Finding
for each pixel (x, y) in the left image the corresponding

pixel (x− u(x, y), y) in the right image constitutes the

goal of stereo matching. The problem is then equiva-

lent to finding a disparity field u : R2 → [0,+∞[ which
minimizes a similarity measure. However, under vary-

ing illumination conditions, the corresponding points

in a stereo pair do not have the same component val-
ues. The illumination variation model we will employ

is grounded on the work by Gennert [11] and takes the

following form:

(∀(x, y) ∈ R2) IR(x− u(x, y), y) ≃ v(x, y)IL(x, y)

(2)

where v : R2 → [0,+∞[ represents the illumination field.
The problem now is not only to estimate the disparity

u but also to estimate the illumination field v. The next

section aims at better formulating the considered prob-

lem.

2.1 Problem formulation

In what follows, we propose a variational approach to

jointly estimate the disparity u and the illumination
variation v. Based on Model (2), we can formulate the

stereo matching problem as the minimization of a sim-

ilarity measure J̃ :

J̃(u,v) =

K∑

k=1

∑

s=(x,y)∈A\O

φ(k)
(
v(s)I

(k)
L (s)− I

(k)
R (x− u(s), y)

)

(3)

where, for every k ∈ {1, . . . ,K}, φ(k) is assumed to be-

long to Γ0(R), the class of proper lower semi-continuous
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convex functions from R to ] − ∞,+∞]. In addition,

A ⊂ Z2 is the considered finite image domain, u =
(u(s))s∈A, and v = (v(s))s∈A. The occlusion areas de-

noted by O correspond to pixels only visible from one

view of the stereo pair, which should not be taken into
account in the computation of the similarity measure.

Consequently, they have been discarded in the expres-

sion of the cost function.
In this paper, we will be mainly concerned with con-

vex optimization approaches. Unfortunately, J̃ is non-

convex with respect to the variable u. To tackle this

difficulty, we perform the first-order Taylor expansion
of the disparity compensated right image around an

initial value of the disparity ū. The latter can be de-

rived from a rough estimation, e.g. by a block-based
correlation method [14]. In practice, we can iteratively

update our initial value in order to make our final so-

lution weakly dependent on it. When the magnitude of
the difference of the fields u and ū = (ū(s))s∈A is small

enough, we obtain the following expression: for every

k ∈ {1, . . . ,K} and s = (x, y) ∈ A,

I
(k)
R (x− u(s), y) ≃ I

(k)
R (x− ū(s), y)

− (u(s)− ū(s))∇(1)I
(k)
R (x− ū(s), y) (4)

where ∇(1)I
(k)
R denotes the horizontal gradient of the

k-th component of the right image.

As a consequence of (3) and (4), we can approximate
the cost function by:

J(u,v)

=
K∑

k=1

∑

s∈A\O

φ(k)
(
T

(k)
1 (s)u(s)+T

(k)
2 (s)v(s)−r(k)(s)

)

(5)

where, for every k ∈ {1, . . . ,K} and s = (x, y) ∈ A,





T
(k)
1 (s) = ∇(1)I

(k)
R (x− ū(s), y)

T
(k)
2 (s) = I

(k)
L (s)

r(k)(s) = I
(k)
R (x− ū(s), y) + ū(s)T

(k)
1 (s).

(6)

As previously mentioned, our objective is to jointly es-
timate u and v. Thus, by defining w = (u,v),

(∀s ∈ A) w(s) =

[
u(s)
v(s)

]
(7)

and, for every k ∈ {1, . . . ,K} and s ∈ R2, T(k)(s) =

[T
(k)
1 (s), T

(k)
2 (s)], the above expression can be reexpressed

more concisely as

J(w) =

K∑

k=1

J (k)(w) (8)

where, for every k ∈ {1, . . . ,K},

J (k)(w) =
∑

s∈A\O

φ(k)
(
T

(k)(s)w(s)− r(k)(s)
)
. (9)

Despite the convexity of the function J , optimizing

this criterion is an ill-posed problem, since we have two
variables to estimate at each point s and the compo-

nents of T (k)(s) may locally vanish for some k and s.

We thus need to incorporate additional prior informa-
tion on the desired disparity and illumination variation

fields.

2.2 Introducing prior information

Our objective here is to introduce prior information on
our target solution. This can be done either by adding

to J some regularization terms or by incorporating some

convex constraints to the problem. In this paper, we will
follow the second approach. Let (Si)1≤i≤m denote them

nonempty closed convex sets modelling the constraints

one wants to impose. The resulting optimization prob-
lem can then be formulated as:

Find w ∈ S =

m⋂

i=1

Si such that J(w) = inf J(S). (10)

Constraint sets defined on the Hilbert space H =

R|A| × R|A| can be described as lower level sets:

(∀i ∈ {1, ...,m}) Si = {w ∈ H | fi(w) ≤ δi} , (11)

where, for every i ∈ {1, . . . ,m}, fi : H → R is a convex
function and δi ∈ R. One of the potential advantages

of this approach with respect to the regularization for-

mulation is that it appears often easier from a physical

viewpoint to set the constraint bounds than determin-
ing regularization parameters.

We will now review some of the constraints that can

be applied to our problem.

2.2.1 Constraints that can be applied on the disparity

Range values As the minimum and maximum values

umin and umax of the disparity field are often known,
we propose to introduce a constraint related to these

bounds. The corresponding constraint can be expressed

as

S1,1 = {(u(s))s∈A ∈ R|A| |

(∀s ∈ A) umin ≤ u(s) ≤ umax}. (12)

It can be noticed that the disparity is always nonnega-

tive, so that umin ≥ 0.
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First-order smoothness constraint A piecewise constant

behaviour of the disparity field is often expected. So, it
is meaningful to introduce a constraint enforcing smooth-

ness in homogeneous areas while preserving edges. One

can think of using the Total Variation semi-norm which
has played a key role in image recovery problems [15,

16]. Let ∇̂(1) and ∇̂(2) denote discrete horizontal and

vertical gradients (for example, obtained by cyclic con-

volutions [17,18]). Then, a discrete version of the total
variation (TV) is the following one:

(∀u ∈ R|A|)

TV(u) =
∑

s∈A

√
|∇̂(1)u(s)|2 + |∇̂(2)u(s)|2. (13)

The associated constraint set is

S1,2 =
{
u ∈ R|A|

∣∣ TV(u) ≤ τ2
}

(14)

with τ2 > 0.

Frame analysis constraint Alternatively, we can adopt
a frame analysis approach to construct a smoothness

constraint. In particular, it well-known [19,20] that wa-

velet frames, through their relationships with Besov
spaces, constitute appropriate tools to characterize use-

ful classes of regular signals. Frame representations [21]

and more precisely tight frame representations have be-
come very popular during the last decade. Such trans-

forms can be described by an analysis frame opera-

tor F : R|A| → RQ with Q ≥ |A|, which associates to

u ∈ R|A| its frame coefficients
(
(Fu)q

)
1≤q≤Q

. The con-
sidered frame analysis constraint is expressed as

S′
1,2 =

{
u ∈ R|A|

∣∣
Q∑

q=1

ηq|(Fu)q| ≤ τ ′2
}

(15)

where (ηq)1≤q≤Q ∈ [0,+∞[Q and τ ′2 > 0. F is said to be

a tight frame when F⊤F = νI, where ν > 0. A simple
example of a tight frame is the union of ν orthonormal

wavelet bases [22].

Second-order constraint Some recent works [23] have

shown that considering the second-order derivatives of

the target image can be helpful in data recovery prob-
lems. Let a discrete version of the Hessian of u ∈ R|A|

at s ∈ A be

∇̂2u(s) =

[
∇̂(1,1)u(s) ∇̂(1,2)u(s)

∇̂(1,2)u(s) ∇̂(2,2)u(s)

]
.

Consequently, a second-order variant of the discrete to-

tal variation can be defined as

(∀u ∈ R|A|) TV2(u) =

∑

s∈A

√
|∇̂(1,1)u(s)|2 + |∇̂2,2)u(s)|2 + 2|∇̂(1,2)u(s)|2

(16)

and the associated constraint set is

S1,3 =
{
u ∈ R|A|

∣∣ TV2(u) ≤ τ3
}

(17)

with τ3 > 0.

2.2.2 Constraints that can be applied on the

illumination field

Range values Similarly to the disparity field, estima-

tions of the minimum and maximum values vmin ≥ 0

and vmax of the illumination field are often available.
The corresponding constraint can be expressed as

S2,1 = {
(
v(s)

)
s∈A

∈ R|A| |

(∀s ∈ A) vmin ≤ v(s) ≤ vmax}. (18)

First-order smoothness constraint Since the illumina-

tion field is usually smoothly varying, we can add a

quadratic constraint on the discrete gradient of the il-
lumination field. This amounts to considering the fol-

lowing constraint set:

S2,2 =
{
v ∈ R|A|

∣∣ ‖∇̂v‖2ℓ2 ≤ κ2
}

(19)

where κ2 > 0 and

(∀v ∈ R|A|) ‖∇̂v‖ℓ2 =
(∑

s∈A

|∇̂(1)v(s)|2+|∇̂(2)v(s)|2
)1/2

.

(20)

Second-order constraint We can also introduce a con-

straint on the discrete Hessian of the illumination field,

thus yielding

S2,3 =
{
v ∈ R|A|

∣∣ ‖∇̂2v‖2ℓ2 ≤ κ3
}

(21)

where κ3 > 0 and, for every v ∈ R|A|,

‖∇̂2v‖ℓ2 =
(∑

s∈A

|∇̂(1,1)v(s)|2 + |∇̂(2,2)v(s)|2

+ 2|∇̂(1,2)v(s)|2
)1/2

. (22)
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2.2.3 Resulting constraints applied on vector w

Based on the constraints presented above, four different

constraint sets are considered in this work:

1. The first one concerns the range values taken by the

disparity and the illumination fields. It is defined as

S1 = S1,1 × S2,1. (23)

2. The second set is based on the first-order regularity

of the illumination and disparity fields:

S2 = S1,2 × S2,2 (24)

3. The third set involves the frame analysis formula-
tion instead of the total variation for the disparity,

and reads:

S′
2 = S′

1,2 × S2,2. (25)

4. The last constraint set models the second-order smooth-
ness constraints:

S3 = S1,3 × S2,3. (26)

3 Proximal approaches for convex optimization

3.1 Proximity operator

In a seminal paper [24], Moreau proposed an extension

of the notion of projection by considering the following

optimization problem:

minimize
z∈H

ϕ(z) +
1

2
‖z − y‖

2
(27)

where H is a real Hilbert space, ϕ ∈ Γ0(H) and y ∈ H.

This problem admits a unique solution which is called

the proximity operator proxϕy of ϕ at y.
Consequently, by taking ϕ = ιC , where the indicator

function ιC of a nonempty closed convex set C ⊂ H is

defined as

(∀z ∈ H) ιC(z) =

{
0 if z ∈ C

+∞ otherwise,
(28)

proxιC reduces to the projection operator PC onto C

[25–27].
Proximity operators have very attractive properties [26]

that make them particularly well-suited to design iter-

ative minimization algorithms.

3.2 Optimization background

The constraints proposed in section 2.2.3 are separa-

ble since each constraint set Si with i ∈ {1, . . . ,m}

can be expressed as S1,i × S2,i.
1 In addition, for ev-

ery i ∈ {1, . . . ,m}, one can express S1,i (resp. S2,i) as

L−1
1,i (C1,i) (resp. L−1

2,i (C2,i)) where C1,i (resp. C2,i) is a

nonempty closed convex subset of RN1,i (resp. RN2,i)

and L1,i (resp. L2,i) is a matrix in RN1,i×|A| (resp.

RN2,i×|A|). For example, we have chosen L1,1 and L2,1

equal to the |A| × |A| identity matrix. By setting L1,2

and L2,2 equal to the concatenation of the horizontal

and vertical gradient operators (N1,2 = N2,2 = 2|A|),
C1,2 and C2,2 reduce to ℓ2,1 balls [28,29]. A similar

choice can be made for constraint S3 by considering

linear operators related to the second-order derivatives

(N1,3 = N2,3 = 3|A|). In the considered cases, the pro-
jection onto each convex set C1,i or C2,i takes a closed

form or it can be computed in a finite number of oper-

ations [28]. The considered optimization problem then
takes the following generic form:

minimize
L1,iu ∈ C1,i, L2,iv ∈ C2,i,

i ∈ {1, . . . ,m}

J(w). (29)

Numerical solutions to this problem can be provided

by parallel proximal splitting methods. These methods
basically consist of iterating computations of proximity

operators.

3.3 PPXA+ algorithm

In this work, we employ the Parallel Proximal Algo-

rithm (PPXA+) [12]. This algorithm is closely related

to augmented Lagrangian approaches [30,31]. The ex-
isting links have been investigated in [12, Section 6]

where it is shown that the parallel versions of the alter-

nating direction method of multipliers in [31,32] con-

stitute a particular case of PPXA+. Alternative algo-
rithms could be employed in our context [33–38]. How-

ever, PPXA+ was observed to have a good convergence

profile with respect to other competing algorithms.

As shown by Algorithm 1, we proceed by splitting

function J in the K terms corresponding to each im-

age component and by exploiting the separability of the

closed convex constraint sets (C1,i × C2,i)1≤i≤m. The
algorithm is initialized by setting the positive weights

(ω1, ω2, . . . , ωm+K) ∈]0,+∞[m+K as well as the vari-

ables (z1,i,0)1≤i≤m+K and (z2,i,0)1≤i≤m+K associated

1 Constraint S′
2 will be substituted for S2 in some of our ex-

periments.
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with the convex constraints (C1,1 × C2,1, . . . , C1,m ×

C2,m) and the split data fidelity criterion
J 7→ w 7→ (J (1)(w), . . . , J (K)(w)).

• Notation

N1,m+1 = . . . = N1,m+K = |A|

N2,m+1 = . . . = N2,m+K = |A|
For k = 1, 2, . . . ,K do

L1,m+k = I

L2,m+k = I

end For

• Initialization

(ω1, ω2, . . . , ωm+K) ∈]0,+∞[m+K

(z1,i,0)1≤i≤m+K ∈ RN1,1 × RN1,2 × · · · × RN1,m+K

(z2,i,0)1≤i≤m+K ∈ RN2,1 × RN2,2 × · · · × RN2,m+K

Q1 =
(

∑m+K
i=1 ωi(L1,i)

⊤L1,i

)−1

Q2 =
(

∑m+K
i=1 ωi(L2,i)

⊤L2,i

)−1

u0 = Q1

(

∑m+K
i=1 ωi(L1,i)

⊤z1,i,0

)

v0 = Q2

(

∑m+K
i=1 ωi(L2,i)

⊤z2,i,0

)

• Main loop

For n = 0, 1, . . . do

• Direct projections

For i = 1, 2, . . . ,m do

p1,i,n = PC1,i
(z1,i,n) and p2,i,n = PC2,i

(z2,i,n)

end For
• Prox computations

For k = 1, 2, . . . ,K do

(p1,m+k,n,p2,m+k,n) =

prox
J(k)

ωm+k

(z1,m+k,n, z2,m+k,n)

end For

• Averaging

c1,n = Q1

(
∑m+K

i=1 ωi(L1,i)
⊤p1,i,n

)

c2,n = Q2

(
∑m+K

i=1 ωi(L2,i)
⊤p2,i,n

)

• Updates

For i = 1, 2, . . . ,m do

z1,i,n+1 = z1,i,n + λn(L1,i(2c1,n −un)−p1,i,n)

z2,i,n+1 = z2,i,n + λn(L2,i(2c2,n − vn)−p2,i,n)
end For
For k = 1, 2, . . . ,K do

z1,m+k,n+1 = z1,m+k,n + λn(2c1,n − un −

p1,m+k,n)

z2,m+k,n+1 = z2,m+k,n + λn(2c2,n − vn −
p2,m+k,n)

end For
un+1 = un + λn(c1,n − un)

vn+1 = vn + λn(c2,n − vn)
end For

Algorithm 1: PPXA+

The main loop first consists of computing the prox-

imity operators of the data fidelity terms, as well as the

direct projections onto the different convex sets mod-

eling prior information. By using basic properties of

proximity operators [26], it can be shown that, for ev-
ery k ∈ {1, . . . ,K}, ωk > 0, and (z1, z2) ∈ R|A| × R|A|,

prox J(k)

ωk

(z1, z2)

= (z1(s) + µ(k)(s)T
(k)
1 (s), z2(s) + µ(k)(s)T

(k)
2 (s))s∈A

(30)

where z1 = (z1(s))s∈A, z2 = (z2(s))s∈A, and

µ(k)(s) =





1
γ(k)(s)

(
prox γ(k)(s)φ(k)

ωk

(τ (k)(s))− τ (k)(s)
)

if γ(k)(s) 6= 0

and s 6∈ O

0 otherwise,

(31)

τ (k)(s) = T
(k)
1 (s)z1(s) + T

(k)
2 (s)z2(s)− r(k)(s) (32)

γ(k)(s) = |T
(k)
1 (s)|2 + |T

(k)
2 (s)|2. (33)

Subsequently, an averaging of the variables resulting

from the computation of the projections and proximity

operators is performed before the update equations. It
must be emphasized that the matrix inversions required

in the algorithm can be efficiently performed by making

use of discrete Fourier diagonalization techniques [39].
To gain insights in the convergence properties of this al-

gorithm, assume that, for every k ∈ {1, . . . ,K}, φ(k) is

a finite function. In our problem, the data fidelity term

is convex with respect to the variable (u,v) and each
individual constraint is also convex with respect to ei-

ther u or v, as mentioned in sections 2.1 and 2.2. Then,

provided that the sequence of relaxation parameters
(λn)n∈N involved in Algorithm 1 is such that (∀n ∈ N)

λ̃ ≤ λn+1 ≤ λn < 2, where λ̃ ∈]0, 2[, [12, Prop. 5.2]

allows us to guarantee that the sequence (un,vn)n∈N

generated by the algorithm converges to a solution to

problem (10). The value of this parameter is set to 1.5

for all iterations. As the relaxation parameter consti-

tutes an internal parameter of the algorithm, its choice
does not modify the optimality of the solution. How-

ever, its value plays a role in the convergence speed

as illustrated in Table 1. According to this table, the
value of λn has been chosen so as to maximize the con-

vergence speed.

Note finally that PPXA+ can be similarly applied in
order to minimize J over S1 ∩ S2 or S1 ∩ S3.

4 Results

4.1 Error measures

First of all, we would like to define the quality measures

we adopt. Let ẑ ∈ R|A| denote an estimate of z ∈ R|A|.
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λn 0.1 0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 1.9

Teddy 90.79 30.27 18.16 12.97 10.09 9.09 8.26 6.98 6.29 6.77 7.35

Cones 98.07 32.75 19.69 14.08 10.96 9.89 9.01 10.00 9.05 10.55 11.07

Table 1 Influence of λn on execution time (in seconds) for PPXA+ algorithm. The stopping condition described in section 4.3 is
used.

The measures below allow us to provide quantitative

evaluations of our results:

1. Mean Absolute Error (MAE)

MAE(z, ẑ) =
1

|A \ O|

∑

s∈A\O

|z(s)− ẑ(s)|. (34)

2. Average percentage of bad pixels

Err(z, ẑ) =
1

|A \ O|

∑

s∈A\O

1{|z(s)−ẑ(s)|>T} (35)

where T is some given positive threshold value cho-

sen here equal to 2 and, for every s ∈ A,

1{|z(s)−ẑ(s)|>T} =

{
1 if |z(s)− ẑ(s)| > T

0 otherwise.
(36)

4.2 Initialization

As previously mentioned, initial estimates ū and v̄ have

been obtained based on a block matching technique.
Usually, two criteria are considered in the minimization

performed in the block matching procedure: the sum

of squared differences and the sum of absolute differ-
ences. In this work, we consider another popular mea-

sure, namely the Normalized Cross Correlation (NCC)

similarity measure [14]. Note that more sophisticated
measures could be envisaged such as the one proposed

in [40]. NCC is defined as follows:

(∀(x, y) ∈ A)(∀u ∈ N) ψx,y(u) =
K∑

k=1

ψ(k)
x,y(u) (37)

where

ψ
(k)
x,y(u) =

∑

(i,j)∈B

I
(k)
L

(x+ i, y + j)I
(k)
R

(x− u+ i, y + j)

√

∑

(i,j)∈B

(I
(k)
L

(x+ i, y + j))2
√

∑

(i,j)∈B

(I
(k)
R

(x− u+ i, y + j))2

(38)

and B corresponds to the matching block (here of size

11× 11) centered at pixel (x, y) in the reference image.

In order to get the corresponding pixel (x − ū(x, y), y)
in the right image, the matching process determines

ū(x, y) which maximizes the similarity measure ψx,y:

ū(x, y) ∈ argmax
u ∈ N∩[umin,umax]

ψx,y(u). (39)

Once ū(x, y) is found, v̄(x, y) is evaluated by the fol-
lowing weighted least squares estimation:

v̄(x, y) =
∑K

k=1 θ
(k)

∑

(i,j)∈B

I
(k)
L (x+ i, y + j)I

(k)
R (x− ū(x, y) + i, y + j)

∑K
k=1 θ

(k)
∑

(i,j)∈B

I
(k)
L (x+ i, y + j)2

,

(40)

where (θ(k))1≤k≤K are nonnegative real weights. In our

tests, the illumination variation is the same for all the

components and, for YUV images, the best results have
been obtained by choosing a weight equal to 1 for the

Y component, and 0 for the U and V components.

However, with the previous technique, some remaining
artefacts can be observed in the disparity maps, e.g.

contouring effects and oversmoothing in some areas.

In order to reduce these artifacts and limit the influ-

ence of occlusion areas, a bidirectional matching pro-
cess is performed. More precisely, we firstly apply the

NCC method to find the left disparity map denoted by

ūL(x, y), by proceeding as described above. Similarly,
we apply the NCC method to find the right disparity

map denoted by ūR(x, y) by taking now the right view

as the reference image. Finally, we derive the initial dis-
parity ū(x, y) as follows:

ū(x, y) = ūR(x− ūL(x, y), y). (41)

The upper and lower bounds in the constrained formu-

lation are estimated using prior knowledge when avail-

able or from the initial estimates ū and v̄, otherwise.

4.3 Algorithm implementation

In this section, we summarize the algorithm steps and

parameters that are required in our joint disparity and
illumination variation estimation method.

Inputs:

- Occluded areas O estimated from the initial dispar-

ity map based on the ordering [41] and border con-

straints.

- (T
(k)
1 , T

(k)
2 , r(k)) for k ∈ {1, 2, 3}.

- Minimum and maximum estimates of the fields to

be estimated.

- Upper bounds for the constraints.
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Parameter choice:

- For S1, ω1=100, ω2=100.

- For S2, S3 or S4: ω3=200, ω4=200.
- For J (1),J (2) and J (3): ω5=ω6=ω7=10.

- λn ≡ 1.5.

The weights were chosen so that all the terms in the

averaging step have a contribution of the same order.

Stopping criterion:

- The algorithm is stopped when the following condi-
tion is satisfied for 10 successive iterations:

‖un+1 − un‖ < ǫ‖un‖ where ǫ = 10−5.

Outputs:

- The final values of the disparity vector un and the

illumination variation vector vn.

4.4 Gray level images without variation illumination

Although the purpose of this work is to focus on situ-

ations where illumination variation arises, in this first

experiment we aim at illustrating the performance of
the proposed approach on grayscale images (K = 1)

without any variation of the illumination field (for every

s ∈ A, v(s) = 1). This allows us to compare our method
with some recent state-of-the-art methods referenced in

the Middlebury website2. In Table 2, we display the re-

sults obtained on 3 different stereo pairs (Teddy, Venus

and Cones) for which we compare the results obtained
by:

– the correlation-based approach used to initialize our

approach (NCC),

– a graph-cut based approach (Gc+Occ) [1],
– a total variation based algorithm (ConvexTV) [42],

– a method based on the knowledge of Ground Con-

trol Points (GlobalGCP) [43],

– a histogram-based method (HistoAggr) [44],
– a curvelet-based approach (CurveletSupWgt) [45],

– the approach based on set theoretic estimation (subg.

proj.) in [7],
– our proposed method based on PPXA+ minimizing

an ℓ1 cost subject to constraints S1,1, S1,2 and S′
1,2.

Note that the frame employed to define constraint S′
1,2

simply consists of an overcomplete Haar wavelet rep-

resentation carried out over 1 resolution level. Other
wavelet families have been tested without observing sig-

nificant improvements.

The proposed approach appears to be competitive
with respect to the other ones, although most of them

2 http://vision.middlebury.edu/stereo/

Method Teddy Venus Cones

NCC 1.1698 0.4118 1.1348

Gc+Occ [1] 1.1667 0.3037 0.5856

ConvexTV [42] 0.3661 0.1781 0.3741

GlobalGCP [43] 0.4892 0.2724 0.4433

HistoAggr [44] 0.7884 0.2785 0.4342

CurveletSupWgt [45] 0.8315 0.2996 0.8317

Subg. proj. [7] 0.8906 0.2072 0.5515

PPXA+ 0.6663 0.2113 0.4874

Table 2 Comparative results based on MAE for Teddy, Venus
and Cones stereo pairs. The red superscript numbers represent

method ranking.

are not able to deal with illumination variation. More-

over, as already mentioned, the proposed method can
be implemented on a GPU architecture, thus reducing

drastically the computation time. Indeed, the proximity

operators and the projections onto the different convex

sets can be computed in parallel. For example, with a
GPU implementation, when considering the range val-

ues S1,1 and the total variation constraints S1,2, the

following executing times per iteration were measured:
for Teddy: 21.7ms, for Venus: 5.72ms, and for Cones:

21.98ms.

Let us now turn our attention to more challeng-
ing scenarii including illumination variation both for

grayscale and color images.

4.5 Gray level images with illumination variation

In this section, we evaluate our method on grayscale
images (K = 1) in the presence of real and simulated

illumination changes. The results are obtained on three

stereo pairs depicted in Fig. 1, named “Books”, “Dolls”

and “Parking meter”.

Fig. 1 Stereo images: “Books” (left), “Dolls” (center) and “Park-
ing meter” (right).

In a first experiment, we estimate the disparity map

and the illumination variation (real case) on the Books

pair downloaded from MiddleBury website. We take
here φ(1) = | · | for the cost function and consider the

two convex constraints S1 and S2 for which the upper

bounds were evaluated on the ground truth maps. In
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Fig. 2, we compare our results with the subgradient

projection approach proposed in [7], where a strictly
convex quadratic function is used. We also compare our

approach with two naive procedures for the disparity

field estimation: the correlation based approach ignor-
ing the illumination variation and a histogram equaliza-

tion technique followed by a variational approach for

disparity estimation, in the spirit of the approach we
developed.

a) True disparity b) True illumination

c) MAE=1.8, Err=16 d) MAE=0.212

e) MAE=1.46, Err=13 f) MAE=0.211

g) MAE= 4.69, Err=26 h) MAE=1.55, Err=18

Fig. 2 Results for “Books” stereo pair: a)-b) ground truths, c)-
d) subgradient projection method (c) disparity and d) illumi-

nation fields) and e)-f) proposed approach with (umin, umax) =
(20, 75),(vmin, vmax) = (0.1, 1.1), (τ2, κ2) = (74000, 400) (e) dis-
parity and f) illumination fields), g) estimation of the disparity by
NCC, h) estimation of the disparity after histogram equalization.

Fig. 3 Synthetic Gaussian profile.

Concerning the choice of the criterion and of the

constraint sets, we present in Fig. 4 results obtained by

using the following settings:

– for a)-b): S1, S
′
2, and φ(1) = | · |;

– for c)-d) same constraints as a)-b) and φ(1) = (·)4;

– for e)-f): S1, S2, S3, and φ(1) = | · |;

– for g)-h) same constraints as e)-f) and φ(1) = | · |
3
2 .

It turns out that the ℓ1 cost is a good choice, and that
the use of second-order constraints leads to a marginal

improvement.

In a third experiment (see Fig. 5), we show the re-

sults provided by the proposed method (φ(1) = | · |) for
a real image stereo pair from JISCT database 3, taken

under simulated illumination variation. To introduce a

significant illumination variation, the left image is kept

untouched and we modified the right image by multi-
plying it with the Gaussian profile g depicted in Fig. 3

and defined as:

(∀(x, y) ∈ A)

g(x, y) = α1 exp
(
−
(x− x0)

2 + (y − y0)
2

2ξ2

)
+ α2 (42)

where (x0, y0) is the image center, ξ = 512 is the illumi-

nation deviation, α1 and α2 are given constants equal

to 1.8 and −0.6 respectively.
In this case, the constraint bounds in S1 and S2 are not

known. Hence, they were firstly computed on the initial

disparity and then divided by a factor 2, thus assuming
that the expected result should be smoother than the

initial estimate.

4.6 Color images with illumination variation

For color images, we present tests performed on Dolls

pair also downloaded from Middlebury website. Con-

straint sets S1 and S2 were used, the associated bounds
being computed on the ground truth fields. The results

are provided in Fig. 6 for YUV color images and the

grayscale level images (Y component only) by using, for

3 http://vasc.ri.cmu.edu/idb/html/jisct/
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a) True disparity b) True illumination

c) MAE=1.26, Err=13 d) MAE=0.09

e) MAE=1.38, Err=14 f) MAE=0.102

g) MAE=1.23, Err=14 h) MAE=0.103

i) MAE=1.23, Err= 14 j) MAE=0.103

Fig. 4 Results for Dolls stereo pair: proposed approach con-

sidering for c)-d)-ℓ1-cost and S1 ∩ S′
2 with (umin, umax) =

(20, 75), (vmin, vmax) = (0.1, 1.1), (τ ′2, κ2) = (92000, 230), e)-

f)-ℓ4 cost and S1 ∩ S′
2, g)-h) ℓ1 cost and S1 ∩ S2 ∩ S3 with

(τ2, κ2) = (34000, 230), (τ3, κ3) = (180000, 570), i)-j)-ℓ3/2 cost
and S1 ∩ S2 ∩ S3.

every k ∈ {1, . . . ,K}, φ(k) = |·|. As expected, matching

errors are reduced by using the proposed illumination

variation model for color images.

a) MAE=0.033 b)

c) MAE=0.031 d)

Fig. 5 Results for “Parking meter” stereo pair. a)-b) Subgradient
projection method and c)-d) our approach with (umin, umax) =
(1, 8), (vmin, vmax) = (0.1, 1.1), (τ2, κ2) = (20000, 0.4).

5 Conclusion

In this paper, we have investigated the application of a
parallel proximal algorithm to the dense disparity esti-

mation problem for multicomponent (e.g. color) stereo

matching under illumination variation conditions. The

proposed approach is flexible as it allows us to consider
various convex objective functions and constraints. It

is also able to exploit the potentials offered by multi-

core/GPU parallel architectures. However, one of the
current limitations of the proposed method is that it is

limited to convex cost functions, thus requiring a lin-

earization of the original disparity model and making
the estimation potentially sensitive to high values of

matching errors. In our future work, we therefore plan

to consider extensions of this approach to nonconvex

cost functions.
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