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Introduction

A présente thése s’est déroulée dans le cadre d’'un contrat CIFREl'eniversité de Paris Est
(Marne-la-Vallée) et Thales Communications (Colombes). Cette these $famistour des canaux
MIMO sélectifs en fréquence pour des émetteurs mono-porteuses.dbmsu depuis longtemps que
les systémes multi-antennes, ou systéemes MIMO, permettent d’augmentiemsieblement les débits
de transmission des systémes mono-antenne, ou systémes SISO ; un pxerde&recherche concerne
ainsi l'optimisation de la capacité ergodique dans les canaux seélectifs qarefrée. L'utilisation de
plusieurs antennes d’émission permet également d’augmenter les perfesyen réception grace a la
diversité de transmission induite ; un second axe s'attache donc a étudiiezriité pour des récepteurs
MMSE dans des canaux sélectifs en fréquence.

Capacité ergodigque

Depuis une quinzaine d’années de nombreux travaux s'attachent aruéisgystemes MIMO (Mul-
tiple Input / Multiple Output), c’est-a-dire des systémes équipés de plgséeiennes d’émission et de
plusieurs antennes de réception, afin d'augmenter la capacité de 8lemsociée aux traditionnels sys-
temes SISO (Single Input/ Single Output). Dans ce but, un probléme ccodisiste en la conception de
I'émetteur optimal au sens de la capacité de Shannon, c’est-a-dire ertitanrefaimale entre le vecteur
x(n) transmis sur les antennes d’émission et les symboles d’'information & transi@etrprobléma-
tiques ont fait I'objet de nombreuses études dans le cas ou le canatsimisaion MIMO est non sélectif
en fréquence ; elles sont cependant nettement moins matures dan®ld’oadranal MIMO sélectif en
fréquence. Cette thése s’intéresse ainsi dans cette premiére partigrai$agpon, au sens de la capacité
ergodique, de la matrice de covariance du vecteur transmis dans le cadenlilss statistiques du canal,
et non la valeur instantanée du canal, sont connues a I'’émetteur.
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Etat de I'art des cas non sélectifs en fréquence

Dans le cas d'un canal non sélectif en fréquence on peut reprétensmal MIMO par une matricel
de tailler x ¢, our est le nombre d’antennes en réception bt nombre d’antennes en émission. Le
vecteury (n) obtenu en échantillonnant le signal regu a la période symbole sur les est@néception
peut donc s’écrire sous la forme :

y(n) = Hx(n) + b(n), (1)

oux(n) est le vecteur transmis sur les antennes d’émissibifretun bruit additif supposé Gaussien de
variances2. Telatar a établi le premier la formule explicite de I'information mutuelle extre) ety (n)
pour une matricdl donnée [1,2] :

1
log det <1r + 2HQHH> , 2)
g

ol Q est la covariance du vecteur émtisupposé Gaussien, i€ = E [xxH] , qui vérifie la contrainte
de puissancéT&“Q < 1. Lorsque I'on a acces a la valeur #B le maximum suiQ de l'information
mutuelle (2) correspond a la capacité du canal MIMO et représente iiendgkimum auquel on peut
transmettre de facon fiable I'information. Il est bien connu [3] que letewes propres de la matri€@
optimale, noté&),, coincident avec les vecteurs singuliers a droitddet les valeurs propres dg.
s’obtiennent grace a un algorithme de type “waterfilling” — la connaissdnasanal instantanEl est
donc requise a I'émetteur. Il est peu réaliste dans le cas des communicatbitss de supposer disposer
de la matriceH a I'émetteur. Le canal de transmission est en pratique versatile, a caasenment de
la mobilité des utilisateurs et de la diversité des trajets de propagation. bresddisage de modéliser
H comme la réalisation d’une matrice aléatoire Gaussienne de statistiques cddmgéatéresse alors
non plus a I'optimisation de (2) lui-méme mais a I'optimisation de I'espérance derltiration mutuelle,
appelée information mutuelle ergodique et que nous notdrds$ :

I(Q) =E [log det (IT + ;ZHQHHH . (3)

L'optimisation de I'information mutuelle ergodique ne nécessite alors que laaissance des statis-
tiques du canal a I'émetteur. Ceci est une hypothese plus réaliste dasdades communications sans
fil que la connaissance du canal instantané. En effet, les statistiquesauwarient en pratique de ma-
niére beaucoup plus lente que le canal lui-méme. Une premiére étape cansiatiier le cas ou les
entrées de la matridd sont i.i.d. Gaussiennes complexes de moyenne nulle et de vatiag¢equi est
un modele simplifié d’'un canal de Rayleigh. Telatar a montré dans [2] quaupdal modéle de canal la
matrice de covariance optimale au sens de I'information mutuelle ergodiqu@étaitl;. L'information
mutuelle ergodique vaut alors

1(Q.) =E [log det <Ir + ;QHHHH : (4)
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Ce probléme d’'optimisation a ensuite été étudié pour des modeéles de canaélaplugs, comme le
modele de Kronecker ou le canal de Rice. Le modéle de Kronecker premompte la corrélation
spatiale entre les différents trajets en considérant que la mafrut S’écrire sous la forrr@%WC%,
oUW est une matrice dont les entrées sont i.i.d. Gaussiennes complexes daewoykset de variance
1/+/t; on suppose dans ce modéle une séparation des corrélations & I'ériztieau récepteu€ —

d’ou le nom également de covariance séparable. Dans le cas d'undealdeonecker, il a été montré
par de nombreux auteurs que les vecteurs propres de la covarigimale®. doivent coincider avec
les vecteurs propres de la matrice de corrélation & I'’émisSigwoir, entre autres, [4,5]). Un canal de
Rice a corrélation séparable correspond a un modéle de Kroneckenmwenoyenne non nulle, i.e. la
matriceH peut étre modélisée de la sortel:= A + C:WCz, ol A déterministe est la composante
en ligne de vue (ou LOS - Line Of Sight). On parle de canal de Rice déédorsqueC = I, et

C = I,. De maniére similaire au cas du modéle de Kronecker, [6] a montré pournah da Rice
décorrélé que les vecteurs propres de la covariance opti@aldoivent coincider avec les vecteurs
singuliers a droite de la matricA. Il suffit alors, dans les deux cas précédemment cités, d’estimer
les valeurs propres d@. par des algorithmes classiques d’optimisation, de type “waterfilling”. Dans
le cas du canal de Rice a corrélation séparable, I'optimisation est plus camipds vecteurs propres
de la covariance optimal®, n'ont pas d’expression explicite. Une approche directe a ceperdant
étudiée dans [7], ou les entrées de la matfzesont estimés par un algorithme de Newton, associé
a une méthode de barriére, appliqué directement sur I'expression deriation mutuelle ergodique
(3). Cette méthode d’optimisation directe de I'information mutuelle ergodiquesaited utilisation de
méthodes de Monte-Carlo, tres colteuses en terme de calculs numériguressiimer I'information
mutuelle ergodiqud(Q) au cours de l'algorithme d’optimisation — ainsi que pour estimer les vecteurs
gradient et les matrices Hessiennes pour I'algorithme de Newton.

Afin d’éviter I'utilisation de méthodes basées sur des simulations de Monte;@ers auteurs ont
proposé de remplacer I'optimisation d6Q) par I'optimisation d’'un approximant en grande dimension,
c’est-a-dire pour ett tendant vers I'infini de sorte qug't — c avecc €]0, +oc[. Le point de départ est
de remarquer quelog det (I + -y HQH*) se met sous la forme

1 — i
= "log <1+2>, (5)
r i1 g

ou les(\;)i=1,..., représentent les valeurs propresl@H* . Dans nombre de situation d'intérét pra-
tique (5) a le méme comportement asymptotique qu’'une quantité déterministe nelaidpgue d€) et
des statistiques dd. Dés lors, on peut approximé(Q) par une fonctior (Q) dont I'expression dépend
du canal considéré. Par exemple, il a été montré par [8, 9] que, daas tEun modéle de Kronecker,
1(Q) peut s’écrire sous la forme suivante :

1(Q) = log det (I,. + 50) + log det (It + (5QC> — o%t66, (6)



INTRODUCTION

oU § etd sont deux réels strictement positifs solutions d’un systéme d’équatiopséesu Le calcul de
Moustakas et al. [8] se base cependant sur la méthode des répliqneta gertinence mathématique
n'a pas été prouvée a ce jour dans le cas présent. Il est par ailleuesg#ét d'étudier le rythme de
convergence de I'approximantQ) versI(Q); il a été montré par [8,10] qUEQ) — I(Q) = O (1/1).
La preuve de [8] repose a nouveau sur les méthodes des répliqudis,daa I'approche simple et ri-
goureuse de [10] utilise les méthodes dites Gaussiennes, qui utilisenatgérarGaussien du modele
de canal considéré. Un résultat similaire est également obtenu pounaindeaRice a corrélation sépa-
rable, comme il a été montré dans [11] par la méthode des répliques, puifl@hpar les méthodes
Gaussiennes : 'approximantQ) peut dans ce cas s'écrire

_ N 1 NS .
1(Q) = log det (I,, n 5C> + log det <It +6QC + QA (L + 50) A) — o285, (7)

ol 4§ etd sont & nouveau deux réels strictement positifs solutions d’un systémeatigns couplées non
linéaires.

Cet approximant permet alors une approche indirecte d’optimisation dertimation mutuelle ergo-
dique consistant a utiliser 'approximahtQ) pour optimiser la covariance, plutdt que d'utiliser direc-
tement I'information mutuelle ergodiquE Q). Les expressions dBQ) sont explicites ce qui permet
d’éviter l'utilisation des méthodes de Monte-Carlo pour estif{€)). La mise en ceuvre de I'optimisa-
tion del(Q) est donc plus aisée que pal(Q) et le gain en terme de complexité de calcul important.
Dans le cas du modéle de Kronecker, [13] propose ainsi un algorithragéfigfoptimisation basé sur
I'approximant de I'information mutuelle ergodique. Une extension de cetitthgee au canal de Rice a
corrélation séparable est proposée dans [12], qui montre égalensémtta concavité de I'approximant
et donne des résultats partiels de convergence. L'approche indistagigalement justifiée dans [12] : il
y est montré que

@) -1 +0(}). ®)

ol Q,. est la matrice de covariance maximisa(®) et ol Q. est la matrice de covariance maximisant
I(Q). Pour ce type de canal un algorithme similaire a été introduit par [14] avame cétudié tout
récemment plus en détail par [15]. Il est notamment prouvé par [19]ajgerithme considéré converge
dans le cas d'un canal de Rayleigh et des cas d’oscillation de I'algorititrodrit par [12] sont exhibés.

Cas sélectif en fréquence

La premiere contribution de cette these est I'optimisation de I'information mutugjéeligyue pour les
canaux sélectifs en fréquence. Lorsque le canal est sélectif amefrég et que I'émetteur utilise des
modulation mono-porteuses, le modéle de réception (1) n’est plus valabkghal recuy (n) se met

10
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alors sous la forme :
L
y(n) = Z H(l)x(n +1)+b(n) 9)

l
=1
[H(z)]x(n) +b(n),

ou I'on note désormai¥l(z) la fonction de transfert du canal équivalent & temps discret défini par
H(z) = Y1, HY z~(-1 chaque matric#") correspondant & un trajet. Un modeéle répandu (voir
par ex. [16, 17]) pour ces matric&(!) consiste & considérer qu’elles sont indépendantes, ce qui cor-
respond & des trajets indépendants, et quelles suivent chacune dédemte Kronecker H() =
%(C(”)l/QWl(é(’))W, o'W, est une matrice aléatoire dont les entrées sont Gaussiennes complexes
standards. On not€(e?™) la densité spectrale de la matrice de covariance du vecteur tragsmis
L'information mutuelle ergodique du canal peut alors s’écrire

I(Q(e*™)) = E [ /0 1 log det <IT + %H(e%’”’)Q(ezi””)H(eQim’)H > dy] : (10)

Nous avons montré que dans le cadre de I'optimisation(@e*7)) on pouvait se ramener au cas de
matrices de covariand®(e?™) ne dépendant pas de la fréquence. On considére désa@@n&is”) =
QVv. Un approximant dd(Q) en grande dimension not§ Q) a été établi par [17] en utilisant la
méthode des répliques :

L L L
1(Q) = log det (IT +) Slc(”) + log det <It +Q <Z Mﬂ”)) — oty &b, (11)
1=1 1=1 =1
ou lesd; etd;, | = 1,..., L, sont les réels positifs solutions d’un systéme non linéaire Idéqua-
tions couplées. Nous vérifions dans un premier temps la pertinence dgcexienant en utilisant une
approche rigoureuse inspirée des résultats de [12] précédemmeniéévdlous justifions tout d'abord
I'existence et 'unicité de§; etd;, un point qui n'avait pas été abordé par [17]. Nous précisons ibgale
les hypothéses techniques nécessaires a la convergei¢€ feers I'approximant ainsi que la vitesse
de cette convergence :

1(Q) = T(Q)+0 (1) . (12)

Nous nous intéressons dans un second temps a I'optimisatibfQjevia son approximatiod(Q).
Pour cela nous justifions la stricte concavité de la fonaBons 1(Q), avant d’établir le résultat suivant :

1Q,) =1(Q)+0 <1> : (13)

ol Q,, est la matrice maximisart Q) sous la contrainte de puissariteQ = t, et ouQ, est la matrice
maximisantl(Q) sous la contrainte de puissaritEeQ = t. Autrement dit, il est cohérent de maximiser

11
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I'approximation(Q) au lieu del(Q). Nous proposons ainsi un algorithme de maximisatiod (@)
qui se base sur un waterfilling itératif : chaque itération résout le syster2é dguations couplées
évoqué précédemment ainsi qu’un probléme classique de waterfillingg&8hlgorithme peut étre vu
comme une extension de celui proposé par [13] dans le cas d’'un eaRaltkigh et par [12] dans le cas
d’un canal de Rice. Nous prouvons également que s'il convergetittigne converge vers la covariance
optimaleQ,, — la convergence en elle-méme n’a pu étre prouvée.

Diversité des récepteurs MMSE

Pour ce second axe de la thése, nous nous intéressons aux recBEREE. A I'inverse des récepteurs
du maximum de vraisemblance (ou ML pour Maximum Likelihood) ces réceptant sous-optimaux
mais plus simples a mettre en ceuvre. Dans un premier temps, nous étudionssitédiectels récepteurs
a haut SNR pour des canaux sélectifs en fréquence. Nous nousastatdns un second temps sur
un facteur de diversité, I'utilisation des codes spatio-temporels en bloBGETplus spécifiquement
I'utilisation du code d’Alamouti. Ainsi, nous proposons et analysons uneaurécepteur MMSE adapté
a la non-circularité des signaux qu’occasionne l'utilisation du codagkadiduti. Cette derniére analyse
a cependant été limitée au cas des canaux non sélectifs en fréquende maniére équivalente au cas
des canaux sélectifs en fréquence avec une forme d’onde OFDM.

Analyse de l'ordre de diversité

On définit I'ordre de diversitéd d’'un systéme par la pente de la décroissance exponentielle de la proba-
bilité d’erreur P, en fonction du SNR, a haut SNR :

d=— lim log Fe

14
p—+oo log p (14)

On a alors, poup > 1, P, ~ kp~?. Il existe deux approches pour étudier la diversité d’'un systéme. La
plus répandue (voir entre autres [19-21]) consiste a analyser le rglbmhécroissance de la probabilité
d’erreur par paire (PEP) en fonction du SNR. Cette approche ritcespendant I'élaboration de sché-
mas de codage spécifique pour atteindre la diversité maximale. Nous naessotes ici a la seconde
approche qui est basée sur la probabilité d’'outBge(R), ou R est le débit cible :

Pout(R) =P (I < R) ) (15)

ou I représente l'information mutuelle du systéme. Pour un systéme bien congublzbpité d’'ou-
tage correspond a la probabilité que la transmission soit non fiable. llcgstpertinent d’étudier la
décroissance exponentielle non pas de la probabilité d’effeunais de la probabilité d’outagB,,;.

12
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Cette approche est également commode car elle permet d’éviter le probléoecdgtion du codage a
I'émetteur. On définit alors la diversité de la maniére suivante :

log P,,
d(R) = — lim log Pout(R)

16
p—+oo  logp (16)

Cette approche est utilisée par de nombreux auteurs, dans le cadneadyskadu compromis diversité-
multiplexage (ou Diversity-Multiplexing Trade-off — DMT), introduit par &g et Tse [22]. L'étude de
ce compromis permet d’obtenir la diversité maximale atteignable. Nous nousoaigastonc désormais
sur I'étude du DMT.

Le compromis diversité-multiplexage :
Comme évoqué dans la section précedente, les systemes MIMO permettanS&lRaun gain linéaire
en capacité par rapport aux systemes SISO [2] :

I(p) ~ min{M, N}logp pour p>> 1, @7

ou I(p) est 'information mutuelleM le nombre d’antennes en émissidvi,le nombre d’antennes en
réception. La capacité croit donc kg p & haut SNR. Il est donc pertinent d’écrire le débit cible sous la
forme

R =rlogp, (18)

our < min{M, N} est le coefficient — ou I'ordre, le gain — de multiplexage. Ce gain correspa
multiplexage spatial : le canal MIMO peut étre décomposé en sous-c&i8axindépendants dont le
nombre est le rang de la matrice caHBlqui estmin{ M, N} siH est bien conditionnée. Le multiplexage
spatial revient a utiliser les degrés de liberté disponibles pour transmedtstgiaux indépendants sur
ces canaux paralléles, au lieu de les utiliser pour améliorer la fiabilité de lanismnsn : il existe
un compromis fondamental entre le coefficient de multiplexagela diversité&l(R), appelé DMT ou
compromis diversité-multiplexage [22]. Il est alors intéressant d’étlal@Ependance ende la diversité
d(R) = d(rlog p) défini par (16) ; on notera désormaig-) la fonction donnant la diversité en fonction
du coefficient de multiplexage:

log Py (11
d(r) = — lim 22 (rlogp) (19)
p—r+00 log p

On obtient alors, a priori, I'ordre de diversité maximal atteignallg, en prenant = 0. Zheng et Tse
ont établid(r) pour un canal MIMO non sélectif en fréquence dans [22] :

d(r) = (M —r)(N —r). (20)

On a dondd,,.. = M N pour R fixé. Une extension de ce résultat au cas SISO sélectif en fréquence
a rapidement suivi [23, 24], puis le cas du canal MIMO sélectif enufeége a été analysé [25-27].

13



INTRODUCTION

En notantZ le nombre de trajets indépendants, il est montré que, sous certaines ¢mditimdre de
diversitéd(r) vérifie
d(r)=L(M —r)(N —r), (22)

d’ou un ordre de diversité maximdl,,, = LMN. Ces calculs de diversité supposent cependant un
récepteur optimal, c’est-a-dire un récepteur ML. Un tel récepteumgstagique trop complexe a mettre
en ceuvre. On lui préfére des récepteurs linéaires sous-optimaux édepteur MMSE, ce qui nous
ameéne a I'étude qui suit.

Etude du DMT pour les récepteurs MMSE :

La seconde contribution de la thése est I'étude du DMT pour les réceMBSE pour un débit cible
R fixe, i.e. pour un coefficient de multiplexage= 0. Il a été montré par [28] que dans le cas d'un
canal MIMO non sélectif en fréquence les récepteurs MMSE dététigrandement le DMT : en effet,
I'expression suivante dé(r) est obtenue :

d(r) = (N — M +1) (1—&>+, 22)

ol ()7 = max{0,-}. On s’attend donc au mieux a une diversitédge, = N — M + 1. Cependant,
pour un débit cibleR fini, i.e. pourr = 0, il a été observé par Hedayat et al. dans [29] que les récepteurs
MMSE exhibent des ordres de diversité qui difféerent selon le déhdi élchoisi (voir également [30,
31]). En particulier, la diversité maximaleM N évoquée précédemment est atteinte pour des dBbits
suffisamment faibles, d’ou le grand intérét de ces récepteurs simples @ emetauvre. Ce comportement
inattendu a été expliqué dans [28, 32] pour des canaux MIMO non séledatifréquence et dans [33]
pour des canaux MIMO sélectifs en fréquence, mais dans les deuexpkdation est malheureusement
partielle. Nous mettons en exergue le caractére inexact de la preuvéedpan[32] dans le cas d’'un
canal non sélectif en fréquence et donnons une preuve rigowteuaeliversité pour un tel systeme. Par
ailleurs, en ce qui concerne les canaux sélectifs en fréquencerd¥ixe gyclique, Mehana et Nosratinia
[33] n'établissent la diversité que dans le cas particulier d’'un nombteags L égal a la longueur du
bloc de données émis. Par conséquent nous établissons la diversité das sélectif en fréquence avec
préfixe cycliqgue — nous supposons toutefois une longueur de bloaxéds émis suffisamment grande.

Diversité apportée par les STBC

Le compromis diversité-multiplexage se retrouve au niveau de la concejgsaystemes MIMO : on
peut par exemple privilégier le multiplexage en utilisant le schéma V-BLASTti(\# Bell Layered
Space-Time [34, 35]) ou préférer maximiser le gain en diversité en utilisa@bde Spatio-Temporel en
Bloc (ou STBC pour Space-Time Block Code [36]) en émission. Zhengetfd2] ont d’ailleurs mis
en évidence les comportements opposés de ces deux schémas par ktedeRMT. Comme dans
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cette partie nous nous intéressons avant tout a la diversité, qui péangtanter la portée et la fiabilité
des communications, nous nous penchons ici sur l'utilisation des STBCSTBE orthogonaux [37]
sont particulierement attractifs ; ils permettent d’atteindre la diversité spatamtanale pour un nombre
fixe d'antennes d’émission et de réception. Nous nous pencherotiisitdisation du premier STBC
orthogonal, qui est également le plus simple et le plus connu, présentdapaouti dans [38]. Il est
standardisé dans les normes UMTS, GSM, EDGE, IEEE 802.11n, IEEE®(BI].

Afin d’exploiter au mieux le spectre disponible et la diversité inhérente iaal de& transmission nous
nous intéressons dans cette these au cas multi-utilisateur Alamouti, c’estaudias ou plusieurs uti-
lisateurs partagent les mémes ressources spectrales et utilisent chaadage Alamouti. Ce contexte
requiert le développement de techniques d’annulation d’interférgihttesference Cancellation - IC)
pour permettre aux utilisateurs de partager les mémes ressources spactnsl@voir d'incidence sur
la qualité de transmission de chacun. Plusieurs schémas d’annulationféfieees [40—-47] ont été
introduits permettant & utilisateurs équipés d& antennes en émission et utilisant un STBC de par-
tager le méme canal. Winters et al. ont montré [48] que 'ordre de divermsitthdque utilisateur était
M si le nombre d’antennes en réception &st= M (P — 1) + 1. Cependant, si la structure du STBC
est exploitée, on peut montrer gid& = P antennes de réception suffisent pour un méme ordre de di-
versité de)M. Ce résultat a d’abord été prouvé par Naguib et al. dans [40, 42]lpatas du codage
Alamouti etM = N = P = 2. Une généralisation de ce résultat a un nombre d’antennes de réception
N > P aensuite été établie par [43] (voir également [47] pour une approchieatite). Kazemitabar
et Jafarkhani ont finalement présenté dans [46] un schéma d'sionuginterférences pour des STBC
guasi-orthogonaux (voir [49, 50]) qui permet de sépdPeutilisateurs équipés dé&/ > 2 antennes
d’émission a partir dé&V > P antennes de réception. Toutes ces techniques d’annulation d'intexéére
requiérent donév > 1, i.e. plusieurs antennes en réception, ce qui reste un point bloquaivieaw du
terminal mobile pour des raisons de co(t et de dimensions. Ceci justifiediog@ement des techniques
d’annulation d’interférences dites SAIC (Single Antenna Interfere@aecellation), qui ne nécessitent
gu’une seule antenne en réception et sont une alternative aux teebrigomplexes d'estimation ML
multi-utilisateur [51].

Les techniques SAIC ont tout d’abord été développées pour des utilisaguipés d’'une seule an-
tenne d’émission et des transmissions mono-porteuses [52-56]. Latph®®&4-56] de ces techniques
exploitent la non-circularité au second ordre [57] des modulations argaiéeiles (BPSK, ASK) ou des
modulations quasi-rectilignes (c’est-a-dire correspondant a la filtnéplexe de modulations a valeurs
réelles) aprés une opération de dérotation (MSK, GMSK, OQAM [583% tchniques implémentent un
filtrage linéaire au sens large (LSL, ou encore WL pour Widely Linea)) [imal des observations et
permettent la séparation de deux utilisateurs a partir d’'une unique antendéesgtion [54]. Ce concept,
simple et efficace, est rapidement devenu populaire dans les ré$g2& 2
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e 3G Americas [60] a présenté le concept de SAIC comme une grande artié@tigraur les récep-
teurs GSM des terminaux mobiles,

e cette technologie a été standardisé en 2005 pour le GSM et est donmdissopérationnelle dans
la plupart des terminaux mobiles GSM,

e une nouvelle normalisation de cette technologie permettant a plusieurs utiks@tght d'utiliser
le méme slot TDMA (Multi-User Reusing One Slot - MUROS) est actuellementad&

e une extension de ce concept a plusieurs antennes de réception, dite(MAliple Antenna Inter-
ference Cancellation) [54], est d’'un grand intérét notamment pouésesaux GPRS [61].

Dans le cadre des réseaux 4G, les réseaux d’antennes pour le tenlilal ont été standardisés, ce qui
suppose donc I'emploi des techniques MAIC uniquement. Cependant leemisgivre de ces réseaux
d’antennes reste un point bloquant; les techniques SAIC sont dojecitew’actualité pour les réseaux
4G. Ainsi, une extension a I'OFDM de ces techniques a été récemmenni@@gear [62], pour des
utilisateurs munis d’'une antenne d’émission et utilisant la modulation ASK. Pauwraille concept
SAIC/MAIC est également d’'un grand intérét pour les réseaux militairé¢soadqui demandent avant
tout des systémes simples et robustes.

La modulation ASK est certes moins efficace en terme de puissance que latiordQAM : seule
la dimension réelle est utilisée pour I'émission. Cependant, dans un contetiteitiisateur, la modu-
lation ASK peut étre plus avantageuse qu’une modulation QAM par l'utilisateendigrés de liberté
disponibles en réception pour séparer les différents utilisateurs. lggésdde liberté non utilisés en
émission dans la modulation sont en quelque sorte retrouvés en réceptiontpgitement adéquat : le
filtrage LSL. Plusieurs travaux [62—64] semblent d'ailleurs mettre en éeildoujours dans le contexte
multi-utilisateur, une plus grande efficacité spectrale des modulations asvaéslles couplées a des
récepteurs LSL par rapport a des modulations a valeurs complexdgesapdes récepteurs linéaires.

Les concepts de SAIC et MAIC concernent uniguement les systeme &ISIMO. Nous éten-
dons dans cette partie ces concepts aux systemes MISO et MIMO, gtatidisation d'un STBC,
plus spécifiqguement du codage Alamouti, pour des constellations a vadallesr Nous introduisons
a cette fin un nouveau récepteur MMSE LSL (qui a cependant déja ééuittpar [65] pour des fins
d’égalisation). Ce récepteur permet de traiter les interférences intaur@éseau (c’est-a-dire les autres
utilisateurs Alamouti) mais également les interférences externes. Nous nmeqgtrerdans le cas d'in-
terférence internes ce récepteur est optimal au sens ML, contrairamrenécepteurs existants. Nous
étudions ensuite, toujours pour des interférences internes, lesrparfoes d'un tel récepteur en terme
de capacité de rejet d’'interférences, de SINR et de SER afin de meévidemce sa supériorité par rap-
port aux récepteurs MMSE existant. Nous montrons notamment qu'il pgier2 N — 1 interférences
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internes a partir dé&v antennes de réception. Nous donnons également une interprétationtrigoené
simple de son fonctionnement.

Plan de la these

La premiére partie de ce document s’intéresse a I'optimisation de la capagithcqpre dans les canaux
sélectifs en fréquence ; elle est traitée dans le chapitre 1. Nous y établgsws un premier temps un ap-
proximant en grande dimension de l'information mutuelle ergodique avaratiacher dans un second
temps a son optimisation vis-a-vis de la covariance en émission. Nous pns@issi un algorithme per-
formant pour obtenir la covariance optimale. La seconde partie de ce ananrgte des questions de
diversité en présence d’'un récepteur MMSE : dans le chapitre 2 massméressons ainsi a la diversité
maximale atteignable du récepteur MMSE pour des débits fixes dans le eadrarchux non sélectifs en
fréquence puis dans le cadre des canaux sélectifs en fréquerdie,daa dans le chapitre 3 nous nous
intéressons a la diversité assurée par le codage d’Alamouti. Dansrierdgrapitre nous proposons un
nouveau récepteur MMSE exploitant au mieux les degrés de liberté diececantexte multi-utilisateur.
Ce récepteur est ainsi robuste aux interférences et permet d'ééaogincept de SAIC/MAIC aux sys-
temes MIMO, d’ou le nom de concept SAIC/MAIC Alamouti.

Contributions

Les différents travaux menés au cours de ces trois années de thésaoé@ihaissance aux deux articles
de revue suivants :

e F. Dupuy et P. Loubaton,0n the capacity achieving covariance matrix for frequency selective
MIMO channels using the asymptotic approddEEE Transactions on Information Theory, vol.
57,1 9, pp 5737-5753 , Septembre 2011

e P. Chevalier et F. DupuyWidely linear Alamouti receivers for the reception of real-valued signals
corrupted by interferences - the Alamouti-SAIC/MAIC conE#pEE Transactions on Signal Pro-
cessing, vol. 59,17, pp 3339-3354, Juillet 2011.

L'article de revue IEEE IT correspond au chapitre 1, tandis que l'artieleevue IEEE SP sert de base
au chapitre 3. Les cinq articles suivants ont également été présentés tmsférences :

e F. Dupuy et P. LoubatonDiversity of the MMSE receiver in flat fading and frequency selective
MIMO channels at fixed rafeForty-Fifth Asilomar Conference on Signals, Systems and Compu-
ters, Pacific Grove, Californie, Novembre 2011,
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e F. Dupuy et P. Chevalier,Fonctionnement et performance des récepteurs Alamouti linéaires au
sens large pour la réception de constellations réelles en contexte multi-utiisafenalyse du
concept SAIC/MAIC AlamotiGRETSI Conference, Bordeaux, France, Septembre 2011,

e F. Dupuy et P. ChevalierPerformance Analysis of WL Alamouti Receivers for real-valued constel-
lations in Multiuser Context European Signal Processing Conference (EUSIPCO), Bareglon
Espagne, Septembre 2011,

e F. Dupuy et P. Loubaton,0n the capacity achieving covariance matrix for frequency selective
MIMO channels using the asymptotic approddkEE International Symposium on Information
Theory (ISIT), Austin, Texas, Juin 2010,

e P. Chevalier et F. Dupuy,Single and multiple antennas Alamouti receivers for the reception of
real-valued signals corrupted by interferences - the Alamouti SAIC/Modiept Forty-Third
Asilomar Conference on Signals, Systems and Computers, Pacific Grakerde, Novembre
2009.

Les résultats du chapitre 2 seront ainsi présentés a la conférersilndiar 2011. Un brevet a par ailleurs
été déposé dans le cadre de cette thése, correspondant au régejstenté au chapitre 3 :

e P. Chevalier et F. DupuyProcédé et dispositif de réception mono et multi-antennes pour liaisons
de type Alamoutin® FR 09.05263, 3 Novembre 2009.
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HIS thesis has been carried out within the framework of a CIFRE conventiwreba Thales Com-
munications and Université Paris Est. It is dedicated to the frequencytigel®IMO channels
with single-carrier transmitters. It is acknowledged that the multi-antentersgsalso known as MIMO
(Multiple In / Multiple Out) systems, allow to increase the transmission rate of saigknna systems
significantly; the first area of research is thus the optimization of the ergagacity in frequency selec-
tive channels. Using multiple transmitting antennas also gives rise to transemisityy thus improving
the receiving performance; the second area of research is thethoanalysis of diversity for MMSE
(Minimum Mean-Square Error) receivers in frequency selectivaicbls.

Ergodic capacity

For fifteen years many studies have sought to use MIMO (Multiple Inputiltipde Output) systems,
that is, systems equipped with several transmitting antennas and seweiging antennas, in order
to increase the Shannon capacity related to the usual SISO (Single I8mglé Output) systems. To
that end, conceiving the optimal transmitter in terms of the Shannon capacitthe.eptimal relation
between the transmitted vectg(rn) and the information symbols to transmit, is a crucial issue. This
problem has been studied extensively in the case of flat fading MIM@relis. Nevertheless, few
authors have tackled the case of frequency selective channelse Headirst part of this thesis focuses
on the optimization of the ergodic capacity w.r.t. the covariance matrix of theniawmsctorx(n), when
only the channel statistics are known at the transmitter side instead of thetamgtans channel state
information.

Flat fading channels

In the case of flat fading channels one can describe the MIMO chairitieh - x ¢ matrix H, wherer is
the number of transmitting antennas arttie number of receiving antennas. The vegtot) obtained
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by sampling the signal received at the symbol period can then be writter thedfollowing form
y(n) = Hx(n) + b(n), (23)

wherex(n) is the transmitted vector arle{n) an additive noise, assumed Gaussian with variarice
The first results about the MIMO mutual information have been obtaineclatdr; in [1, 2] he derived
the explicit expression of the mutual information between vectérg andy (n) for a given matrixH :

1
log det <Ir + 2HQHH> , (24)
g

whereQ = E [xx’], verifying the power constraintTr Q < 1, is the covariance matrix of the input
vector x, which is assumed Gaussian. When the instantaneous channel state figior(@sl), i.e.
matrix H, is available, the maximum ové€) of the mutual information (24) corresponds to the MIMO
capacity and accounts for the maximum rate at which the information can tsiteed in a reliable
way. It is well known [3] that the eigenvectors of the optimal input covar@gamatrix, which we denote
Q., correspond to the right singular vectorskf— as for the eigenvalues ., they can be obtained
by a “waterfilling” type algorithm. The value d, i.e. the instantaneous CSI, is therefore needed at
the transmitter. Nonetheless, within the framework of mobile communications,ikgdie value of
H at the transmitter is not realistic. Indeed, the transmission channel vaia@dygn practice, due in
particular to the user mobility and to the diversity of propagation paths. Tdrereone usually models
H as the realization of a Gaussian random matrix with known statistics. It is thennglevant to tackle
the optimization of the expectation of the mutual information, instead of the optimizafti@4) itself.
The expectation of the mutual information is called ergodic mutual informationsainelre denoted by
[(Q):

I(Q) =E [log det (Ir + ;QHQHH)] : (25)

Optimizing the ergodic mutual information only requires the knowledge of tharaiastatistics at the
transmitter, which is a more realistic assumption than the instantaneous CSI &égewlihin the frame-
work of wireless communications. Indeed, the statistics of the channeirvargictice a lot more slowly
than the channel itself. A first step for this approach is to study the caseldnnel matri¥ whose
entries are zero mean i.i.d. Gaussian random variableslwwfi variance, which corresponds to a sim-
plified Rayleigh channel. Telatar proved in [2] that, for such a channelpfiiimal input covariance
matrix isQ. = I;. The ergodic mutual information then becomes

1(Q,) =E [log det <Ir + ;HHHH . (26)

This optimization problem has then been studied for more elaborate chandelsylike the Kronecker
channel model or the Rician channel. The Kronecker channel moded tato account the spatial cor-
relation between paths by considering that maHixcan be written aQ%WC%, whereW is a matrix
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whose entries are zero mean i.i.d. complex Gaussian withv& variance. This model assumes that
the correlations at the transmitt€rand at the receive€ are separable — hence its alternative name of
separable covariance model. In the case of a Kronecker channelrousyaithors have shown that the
optimal input covariance matri, has the same eigenvectors as the transmitting correlation n@trix
(see, e.g., [4,5]). The Rician channel model with separable correlatiorsponds to the Kronecker
channel model but with a non-zero mean, that is, mdtixan be written under the following form:
H=A+ C%WC%, where the deterministic matrix corresponds to the Line Of Sight (LOS) compo-
nent of the channel. The so-called decorrelated Rician channel nmde$ponds to the specific case of
C =1,, C = L. Similarly to the Kronecker channel case, it has been shown by [6] tiralgtorrelated
Rician channels, the eigenvectors of the optimal covari&gceorrespond to the right singular vectors
of matrix A. In both optimization cases mentioned previously, the eigenvalues of the optiatiak

Q. are then simply estimated by classical “waterfilling” type optimization algorithms.opkienization

is more complex for Rician channels with separable correlation. The eigensef the optimal input
covariance, have no explicit expression and thus have to be numerically evaluatede@ dpproach
has been proposed and analyzed by [7]: the entri€3,cdire estimated by a Newton algorithm, associ-
ated with a barrier interior-point method, which directly optimizes the ergodic ahuttormation (25).
Yet, this direct approach requires the use of Monte-Carlo simulationshwineccomputationally costly,
to estimate the ergodic mutual informatid(Q), together with the gradient and Hessian/ ) for the
Newton algorithm, along the optimization algorithm.

In order to avoid the use of Monte-Carlo simulation, various authors hapoped to optimize not
I1(Q) itself but rather a large system approximation/ 6®), i.e. an approximation far — oo, r — oo
in such a way that/r — ¢ €]0, co[. The starting point is to notice thatlog det (I + -5 HQH*) can

be written as
1 — i
= "log <1 + 2) : (27)
T i1 g

where the(\;);—1, .., are the eigenvalues #QH" . In numerous situations of practical interest, (27)
has the same asymptotic behavior as a deterministic quantity which dependsno@yand on the
statistics off. Hence,I(Q) can be approximated by a function denof¢@) whose expression depends
on the considered channel. For instance [8,9] have shown that fmrekker channel the approximation
1(Q) can be written as

1(Q) = log det (Ir + Sc) + log det (It + 5QC) — 02485, (28)

whered ands are the positive solutions of a coupled equations system. Nonethelessdfiefivious-
takas et al. [8] is based on the replica method, whose mathematical reldasoet yet been proved
in this context. Furthermore, it is interesting to study the convergence spéiee approximation (Q)
towards/(Q); it has been proved by [8, 10] thatQ) — I(Q) = O (1/t). The approach of [8] is based
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once again on the replica methods, while the simple and rigorous appro@ty] afses the so-called
Gaussian methods, which use the Gaussian nature of the considereélahadel. A similar result is
also obtained for Rician channels with separable correlation, as shojtd kyrough the replica meth-
ods and later by [12] with the Gaussian methods. In this case the approxinié@)jrcan be written

as

_ N 1 NS _
1(Q) = log det (I,, + 6C> + log det (It +5QC + QA" (IT n 50) A) — o255, (29)

whered andé are this time the positive solutions of a coupled nonlinear equations system.

The large system approximatidifQ) of 1(Q) gives rise to an indirect approach to optimize the
ergodic mutual information: the input covariance is optimized using the ajppation 7(Q) instead of
using the ergodic mutual informatiai{Q) directly. One great advantage of this approach comes from
the explicit expressions df(Q), which avoid in particular the use of Monte-Carlo methods to estimate
I(Q). The optimization implementation is thus easierf6®) than for/(Q) and computationally much
more efficient. For Kronecker channels [13] proposed this way artiiteraptimization algorithm based
on the large system approximation of the ergodic mutual information. Thisithigohas been extended
to Rician channels with separable correlation by [12], which also proesttitt concavity of the ap-
proximation and gives some details about the convergence. The indmgatagh is also legitimized
in [12] by showing that

1(Q,) =1(Q.) +0 <1> : (30)

whereQ, is the input covariance matrix maximiziddQ) and whereQ, is the input covariance matrix
maximizing/(Q) — both maximizations under the power constrdinQ = ¢. Taricco and Riegler have
introduced a similar algorithm in [14] and have analyzed it more thoroughly nexently in [15]. In
particular, they have proved in the case of Rayleigh channels that theiithfg converges and that the
algorithm introduced by [12] may not converge in some particular cases.

Frequency selective channels

The first contribution of this thesis is the optimization of the ergodic mutual infoomdior frequency
selective channels. When the channel is frequency selective aml tivdransmitter uses a single-
carrier waveform, the receiving model (23) is not valid anymore. Theived signay (n) then takes the
following form

L

y(n) = Z HYx(n —1+1) 4 b(n) (31)
=1

H(z)]x(n) + b(n),
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whereH(z) now denotes the transfer function of the discrete-time equivalent chdefiteed byH (z) =

S HO 2~(=1D ) where matrixH(") is associated to th&" channel tap. A common model (see,
e.g., [16, 17]) for these matricdd") is to consider that they are independent, which corresponds to
independent paths, and that they each follow a Kronecker mddél: = \%(C(l))l/zwl(é(l))m,
whereW; is a random matrix whose entries are i.i.d. standard complex Gaussian. ReQgtiti™)

the spectral density of the transmitted vectothe ergodic mutual information can be written as

1
I(Q(e*™)) = E { /0 log det (IT + %H(e%’”’)Q(e%””)H(eQ””)H > du] : (32)

We have shown that for the optimization bfQ(e*™)) we could restrict ourselves to the covariance
matricesQ(e%™) which do not depend on the frequency. Hence, we consider har€fté™) =
QVv. A large system approximatiaf(Q) of 7(Q) was derived by [17] using the replica method:

L L L
1(Q) = log det (IT + Z&c(’)) + log det <It +Q <Z Mﬂ”)) — oty &b, (33)
=1

=1 =1

where thes; andd;, I = 1,.. ., L, are the positive solutions of a system2df coupled nonlinear equa-
tions. We confirm in the first place the relevance of this approximation bygusingorous approach
inspired by the results of [12] previously mentioned. We justify in particularexistence and unique-
ness of the); andé;, which had not been discussed in [17]. We also specify the technisairggions
needed for the convergenceldiQ) towards its approximatioh(Q). Furthermore, we provide the speed
of this convergence:

Q) =T(Q) + 0 <1) . (34)

We can then tackle the optimization of the ergodic mutual informalfi@®) via its large system
approximation/ (Q). To that end, we justify the strict concavity of functiGh— 7(Q). Similarly to the
Rician case, we establish the following key result which legitimizes our indiygatoach:

@) =1@)+0 (7). (3

whereQ, is the input covariance matrix maximizingQ) under the power constraifir Q = t and
where Q. is the input covariance matrix maximizingQ) under the power constraifir Q = ¢. In
other words, it is relevant, up to(1/t) term, to maximize the approximatidiQ) instead of the ergodic
mutual information (Q) itself. We then propose a maximization algorithm f¢€) which is based on
an iterative waterfilling: each iteration solves first the mentioned systehi abupled equations, then
a classical waterfilling problem [18]. This algorithm is to some extent an siierof the algorithm
introduced by [13] for a Kronecker channel and by [12] for a Riahannel. We finally prove that, if the
algorithm converges, it converges towards the optimal input covar@yceyet the convergence itself
has not been proved.
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MMSE receivers diversity

In this second area of research we consider the MMSE (Minimum Meaas8dgrror) receivers. Unlike
the ML (Maximum Likelihood) receivers, these receivers are sub-optmtasimpler to implement. In
the first place we analyze the diversity of the MMSE receivers at higR §hgnal to Noise Ratio) for
frequency selective channels. Secondly, we focus on systemsaimbpativersity through the use of
Space-Time Block Codes (STBC), more specifically through the use ofldmd\iti code. In particular,
we propose and analyze a new MMSE receiver in multiuser context, whiohist to the encountered
intra-network but also external interferences. This latter analysis daever been limited to the case
of flat fading channels — or, equivalently, to the case of frequeniectbee channels with an OFDM
waveform.

Diversity order

The diversity order! of a system is by definition the exponential decrease slope of the eaioalmitity
P, as a function of the SNI, for high SNRs:

(36)

The probability error then verifieB. ~ kp~? for p > 1, wherek does not depend gn There are two
approaches to study the diversity of a system. The most common one.{sef,%-21]) is based on the
analysis of the Pairwise Error Probability (PEP) decrease rate w.r.t. tRelS&Vertheless, this approach
requires the design of specific coding schemes to achieve the maximursitgivére here consider the
second approach which is based on the outage probability R), R being the target rate:

Pout(R) =P (I < R) ; (37)

wherel denotes the mutual information of the system. For a well designed systemiaige guobability
corresponds to the probability of a non reliable transmission. It is therefmmsistent to study the
exponential decrease of the outage probabiy; instead of the error probabilit¥.. This approach is
moreover convenient as it bypasses the coding design issue at thwittandn this case the diversity is
defined as

(38)

This approach is used by many authors within the framework of the DM Te{Bity-Multiplexing Trade-
off) analysis introduced by Zheng and Tse [22]. Hence, we nowsfocustudying the DMT.

The Diversity-Multiplexing Trade-off:
As mentioned in previous section, MIMO systems enable at high SNR a linpacitagain compared
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to SISO systems [2]:
I(p) ~ min{M, N}logp for p>>1, (39)

whereI(p) stands for the mutual informatiod/ for the number of transmitting antennds, for the
number of receiving antennas. The capacity thus increasesgjieat high SNR. It is therefore relevant
to write the target rate under the following form:

R =rlogp, (40)

wherer < min{M, N} is called the multiplexing coefficient — or multiplexing order, multiplexing gain.
Parameter corresponds to the spatial multiplexing gain: the MIMO channel can beugésxb into
independent SISO subchannels which amount to the rank of channet Hatvhich ismin{M, N} if

H is well conditioned. Spatial multiplexing is equivalent to using the availableedsgof freedom to
transmit independent signals on these parallel channels instead of uimgptimprove the transmission
reliability; there is a fundamental trade-off between the multiplexing coefficiand the diversityl( R),
which is called Diversity-Multiplexing Trade-off (DMT) [22]. It is then intesting to analyze how the
diversity orderd(R) = d(r log p) defined by (38) depends on the multiplexing gaihence, we hereafter
consider the diversity order as a functionrcdnd denote it/(r):

log P, 1
d(r) - _ hm Og out (T Og p) . (41)
p—+00 log p

We then obtain a priori the maximum achievable diversijty,, for » = 0. Zheng and Tse have derived
d(r) for a flat fading MIMO channel in [22]:

d(r) = (M —r)(N —r). (42)

For a fixed target rat&, i.e. forr = 0, the diversity is thew,,,... = M N. This result has been extended
rapidly to the frequency selective SISO channel [23, 24], followedHsyanalysis of the frequency
selective MIMO channel [25-27]. Noting the number of independent paths, it has been shown that,
under certain conditions, the diversity ordgr) verifies

d(r)y=L(M —r)(N —r), (43)

hence, a maximum diversity ordéf,.. = LM N. Nevertheless, these results assume an optimal re-
ceiver, that is a Maximum Likelihood (ML) receiver. Such a receivan [ractice complex to implement.
Sub-optimal linear receivers such as the MMSE receivers are thésrac:

Analysis of the DMT for MMSE receivers:

The second contribution of the thesis is the DMT analysis for MMSE rerif@r a fixed target rat&,
i.e. for a multiplexing coefficient = 0. In the case of a flat fading MIMO channel it has been shown
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by [28] that the MMSE receivers considerably damage the DMT. Indésedfollowing expression of
d(r) is then obtained:

d(r) = (N — M + 1) (1—&)+, (44)

with (-)* = max{0, -}. Hence, we expect at most a diversitydyf,, = N — M + 1. Nonetheless, for

a finite target rate?, i.e. forr = 0, Hedayat et al. have observed in [29] that the MMSE receivers give
rise to several diversity orders depending on the value of targefésee also [30, 31]). In particular,
the maximum diversity.M N previously mentioned is achieved for sufficiently low valuesphence

the great interest of these receivers simple to implement. This unexpettaddrehas been explained

in [28, 32] for flat fading MIMO channels and in [33, 66] for frequgrselective channels, yet in both
cases the explanations are incomplete. We highlight the inaccuracy ofdb&given in [32] for a

flat fading channel and give a rigorous proof of the diversity farhsa system. As for the frequency
selective channels with cyclic prefix, Mehana and Nosratinia [33, 663 baly derived the diversity for
the specific case of a number of pathequal to the transmission data block length. Hence, we derive
the diversity order in the general case — yet we assume that the transndasioblock length is large
enough.

Diversity through STBC

The diversity-multiplexing trade-off mentioned previously occurs natuilthe system design level:
one can for instance favor multiplexing by using the V-BLAST scheme (\&@rBell Layered Space-
Time [34,35]), or favor the diversity gain by using a STBC (Space-TihnoelBCode [36]) at the transmit-
ter. Zheng et Tse [22] have in fact highlighted the opposite behavioregkttwo schemes by analyzing
their DMT. As we focus in this part on diversity, which helps increasingttaesmission range and re-
liability, we here concentrate on the use of STBC. The orthogonal STBCgaticularly attractive as
they achieve maximum spatial diversity for a given number of transmitting ezelving antennas. We
tackle the use of the first orthogonal STBC, which is also the simplest andkmoan, introduced by
Alamouti in [38]. It has been standardized in the following norms: UMTSMGEDGE, IEEE 802.11n,
IEEE 802.16 [39].

In order to make the most of the available spectrum and of the diversityeinti@rthe transmission
channel, we focus in this thesis on the multiuser Alamouti case, that is to segsth@vbere several users
share the same spectral resources and all use the Alamouti scheme.chmtbid Interference Cancel-
lation (IC) schemes are required to allow users to share the same spestnalaes without impacting
the transmission quality. Several IC schemes [40-47] have been int@dilowingP users, all having
M transmitting antennas and using a STBC, to share the same channel. Winatersaste shown [48]
that the diversity order of each userli$ for N = M (P — 1) + 1 receiving antennas. However, if the
STBC structure is used properly, = P receiving antennas are sufficient to provide this diversity order
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of M. This result was first proved by Naguib et al. in [40, 42] for the cdsth® Alamouti scheme
with M = N = P = 2. The latter has been generalized to a number of receiving antévinaspP

by [43] (see also [47] for an alternative approach). Eventually,eddtabar and Jafarkhani have pre-
sented in [46] an IC scheme for quasi-orthogonal STBC (see [4D,&0}wing a receiver withV > P
antennas to separafeusers, all equipped with/ > 2 transmitting antennas. Nonetheless, all these IC
techniques requird’ > 1, that is several receiving antennas, which remains a challenge atritiedta
level due to cost and size limitations. This supports the development of ttalled-SAIC techniques
(Single Antenna Interference Cancellation), which only require oneivieg antenna and which are an
alternative to the complex ML multiuser demodulation techniques [51].

The SAIC techniques were first developed for users with only onertri#titsg antenna using single
carrier transmission [52-56]. Most of these techniques [52, 54-€#6the second order non-circularity
property [57] of real-valued modulations, such as BPSK and ASK, quasi-rectilinear modulations
(that is, corresponding to a complex filtering of real-valued constellatiits) a derotation operation,
such as MSK, GMSK, OQAM [58]. They implement an optimal WL (Widely Lingz9]) filtering of
the observations and allow a receiver to separate two users from omlgeoeiving antenna [54]. This
simple and efficient concept has received significant attention within ainggfivork of 2G-3G networks:

e 3G Americas [60] has presented the SAIC technology as a great improvéonésSM mobile
station receivers allowing significant network capacity gains for the Ggtem [55, 67],

this technology has been standardized in 2005 for GSM and is currerghatagnal in most of
GSM handsets,

a new standardization of this technology, called MUROS (Multi-User ReuSmg Slot), which
enables several GSM users reuse the same TDMA slot, is currently inmdstigation,

an extension of the SAIC concept for several receiving antenaisddAIC (Multiple Antenna
Interference Cancellation) [54], is of great interest for GPRS nddsvior particular [61].

As for the 4G networks, antenna arrays have been standardizechanttiset. The MAIC concept, which
assumes several receiving antennas but is still of great interest, eamé¢hused instead of the SAIC
concept. Nevertheless, the implementation of antenna arrays at the thigndseemains a challenge;
hence, the SAIC techniques are still relevant and of great intere§&aretworks. In fact, an extension
of these techniques to OFDM has been recently introduced by [62] éos usth one single transmitting
antenna using ASK modulation. Note, moreover, that the SAIC/MAIC cdrisepso very attractive for
military ad hoc networks, which require most of all simple and robust systems.

The real-valued modulations, such as the ASK modulation, are certainlydess pfficient than the
traditional QAM modulation: the transmitter only uses the real dimension. Yet, idtaus®r context, the
ASK modulation may become more attractive than a QAM modulation by properlyg tisnavailable
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degree of freedom to separate the users at the receiver. Theed#ddgreedom which have not been
used by the transmitter are somehow recovered at the receiver, whgreath be used if an appropriate
processing is used, that is, WL filtering. Several studies [62—64] s&show that, in multiuser contexts,
transmissions using real-valued modulations together with WL receivers roaige a higher spectral
efficiency compared to transmissions using complex-valued modulation togéthdinear receivers.
As a consequence, the use of ASK constellations coupled with WL resginstead of complex ones
with linear receivers, does not seem to be a limitation and may even bringtadea in terms of error
probability and spectral efficiency in multiuser environments.

The SAIC/MAIC concepts only concern SISO and SIMO systems. Wegs®n this thesis an
extension of these concepts to MISO and MIMO systems, thanks to the Alaortilubigonal STBC
used with real-valued constellations. To that end we introduce in multiuséextannew WL MMSE
receiver — which has already been introduced by [65] but for ecatadiz purposes. This receiver, called
the F-WL-MMSE receiver, is robust to intra-network interferenceat(il, interferences which arise
from the other users of the network), but also to external interfeserdd&e prove that, contrary to the
receivers of the literature, this receiver is optimal in the ML sense fornaténterferences. We then
analyze its performance, in terms of interferences rejection capabilityNst 8nd of SER, in order to
highlight its great interest compared to the receivers of the literature ariicplar, we show that the
F-WL-MMSE receiver can reje@N — 1 internal interferences fronV receiving antennas and provide
a simple geometrical interpretation of its behavior. We also propose anaapglementation of this
receiver.

Thesis outline

The first part of this manuscript focuses on the ergodic capacity optimizédiofrequency selective
channels and is discussed in chapter 1. We establish in the first place ayatgm approximation of the
ergodic mutual information before secondly tackling its optimization w.r.t. the iopiriance matrix.
To that end we propose an efficient iterative algorithm to obtain the optimatiemce. The second part
of this thesis deals with diversity issues in the presence of a MMSE recaivehapter 2 we focus on the
maximum achievable diversity of the MMSE receiver for flat fading ameddiency selective channels,
while in chapter 3 we focus on systems enhancing diversity through thef tise Alamouti scheme. In
this latter chapter we introduce a new MMSE receiver in multiuser contexishwiiakes the most of
the degrees of freedom available in the channel. This receiver istrabimgerferences and extends the
SAIC/MAIC concept to MIMO systems, hence the name of SAIC/MAIC Alamauoticept.
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Contributions

The two following journal articles arose from the work carried out dutig thesis:

e F. Dupuy and P. LoubatonOn the capacity achieving covariance matrix for frequency selective
MIMO channels using the asymptotic approAddEEE Transactions on Information Theory, vol.
57,1 9, pp 5737-5753 , September 2011

e P. Chevalier and F. DupuyWidely linear Alamouti receivers for the reception of real-valued
signals corrupted by interferences - the Alamouti-SAIC/MAIC coric#pEE Transactions on
Signal Processing, vol. 5917, pp 3339-3354, July 2011.

The IEEE IT journal article corresponds to chapter 1, whereas the IEE journal article serves as a
basis for chapter 3. Moreover, the five following articles have beesepted at various conferences:

e F. Dupuy and P. LoubatonPiversity of the MMSE receiver in flat fading and frequency selective
MIMO channels at fixed rafeForty-Fifth Asilomar Conference on Signals, Systems and Com-
puters, Pacific Grove, California, November 2011,

e F. Dupuy and P. ChevalierFonctionnement et performance des récepteurs Alamouti linéaires au
sens large pour la réception de constellations réelles en contexte multi-utilisafenalyse du
concept SAIC/MAIC AlamoytiGRETSI Conference, Bordeaux, France, September 2011,

e F. Dupuy and P. ChevalierPérformance Analysis of WL Alamouti Receivers for real-valued con-
stellations in Multiuser ContegtEuropean Signal Processing Conference (EUSIPCO), Baraglon
Spain, September 2011,

e F. Dupuy and P. Loubaton{On the capacity achieving covariance matrix for frequency selective
MIMO channels using the asymptotic approddEEE International Symposium on Information
Theory (ISIT), Austin, Texas, June 2010,

e P. Chevalier and F. DupuysSingle and multiple antennas Alamouti receivers for the reception of
real-valued signals corrupted by interferences - the Alamouti SAIC/Modl@Eept’ Forty-Third
Asilomar Conference on Signals, Systems and Computers, Pacific Gralfrda, November
2009.

In particular, chapter 2 corresponds to the results which will be presentsilomar conference 2011.

A patent has also been filed within the framework of this thesis, corregmptalthe receiver introduced
in chapter 3:
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e P. Chevalier and F. DupuyPfocédé et dispositif de réception mono et multi-antennes pour liaisons
de type Alamoutin® FR 09.05263, 3 November 2009.
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Chapter 1
Capacity optimization

N this chapter we propose an algorithm for evaluating the capacity-achieypagcovariance matri-
I ces for frequency selective Rayleigh MIMO channels. In contrast tvétflat fading Rayleigh case,
no closed-form expressions for the eigenvectors of the optimum inparience matrix are available.
Classically, both the eigenvectors and eigenvalues are computed numexichtlye corresponding opti-
mization algorithms remain computationally very demanding. In this chapter, it @ped to optimize
(w.r.t. the input covariance matrix) a large system approximation of the gaverautual information
derived by Moustakas and Simon. The validity of this asymptotic approximatiolarigied thanks to
Gaussian large random matrices methods. It is shown that the approximadistristly concave func-
tion of the input covariance matrix and that the average mutual informatiduatgd at the argmax of
the approximation is equal to the capacity of the channel updgla't) term, where is the number of
transmit antennas. An algorithm based on an iterative waterfilling schemepsgad to maximize the
average mutual information approximation, and its convergence studiaaieaial simulation results
show that, even for a moderate number of transmit and receive antémmagw approach provides the
same results as direct maximization approaches of the average mutual itdorma

1.1 Introduction

When the channel state information is available at both the receiver andatigmitter of a MIMO
system, the problem of designing the transmitter in order to maximize the (Gaussiaual information
of the system has been addressed successfully in a number of chdpisrgroblem is, however, more
difficult when the transmitter has the knowledge of the statistical propertigeathannel, the channel
state information being still available at the receiver side, a more realistionpisn in the context
of mobile systems. In this case, the mutual information is replaced by the avenaigial information
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(EMI), which, of course, is more complicated to optimize.

The optimization problem of the EMI has been addressed extensively inae af certain flat
fading Rayleigh channels. In the context of the so-called Kroneckeehmibtias been shown by various
authors (see, e.g., [68] for a review) that the eigenvectors of the opitimal covariance matrix must
coincide with the eigenvectors of the transmit correlation matrix. It is thezedafficient to evaluate
the eigenvalues of the optimal matrix, a problem which can be solved by usindesd optimization
algorithms. Similar results have been obtained for flat fading uncorrelatghR-hannels ( [6]).

In this chapter, we consider this EMI maximization problem in the case of pofrelguency se-
lective MIMO channels (see, e.g., [16, 17]) with independent paththisncontext, the eigenvectors of
the optimum transmit covariance matrix have no closed-form expressimtisatsboth the eigenvalues
and the eigenvectors of the matrix have to be evaluated numerically. For tligydssible to adapt
the approach of [7] developed in the context of correlated Rician alsnHowever, the corresponding
algorithms are computationally very demanding as they heavily rely on intensiveeMCarlo simula-
tions. We therefore propose to optimize the approximation of the EMI, debyévioustakas and Simon
([27]), in principle valid when the number of transmit and receive antemoaverge to infinity at the
same rate, but accurate for realistic numbers of antennas. This will ttta ba a simpler problem. We
mention that, while [17] contains some results related to the structure of theangof the maximum
of the EMI approximation, [17] does not propose any optimization algorithm.

We first review the results of [17] related to the large system approximatiiwe &MI. The analysis
of [17] is based on the so-called replica method, an ingenious trick whasematical relevance has not
yet been established mathematically. Using a generalization of the rigoralysiarof [10], we verify
the validity of the approximation of [17] and provide the convergencedspeeler certain technical
assumptions. Besides, the expression of the approximation depends swlutiens of a non linear
system. The existence and the uniqueness of the solutions are notsaddrefd 7]. As our optimization
algorithm needs to solve this system, we clarify this crucial point. We showrtitpkar that the system
admits a unique solution that can be evaluated numerically using the fixed pgonittam. Next, we
study the properties of the EMI approximation, and briefly justify that it isiatstrconcave function of
the input covariance matrix. We show that the mutual information corresppmalitne argmax of the
EMI approximation is equal to the channel capacity up (ﬁ)(é{) term, where is the number of transmit
antennas. Therefore it is relevant to optimize the EMI approximation to eeatlue capacity achieving
covariance matrix. We finally present our maximization algorithm of the EMr@pmation. It is
based on an iterative waterfilling algorithm which, in some sense, can bas@egeneralization of [13]
devoted to the Rayleigh context and of [12, 69] devoted to the correlatéahRrase: Each iteration will
be devoted to solve the above mentioned system of nonlinear equationk as avstandard waterfilling
problem. It is proved that the algorithm converges towards the optimum agpatiance matrix as long
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as it converge's

The chapter is organized as follows. Section 1.2 is devoted to the presemiitie channel model,
the underlying assumptions, the problem statement. In section 1.3, we $godavive the large system
approximation of the EMI with Gaussian methods and establish some propértiesasymptotic ap-
proximation as a function of the covariance matrix of the input signal. The maxiimizproblem of the
EMI approximation is then studied in section 1.4. Numerical results are paindgection 1.5.

1.2 Problem Statement

1.2.1 General Notations

In this chapter, the notations x, M, stand for scalars, vectors and matrices, respectively. As usual,
||x|| represents the Euclidian norm of vector and || M|, p(M) and |M| respectively stand for the
spectral norm, the spectral radius and the determinant of mfrixThe superscripté.)” and (.)
represent respectively the transpose and transpose conjugatdra@&efM is denoted byI'r(M).

The mathematical expectation operator is denotefly. We denote by, ; the Kronecker delta, i.e.

d;; = 1if ¢ = j and0 otherwise.

All along this chaptery andt stand for the number of receive and transmit antennas. Certain quan-
tities will be studied in the asymptotic regime— oo, r — oo in such a way that/r — ¢ € (0,00).
In order to simplify the notations;, — oo should be understood from now on &s— oo, r — oo
andt/r — ¢ € (0,00). A matrix M; whose size depends anis said to be uniformly bounded if
sup, || M| < oo.

Several variables used throughout this chapter depend on varicamgtars, e.g., the number of
antennas, the noise level, the covariance matrix of the transmitter, etc.eintorsimplify the notations,
we may not always mention all these dependencies.

1.2.2 Channel Model

We consider a wireless MIMO link with transmit andr receive antennas corrupted by a multipath
propagation channel. The discrete-time propagation channel betwetaribmitter and the receiver is
characterized by the input-output equation

L
y(n) = S HOs(n — 14 1) +n(n) = [H(z)}s(n) + n(n), (1.2)
=1

!Note however that we have been unable to prove formally its convesgenc
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wheres(n) = [s1(n), ..., s¢(n)]T andy(n) = [y1(n), ..., y-(n)]T represent the transmit and the
receive vector at time respectivelyn(n) is an additive Gaussian noise such thain’] = 1. H(z)
denotes the transfer function of the discrete-time equivalent chanfireéddy

L
H(z) = Y HO (7, 1.2)
=1
Each coefficienH () is assumed to be a Gaussian random matrix given by
1 -
HY = —(cO)/2w,(CD)/2, 1.3

whereW; is ar x t random matrix whose entries are independent and identically distributedeomp
circular Gaussian random variables, with zero mean and unit varianbe. niktricesC) and C()
are positive definite, and respectively account for the receive amgrit antenna correlation. This
correlation structure is called a separable or Kronecker correlationlmadealso assume that for each
k # 1, matricesH®*) andH® are independent. Note that our assumptions imply Hiét £ 0 for

I =1,...,L. However, it can be checked easily that the results stated in this chaptainrealid if
some coefficientsH")),_, _; are zero.

In this chapter the channel matrices are assumed perfectly known atéieereside. However, only
the statistics of th¢H")),_; 1, i.e. matrice§C®, C"),_, _ ;, are available at the transmitter side.

1.2.3 Ergodic Capacity of the Channel.

Let Q(e?™) be thet x t spectral density matrix of the transmit sigséh), which is assumed to verify

the transmit power condition

1! :
t/ Tr(Q(e*™))dv = 1. (1.4)
0
Then, the (Gaussian) ergodic mutual informati®(.)) between the transmitter and the receiver is

defined as .
Q) =B | [ 1o

whereEwl[.] = Ew,),_, ,[]. The ergodic capacity of the MIMO channel is equal to the maximum
of I(Q(.)) over the set of all spectral density matrices satisfying the constraint (It hypotheses
formulated on the statistics of the channel allow however to limit the optimization tcethef positive
matrices which are independent of the frequencyhis is because the probability distribution of matrix
H(e?™) is clearly independent of the frequeney More precisely, the mutual informatidiiQ(.)) is
also given by

1+ LHOQUH(!| &, 15

1(Q()) = Ex [/Ollog

1 )
I + S HQ(e*™)H" ’ dy} ,
g
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whereH = Y7 H® = H(1). Using the concavity of the logarithm, we obtain that

I+ %H (/01 Q(&”V)@) HHH :

We denote by the cone of non negative hermitian matrices, an@pthe subset of all matriceg of C
satisfying%TY(Q) = 1. If Qis an element o€, the mutual informatiod (Q) reduces to

1(Q() < Ex [log

I(Q) =En [103;

I+ 12HQHHH . (1.6)
g

Q — I(Q) is strictly concave on the convex st and reaches its maximum at a unique element
Q. <€ 6‘1 It is clear that ifQ(e2™) is any spectral density matrix satisfying (1.4), then the matrix
fO ™ )dv is an element o€;. Therefore,

1 b g
IT + 72H (/ Q(eg'”ﬂ/)dy) HH’:| S EH |:10g
g 0

1(Q(.)) <1(Q.)

Eg [log

1
I + UQHQ*HH‘ ] .

In other words,

for each spectral density matrix verifying (1.4). This shows that the maxiwfuomction I over the set
of all spectral densities satisfying (1.4) is reached on th€sethe ergodic capacit§ ; of the channel
is thus equal to

Cp = max 1(Q). (1.7)

We note that property (1.7) also holds if the time delays of the channel argnteger multiples of the
symbol period, provided that the receiving filter coincides with the idealgass filter on th({e—%, %}
frequency interval, wher& denotes the symbol period. If this is the case, the transfer funEi@d ™)
is equal toH (e2™) = Y"1 HWe~ 27 wherer is the delay associated to pdtfor I = 1,..., L.
The probability distribution ot (™) does not depend anand this leads immediately to (1.7).

If the matrices(C(l))l:1 ..... 1, all coincide with a matrixC, matrix H follows a Kronecker model
with transmit and receive covariance matri(%egf:1 C® and C respectively [70]. In this case, the
eigenvectors of the optimum matrd, coincide with the eigenvectors %fzjle C®., The situation is
similar if the transmit covariance matric@(l))l:17,__,L coincide. In the most general case, the eigenvec-
tors of Q. have however no closed-form expression. The evaluatid).ofnd of the channel capacity
Cg is thus a more difficult problem. A possible solution consists in adapting theaulrd® approach
([7]) to the present context. However, the algorithm presented in [grig demanding since the needed
evaluations of (Q) gradient and Hessian require intensive Monte-Carlo simulations.
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1.2.4 The Large System Approximation of/ (Q)

Whent andr converge toxo while t/r — ¢, ¢ € (0,00), [17] showed thaf (Q) can be approximated
by I(Q) defined by

1(Q) = log + log

L
L+Y &(Qct
=1

L
IL+Q (Z 6z<Q)C(”>

=1

L
e (z al<Q>sl<Q>> a8
=1

where(01(Q),...,0.(Q))" = §(Q) and(Sl(Q), o) = S(Q) are the positive solutions of
the system oL equations:

{ T’:Jil(“) fori=1,....L, (1.9)
R = fl("‘"> Q
with & = (k1,...,k7)T andk = (Fy,...,&r)T, and with
fi(R) = §Tr [COT(R)]
~ B B (1.10)
fi(k, Q) = +Tx [Q2C0QY*T(, Q)]
Ther x r matrix T () and thet x ¢ matrix T'(x, Q) are respectively defined by:
L —1
T(R) = [(f? (IT + Z@jc@) , (1.11)
j=1
L —1
T(k,Q) = [(;2 (L + anQl/QC(j)Q1/2>] . (1.12)
j=1

1.3 Deriving the Large System Approximation

1.3.1 The Canonical Equations

In [17], the existence and the uniqueness of positive solutions to (1.8yisreed without justification.
Moreover no algorithm is given for the calculation of theandd;, [ = 1,..., L. We therefore clarify
below these important points. We consider the d@se I in order to simplify the notations. To address

..........

follows.

Theorem 1. The system of equations (1.9) admits unique positive solutipns
which are the limits of the following fixed point algorithm:

[ERS} Ty

- Initialization: 6\” > 0,5 > 0,1=1,..., L.
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- Evaluation of thes" ™" and 3"V from 6 = (5. 6T andd™ = (5, .. 5T

{ 5D = f(8M),

~ ~ (1.13)
5 = (8™ T).

Proof: We prove the existence and uniqueness of positive solutions.

Existence: Using analytic continuation technique, we show in Appendix 1.A that the fixdéak p
algorithm introduced converges to positive coefficientandd;, I = 1,..., L. As functionsi — fi(R)
andk — f(k,I) are clearly continuous, the limit ¢6(™, () whenn — oo satisfies (1.9). Hence,
the convergence of the algorithm yields the existence of a positive solut{@rio

Uniqueness: Let (,8) and (&', 4’) be two solutions of the canonical equation (1.9) w@h=
I. We denotg'T, T) and (T’, T') the associated matrices defined by (1.11) and (1.12), wher)

respectively coincide withd, §) and(d’, 8"). Introducinge = § — &' = (e1, ..., ez)” we have:
= =1 /
tTr [C T(T “HT }
L
_< 3 (8, — 5 Tr ( ct )TC(k)T’> (1.14)
; k . .
k=1
Similarly, withe = 6 — &' = (éy,...,é.)7,
o2 & N
== Z — ) Tr (C(k) c<l>T') : (1.15)

And (1.14) and (1.15) can be written together as

I o?A(T, T')
o?A(T, T) I

© ] —0, (1.16)

e

whereL x L matricesA (T, T’) andA(T, T’) are defined byA (T, T') = +Tr (CHTCOT’) and
Ay (T, T) = 1Tr(CHTCOT). We will now prove thap(M) < 1, where matrixM is defined by

M = o*A(T, T)A(T, T').

This will imply that the matrix governing the linear system (1.16) is invertible, and thate = € = 0,
i.e. the uniqueness.

O' .
M| = |25 ZTr cVT)Tr(CYTCOT)
4
g ~ ~ o~ ~ .
<5 Tr(CHTCUT)| |Tr(CYTCHT . (1.17)
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Using Cauchy-Schwarz inequalityr(AB)|? < Tr(AAH). Tr(BB#), we have:

(Tr DTEOT)| < /Ay (T, T) Ay (T, T),

(Tr COTCOT)| < \/Au(T, T)A; (T, T).

Using these two inequalities in (1.17) gives

L
My,| <o Z \/Akj(T)Akj('f’)Aﬂ(T)Agl(T')

where matriced\ (T) and A (T) are defined by

A(T) = ;THCWTCUT) = Ay(T, T),
(1.18)

Ap(T) = %Tr(é(k)’i‘@(l)’f) — Ap(T,T).
Using Cauchy-Schwarz inequality then yields:
M| < P,
whereP is the L x L matrix whose entries are defined by
Pu =/ (0*A(T)A(T)),\/ (+*A(T)A(T),,

Theorem 8.1.18 of [71] then yield§ M) < p(P). Besides, Lemma 5.7.9 of [72] used on the definition
of P gives:

pP) <\ [p (HAMAM) o (4AT)AT)). (1.19)

Lemma 1 (ii) in Appendix 1.C implies that(c*A(T)A(T)) < 1 andp(c*A(T")A(T")) < 1, so that
(1.19) finally implies:
p(M) < p(P) < 1.

This completes the proof of Theorem 1. d

1.3.2 Deriving the Approximation of /(Q = I,;) With Gaussian Methods

We consider in this section the ca@ = I;,. We notel = I(I;), I = I(I;). We have proved in the
previous section the consistencyiqiQ) definition. To establish the approximation KQ), [17] used
the replica method, a useful and simple trick whose mathematical relevance ystnaroved in the
present context. Moreover, no assumptions were specified for tivergemce off (Q) towardsI(Q).
However, using large random matrix techniques similar to those of [10]E2]dif is possible to prove
rigorously the following theorem, in which the (mild) suitable technical assumptoa clarified.
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1.3. DERIVING THE LARGE SYSTEM APPROXIMATION

Theorem 2. If we assume that, for everye {1,...,L}, sup, ||[CY| < +oo, sup, ||CY| < +oo,
inf; (%Tr C(j)) > 0 andinf; (%Tr é(j)) > 0, then

- 1
r-1v0(}).
Sketch of proof: The proof is done in three steps:

1. In afirst step we derive a large system approximatioffTr S], whereS = (HH" + ¢21,)~!
is the resolvent oFEH' at point—o2. Nonetheless the approximation is expressed with the terms
= 1En[Tr (CYS)], 1 =1,..., L, which still depend on the entries Bf;[S].

2. A second step refines the previous approximation to obtain an approximatioh this time only
depends on the variance structure of the channels, i.e. ma@e%.; 7y and(CY)cqy 1.

3. The previous approximation is used to get the asymptotic behavior of mnfaahation by a
proper integration.

Proof: We now sketch the three steps stated above. We provide the missing detailé\pp#redix.

a) Afirstlarge system approximation of Eg[Tr S]

We introduce vectoree = [, ..., ar)” anda = [a1, ..., ar)" defined by
Y el
o= ¢ Tr [CUER(S]] forl=1,...,I, (1.20)
a; = 1Tr[CUR]

wheret x ¢ matrix R is defined byR(a) = [o*(I; + Y%, a;C(?)] ™", Using large random matrix
techniques similar to those of [10] and [12], the following proposition is @dan Appendix 1.B.

Proposition 1. Assume that, for everye {1,..., L}, sup, ||[CY| < +oo, sup, |[CY|| < +o0. Then
En[S] can be written as
Eg[S|]=R+ T, (1.21)
where matrixY is such thaPTr(‘rA (%) for any uniformly bounded matriA and where matrix
CU ))]

R is defined byR(&) = [02(I, +Z] 1 &;C

One can check that the entries of mafifxare O <t3/2 ) nevertheless this result is not needed here.

It follows from Proposition 1 that, for any x » matrix A uniformly bounded inr,

1 1 1
En([Tr(SA)| = Tr(RA) +0 <t2> : (1.22)
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Taking A = I gives a first approximation dg [Tr S]:
Eg[TrS]=TrR+ 0O <1> . (1.23)

Nonetheless matriR depends oiy[S] through vectokx.

b) A refined large system approximation ofEg [Tr S]

We first recall from Section 1.3.1 thatis the matrix defined by (1.11) associated to the solut(éng)
of the canonical equation (1.9) wit® = I: T = (o2(I, + >/, §,C ))*1. We introduce the
following proposition which will lead to the desired approxmaﬂoriﬁhﬂﬂ S|

Proposition 2. Assume that, for every € {1,...,L}, sup, ||CY)| < 400, sup, ||[CY|| < +oo,
inf; (1Tr C) > 0 andinf, (3 Tr CY)) > 0. LetA be ar x r matrix uniformly bounded in, then

1 1 1
ZTr(RA) = ETr(TA) +0 (t?) . (1.24)

The proof is given in Appendix 1.C. It relies on the similarity of the systemgjoaé&ons verified by
the (ey, &) and the(d;, &;). Actually, takingA = C in (1.22) yieldsay = 1Tr(CUR) + 0 (%) and
therefore

o = T [CO[(1+ T, 6;,09)] 7| + 0 (%)
G = 1T [ CO[e 1+ T, 0;C0)] ]
forl =1,..., L. TakingA = I, in (1.24) together with (1.23) leads to

En[TrS] = Tr T+ 0O (1) (1.25)

c) The resulting large system approximation off

The ergodic mutual informatiofh can be written in terms of the resolvesit

HHHA
I +—;

I =FEgu [log

H — Ex [log|o*8(o%)| '] .

As the differential ofg(A) = log|A| is given byg(A + 6A) = g(A) + Tr[A"16A] + o(||0A]]), we
obtain:

dI Tr[S(c?)HHY]
o = B[
_ _Ey [Tr[IT — 0228(02)}} ’
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1.3. DERIVING THE LARGE SYSTEM APPROXIMATION

where the last equality follows from the so-called resolvent identity
0?S(0%) =1, — S(c?)HH. (1.26)

The resolvent identity is inferred easily from the definitionSgt?). As I(0? = +oc0) = 0, we now
have the following expression of mutual information:

2 oo
1o = [ (p B [Tr s<p>1) .
This equality clearly justifies the search of a large system equivaléii;dfi'r S| done in the previous
sections. The term under the integral sign can be written as

L
r ~
— —En[TrS] = Y 610+ En [Tr (T - S)],
1=1
as%—Tr T = Tr[((¢?T)'=L,)T] = Tr[(3, 4 CD)T] = ¢ 3, ;0. We need to integrate(t, 02) =
Eg [Tr (T — S)] with respect tar? on (p > 0, +-00). We therefore introduce the following proposition:

Proposition 3. £(¢,0?) = Eg [Tr (T — S)] is integrable with respect to on (p > 0, +-o0) and

/p+oos(t,a2)d02 _0 (1) .

Proof: We prove in Appendix 1.D that there existssuch that, fort > to, |e(t,0?)| < %P (%),

o8t o2

whereP is a polynomial whose coefficients are real positive and do not depentimor ont. Therefore
fp+oo e(t,0?)do* = 0 (1).
O

We now prove that the term) , 4,0, corresponds to the derivative 6fo2) with respect tar2. To
this end, we consider the functioty (o2, k, &) defined by
Vo(o?, k, &) = log [T+ C(&)| + log |1+ C(k)| — 02tz kiR,
whereC(k) = S, k,C® andC(&) = Y1, % CY. Note thatV(a2, 8,8) = T(c2). The derivative
of I(0?) can then be expressed in terms of the partial derivativé of

dI avo 2 Zavo 2 5.5) doy

do? 802 0,0 ok~ 9,0 " do?

L
Vo 5 = i
+Zi(0 75,5)'@~
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It is straightforward to check that

gvo (0%, 5, k) = o2t (fi(k, 1) — &),

Kl

o (1.27)
5y (0 oK) = 0”1 (fi(R) — ).

Both partial derivatives are equal to zero at pdint, §,8), as(d, 8) verifies by definition (1.9) with
Q = I,. Therefore,

5= 59(0%.6,0) —tZélél,

which, together with Proposition 3, leadsite= 7 + O (1).

1.3.3 The Approximation 7(Q)

We now consider the dependency@of the approximation’ (Q). We previously considered the case
Q = I,; to address the general case it is sufficient to change m@ffixinto Q*/2C1 Q'/2 for every
l=1,...,Lin1.3.1and 1.3.2. Hence the following Corollary of Theorem 2:

Corollary 1. Assume that, for every € {1,...,L}, sup,|[CY| < +oo, sup,||CY|| < oo,
inf; (1Tr CW) > 0 andinf; Amin(CY)) > 0. Then, forQ such assup; | Q|| < +o0,

1(Q) = 1(Q) + 0 (1) .

Note that the technical assumptions on matr(((ég))l:L_,_,L are slightly stronger than in Theorem
2 in order to ensure thatf, (1 Tr [QCW]) > 0.

We can now state an important result about the concavity of the fun@ien I(Q), a result which
will be highly needed for its optimization in section 1.4.

Theorem 3. Q — I(Q) is a strictly concave function over the compact@gt

Proof: We here only prove the concavity 6{Q). The proof of the strict concavity is quite tedious, but
essentially the same as in [12] section IV (see also the extended vers]prif&therefore omitted.

Denote byw the Kronecker product of matrices. Let us introduce the following matrices
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1.3. DERIVING THE LARGE SYSTEM APPROXIMATION

We now denoted (z) = S, HO =01 with HO = ﬁ(A(’))l/ZWZ(A(”)U? whereW is a

rm X tm matrix whose entries are independent and identically distributed compleXaciGaussian

random variables with variande Introducing/,,(Q) the ergodic mutual information associated with

channelH(z):
= = H

HQH

o2

In(Q) = Eg log [T+

9

whereH = H(1) = 3", H". Using the results of [17] and Theorem 2, it is clear thatQ) admits an
asymptotic approximatiof,,(Q). Due to the block-diagonal nature of matricA$), A®) andQ, it is
straightforward to show thai(Q) = §,(Q), 6;(Q) = 6;(Q) and that, as a consequence,

and thus

As Q — I,,(Q) is concave, we can conclude thBiQ) is concave as a pointwise limit of concave
functions. O

As I(Q) is strictly concave oi€; by Theorem 3, it admits a unique argmax that we deapteWe
recall thatl (Q) is strictly concave o2; and that we denote@. its argmax. In order to clarify the rela-
tion betweerQ, andQ, we introduce the following proposition which establishes that the maximization
of I(Q) is equivalent to the maximization ¢f Q) overCy, up to a0 (1) term.

Proposition 4. Assume that, for every € {1,...,L}, sup; |CY| < o0, sup, ||[CP|| < +oo,
inf; Amin (CY)) > 0 andinf; Apin (C@)) > 0. Then

@) -1@)+0(7).

Proof: The proof is very similar to the one of [12, Proposition 3]. Assuming thaf | Q.| < +oo and
sup, ||Q«|| < +oo we can apply Theorem 1 d@, andQ., hence

(1Q. - 1@)) + (1@ - T(Q.) = (1Q.) - T(Q.) + (T@.) - 1@.)) = (1) .

Besidesl (Q.) — I(Q,) > 0andI(Q,) — I(Q.) > 0, asQ. andQ, respectively maximizé(Q) and
1(Q). Thereforel (Q.) — 1(Q,) = O (1).
One can proveup, ||Q. || < +oo using the same arguments as in [12, Appendix Ill]. It essentially

lies in the fact thalQ, is the solution of a waterfilling algorithm, which will be shown independently
from this result in next section (see Proposition 7).
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Concerningsup, | Qx| < 400, the proof is identical to [12, Appendix IlI]; one just needs to replace

A by i (CO) W (CO)12,
;HﬁC%ZWClT/Q by %(0(1))1/2“,—1(0(1))1/2

in the definition ofH. ThensS;, defined in [12, (134)], can be written as

L
S; = 2Re {1ujH(c<1>)1/2Rj (Z (COY g, + (c(l))lﬂuj) }

1=2 (1.28)

L1 (O R (O)

whereR; has the same definition as in [12},; is the j** column of matrixW,;(C)!/2 andz; =

z1,; = u; + uj with u; the conditional expectation; = E [z ;|(z1,1)1<k<tr;] - AS the vectom is
independent fronR; and fromz,; ;, k = 1,...,t,1l = 2,..., L, we can easily prove that the first term
of the right-hand side of (1.28) is(a(%). The second term of the right-hand side of (1.28) is moreover
close fromp; = 1 [(C(l))—l];ler(RjC(l)). In fact it is possible to prove that there exists a constant

t
Ci such thaE [(S; — p;)?] < <t (see [12] for more details).

The rest of the proof of [12, Proposition 3 (ii)] can then follow.

1.4 Maximization Algorithm

Proposition 4 shows that it is relevant to maximiz&) over C;. In this section we propose a maxi-
mization algorithm for the large system approximatig@). We first introduce some classical concepts
and results needed for the optimization@f— 7(Q).

Definition 1. Let ¢ be a function defined on the convex €et LetP,Q € ©;. Theng is said to be
differentiable in the Gateaux sense (or Gateaux differentiable) at [@iint the directionP — Q if the
following limit exists:

i QAP - Q) —6(Q)

A—=0+F A
In this case, this limit is notett’(Q), P — Q).

Note thatp(Q + A(P — Q)) makes sense for € [0, 1], asQ + A(P — Q) = (1 — A\)Q + AP naturally
belongs ta2;. We now establish the following result:

Proposition 5. For eachP,Q € Cy, functionsQ — §(Q), Q — 6;(Q), ! = 1,...,L, as well as
functionQ — I(Q) are Gateaux differentiable &) in the directionP — Q.

44



1.4. MAXIMIZATION ALGORITHM

Proof: See Appendix 1.E. O
In order to characterize the mati@, maximizing/(Q), we recall the following resuilt:

Proposition 6. Let¢ : €; — R be a strictly concave function. Then,

() ¢ is Gateaux differentiable a@ in the directionP — Q for eachP, Q € €4,

(i) Qopet is the unique argmax af on €, if and only if it verifies:
VQ € 617 <¢/(Qopt)a Q - Qopt> S 0. (129)

This proposition is standard (see for example [73, Chapter 2]).

In order to introduce our maximization algorithm, we consider the funéfid@, «, <) defined by:
V(Q, k, &) =log [I, + C(&)| + log [1: + QC(k)]

L
— 0ty kiR (1.30)
=1

We recall thatC(k) = 3, 5 C® andC(&) = 3, % CY. Note that we hav®(Q, §(Q),d(Q)) =
1(Q). We then have the following result:

Proposition 7. Denote byd, andd, the quantities¥(Q, ) and(Q, ). Matrix Q, is the solution of the
standard waterfilling problem: maximize ovéy € €, the functionlog |T; + QC(4..)|.

Proof: We first remark that maximizing functio® — log I + QC(4.)| is equivalent to maximizing
functionQ — V(Q, d, S*) by (1.30). The proof then relies on the observation hereafter proadnfdin
eachP € G4,

T(@Q.).P-Q,) =(V(Q..8.6,).P-Q.), (1.31)
where(V'(Q,, 4., d,), P — Q,) is the Gateaux differential of functio® — V(Q, d., 4,) at pointQ, in
directionP — Q,. Assuming (1.31) is verified, (1.29) yields tha¥ (Q, , 8., 4.), P — Q,) < 0 for each
matrix P € C;. And as the functiorQ — V(Q, 4., 3*) is strictly concave orty, its unique argmax on
@, coincides withQ, .

It now remains to prove (1.31). Consider Q € C;. Then,

L
(T'(Q).P - Q) =(V(Q.6(Q).8(Q).P - Q)+ g;i(cz, 5(Q),9(Q)(#(Q),P - Q)
=1

. (1.32)

3 % (Q.6Q).5Q)EHQ).P - Q).

P
1:181
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Similarly to (1.27), partial derivativeg%(Q,m,k) = —o%t(fi(k, Q) — &) and g;’l (Q,k, k) = —0’t
(fi(&) — x;) are equal to zero at poiriQ, §(Q), 4(Q)), as(d(Q), d(Q)) verifies (1.9) by definition.
Therefore, lettingQ = Q, in (1.32) yields:

I'@Q.),P-Q,) =(V(Q,Q,.4Q,).P-Q,).
[l

Proposition 7 shows that the optimum matrix is solution of a waterfilling probleracagsd to
the covariance matrixC(d,). This result cannot be used to evalu&e, because the matri€(d,)
itself depends orQ,. However, it provides some insight on the structure of the optimum matrix: the
eigenvectors o), coincide with the eigenvectors of a linear combination of matr(cés, the§;(Q..)
being the coefficients of this linear combination. This is in line with the result bf Abpendix VI].

We now introduce our iterative algorithm for optimizidgQ):

e Initialization: Qo = 1.

e Evaluation ofQ;, from Q;_;: (6%, 6®) is defined as the unique solution of (1.9) in which
Q = Qi_1. ThenQ, is defined as the maximum of functi@ — log [T, + QC(6%))| on€;.

We now establish a result which implies that, if the algorithm converges, themitoges towards
the optimal covariance matri, .

Proposition 8. Assume that

lim 6 — %D = lim §® — 51 = 0. (1.33)

k—o0 k—o0

Then, the algorithm converges towards matQy.

Proof: The sequencéQy) belongs to the set;. As C; is compact, we just have to verify that every
convergent subsequen@®,; ;) ) ken extracted fron{Qy ) xen converges toward,. For this, we denote
by Qw,* the limit of the above subsequence, and prove that this matrix verifiesrprdie29) with

¢ = I. Vectorsg¥(®+1 and§¥(¥)+! are defined as the solutions of (1.9) With= Q). Hence, due
to the continuity of function® — &;(Q) andQ > §;(Q), sequence&s*)+1), .y and (6¥*F)+1), o
converge toward§¥* = §(Q,,,) andé¥* = §(Q,, ) respectively. Moreove(d¥-*, §**) is solution
of system (1.9) in which matri&Q coincides With@w. Therefore,

g:, (Quu8¥.8%) = gv

As in the proof of Proposition 7, this leads to

<7/(Q’¢7*)’ P - Q@Z;,*) = <V/(6'¢v,*7 61/1,*a S¢,*)7 P - Q’d),*> (134)

(QW, 8, SW) —0.

Ky
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for everyP € C;. It remains to show that the right-hand side of (1.34) is negative to compkfedof.
For this, we use thaR, ;) is the argmax ove€; of functionQ — V(Q, §*(*), §¥()). Therefore,

(V' (Quw)» Oup(k)s Op(i) P — Qi) <0 VP € Cy. (1.35)

By condition (1.33), sequences,,;y) and (3¢(k)) also converge toward$¥* and ¥:* respectively.
Taking the limit of (1.35) whert — oo eventually shows thatV’(Q,, .., 0y« SW), P-Q,.) <0as
required. O

To conclude, if the algorithm is convergent, that is, if the sequen¢€gj.n converges towards
a certain matrix, then thél(k) = 0;(Qg—1) and thegl(k) = 5(Qy_1) converge as well whek —
co. Condition (1.33) is then verified, hence, if the algorithm is convergengriverges towards).,.
Although the convergence of the algorithm has not been proved, thi iIeencouraging and suggests
that the algorithm is reliable. In particular, in all the conducted simulations tleeitdm was converging.
In any case, condition (1.33) can be easily checked. If it is not satigfisghossible to modify the initial
point Qg as many times as needed to ensure the convergence.

1.5 Numerical Results

We provide here some simulations results to evaluate the performance obfiesed approach. We
use the propagation model introduced in [16], in which each path camedspto a scatterer cluster
characterized by a mean angle of departure, a mean angle of ardvahamgle spread for each of these
two angles.

In the featured simulations for Fig. 1.1(a) (respectively Fig. 1.1(b))corsider a frequency selec-
tive MIMO system withr = ¢ = 4 (respectivelyr = t = 8), a carrier frequency of 2GHz, a number
of paths. = 5. The paths share the same power, and their mean departure anglegsdsareads
are given in Table 1.1 in radians. In both Fig. 1.1(a) and 1.1(b), we tegwesented the EMI(I;)
(i.e. without optimization), and the optimized EM(Q,) (i.e. with an input covariance matrix maxi-
mizing the approximatiod). The EMI are evaluated by Monte-Carlo simulations, véith10* channel
realizations. The EMI optimized with Vu-Paulraj algorithm [7] is also repmése for comparison.

Vu-Paulraj’s algorithm is composed of two nested iterative loops. The Inoprevaluatlek") =
argmax {1(Q) + kparrier log |Q|} thanks to the Newton algorithm with the constra%l‘ﬁ‘rQ =1, for
a given value ok, i and a given starting poir(lz(()”). Maximizing I(Q) + kparrier log | Q| instead of
I(Q) ensures tha€ remains positive semi-definite through the steps of the Newton algorithm; this is
the so-called barrier interior-point method. The outer loop then deséasg.. by a certain constant
factor i, and gives the inner loop the next starting pcmf;"“) = Qi”). The algorithm stops when the
desired precision is obtained, or, as the Newton algorithm requires ianie-Carlo simulations for
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15]]
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Figure 1.1: Comparison with Vu-Paulraj algorithm

Table 1.1: Paths angular paramete@redians)

l=1]1l=2|1=3|1l=4]1=
mean departure angle 6.15 | 3.52 | 4.04 | 2.58 | 2.66
departure angle spread0.06 | 0.09 | 0.05 | 0.05 | 0.03
mean arrival angle | 4.85 | 3.48 | 1.71 | 5.31 | 0.06
arrival angle spread | 0.06 | 0.08 | 0.05 | 0.02 | 0.11

15

20

the evaluation of the gradient and of the Hessiaf(€}), when the number of iterations of the outer loop
reaches a given numbaf,.... As in [7] we took N« = 10, u = 100, 2 - 10* trials for the Monte-Carlo
simulations, and we started Wik, ;ricr = ﬁ

Both Fig. 1.1(a) and 1.1(b) show that maximizih@) over the input covariance leads to significant
improvement for/ (Q). Our approach provides the same results as Vu-Paulraj’s algorithm. oMare
our algorithm is computationally much more efficient: in Vu-Paulraj's algorithm etl@uation of the
gradient and of the Hessian #{Q) needs heavy Monte-Carlo simulations. Table 1.2 gives for both
algorithms the average execution time in seconds to obtain the input covanege, on a 3.16GHz
Intel Xeon CPU with 8GB of RAM, for a number of patlis= 3, L = 4 andL = 5, givenr =t = 4.
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Table 1.2: Average execution tinigseconds)
L=3 L=4 L=5

Vu-Paulraj 681 884 1077

New algorithm| 7.0-1073 | 7.4-1073 | 8.3-1073

1.6 Conclusion

In this chapter we have addressed the evaluation of the capacity acht®viagance matrices of fre-
guency selective MIMO channels. We have first clarified the definitidhefarge system approximation
of the EMI and rigorously proved its expression and convergenagspith Gaussian methods. We have
then proposed to optimize the EMI through this approximation, and have imgeddan attractive itera-
tive algorithm based on an iterative waterfilling scheme. Numerical resuésdtewn that our approach
provides the same results as a direct approach, but in a more efficigin teams of computation time.
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Appendices

1.A Proof of the existence of a solution

To study (1.9), it is quite useful to interpret functiofisand f; as functions of the parameters? €
R~, to extend their domain of validity frofR~ to C — R*, and to use powerful results concerning
certain class of analytic functions. We therefore define the functiof$(z) andg(v)(z), with ¢(z) =

[W1(2), - 12T, B(2) = W1 (2), s i ()], @S
91(¥)(2) g1(¥)(2)

MatricesT¥ (z) andT¥(z) are defined by

TY(2) = [—z(
TY(2) = {—z(

In order to explain the following results, we now have to introduce the qurafeStieltjés transforms.

¥

)] _1, (1.36)

(z)CW)
-1
wj(z)é(j)>] . (1.37)

L
I + Z
j=1

L
L+ Z
j=1

Definition 2. Let i be a finité positive measure carried bg+. The Stieltjés transform qf is the
functions(z) defined forz € C — R™ by

_ [ du(N)
s(z) = /R+ P (1.38)

In the following, the class of all Stieltjes transforms of finite positive meascaesed byR™ is
denotedS(R™). We now state some of the properties of the elemensg&f").

Proposition 9. Lets(z) € §(R™), andy its associated measure. Then we have the following results:

%finite means that(R™") < oo
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(i) s(z)isanalyticonC — R™,
(i) Im(s(z)) > 0if Im(z) > 0, andIm(s(z)) < 0if Im(z) <0,
(i) Im(zs(z)) > 0if Im(z) > 0, andIm(zs(z)) < 0 if Im(z) <0,

(iv) s(—c?) > 0foro? >0,

+
(V) |s(2)| < #55 forz € C - R,
(i) u(RT) = lim —iy s(iy).

Y—00
Proof: All the stated properties are standard material, see e.g. Appendix of [74]. d

Conversely, a useful tool to prove that a certain function belong¢ld ) is the following proposi-
tion:

Proposition 10. Let s be a function holomorphic o8 — R* which verifies the three following proper-
ties:

(i) Im(s(z)) > 0if Im(z) > 0,

(i) Im(zs(z)) > 0if Im(z) > 0,

(iii) sup |iy s(iy)| < oc.
y>0

Thens € $(R*) and, if u represents the corresponding positive measure,

p(RY) = lim (—iy s(iy)).

Yy—00

Proof: see Appendix of [74]. O

Now that we have recalled the notion of Stieltjés transforms and its assocede&ddooperties we
can introduce the following proposition:

Proposition 11. Let (¢l,1/~zl)l:1,m,L € 8(R™). We define functiong;(z) and;(2),l =1,...,L, as

{ oi(z) = %Tr [C(Z)T’Z’(z)],

oi(z) = %Tr [C(l)’i‘w(z)].

Then we have the following results:

(i) T¥, T are holomorphic orC — R,
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(i) [ T%(2)] < T ()] < onC —RT,

alz]R+ ZR+)

(i) ¢ € S(R) with the corresponding mags verifying i (RT) = 1Tr CO, 3, € $(R*) with the
corresponding masg, verifying ji;(R*) = 1Tr C).

Proof: For item (i) we only have to check tha(IT + Zle zﬁj(z)C(j)) is invertible for everyz €
C — R™ to prove thafT'¥ is holomorphic orC — R*. The key point is to notice that, for any vectoy
for z such thaftm(z) > 0,

L L
m{sz<Ir + Z zﬁj(z)C(j)>v} = Im{z}vilv + Z Im {zd;j(z)} viicUly > 0.
j=1 j=1
A similar inequality holds foim(z) < 0, and the case € R~ is straightforward.

Item (iii) can easily be proved thanks to Proposition 10.

As for item (ii), the proof is essentially the same as the proof of Propositibitéin 3 in [75], and is
therefore omitted. O

We consider the following iterative scheme:

{ Y (z) = g (™) (2), (1.39)

with a starting point+© (), 9 (2)) in (S(R*+))*~. Item (iii) of Proposition 11 then ensures that, for
eachn > 1, (™ (z) and+ (™ (z) belong to(S(R+))~. Moreover,

@™ = ")) = @ ™)(z) - @)

- % T [CO(T(z) — DD (2))] | (1.40)
where matrice& ™ (z) and T (z) are defined byT™ (z) = T¥"(2), 'i‘(”)( ) = T’/’(") (z). Note
that in the following we may not always mention the dependenceyohT (), T(?) zp andﬁj(.”) for
reading ease. Using the equality— B = A (B~! — A~') B, we then obtaln.

) _ D ( 237 (B ) cw)wn. (L.41)
7j=1

Using (1.41) in (1.40) then yields:

I

w(n—l—l) Qpln) :

(30 = 5) T [cOTOI COT- 1)H

< A
t

Mwm

‘w(n 1) 1;](71)

Ty [Co () CG)(n— 1)”

J
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The trace in the above expression can be bounded with the hélp.gf= max;{[|CY|, |[CY)|}:

w(n—i—l 77/}ln)

L
r 7(n T(n— n j n—
SEC S REer el [ el T vl TTeRl e sl
j=1

r 1
< |2 C2 I T HHT“HZ]w o).

Forz € C—R*, T (2) andT" Y (2) have a spectral norm less thayd(z, R*) by item (i) of
Proposition 11. Therefore,

n n 02 L T(n T(n—
™ e < = ey GRS ICI R
j=
A similar computation leads to
L
@ = ) ()| < Céw’Rh))g P CREC I IO1 (1.43)

We now introduce the following maximum:

M®(2) = max {] (0" ()], |5 =95 (2]}

Equations (1.42) and (1.43) can then be combined into:

M™(z) < e(z)MT D (2),

wheree(z) = %, with 1 = LCZ,, max {%,1}. We now define the following domairt/ =
{z € Cd(=R") 2 B, 55 ‘3@ < 2}, with0 < K < 1. On this domain/ we haveM ™ (z) <

KM™=D(z). Hence, forz € U, ;" ( ) andwj ( ) are Cauchy sequences and, as such, converge. We
denote byy;(z) andq);(z) their respective limit.

One wants to extend this convergence resulCon R*. We first notice that, aﬁJl(") is a Stieltjes
transform whose associated measure has &fﬁsﬁ(l) by Proposition 11 item (iii), item (v) of Propo-
sition 9 implies

lTrC(l)

- d(z R+)’

Y (z) <

The wl(”) are thus bounded on any compact set include® in R, uniformly in n. By Montel's
theorem ( (”)) neN is a normal family. Therefore one can extract a subsequence camyemgformly
on compact sets f — R™, whose limit is thus analytic ovel — R*. This limit coincides withy; on
domainU. The limit of any converging subsequence(ml(")) thus coincides with); on U. Therefore,
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these limits all coincide o — R™ with a function analytic orC — R™, that we still denote);. The
converging subsequences(@ifl(”)) have thus the same limit. We have therefore shown the convergence
of the whole sequenc@ﬁl("))n>0 on C — R towards an analytic functiogt;. Moreover, as one can
check that); verifies Proposition 10, we havg(z) € §(R™). The same arguments hold for thg2).

We have proved the convergence of iterative sequence (1.39). glakia —o? then yields the
convergence of the fixed point algorithm (1.13). Note that the starting péi®¥, 5(?)) only needs to
verify 51(0) > 0, Sl(o) >0(=1,...,L), as any positive real number can be interpreted as the value at
point z = —o? of some element(z) € $(RT). Moreover, the limits/;(z), ¥y(z) ( = 1,...,L) of
the iterative sequence (1.39) are positive for any —o? by item (iv) of Proposition 9, as they all are
Stieltjés transforms. Therefore, the limfis9; ({ = 1, ..., L) are positive.

1.B Afirst large system approximation of Eg[Tr S]

We will prove Proposition 1 by deriving the matriR defined by (1.21), before proving that it satisfies
%Tr(TA) =0 (t%) for any uniformly bounded matriA. To that end, as the entries of matrices
H® are Gaussian, we can use the classical Gaussian methods: we intredeitevd Gaussian tools,
an Integration by Parts formula and the Nash-Poincaré inequality, botlywised in Random Matrix
Theory (see e.g. [76]).

In this section, ifr is a random variable we denote byhe zero mean random variable= z—E(x).

We first present an Integration by Parts formula which provides thecéegen of some functionals
of Gaussian vectors (see e.qg. [77]).

Theorem 4. Leté = [¢1,. .., &y]T acomplex Gaussian random vector such i = 0, E[¢¢7] = 0
andE[¢¢T] = Q. If T = I'(§,£%) is aC! complex function polynomially bounded together with its
derivatives, then

(1.44)

M
EET(E)] = S 0l [a”ﬂ |
m=1

23

In the present context we consid¢rbeing the vector of the stacked columns of matritg®),
where the channelHL() are independent and follow the Kronecker model, &y [Hg:)Hff),ﬂ —
5k,l%C(Z) CY. Then (1.44) becomes

m o gn”

t 8H7(7l~b);

m=1n=1

1 < o . or
En[H)T(H)z )] =5 ) Y ¢l ClEn [ ] : (1.45)

The second useful tool is the Poincaré Nash inequality which boundsatteee of certain func-
tionals of Gaussian vectors (see e.g. [10, 76]).
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Theorem 5. Leté = [¢1,. .., &) acomplex Gaussian random vector such B = 0, E[¢¢7] = 0
andE[¢¢l] = Q. If T = T'(&,¢%) is a @' complex function polynomially bounded together with its
derivatives, then, notingI" = [§F, ..., 2-]" and V. T = [%’ - 83@5”]?

var(T'(€)) < E [VeD(€) vgr(g)} +E[VeT(€)F QVeT(6)]. (1.46)

In the following we will use the Nash-Poincaré inequality wittbeing the vector of the stacked
columns of independent matric&$("), where the channelH(® follow the Kronecker model. Then
(1.46) can be written under the following form:

var (F((H(l))l:1 ,,,,, L)) < % Z Z ZCZ(’QIC‘;QEH [ o (61;> + ( 311)*> alﬂl *] '

im=1ja=1 I=1 8H§§) oHY), oH! oHY:
(1.47)

Using these two Gaussian tools we now prove Proposition 1. In order iedbe matrixY de-
fined byEg[S] = R + Y we study the entries dy[S]. Using the resolvent identity (1.26) we have
0*En[Spq] = (I~ Eu[SHHY]),,. We evaluat&n[(SHH"),,] by first studyingEx [S,H| H,"].
Calculation begins with an integration by partsHéy) (1.45):

R e
I OHyn
; Cz(fncgiz :sz5l 10g,mOk,n + H(l ) ;Ii(z;;] )
As aissfi?; - <S 3812551)} S)pi = —(SH),,S i, We obtain
[, H ] = GOl Emis 3 € En [ (SH)m(CVS).]

Summing ovet, [ and!’ then leads to:

o [(SH), Hy ) = 3 JER((SCU),]C1) - > e o[, (SH) ., 1 Tr(SC0)].
l

To separate the terms under the last expectation, we danete%Tr(SC(l)) = qaq + 1, Whereq; =
Eg[n;]. We can then writéyy [H;k(SH)pnm)] = oEx [H;k(SH)pn] +Eg [H;k(SH)pnﬁl], hence

* 1 = pad * =iV L)
s [(SH), H] = 7 SEul(SCY),0|Cf) - 3 arCl B [(SH),Hy,] — 217, (1.48)
l n,l
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where_ = 7 Eu [, (SHCHT),;]. We here notice the presencelyf [(

H), H?,] on both
sides of equatlon (1.48). Hence, let us dermﬁ 1

=En [(SH)ijj;k}. Then (1.48) becomes
APD _

R = 3 EalSCU)C) — (P actare) —=p
l

Recalling thalR. = (o2 (I; + 3, ;C®)) ™"

, this leads to

1 -~ .
APD = g2 %" EEH[(SC(”)M]RC(Z) — o’REPY,
l

Besides, noticing thaEy [(SHHH ),

= Tr(A®9) allows us to come back to the calculation of
EH[Spq] = 52 (I EH[SHHH])pq
1)
EH[Spq] = 2 —

Z &zEH[(SC(l))pq] +Tr (Rg(p,q)> 7
!
recalling from (1.20) thafy;, =

Ly (RS
t ~
thatTr(RE®)) = 3, Eg [ (SHC

D). Coming back to the definition of matr&(*-?), we notice
JTRTHH),,|. Hence matrixEy [S] can be written as

EqlS] = gn ~Enls] Y &c® + Y En [ﬁZSHC@TRTHH} .
l

!
And finally, Eg[S] =

R+ Y, where we recall thak = (02 (I, + 3, &C®)) " and where matrix®
is defined as
- o*> En [ﬁlSHC(l)Tf{THH} R. (1.49)
.

To end Proposition 1 proof, we now need to prove that (YA) = O (%) for any uniformly
bounded matriXA. Let A be ar x r matrix uniformly bounded im. Using (1.49)

fTr (YA) = Z Eg [mTr (SHC( ITRTHH RA)]

2
:UTZEH
l

We can now boun(%Tr (T A) thanks to Cauchy-Schwartz inequality.

7 Tr(SHCWTRTHA RA)] .

‘%Tr(TA)) < U;Z EH[WIF}EH

l

Tr(SHCWTRTHTRA)

|

=7 Z \/Var (my) var <Tr(SHé(l)Tf{THHRA)>, (1.50)
l
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asIEH[yﬁé\Q] = var (x) for any random variable. We now prove thatar(n;) = O (%) The Nash-
Poincaré inequality (1.47) states that

0 o \* o \* 0
var(m) Z cclE [ 4 <m > +< L > ”,i] (1.51)

As 8Spq/8H§f) = —(S(&S—l/aHgf))S)pq = —S,:(HS),, the partial derivativ@m/aHgf) can be

written as
om_ _ 1Tr<5SC<z>>
oYt \oHY

ij
_ 72 88‘?‘1)0()
g 8H

= —%(HHSC()S)ji.

Similarly we obtain@m/aHg?)* = —1(SCWSH),;. Therefore (1.51) leads to

1 _
var(n;) 73 Z |: ( Hscl )S)C(k) (HHsc(l)S)Hc(k)T)
k (1.52)
+Tr (C(k)T(SC(l)SH)HC(k)(SC(”SH)) } .

Both traces in the right-hand side of (1.52) can be upper bounded ttmtties following inequality:
[Tr(B1B2)| < [ B1[|Tr By,

whereB, is non-negative hermitian.

2 -
var(n) < |[COI2 Y ICW E [|S)*Tr (HCWTHT )]
k

2 ~
< llc?|? Z ICHIIC™ | E [T (HE)]
1 2LCE,
< L2 PE[ (HHH)} , (1.53)

where the second inequality follows frojf|| < % and from the definition of’,,,:

C’sup = Slip Cmax (154)

_ IR,
sup {max {JC 1O} |
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The hypotheses of Proposition 1 ensure tfiat, < +oc. We now prove thak [1Tr (HH)] =
O (1). Using the fact that the channdi¥’) are independent and follow the Kronecker model, that is
En[HYH)] = 6,10 cl)

m - gn?

Ex E”ﬁ (HH") ] - > Ea [HPHY| - tZZc” c!)

1,7,k,l 3,0

= Yl et < e

sup*

We have therefore proved thaf; [1Tr (HH)] = 0 (1). Coming back to (1.53) gives

1 r QCgu L2
var(n;) < 2 (t a;) ; (1.55)
hence
1
var(m;) = O <t2> . (1.56)

We evaluate similarly the behavior of the second term of the right-hand side5®f) and we obtain
var(Tr(SHCYWTRTHRA)) < * <1 + > A2, (1.57)
wherek does not depend ar¥ nor ont. Therefore,
var(Tr(SHCOTRTHTRA)) = 0 (1). (1.58)
Using (1.56) and (1.58) in (1.50), we eventually have:
1 1
ETr('I‘A) =0 <t2) ,
which completes the proof of Proposition 1.
Remark 1. Note that usind1.55)and (1.57)in (1.50)leads to
o812 o2

%Tr('I‘A) < Lp ( L ) , (1.59)

whereP is a polynomial with real positive coefficients which do not depeneomor ont.
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1.C Arefined large system approximation ofEg[Tr S]

We prove in this section Proposition 2, i.e. that, under the technical assusptamte in the Proposition

statement,

L n(rA) = %Tr(TA) Lo <t12)

for anyr x r matrix A uniformly bounded in .
We first note that the differencglr (RA) — 1Tr (TA) can be written as
1 1
T (R-T)A) = T (R(T™'-R7')TA)

_ _": (@ — ) Tr(RCOTA). (1.60)
!

As ||T| < 2 and||R|| < 02, equation (1.60) yields

Lm(R-T)A >\<7"Csup”A”Z\

(1.61)

whereCy,, < +oo is defined by (1.54). We derive similarly the differenfgr(RA) — 1 Tr(TA) for
anyt x ¢ matrix A uniformly bounded in t.

Sll A
‘Tr ( (R-T)A )‘ p” ” Z oy — (1.62)
TakingA = C*) in (1.61),A = C*) in (1.62) and using Proposition 1 gives

Usup Z ’Ozl (5[’ +0 <t2> (163)

|éy, — 0| < ;‘gp > ou —al, (1.64)
;

(-2 Sl a0 (3)

Therefore itis clear that there exisat%such thaqak k| = O (%) foro? > o2 foranyk € {1,..., L}.
In particular, |oy, — 0| 122, 0 for 62 > o2. We now extend this result to amy? > 0. To this end,
similarly to Appendix 1.A, it is useful to consider; andd; as functions of the parametéro?) € R~
and to extend their domain of validity fro~ to C — R* in order to use the results about Stieltjes

transforms. The function;(z) then corresponds to the functian(z) of Appendix 1.A and therefore

o~ < -

which leads to
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belongs toS(R*) with an associated measure of m%ﬁ Cc®, forl =1,...,L. Itis easy to check
that functiona;(z) also belongs t&(R*) with an associated measure of m%ﬁ& Cc® for anyl ¢
{1,...,L}. Hence, by Proposition 9 (v), we can upper bound the Stieltjes transtaimsandd;(z) on
C — R, yielding: ) o

u(e) ~ )] < 26 s < 2t
The (ay(z) — 6;(2))ien are thus bounded on any compact set included i R™, uniformly in ¢.
Moreover («;(z) — 0;(z))ten is a family of analytic functions. Using Montel's theorem similarly to
Appendix 1.A, we obtain thafoy(z) — & (2)| 2% gonC—R* foranyl € {1,...,L}, thus in
particular

t—o00

‘al (5[‘ — 0 (165)
foranyo? > 0,1 € {1,..., L}. And (1.64) then yields
& — & &% 0 (1.66)

foranys? > 0,1 € {1,...,L}. Using (1.66) in (1.61) and (1.65) in (1.62) gives

%Tr(A(R T)) 2% 0, (1.67)
ST (AR-T)) 20 (1.68)

We now refine (1.67) and (1.68) to prove that these two trace@ éfg) TakingA = C® in (1.60)
leads toc, — 0, = 2 °,(6 — &) Tr (COTCHR) + LTr (CH)Y), whereY = En[S] — R, and
similarly 6, — &y, = "72 S — &) Tr(COTCHR). We can rewrite these two equalities under the
following matrix form:

- a—90 €
L; — N(R, T,R, T — %1, 1.69
(T2 — N( ) |5 a] H (1.69)
wheree is aL x 1 vector whose entries defined by = 1 Tr (C)Y) verify e, = 0 (%), k=1,..., L,
by Proposition 1, and where matiX(R, T, R, T) is defined by
. B T
NR,T,R,T) =0¢%| - 0 (R,T) , (1.70)
BR,T) 0

where matriceB(R, T) andB(R, T) areL x L matrices whose entries are definedBy (R, T) =
iTr (COTCHR) andBy (R, T) = 1Tr(COTCH®R). Besides, takingd = COTC®) in (1.67)
andA = COTC® in (1.68) leads to
Bu(R,T) =2 11r (COTCHT),
oo 1 (EOTE®T (1.71)
Bu(R,T) =% 11y (CU)Tc(’f)T).

We now introduce the following lemma:
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1.C. AREFINED LARGE SYSTEM APPROXIMATION Oy [Tr S|

Lemma 1. Let T, T be the matrices defined kg.11)and (1.12) with (4, 5) verifying the canonical
equation (1.9) withQ = I,. Let A(T) and A(T) be theL x L matrices whose entries are defined by
Ap(T) = 1Ty (CWTCOT) and Ay (T) = 1Tr(CHTCOT) andM(T, T) the matrix defined by

0 A(T)
A(T) o

Assume that, for everye {1,..., L}, sup, [[CO| < +oo, sup; [CY|| < +oo, inf; (1TrC?) > 0
andinf, (}Tr C) > 0. Then there existhy > 0 andk; < oo both independent f? such that

(i) sup, [p(M))] < 1 - 3% < 1,

(i) sup, [p (04A(T)A(T))} < (1 - %)2 <1,

(iii) sup, HH(IQL _ M(T,’i‘))—lmoo] < (@2Fk)?

where|| - || is the max-row; norm defined by|P||_ = maxjcqi, S [Pkl fora M x N
matrix P.

Proof: Using the expression &F~! = ¢%(I, + 3°, 6,C*), §, can be written as:

6 = %Tr(C(l)TT’lT)

2 2

- Zm(cTT) + 7

- s Tr(cTCc®T).

M=

e
Il
—

Similarly &, verifies

5 -9 (L O (k)
5l_tﬂ( t;mc TCHT).
Thus,
5
0| _ 2 ~O~ A(T) (E L 7
5 A(T) 0 ) W

wherew andw are L x 1 vectors such thaty, = 2 Tr(COTT) andw; = 2 Tr(COTT). This
equality is of the formu = M(T, T)u + v, with u = [67,67]" andv = [w”,w”]", the entries ofi
andv being positive, and the entries M(T, T') non-negative. A direct application of Corollary 8.1.29
of [71] then impliesp(M(T, T)) < 1 — minve,

max u;

We first considesup, { maxw;}. Asu = [67,67]" we need to upper bound, andd;. As
|T|| < % and||CY|| < Cyyp we have

r

S = %Tr (C(k)T> <

Cosup- (1.72)
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Similarly, as||T|| < % and||CY|| < Cyyp,

5y — %Tr (6WT) < %c

(1.73)
Ast/r 2% ¢ > 0 we have thatup, [r/t] < 4+oo. Thereforesup, {maxw;} < % < 400, where
Ao = Csup max {1, sup; [r/t]}.

We now consideinf; {min; v;}. As min; v; = miny, { 2 Tr(CHTT), ZTr(CHTT)}, we need
to lower boundZ Tr(C*)TT) and 2" Tr(C*)TT). We use the Cauchy-Schwarz inequality:

Tr(AB)| < /Tr(AAH) \/Tr(BBH).

(1.74)
. . ) 1/2 . ) 1/2 .
TakingA = (C) " T andB = (C") " in (1.74) leads to
2 2 (1 C(l)T))2 252
[ ) s 7 (tTr( _ 99
I (c TT> > oo TG (1.75)

We now need to lower boundl. Using again inequality (1.74) withh = (C(’))l/2 T2 andB =
T-1/2 ()" yields

1 (1Tr c)?

6 = Tr (c T) > TGO (1.76)
Thanks to (1.73)| T~ || = [|o(L, + 3, §CV)|| < 0% + LCZ,,. Hence (1.76) leads to
5> iTrc® iTrc®

> : 1.77
2T Z 2 LR, -7
Eventually, using (1.77) in (1.75) gives

2 21
T Ty (c<l>TT) > LCQ (1.78)
13 (02 + LCS?up)

Similarly, we prove that

2 217y G0)
T (COTT) > e
! (0% + FLCEp)

sup

Thereforeinf; { min; v;} > (05‘17’]\;1)2 where\; = min; {inf; [$Tr CO],inf, [}Tr CP]} > 0 and
ki = LCgup max {1, inf,[r/t]} = LCsupro < +00.

Noting kg = ﬁ—é > 0 we can now conclude about
statement (i) of the lemma:

.
sup p(M(T, 1)) < 1 Safe(min ve)
P sup, (max; u;)
1 koo?

(02 +k1)?
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As for statement (ii) of the lemma, we note tHatl(T, T) — Ao, | = [0*A(T)A(T) — A1, |.
Hence

p(o* A(T)A(T)) = (p(M(T. 7))’

(024 k)2

Concerning statement (iii), the proof is the same as in [78, Lemma 5.2]. Nelasthwe provide it
here for the sake of completeness. A3 (T, T)) < 1, the series ;.o M(T, T)* converges, matrix
I, — M(T, T) is invertible and its inverse can be written@s;, — M(T, T)) ' = 3", .y M(T, T)*.
Therefore the entries dfl;;, — M(T, ’i‘))*1 are non-negative. Hence,

2L

we =" (T = M(T,T) 7| v,

kl
=1

2L

> min(v;) Y [(12L ~ M(T, T))—l} o
=1

Thereforemasx; 2, [(To — M(T, T)) '], < 222 and it eventually follows that:

kl = min;(v;)

o [ 1 =) | < St
koot

O

Remark 2. Lemma 1(ii) is used in the proof of Theorem 1 for the uniqueness of solutiofis3yp but
we took care not to use any consequences of this uniqueness in ttalpowe; this proof only requires
the existence of solutions (.9).

Remark 3. Unfortunately assumptlonﬁft (i1mrct )) > 0 andinf; (}Tr C?) > 0 made in Lemma 1
cannot be restrained, akTr (CWTT) < L (3Tr C) and similarly 1 Tr (COTT) < L (3Tr CO).

Equation (1.71) shows that the entriesRfR,, T') andB (R, T) respectively converge to the entries
of A(T) andA (T). Hence there existy such that, fot > t,

e the matrixI,;, — N(R, T, R, T) is invertible,

o sup, |[|(Tr - N(R, T, R, )| | < 258
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Then, fort > ty, (1.69) yields

[g‘ _;] = (L - NR.T.RT) H . (1.79)

Thanks to (1.79) we can now upper bound all the- §; andd; — d;.

—a}

IN

mlax{‘al - | (T2 — N(R, T,R, ’:N[‘))*lmoo max lex|

< 2(0? + ky)?

€
ool ek

Ase; =Tr (CUY) =0 (%) forl=1,..., L, we eventually have that

— =0 <1> . (1.80)

t2

Using (1.80) in (1.61) completes the proof of Proposition 2.

1.D Integrability of Eg [Tr (T — S)]

We prove in this section Proposition 3, i.e. the integrabilitfef [Tr (T — S)].

We first consideify [Tr (R — S)], which is equal tdlr Y by Proposition 1. As noted in Remark 1
of Appendix 1.B, we have;Tr(YA)| < 5P (Jz), whereP, is a polynomial with real positive
coefficients which do not depend e# nor ont. Therefore
P (3)

oSt

[Ex [Tr (R - S)]| < (1.81)

We now consideflr (R — T). We showed in Appendix 1.C that there exigtsuch that, fort > ¢,
I, — N(R,T,R, T) is invertible and such thd}(I,, — N(R, T, R, T))~!|| 2(" +k1 , wherek
andk, are given by Lemma 1. Equation (1.69) then implies

ETEARS H((IQL _ N(R,T,R, T))*lmm max Jey|

2(02 + k‘l)2

o m e

wheree;, = Tr (CW)Y). Besides, Remark 1 of Appendix 1.B ensures that < —&» P1 (), where
Py is a polynomial with real positive coefficients which do not dependbnor ont. Hence, fort > ¢,

Py (32) 2(0% + k1)?
o8t2 koot

& — & < (1.82)
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foranyl € {1,...,L}. Using (1.82) in (1.61) witlA = I, then gives, fot > ¢,

1 (ko k1) 1
2LCsup

whereky = === supy{r/t} < +o0.

Eventually, (1.81) and (1.83) yieliEy [Tr(T —S)]| < —x; P(Z%) for t > to, where the coefficients
of the polynomialP(%) = Po(%) + 5 (1 + 5)P () are real positive coefficients and do not

depend ow? nor ont. This completes the proof of Proposition 3.

1.E Differentiability of Q — §(Q), Q — 6(Q) and Q — 1(Q)

We prove in this section Proposition 5, i.e. that forRIIQ € C; functionsQ — 4(Q), Q — S(Q) and

Q — I(Q) are Gateaux differentiable at poi@ in the directionP — Q, whered, b are defined as the
solutions of system (1.9) and wheFéQ) is given by (1.8). The proof is based on the implicit function
theorem.

LetP, Q € ;. We introduce the functioff : R x RZ x [0, 1] — R2L defined by

8- f(5)

I'(6,0,)\) = 5—f(6,Q+ AP —-Q))

)

with £(&) = [£1(8), ..., fz(8)]" andf(6,Q) = [f1(6,Q), ..., fr(8,Q)]", where thef; and thej,
are defined by (1.10). Note th&tQ + A(P — Q)) andd(Q + A(P — Q)) are defined by'(8,45, \) = 0.
We want to apply the implicit theorem on a neighbourhood ef 0; this requires the differentiability of
I" on this neighbourhood, and the invertibility of the partial Jacotm?g!g) (T'(8,8,))) at pointA = 0.

We first note thatf; : & — —LTr[CO(I, + 3, 5,C*)) '] is clearly continuously differentiable
onRY. Concerningf;, we first need to use the matrix equalifiy+ AB)~'B = B(I + BA)™!, with
A = QY2 andB = CQY/2:

. 1 - ~ —1
fi(6,Q) = 5 Tr {QWC(”Q”2 (1 +Q*C(9)Q"?) }
1 . .
- O] -1

T [c QL + C(8)Q) } . (1.84)
Recall thatC(d) = 3, 6,C™®). Function(d, \) — f(d, Q+A(P—Q)) is therefore clearly continuously
differentiable orRZ x [0, 1]. Nevertheless, as we want to use the implicit theorem\fer0, we need to
enlarge the continuous differentiability on an open set includirg0. Note that forA < 0, Q + A\(P —
Q) might have negative eigenvalues. Yéif [I,+ C(6)(Q+A(P —Q))] > 0for§ = §(Q) and\ = 0.
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Therefore it exists a neighbourhod@of (§(Q),0) on whichdet [I; + C(8)(Q + A(P — Q))] > 0.
Defining f; by (1.84), the function$d, \) — f;(8,Q + A(P — Q)) are continuously differentiable on
V. Hencel'(d, 4, \) is continuously differentiable oRl x V.

We still have to check that the partial Jacobla{} 5) (T'(8, 4, )\)) is invertible at the poin = 0.

r . _|W=Dsfs  —Dsfg
Dissl6.50 = x z
B —Dsfs0 1o — Dl
—0?A(T) I T

where the entries of matrice&(T) and A(T) are defined byAy(T) = 1Tr(CHTCOT) and
Ap(T) = 1Tr(Q2CWQ2TQ/2CQ/?T), and whereT = T(§(Q)) andT = T(§(Q)) are
respectively defined by (1.11) and (1.12). Matrice&T), A(T) and M(T,T) correspond to those
defined in Lemma 1, but in whic&® is replaced byQ/2C()Q'/2. Lemma 1 item (i) therefore gives
the invertibility ofD(&g)F at pointA = 0.

We now are in position to apply the implicit function theorem, which asserts timatibns\ —

5(Q+ AP - Q)) and\ — 6(Q + A\(P — Q)) are continuously differentiable on a neighbourhood
of 0. Hence,d andé are Gateaux differentiable at poi in the directionP — Q. As 1(Q) =

log |43, 8(Q)CY | +log [L+Q( X, 61(Q)CW) | o2t ( X, 1(Q)a(Q)) itis clear thalQ — 1(Q)

is as well Gateaux differentiable at poi@tin the directionP — Q.
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Chapter 2

MMSE Diversity Analysis

N this chapter, the evaluation of the diversity of the MIMO MMSE receiveddrassed for finite rates
I in both flat fading channels and frequency selective fading channgicyclic prefix. It has been
observed recently that in contrast with the other MIMO receivers, theSBMeceiver has a diversity
depending on the target finite rate, and that for sufficiently low rates th&E ke ceiver reaches the full
diversity - that is, the diversity of the ML receiver. This behavior iaas only been partially explained.
The purpose of this chapter is to provide complete proofs for flat fadil®Achannels, and to improve
the partial existing results in frequency selective MIMO channels with cycééix.

2.1 Introduction

The diversity-multiplexing trade-off (DMT) introduced by [22] studies tinersity function of the mul-
tiplexing gain in the high SNR regime. [28] showed that the MMSE linear recgjwidely used for
their simplicity, exhibit a largely suboptimal DMT in flat fading MIMO channelsornétheless, for a
finite data rate (i.e. when the rate does not increase with the signal to ntiigetree MMSE receivers
take several diversity values, depending on the target rate, as netidezt in [29], and also in [30, 31]
for frequency-selective MIMO channels. In particular they achielladiversity for sufficiently low data
rates, hence their great interest. This behavior was patrtially explain@8,i682] for flat fading MIMO
channels and in [33] for frequency-selective MIMO channels. éddie proof of the upper bound on
the diversity order for the flat fading case given in [32] contains g gafd the approach of [32] based
on the Specht bound seems to be unsuccessfull. As for MIMO fregusahective channels with cyclic
prefix, [33] only derives the diversity in the particular case of a nundfezhannel taps equal to the
transmission data block length, and claims that this value provides an upped bo more realistic
cases, whose expression is however not explicitly given. In this chapt@rovide a rigorous proof of
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M

MMSE !
receiver

decoder ———

DEMUX
(@]

—— encoder II

T

Figure 2.1: Considered MIMO system

the diversity for MMSE receivers in flat fading MIMO channels for firiata rates. We also derive the
diversity in MIMO frequency selective channels with cyclic prefix foiténdata rates if the transmis-
sion data block length is large enough. Simulations corroborate our detiversity in the frequency
selective channels case.

2.2 Problem statement

We consider a MIMO system with/ transmitting,N > M receiving antennas, with coding and ideal
interleaving at the transmitter, and with a MMSE linear equalizer at the recdéolowed by a de-
interleaver and a decoder (see Fig. 2.1). We evaluate in the following s&ttie achieved diversity by
studying the outage probability, that is the probability that the capacity ddesipport the target data
rate, at high SNR regimes. We dengtéhe SNR,I the capacity and? the target data rate. We use the
notation= for exponential equalitj22], i.e.

log f(p)

- d : _
flp)=p & lim og p =d, (2.1

and the notations: and > for exponential inequalities, which are similarly defined. We rlotethe
logarithm to base.

2.3 Flat fading MIMO channels

In this section we consider a flat fading MIMO channel. The output of tid®channel is given by

Yy =4/ ﬁHx +n, (2.2)

wheren ~ CN(0,Iy) is the additive white Gaussian noise anthe channel input vectoH the N x M
channel matrix with i.i.d. entries CN(0, 1).
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M
m—1"

Theorem 6. For a rate R such thatog £ < £ < log
bility verifies

withm € {1,..., M}, the outage proba-

P(I < R) = p~m™N=M+m) (2.3)

that is, a diversity oin(N — M + m).

Note that for a rate? < M log % (i.,e. m = M) full diversity M N is attained, while for a rate
R > M log M the diversity corresponds to the one derived by DMT approach. EBigtrwas stated
by [32]. Nevertheless the proof of the outage lower bound in [32] omitsthigaevent noted,, is not
independent from the eigenvaluesif H, hence questioning the validity of the given proof. We thus
provide an alternative proof based on an approach suggested byalysia of [28] in the case where
R = rlog p with r > 0.

Proof. The capacityl of the MIMO MMSE considered system is given by

M
I= Zlog(l + 55),

j=1
wherej; is the SINR for thejth stream:

1
B; = 1

([+ ﬁH*H]*l)jj

We lower bound in the first placB(I < R) and prove in the second place that the bound is tight by
upper boundin@®(/ < R) with the same bound.

2.3.1 Outage probability lower bound

We here assume th#&t/M > log(M/m). In order to lower bound(I < R) we need to upper bound
the capacityl. Using Jensen’s inequality on functien— log x yields

(2.4)

B M
1
L 7j=1

L ) L
— Mlog MZ([(IJrMH*H) ]) . (2.5)
L7 =1 Ji

We noteH*H = U*AU the SVD of H*H with A = diag(A1,...,Am), A1 < Aa... < Ay. We
recall that thg ;) ,—1 ... ar are independent from the entries of mafitband thafU is a Haar distributed
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unitary random matrix, i.e. the probability distributionGfis invariant by left (or right) multiplication
by deterministic matrices. Using this SVD we can write

M Z < [<I+ P H*H>1Lj>_ ]\lff (i [ Uy )\k>_1. (2.6)

7=1
a) Casem =1

In order to better understand the outage probability behavior, we finsider the case: = 1. In this
caseR/M > log M. We review the approach of [28, Ill], which consists in upper bougdh6) by

£ 1 M 1 M |Uy? U, [? ; i i i
(1+ M) 57 >z T asd -, H%M > 1+ALZA1' Using this bound in (2.5) gives

P 1
j:

Therefore

M
LM 1 R/M
((1+M>\1) M]Z::l U, <2 ) c (I <R).
In order to lower bound®(I < R), [28] introduced the sef; defined by
PR I
M & Uy
7=1
fore > 0. Then,

P(I <R)>P((I <R)NA;)

M
p 1 1 R/M
>P|( (1 =5 2
- K( +M)\1>Mj:1 U2 = o

>Pp <1+p>\ 2R/M>

- M 1<M+5 N
p oR/M

=PA,) P 1+M)\1<M+z—:

where the last equality comes from the independence between eigesvauticgigenvalues of Gaussian
matrix H*H. It is shown in [28, Appendix A] thaP(A;) # 0. Besides, as we supposgt/M > M,
we can take such that% > 1, ensuring thaP[ (1+HM) < ﬁfﬂ # 0. Hence there exists > 0

such that

IP’(]<R)2}P’(/\1<’;>,

which is asymptotically equivalent o (Y =¥+1) in the sense of (2.1) (see, e.g., [79, Th. 11.3]).
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b) Generalcasel <m < M

By the same token as fon = 1 we now consider the general case — we recall that we assumed that
log(M/m) < R/M. We first lower bound _, 1|+ ’;,]A which appears in (2.6) by the first terms of the
sum and then use Jensen'’s inequality applied en 2~ 1, yielding
M m
U U1

>
Z1+ Lk —Zl+ £\

2
(Zl:l |Ulj|2)
T Ok (1 f7)

Using this inequality in (2.6), we obtain that

P (o)) R

V

j:l
N (14 P
-y (1 + MAk> 5,(U), @2.7)
k=1
whered,(U) = ﬁ Zj]‘il m Equation (2.7), together with (2.5), yields the following inclu-

sion:

- r R/M
(Zék(U) (1+ M)\k) <2 ) c (I <R).
k=1
Similarly to the casen = 1, we introduce the sed,,, defined by
M
Am = {Sk(U) <—+e k= 1,...,m}
m
for e > 0. We now use this set to lower bouffd/ < R).

P(I < R)>P((I < R)NAp)

P[(éék(U) (1 + %)\k) < 2R/M> mﬂm}
m R/M

(; (1+ﬁ)\k> < 5@+s> ﬁAm]

= P(Ay) - P [i (1+%)\k) < ff/M ] .

1 +e€

Vv

> P

The independence between eigenvectors and eigenvalues of GamsgidnH*H justifies the last
equality. As we assumed thiig(M/m) < R/M, that ism < % we can choose such that
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9R/M oR/M

m < g That ensures thdt [Zznzl (1+ &) < m} # 0. We show in Appendix 2.A
that this probability is asymptotically equivalentgo™™—»+m) in the sense of (2.1), leading to

P(Am)

7pm(N—M+m) . (2.8)

P(I < R) >

We still need to prove thab(A,,) # 0. Any Haar distributed random unitary matrix can be pa-
rameterized by\/? independent angular random variables, . .., a,;2) = a whose probability dis-
tributions are almost surely positive (see [80, 81] and Appendix 2.C)ndted the function such that
U = ®(a). Consider a deterministic unitary matitk, such that(U.,);;|* = ; Vi, j, and denote by
o, a corresponding/? dimensional vector. It is straightforward to check thgb ®(a.) = M/m?.
Functionsa — (0, o ®)(x) are continuous at point, for 1 < k£ < m and therefore there exists> 0
such that the balB (v, 7) is included in the sefc, (00 ®)(a) < 25 +¢, k=1,...,m}. We have
thereforeP(A,,) # 0 as

P(An) = [ p(e)de
{(5k 0®)(a)< 2L+, k:l,...,m}

> / pla)da >0
B(ax,n)

Coming back to (2.8), we eventually have

1

that is the diversity of the MMSE receiver is upper boundedrdiv — M + m).

2.3.2 Outage probability upper bound

We now conclude by studying the upper bound of the outage probabildwisb thatm (N — M + m)
is also a lower bound for the diversity. Note that this lower bound has deewed in [28, 32] using
however rather informal arguments; we provide a more rigorous peyeffor the sake of completeness.

We now assume tha /M < log(M/(m —1)),i.e.m —1 < M2~%/M Using Jensen inequality on
functiony — log(1/y), the capacityl can be lower bounded:

I=- ﬁlog <[(I + AZH*H)lj)

> —M log (AZTr [(I + ]\ZH*H>1]> )
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which leads to an upper bound for the outage probability:

P(I<R)<P [Tr [(I + ﬁHH) 1} > M2_R/M} . (2.9)

We need to derive the probability in the right-hand side of the above inequiliiiing By, = {)\1 <
Ao < A, Z]k\/lzl (1 + ﬁ)\k)il > M27R/M},

-1
]P{Tr[(u ﬁHH) } > MQR/M] :/ PO Aar)dAr - - dAar (2.10)
Bo

We now introducu, = sup(y,, . a,)eB,12 Am} and prove by contradiction that, < +oo. If

pm = 400, there exists a sequen(:ée%”), Aé”), . ,)\(”))neN such that)\(”) — +oo foranyk > m.
Besides,
M . M (
—R/M n n
MoR/M k§1(1 LA ) +k§ (1 + L\ )

In particularM2=5/M < (m — 1) + Zﬁim(l + ﬁ)\,(c"))f , which, taking the limit whem — 400,
leads ton—1 > M2~ /M g contradiction with the assumption—1 < M2~ /M Hence u,, < +oc.

We introduce the seB; = {A\; < Aa... < Ay, 0 < A < “Tm, k =1,...,m}, which verifies
By C B;. Using (2.9) and (2.10), this implies that

P(I < R) S/ (A1, ..y An)dA . dA
B1

which is shown to be asymptotically smaller thar(N—+m) in the sense of (2.1) in Appendix 2.B.
The diversity is thus lower bounded by(N — M + m), ending the proof. O

2.4 Frequency selective MIMO channels with cyclic prefix
We consider a frequency selective MIMO channel witindependent taps. We consider a block trans-

mission cyclic prefix scheme, with a block lengthigf The output of the MIMO channel at timeis
given by

L1
Yt =4/ ﬁ ; Hix;;+n; = ﬁ [H(2)]x: + n¢

wherex; is the channel input vector at tinten; ~ CN(0, Iy) the additive white Gaussian noidd; is
the N x M channel matrix associated ¥& channel tap, fot € {0,..., L — 1}, andH(z) denotes the
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transfer function of the discrete-time equivalent channel defined by
L—1
H(z) = Z H, 2.
1=0

We make the common assumption that the entrieHpére i.i.d andCN(0, 1) distributed. Note that,
thanks to the cyclic prefix, the output during one transmission block of lekigtan be written

=K : +n, (2.11)

wheren ~ CN(0,0%Iyk) is the equivalent white Gaussian noise and wh§® x K M matrix H
is the traditional block circulant matrix constructed from coefficiddts Hy,...,H;_1. We can now
state the second diversity theorem of the chapter.

Theorem 7. Assume that the non restrictive conditiéh > M?2(L — 1) holds, ensuring thalog % <
—log (L 4 L=DAMm=)) for anyym = 1,..., M. Then, for a rateR verifying

log & < f£ < —log (! 4 LDt ) (2.12)
m € {1,..., M}, the outage probability verifies
P(I < R) = p~m™IN=-M+m) (2.13)

that is a diversity oim(LN — M + m).

The diversity of the MMSE receiver is thus(LN — M + m), corresponding to a flat fading MIMO
channel with)M transmit antennas anblN receive antennas. For a large block length the upper
bound for rateR is close to the bound of the previous flat fading cb@en%. Concerning data rates
verifying — log (%A + L2 (M — (m — 1)) < £ < log -2, them(LN — M + m) diversity is only

an upper bound; nevertheless the diversity is also lower boundée by1)(LN — M + (m — 1)).

Proof. Similarly to previous section the capacity of the MIMO MMSE system is written

M
I=> log(l+p)),

j=1
whereg; is the SINR for thejth stream of,. It is standard material that in MIMO frequency selective
channel with cyclic prefix the SINR of the MMSE receiver is given by

B 1
TS [ ) ]

WthES(U) =1Iy+ ﬁH(e%ﬂu)*H(emﬁw)_

1, (2.14)

Jj

74
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2.4.1 Outage probability lower bound

We assume thak /M > log(M/m).

One can show that functioA — (A—l)jj, defined over the set of positive-definite matrices, is
convex. Using Jensen’s inequality then yields

w3l = (ko] ),

—1

The last equality follows from the fact that 3> | €2 "% (=n) — §,.. Using this inequality in the
SINR expression (2.14) gives

L-1 —1 -1
(e S n] ))
1=0 JJ

We now come back to the capacityf the system; similarly to (2.4), using Jensen’s inequality yields

'1 M
I < Mlog MZ(H@-)
j=1

'1 M P L-1 -1 -1
<Ml — I — H'H .
S M;«[NJFM; l l] >jj> ]

We can now use the results of section 2.3.1 by simply replabing M matrix H in (2.5) by LN x M
matrix H = [H] ,HT,...,H7_,]”. They lead to the following lower bound for the outage capacity, for
arateR verifying R/M > log(M/m):

1

2.4.2 Outage probability upper bound

We assume thafl < —log (2=t 4 L=V (ML) hatjso—R/M « md f Lol (N —(m — 1)),

We first derive a lower bound for the capacity
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The latter inequality follows once again from Jensen’s inequality on funatienlog x.

We now analyzd (S(v)~!). To that end, we writd N x M matrixH = [Hf, ..., H? |17 under
the formH = @(H*H)'/2, where® = [©],...,07 ||" and®*® = I,,. Besides, we not&/*AU
the SVD of H*H with A = diag(\1, ..., A\x), A1 < ... < M. Hence,

H(€2i7ry) _ @(eZiwu)U*Al/QU’
where®(z) = 3/~ ©,27!. Using this parametrization,

Tr (S(V)—l) =Tr [(I + ]per*(GQZ'WI/)@(eQiﬂ—y)U*A>1:|

ﬁ 2imy -1
<Tr {(I—i— M’y(e )A) ] ,
wherey(v) = Apin (©*(2™) @ (e2™)). Coming back to the outage probability,

L N 2 A\
1 PA (R ~R/M
% Z(1+ MV(K» > M2

=Pl B, (2.15)

=~ - ; -1 _
whereo = {FL, £ SRS (14 23 (£)) > Ma-h/Y
We now prove by contradiction that,, < +oo, whereu,,, = supgcg {pAm}. If pm = +oo there

exists a sequence of matricB™ € B, such thap\” — +occ. Besides,

M (n
_E 1 pA
M2 M<Ek7 E <1+

(n) —1
PA; k
(1 + ]\JJ 7<”><K>> (2.16)

As (™ belongs to a compact we can extract a subsequéxiég’) which converges towards a matrix
® .. For this subsequence, inequality (2.16) becomes

5 1 X N e (EYY
- < _ J n _ .
M2 < (m—1)+ ZZ<1+ v <K>> (2.17)

Let v be the function defined bys, (V) = Amin(©%, (e*™)O o (2™)) andky, . . ., k, be the integers

for which v (k;/K) = 0. Thendet®q.(2) = det(ZlL:_o1 O z7!) = 0forall z € {Xmhi/K 5 =
1,... ,p}. Nevertheless, polynomial— Zf:‘ol ®w7lz—l has a maximum degree 8f (L—1), therefore
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Figure 2.2: Outage probability of the MMSE receiver, L=2, K=64, M=N=2

p < M(L —1). Inequality (2.17) then leads to

M ( -1
R M(L-1) 1 PA; v(n k
o d < mop MEZD L L5 Z<”M AOE) (£ (2.18)
kg{klv---vkp}]:m

Moreover, itk ¢ {ki,...,k,}, /\51”(”))7(1”(”))(%) — +oo for j > m, asyW(M) (L) = v (£) £ 0
for k ¢ {ki,...,kpy}. Therefore taking the limit of (2.18) when— +oc gives

M(L - 1)

R
M2 v < -1
AI_(m )-|- 7 ,

which is in contradiction with the original assumptian/ < m—1 4 LZL(Af — (m — 1)). Hence
fim < 400, andBy € By = {H, pA,,(H*H) < p,,}. Using (2.15), we thus have

P(I < R) <P(H € By),

which, by Appendix 2.B, is asymptotically smaller than™(NL—M+m) in the sense of (2.1), therefore
ending the proof. m

2.5 Numerical Results

We here illustrate the derived diversity in the frequency selective dagbe conducted simulation we
took a block length of = 64, a number of transmitting and receiving antenfpds= N = 2, L = 2
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channel taps and a target data r&te= 3 bits/s/Hz. RateR then verifies (2.12) witmm = 1, therefore
the expected diversity iBIN — M + 1 = 3. The outage probability is displayed on Fig. 2.2 as a function
of SNR. We observe a slope efl0~3 per decade, hence a diversityJfconfirming the result stated in
section 2.4.

2.6 Conclusion

In this chapter we provided rigorous proofs regarding the diversith®@MMSE receiver at fixed rate,
in both flat fading and frequency selective MIMO channels. The higietarget rate the less diversity
is achieved; in particular, for sufficiently low rates, the MMSE receiv@rieves full diversity in both
MIMO channel cases, hence its great interest. Nonetheless, in fregiselective channels, the diversity
bounds are not tight for some specific rates; this could probably be imgr&imulations corroborated
our results.
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2.A. ASYMPTOTIC LOWER BOUND FORP(> ;" | pAr < b)

Appendices

2.A  Asymptotic lower bound for P(3"," ; pAr < b)

We prove in this appendix that, for> 0, (31", pA, < b) > p~mN=M+m),

We noteC,, the set defined b@,,, = {A1,...,Am: 0 < A1 <... < Ay, it pAx < b}. Asthe
A verify 0 < A\ < ... < A\py, We can write

m 400
P(Zp)\k<b> :/ / / PN - ) dAy - dDar, (2.19)
)‘1a 7 eem m AA{ 1

k=1

wherepys v : RM — R is the joint probability density function of the ordered eigenvaluesof a A
Wishart matrix with scale matrik,; and N degrees of freedom, given by (see, e.g., [22]):

M
pay = Kty TT (A e ) TTw = 4% (2.20)
i=1 i<j
whereK ), y is a normalizing constant. We now try to separate the integral in (2.19) in twoatsegne
overAy,..., \m, the other ovel,,11,..., Ay. Aswe have(Ay, ..., \p) € Gy in (2.19), N, < b/p
and thus
pM,N()\l, cey >\M) d)\m+1 e d)\M

/)\7n§/\m+1§---§>\l\l (2 21)

2/ pM,N()\lan'a)\M) dAm+41 - - - dAyg
(Am415eAMm)ED

whereD = {(Ant1,-.,Am) € RET™ b/p < Ay < ... < Ay} This integral can be sim-
plified by noticing thatpas v (A1, ..., Aar) explicit expression (2.20) is invariant by permutation of its
parametersy, ..., Ay, in particular by permutation of its parametess. 1, . . ., Ays. Therefore, noting

8 = Sym({\pn+1,- .., }) the group of permutations over the finite §t,,,1,..., A}, we get

/ / pMN)\la~--7/\M)d)\m+1~--d)\M
Z/ pM,N(Aly---,)\M)dAm_t,_l...d)\M
se8 Y S(Ama1,m,An)€ED

—Card(S)/ pM,N()\la~--7)\M) d)\m+1...d)\M
(Am+1,-Am)ED

= (M—m)!/(/\ rr) Dp]\/LN()\l,...,)\M) d)\m+1...d)\M. (222)
m+1y-e s AM
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Using (2.21) and (2.22) in (2.19), we obtain

(A, .oy Anr) dAr ... dAyy.
(Zpkk<b> M m) /m// / PN (AL, - Anr) dAg M

We now replace), v by its explicit expression (2.20) and then try to separateriffest eigenvalues
from the others. Note that we can drop the constahis-m)! and K, x as we only need an asymptotic
lower bound.

" +o0 4oo M
: N=M =X 2
P(é%k<b>2/em/b/p.../b/p E(Al e )H()\, M)A .. dhgy

i<j
:/ /+O.o../+oo (ﬁ(,\NMe—Ai) H ()\i—)\-)2>
m Jb/p b/p i=1 ' 1<j<m ’
M
( I1 ()\fv_Me_)‘i) IT -2 I (Ai—Aj)2> i ... dar
i=m+1 i<m<j m<i<j

Fori < m < j, we have thah; < b/p and thug\; — ;)% > (A — —) Hence,

P(;p/\k<b>é (/e H )\N M *A> 11 ()\i—)\j)zd)\l...d/\m> (2.23)

m =1 1<g<m
M b 2m
</ / H AN M —A) I1 <Aj—> H(Ai—)\j)Qd)\mH...d)\M)
b/p i=m-+1 j=m+1 P m<i<j

We now have two separate integrals. We first consider the second avi@cimwe make the substitution
B; :)\i—b/pfori:erl,...,M.

/b/ / H (rte) ﬁ (Aj_fjm [T = 20)? dAms - ddng

i=metl j=m+l m<i<j
+o0 +00 M
e b/p/ / ( B+ ) e_ﬁiﬁfm) I Bi=8)? dBmsa ... dBu
t=m+1 m<i<j
+oo +o0
= 2/ / H /BN Mryame *31) T 5 — 5)? B - .- dBus (2.24)
i=m-+1 m<i<j

for p large enough, i.e. such that(M-")b/r ~ 1/2. It is straightforward to see that the integral in
(2.24) is nonzero, finite, independent frgnand therefore asymptotically equivalentltin the sense of
(2.1). Hence, we can drop the second integral in (2.23), leading to:

< pAk<b> / H AN M —A) IT Qi= ) dn .. dan. (2.25)

Cm j—1 1<j<m
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2.B. ASYMPTOTIC UPPER BOUND FOR(pA,, < b)

Making the substitutiom; = p\; fori =1,...,min (2.25) and notin®,,, = {a1,...,am: 0 < a; <
oo <o, Yo o < b} we then have

P(ipAk < b) Z <p—m—m(N—]\/f)_m(m—1)/ ﬁ (af\f—Me—Oéi/P> H (Oél _ Oéj)2 dOél B dO(m>
k=1

€ i=1 i<j<m
m
> p_m(N_M'H") / H <a£V_Me_°"'> H (i — aj)2 day ...doy, (2.26)
m =1 i<j<m
for p > 1, as we have thea /P > ¢~ for i = 1,...,m. Asb > 0 itis straightforward to see that

the integral in (2.26) is nonzero but also finite and independent frpinhis therefore asymptotically
equivalent tal in the sense of (2.1), yielding

P(Zp)\k < b>2 pim(N?M+m),

k=1
which concludes the proof.

2.B  Asymptotic upper bound for P(pA,, < b)

We prove in this section tha@ (B,) < p~™(M-N+m) ‘where the seB; is defined by
‘31:{)\1 §)\2---§)\M7 0</\k§b, k=1,...,m},

with b > 0 and )4, ..., \)s the ordered eigenvalues of the Wishart malXH. We use the same
approach as in Appendix 2.A. For we ngtgr v the joint probability density function of the ordered
eigenvalues of &1 x M Wishart matrix with scale matrik,; and N degrees of freedom, the probability
[P(B1) can be written as

P(B,) = / PN, ) dAr . d)A
(A1, A )EB

Similarly to Appendix 2.A we try to upper bouri®( B, ) by the product of two integrals, one containing
the m first eigenvalues and the other thé — m remaining eigenvalues. We first replagg n by it
explicit expression (2.20):

M

P(Bl) = K]T;N/ H )\ZN_Me_)\i H()\l — )\j)Q d)\l R d)\M
7 (Mo dar)€B1 55 i<j
. m )\N,]M —Xi N — A 2
/(A17~..,>\1u)€{51 (zl_[1< ' ’ >Z<]H<m( 2 )
M
: ( I1 ()\ZN_Me_’\’i> I oi—2)% I - Aj)2> i ... dA.
i=m—+1 i<m<j m<i<j
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Note that we dropped the normalizing const#i; v, asK]\‘jN = 1. Fori < m < j, we have

IXi — Ajl < Ajand thu T, ., (N — Aj)* < HJ ol A?m,yielding
b/p rb/p b/p oo
/ / / / / AN_Me_Ai) IT =22
A Am—1 Av-1 \ i=1 i<j<m
( 11 ()\ZN”’”_Me_)‘i) 11 (Ai—Aj)Q) d\1...d\y
i=m+1 m<i<j

In order to obtain two separate integrals we discard\then the integral bound simply by noticing that
Am > 0, therefore

b/p rb/p b/p m
(/ / / )\N_Me”\i) IT —Aj)Qd)\l...d)\m>
)\m 14,=1 J <

1<j<m
+oo +oo
/ / / )\N“’”*Me_)‘i) IT Qi =) dhmsa .. dru
Am+1 AM=1 j=m+1 m<i<j
As the second integral (it +1, - .., Apr) iS nonzero, finite and independent @it is asymptotically

equivalent tal in the sense of (2.1). Hence,

. b/p rb/p b/p m
P(Bl)g/ / / H()\lN’Me_’\i) IT =22 dh...dhn.  (227)
0 A1 Am—1 i=1

1<j<m
We now make the substitutiong = pA; fori = 1, ..., m inside the remaining integral.
b/p  rb/p b/p M
/ // H()\Z].V_Me_/\i> IT =22 dh...dhn,
0 A1 Am—1 j—1 i<j<m
bbb m
— (N—M+m>/ // H( gv—Me—ai/p) I (@ —aj)?das...day,
Am—1 =1 i<j<m
< pmN- M+m/ / / HaN—M [ (ci — a;)? das ... da, (2.28)
Qm—1 j=1 i<j<m

ase~®/P < 1. The remaining integral in (2.28) is nonzeiio % 0), finite and does not depend on
therefore, (2.28) is asymptotically equivalentgo™™—»+m) in the sense of (2.1). Coming back to
(2.27) we obtain

P(B1) épfm(NfMer)'

2.C Angular parameterization of uy;_4

In this appendix, we review the results of [80, 81] for the reader'senience.
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2.C. ANGULAR PARAMETERIZATION OFu,;—1

It has been shown in [80] that amyx n unitary matrixA,, can be written as

1 0
A, = d,0, , (2.29)
An—l
with A,,_; a(n — 1) x (n — 1) unitary matrix,d,, a diagonal phases matrix, thatds = diag(e’?!, .. .,
e'n) with @1, ..., 0, € [0,27], and©®,, an orthogonal matrix (the angles matrix). Mattdy, can be
written in terms of parametets, . .., 0, € [0, 7] thanks to the following decomposition:

on = n—l,an—2,n—1 ce J1,27

where
I, 0 0 0
0 cosf; —sinb; 0
Jiit1 = )
0 cosf; —sinb; 0
0 0 0 In—i—l

Let Uy, be aM x M unitary Haar distributed matrix. Then, using decompaosition (2.29),
Uy =Du(1)Var(61) ! 0
M = Dpp1) V(61 0 Uil

with o1 = (¢1.1,...,¢1,m) € [0,20]7, 61 = (01,1,...,01,m-1) € [0,5]M1, Dys(¢1) the diago-
nal matrix defined byD;(¢1) = diag(e'¥1, ... e*¥1.M), 'V ,,(6;) the orthogonal matrix defined by
Vi (61) = Iv—1i,mIvi—2.m—1 ... JigandUyr aM — 1 x M — 1 unitary matrix. MatrixU,,_; can
naturally be similarly factorized.

Similarly to [81], we can show that, in ord&f,, to be a Haar matrix itis sufficient thép; ;)i—1,.. m
are i.i.d. random variables uniformly distributed over intef@alr[, thaté 1,...,0; »/—1 are indepen-
dent with densities respectively equal(ton 6,)" 2, (sin02) =3, ..., (sinfy_2), 1 and independent
from 1 and thatU,,_; is Haar distributed and independent frapa and8,. The proof consists in
first showing, by a simple variable change, that if the ;);—1,.. ar and thed; 1, ..., 0; p—; follow the
mentioned distributions theP (1) V,(6:) is uniformly distributed over the unity sphere &f.
The proof is then completed by showing thatify;_; is a Haar matrix independent frogy and6; then
U, is Haar distributed.

Finally one can parameterize a Haar maftiy; by 1, 61 andU,;_;. Repeating the same pa-
rameterization folU,;_; we obtain thafU,,; can be parameterized by tig? following independent
variables

(1,15 e1,m)s (G115, 0100-1)s (02,1, - s p2.m-1), (B2, .., 02 01—2), - . -,
(erm—2,1,0M—22), 00M—2.1, PMi—11,

whose probability laws are almost surely positive.
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Chapter 3

The SAIC/MAIC Alamouti concept

RTHOGONAL space-time block codes (STBC), and the Alamouti scheme in particularf peg-0
O ticular interest in Multiple-Input Multiple-Output (MIMO) systems since thefiaee full spatial
diversity over fading channels and are decoded from linear primgeasthe receiver. Nevertheless, due
to the expensive spectral resource, increasing network capadcityesghe development of interference
cancellation techniques allowing several users to share the same spesraices without impacting
the transmission quality. In this context several interference cancellatieamses have been developed
during this last decade, where each user is equipped with multiple anterthemaloys STBC at trans-
mission. However, these IC techniques require multiple antennas at regeytich remains a challenge
at the handset level due to cost and size limitations. For this reason, lowedynsingle Antenna In-
terference Cancellation (SAIC) techniques, currently operational M G&hdsets, have been developed
recently for single antenna users using real-valued modulations or cofitiglerg of real-valued mod-
ulations, by using a widely linear (WL) filtering at reception. Extension to mulplennas at reception
is called Multiple Antenna Interference Cancellation (MAIC) technique. pimpose of this chapter is
to extend the SAIC/MAIC technology to users using both real-valued dtatgtas, such as Amplitude
Shift Keying (ASK) constellations, and the Alamouti scheme at transmission.

3.1 Introduction

Increasing network capacity without requiring additional bandwidth iseatgchallenge for wireless
networks, due to the expensive spectral resource,. This motivategeveéopdment of IC techniques
allowing several users to share the same spectral resources withogtimgpae transmission quality
of each user. In this context several IC schemes allowing 1 users to share the same channel at a
given time, have been developed during this last decade, where esxds eguipped withl/ antennas
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and employs STBC at transmission [40-47, 82]. In such environmentas ibéen shown in [48] that
each user can be demodulated withorder diversity if the receiver is equipped with = M P + 1
antennas. However the number of receiving antennas can be raflittee@TBC structure is exploited.
Indeed, in this case, to providd -order diversity gain and suppreBsco-channel space-time users with
M transmit antennas, the required number of antennas at the receioend®¥ = P + 1. Such an
IC scheme has been proposed in [40, 42] for a two antennas reaeiddor two co-channel users, each
equipped with two transmit antennas and applying the Alamouti STBC [38]. nergdization of this
scheme to a higher number of users froim> P receive antennas has been proposed in [43], whereas
alternative approaches are presented in [47]. A multi-user recedxé@ndn similar properties has been
proposed in [82] for CDMA systems. Finally an IC scheme allowing a receiith N > P antennas to
separate” + 1 transmitted signals, each equipped with> 2 transmit antennas and employing quasi-
orthogonal STBC [49, 50], is presented in [46]. As indicated aboveas|able IC techniques compatible
with STBC schemes at transmission require multiple antennas at receptiorevétonf this is not a
strong constraint at the base station level, it remains a challenge at theehdewe| due to cost and size
limitations. For this reason, SAIC techniques, alternative to the complex ML nsdti-demodulation
technique [51], are still of interest for 4G wireless networks using thel®ltechnology and STBC in
particular.

SAIC technigues have received significant attention in recent yeattsfoeception of several single
antenna and single carrier (SC) users [52-56]. Among these tecbnitpose which exploit the sec-
ond order (SO) non-circularity [57] (or impropriety [83]) propertyrefl-valued modulation, such as
Binary Phase Shift Keying (BPSK) or Amplitude Shift Keying (ASK) modulatipor of modulations
corresponding, after a derotation operation, to a complex filtering ofvedaed modulations, such as
Minimum Shift Keying (MSK), Gaussian MSK (GMSK) or Offset Quadraumplitude Modulations
(OQAM) [58], have received a particular attention [52, 54-56]. Erteshniques implement an optimal
WL filtering [59] of the observations and allow the separation of two users fonly one receive an-
tenna [54]. The powerfulness of this concept jointly with its low complexitytheereasons why the
3G Americas [60] has presented the SAIC technology as a great impravémné&sSM mobile station
receivers allowing significant network’s capacity gains for the GSMesyq55, 67]. This technology
has been standardized in 2005 for GSM and is currently operational inol@$M handsets. A further
standardization of this technology, called MUROS (Multi-User Reusing Qog, $s currently under
investigation to make several GSM users reuse the same TDMA slot. ExteriglenSAIC concept to
a multi-antennas reception is called MAIC [54] and is of great interest fIRS networks in particu-
lar [61].

As SAIC technology remains of great interest for 4G wireless netwarksxtension of this technol-
ogy to Orthogonal Frequency Division Multiplex (OFDM) transmissionsgisine transmit antenna and
the real-valued ASK modulation has been presented very recently inp@&pite of the fact that ASK

86



3.1. INTRODUCTION

modulation is less power efficient than a corresponding complex QAM modu)atiace only one real
dimension is used for data transmission, additional degrees of free@amailable and can be exploited
for interference suppression at the receiver. Besides, it hasrbperted in [63] for DS-CDMA trans-
missions, in [64] for V-BLAST-based MIMO systems and in [62] for OFDiMks, that transmission
with real-valued data symbols using a WL receiver can lead to a higherapefficiency than using a
complex symbol alphabet with linear receivers in multiuser contexts. Asseqoence, the use of ASK
constellations coupled with WL receivers instead of complex ones with limeaivers does not seem
to be a limitation and may even bring advantages in terms of error probabilitypaatral efficiency, in
multi-user environments.

In the context of MIMO systems, WL receivers have been used vegntly, implicitly or explicitly,
in [64, 84-87] to improve the reception of an user which uses the V-BL&&ial multiplexing tech-
nology [88]. In [84,87] a WL receiver is used to exploit the SO nomdatrity property exhibited by the
noise which is generated by the successive interference cancellatiogsprused to jointly demodulate
the parallel independent data streams generated by the V-BLAST sche[64, 85, 86] a WL receiver
is used to exploit the SO non-circularity of the transmitted symbols, assumedraeabealued. For
transmission with STBC, WL receivers have been used in [65, 89, 9@doalization purposes of fre-
guency selective propagation channels, in [91] to decode Linear BispeSTBC and in [40,42,45,47]
for IC purposes. In [89, 90], the use of WL receivers is motivatedheypresence of real-valued sym-
bols at the transmitter whereas in [40,42, 45,47, 65, 91], WL recear used to exploit the structural
SO non-circularity property of the signals generated by the Alamouti scloerseme linear dispersion
STBC respectively. However, despite of these works, the extensitreddAIC/MAIC technology to
transmission with STBC, such as the Alamouti scheme, has not been delielope

The purpose of this chapter is to extend the SAIC and MAIC technologieently available and
described in [54] for Single-Input Single-Output (SISO) and Singfeut Multiple-Outputs (SIMO) links
respectively, to Multiple-Inputs Single-Output (MISO) and MIMO links pestively, which use both
real-valued constellations, such as ASK constellations, and the AlamoathgctNote that the Alamouti
MIMO-MAIC technology allows to mitigate both intra-network Alamouti and extdrimterferences.
More precisely, we introduce in this chapter a WL MMSE receiver, comiglaw for IC purposes in
the context of Alamouti transmissions, and we study its link with the ML Alamougivec. We show
in particular that, in the presence of synchronous Alamouti intra-netwtekf@rences, this WL receiver
implements the ML receiver and outperforms both the existing WL receifettsediterature and the
SAIC/MAIC receiver described in [54]. The proposed WL receigeshown to be able to separate up
to 2N synchronous Alamouti users from a receiver withantennas, displaying the capability to do,
for N = 1, SAIC of one synchronous Alamouti intra-network interference. We tirevide a simple
geometrical interpretation of this receiver in order to better understancklitavior. A performance
analysis, in terms of SINR and SER, in the presence of Alamouti intra-nktiwtarferences and an
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Figure 3.1: 4-ASK constellation

adaptive implementation of the proposed WL receiver complete the results.

After introducing the observation model, data statistics and WL filters in sectirit8 proposed
WL MMSE receiver jointly with its adaptive implementation are presented in se&ti®rand briefly
compared with both the existing WL Alamouti receivers of the literature and MIE/MAIC receiver
described in [54]. The link between the proposed WL MMSE receivdrthe ML Alamouti receiver is
analyzed in section 3.4. The maximal number of interferences which maybegsed by the proposed
WL MMSE receiver jointly with an analytical performance analysis of the lati¢he presence of one
or several synchronous Alamouti intra-network interferences otisply are presented in section 3.5.
Finally, section 3.6 concludes the chapter. The main results of the chapésbéen patented in [92] and
presented in [93-95].

3.2 Problem Statement

In this section we first state the hypotheses required for our system rheétale presenting three spatio-
temporal observation models. We eventually define the second order staifstie observations and of
the total noise.

3.2.1 Hypotheses

We consider a radio communication system that employs a real-valued cdisigliag. the 4-ASK
constellation depicted on Fig. 3.1) and the well-known Alamouti scheme [38] Mith- 2 transmit
antennas anaV receive antennas, as depicted on Fig. 3.2. We denofE the symbol period. We
assume either flat fading propagation channels with a single-carriefamavand square-root Nyquist
filter at both transmitter and receiver, or, equivalently, frequencyctedepropagation channels with an
OFDM waveform, then considering the system sub-carrier by sulec#inanks to the Discrete Fourier
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pihy pihy
GZJ A\ E —CJ A& E
GQJ\MQ/ v QZJ \th/ v

odd time slots even time slots

xi(n) x2(n)

Figure 3.2: Alamouti scheme

Transform. The waveforms are assumed to be narrow-band at transanitteeceiver, that is the propa-
gation delay between two transmit or two receive antennas reduces to a pmapkeshift. The channel
is assumed invariant over at least two successive symbol perioddysicdlly a burst). In addition
we assume ideal timing and frequency information. Under these assumptgonbsbrvation vectors
sampled at tim¢2n — 1)T and2nT, respectively denotexl (n) andxy(n), can be written as

x1(n) = pragn—1hy + psazyha + bi(n) a1

Xo(n) = —p1az2,h1 + p2az,—1hs + ba(n)

wherex; (n) andxz(n) are theN x 1 observation vectors at symbol perigds — 1)7" and2nT respec-
tively, the quantities,, are i.i.d real-valued random variables corresponding to the transmitted ymbo
Wi (i=1,2) IS @ real scalar which controls the power of the two transmitted signals eecbivthe array

of antennash; (;—; 2), such thaﬁE[h{IhZ-] = N, is the normalized propagation channel vector between
transmit antenna and the receive array of antennas! is the conjugate transpose 4af; by (n) and
bo(n) are the sampled total noise vector at sample tifRes— 1)7" and2nT respectively, potentially
composed of intra-network interferences, external interferenceg/émerated by the network itself) and
background noise.

All along this chapterR,, and C,, are the correlation matrices defined By,, = E.[uv’],
Cuv = E.uv’], whereu andv are vectors of same size, whefg(-) is the conditional expected
value with respect to the channel vectors of the sources and Wheweans transpose. Moreover, we
respectively denote bR, andC,, the correlation matriceR. andC,,,. Note that, in order to simplify
the notations, we may not always mention the dependengyoirthe variables.
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3.2.2 Observation models

We here introduce the three spatio-temporal (ST) observation modelslosegthis chapter, together
with their associated filtering.

a) Basic observation model

We first note that the observation system (3.1) can be reduced into a sibg#evation vectok(n),
wherex(n) is the concatenation of; (n) andxa(n):

x— H . (3.2)
X2

We noterrs = m,(u? + p3)/2, with 7, = E[a2], the mean power of each useful symbol per receive
antenna. Defining theN x 1 vectorsx(n), b(n), f1, f and the2 x 1 vectora(n) byx = [x],x1]7, b =
(b7, b3 1", fi = /ma/ms[uhy, poh3]", f2 = \/ma/ms[ushy, —hi]" anda(n) = [azn-1,a2.]",
system (3.1) can be written in the following form:

X(?’L) =V 7"'3/7"'a(a2n71f1 + aanQ) + b(n)

= /ms/mq Fa(n) 4+ b(n),

where theN x 2 matrix F is simply defined byf = [f;, f5]. The filtering ofx is called a linear filtering
in the following.

(3.3)

b) Classical observation model

Nonetheless most of Alamouti receivers currently available for intertereancellation of intra-network
interferences, see, e.g., [40,42,43,82], use the classical atisarmodel; they exploit the information
contained in th@ N x 1 ST observation vectat(n), defined by

%= !Xi] . (3.4)
X2

Defining the2N x 1 vectorsb(n), g1 andgs by b = [bf ,bl]", g1 = /7, /7s[pu1hT, u2h]T and

g2 = /Ta/ms[u2hd’, —p1hi)T, and defining the N x 2 matrix G by G = [g1, go], system (3.1) can

be written in a more compact form.

X(n) = \/7%/7%(&271_1& + azng2) + b(n),
= /75 /ma Ga(n) + b(n).

The filtering ofx is hereafter called a partially Widely Linear (WL) filtering.

(3.5)
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Table 3.1: Observation models

Observation Expression N, Filtering

c— |X _ \/;:(a%_lfl + agnfs) + b(n) = ,/ZFa(n) + b(n) | 2N linear
X9 a a
x _ — .

% — i — \/g (a2n-181 + a2n82) +b(n) = /ZGa(n)+b(n) | 2N | partially WL
X9

x= || |= \/;TI (a2n—1f1 + azufa) +b(n) = ,/TFa(n)+b(n) | 4N | fully WL
x @ “

c) Extended observation model

We finally introduce the extended observation model, which is the basis cé¢be/er presented in this
chapter. This observation model is the concatenatiohx,, x9, xJ, x5, that is ofx andx*:

% = H . (3.6)
X

We then define the vectofs, f, andb(n) of size4N x 1 by f; = [f{,f]7, £, = [f],f}]" and
b = [b”, b |T respectively. Eventually, defining theV x 2 matrix F by F = [f], f,], observation
vectorx(n) becomes

x(n) = \/M(azn—lfl + a2nf2) +b(n)
= /75 /ma Fa(n) + b(n)

We call in the following fully Widely Linear (WL) filtering the filtering o%.

(3.7)

d) Equivalent reception model

These three ST models, which are summed up in Table 3.1, can be seen qgithtert reception at
time nTy, whereT, = 2T is the duration of a block of two symbols, of two narrow-band uncorrelated
sourcesds,—1 andas,) by a virtual array ofV, antennas, with a mean power per receiving antenna
The number of virtual receiving antennasNs = 2N for (3.3) and (3.5)N, = 4N for (3.7). The two
sources mentioned are associated with the linearly independent virtualetheectorsf; andfs (3.3),

g1 andgs (3.5) andf; andf, (3.7) respectively, and corrupted by a total ndiséd andb respectively.
Note that the channel vectors are orthogonal in models (3.5) and (3.@bin model (3.3).

91



CHAPTER 3. THE SAIC/MAIC ALAMOUTI CONCEPT

3.2.3 Second order statistics

The SO (second order) statistics of the observation systenx§) (3.1) correspond to the siX¥ x N
matricesRx, , Rx,, Rx;x,, Cx;, Cx, andCx, «,. Similarly the SO statistics of the total noise correspond
to the sixN x N matricesRy,,, Rp,, Rb,;b,, Cb,, Cp, andCy,,. To simplify notations they are
respectively denoteR, Ro, R12, C1, C, andCy- in the following. Using (3.1) we can now write the
second order statistics of the observation as

Ry, = ma (uihih{’ + pshohi’) + Ry (3.8)
Rux, = 7o (fhuh{’ + p3hohi’) + Ry (3.9)
R, x, = fi1poma (hihd’ — hoh{’) + Ryo (3.10)
Cx, = mq (uthih] + p3hohl) + Cy (3.11)
Cx, = 7o (uThih] + p3hohl) + Cy (3.12)
Cxix, = p1fta7a (h1h3 — hoh{) + Ciy (3.13)

Note that, in all six second order statistics, the part related to the usefal sifjthe observation is
nonzero in general, except @x,x, for N = 1. Naturally, this would also be the case for the part
generated by a synchronous intra-network interference, which mergte non-circular noise [57].

The2N x 2N correlation matriceR,, Cx andRx can be written in terms of the SO statistics of
the observation introduced above, or in terms of the correlation matrices obteeRy,, Cy, andRy.

Ry, Rux

Ry = ! X2 — r FFY + Ry, (3.14)
RZ R,
[ Cxi  Crx

Cy = ! X2 — 7 FFT + Cy, (3.15)
_Czle CXQ
[ RX CX X

Re=| " 2| =1, GG + Ry (3.16)
_CX1X2 R:Q

Similarly the statistics of the noide;,, C, andR;; can be written blockwise in terms of the SO statistics
of the noise introduced earlier

Ri R C, C R, C
R, = }1] 2o = ; 12| = 1; 1*2 ‘ (3.17)
Ri; Re Ch Co Ci R;

The MIMO receivers of the literature [40, 42, 43, 45, 47, 82] areedasn partially WL filtering,
hence only taking into account the information insRlg. By (3.16) and (3.17), we see that matix
contains only three of the six second order matrices of the total noise, thatiscesR, Rs andCys.
Therefore the receivers of the literature are expected to be secdadsuboptimal in the presence of
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another Alamouti user, i.e. for internal interferences. On the opposéeagetieiver which we introduce
in this chapter is based on a fully WL filtering. It thus takes into account tlenmtion contained in
the4 N x 4N matrix R, which contain all six correlation matrices of the total noise. Indeed, mRtgix
can be written as

RX CX -
Ry = o =, FF7 + R; (3.18)
and matrixRy is given by
R, C
Ry=| > (3.19)
Cy Ry

Note that, performing a blockwise inversionBf;, we can write matri>Rf:1, which we will use a
lot in the following, under the following form:

A D
R-! = , 3.20
-l 2 3.20)
where theN x 2N complex matricedA andD are given respectively by
A = (Rp — C,R,*C}) 1, (3.21)
D = -ACyR,". (3.22)

MatricesA andD respectively verifyA” = A andD” = D. Note that, aRR; has the same block
structure aRx (see (3.18)), we have a similar result for the structurRQf.

3.3 The MMSE Alamouti receivers

In this section we first recall some results about MMSE receivers, thesept the MMSE Alamouti
receivers of the literature before introducing a new WL MMSE Alamoutenrexr called Fully WL
MMSE Alamouti receiver. We outline the breakthrough of this new receiv#e finally present an
adaptive implementation of the Fully WL MMSE Alamoulti receiver. Note that alhglthis chapter
we only consider the receivers for the estimation of synagl 1, as the analysis for the estimation of
symbolas, is very similar, if not identical.

3.3.1 About MMSE receivers

A MMSE receiver implements a ML (Maximum Likelihood) estimation from the ougpof a MMSE
filter. The MMSE filter ofu is the filter linear inu minimizing the Mean Square Error between its output
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Figure 3.3: MMSE receiver structure

y and the symbad to estimate. The MMSE filter afi for the estimation of symbals,, 1 can be written
as
w=R,'Rua,,_,- (3.23)

We hereafter respectively call Linear MMSE, Partially WL MMMSE and Fully. WIMSE filters the
MMSE filters ofx, X andx for the estimation of symbal,,,_;.

The vector carryingo,—1 in u can be obtained by simply derivii,4,, /7. Hence, looking at
the outputy of the MMSE filter, we have
R
Y= WHiuamk1 a2n—1 + b(n)
Ta
= aap-1+ b(n)v (3.24)
whereb(n) is the global noise at the output of the filter and where= w/Ruya,,_, /7 = RY,, |
R, 'Ry, ,/ma. Parameteuw is therefore real positive. Assuming the global ndige) Gaussian, the
ML estimation ofas,, 1 from outputy then generates the symhg), 1 minimizing |a az,—1 — y(n)|?,

or, equivalently, as: is real positive and as;,,_1 is real, minimizing the following metric:
Crmse(2n—1) = « 02211—1 — 2ag,—1Re{y(n)}. (3.25)

Hence,z(n) = Re{y(n)} is a sufficient statistic for the MMSE receiver. Furthermar@;) = Re{a
asn—1 + b(n)} = aaz,—1 + Re{b(n)}. Assuming that the real part of the global nolde{b(n)} is
Gaussian, the ML estimate @k, 1 from z(n) corresponds to the minimization of (3.25). We can
therefore consider that(n) is the output of the MMSE receiver and thus display the MMSE receiver
estimatingas,, 1 from observatioru as in Fig. 3.3.

As seen on Fig. 3.3, the MMSE receiver requires the knowledge offmess: andw. In practice
the receiver needs to estimate these parameters from the observatienis. nidt restrictive in practice
for the estimation ofw, nevertheless an accurate estimatiornofjenerally requires a great number
of training symbols. Therefore we also consider the Approximated MM$8Eiver, which generates
symbol ay, 1 minimizing (3.25), but wherex has been replaced bl that is minimizinga2, | —
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Figure 3.4: Approximated MMSE receiver structure

2a2,—1Re {y(n)}. Minimizing this metric is equivalent to minimizings,, 1 —y(n)|?, or also, asis, 1
is real, to minimizing the following Approximated MMSE metric:

Ca—mmse(QQn—l) = ‘a2n—1 - Z(n)’, (3.26)

The structure of the MMSE receiver is therefore simplified and the Apprated MMSE receiver can
be modeled by Fig. 3.4. Furthermore, if the Signal to Global noise ratioi;yhigh, we haveR,, ~
Rua,,_ R, . /ma. Hence, for high Signal to Global noise ratios= RY,,  R;'Ruas,_./ma

1 and the approximated MMSE metric approximately corresponds to the MMSE metric

1

3.3.2 Alamouti MMSE receivers of the literature

The Alamouti MMSE receivers available in the literature to demodulate symhal in the presence of
internal interferences are all based on a partially WL MMSE filter [4048247], which can be written
as

prl = R;1R§a2n_1
= /msma RZ'g1 (3.27)
The output of this MMSE filter is then
Ypwi(n) = Wﬁuli(n) (3.28)
_ Hp-1 Hp-1 Hp -1
= 7, (a2n—181 R 81 + a2n81 R ' 82) + V/7sTa 81 R ' b(n)

We call the MMSE receiver related 10,,,; the P-WL-MMSE (Partially WL MMSE) receiver. It gener-
ates the symbal,,,_1 minimizing the following metric:

prl (a2n71) = ng{IRglglagn—l - 2a2nflzpwl(n)7 (329)

wherez,,, is defined as the real part gf,,;:

Zpwt = Re {ypui} = Re {W,%(n)} (3.30)
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This corresponds to a ML decision from the outpyf,;(n); we therefore consider,,,; as the output

of the P-WL-MMSE receiver in the following. This P-WL-MMSE receivenly takes into account
the information contained iRx%. By (3.16) and (3.17), it therefore only considers the noise information
contained in matriceR.{, R, andCj, but not the one in matric&s;, Cs andR2; itis thus sub-optimal

in the presence of synchronous internal interferences in particular.

We now introduce the Approximated P-WL-MMSE receiver (AP-WL-MMSE the Signal to
Global Noise Ratio is high, i.e. & (R + m.g285) 'g1 > 1, we haver,gl/R_'g; ~ 1. This
justifies the Approximated MMSE receiver approach presented in 3.3iéhwbrresponds here to min-
imizing the simple following metric:

Ca—pwl(a2n—1) = |a2n—1 - prl(n)‘ (331)

where we recall that,,,; = Re {ypuwi }-

A possible alternative to the P-WL-MMSE receiver is the Linear MMSE (MS8E) receiver, based
on the Linear MMSE filtew,,,,.s. defined by

Winmse = Ry Rxas,_, = V/Ts7a Ry 1. (3.32)
The L-MMSE receiver then generates symbg|_; minimizing the following metric
Ci(azn—1) = mf R f1ad, 1 — 2a2,-12(n), (3.33)
wherez;(n) is the output of the Linear MMSE filter, defined by

zi(n) = Re {WH x(n)} . (3.34)

mmse

Nonetheless, such a receiver is not really considered in the literaguthes arthogonality of the Alamouti
code is lost in this approach. Moreover, it only takes into account thenaftion contained iR !, i.e.

in matricesRy,, Rx, andRy,x,, but not the information contained in matric€sg,, Cx, andCy, x,.
Hence, the L-MMSE receiver is also sub-optimal in the presence ohsgnous internal interferences
in particular. Note that an approximated version of the L-MMSE can als@bsidered.

3.3.3 The Fully WL MMSE receiver

In this section we introduce a new receiver, called the Fully WL MMSE (FMMSE) receiver, based
on the extended observation vecidrn) (note that a similar fully WL MMSE receiver has already been
introduced in [65] but for equalization purposes in frequency sekegiopagation channels). Such a
receiver takes into account the information contained in all six secoret omirelation matriceRy, ,
Rx,, Rx,x,, Cx,, Cx, andCy,x,. It is thus expected to outperform the P-WL-MMSE and L-MMSE
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receivers in the presence of synchronous internal interferengestioular. The F-WL-MMSE receiver
is based on the Fully WL MMSE filtew ;,,; defined by

VNVfTUl = RglRiC"?nfl
= /mma R 'y (3.35)
The output of the Fully WL MMSE filter is then
zui(n) = Wi, X(n) (3.36)
=T, (agn,lleRglfl + agnf'lHRglf'g) + /Ty f'{{Rglf)(n)

Note thatz,,(n) is real. We have indeed r.,; = [wt,,, wf |7, asR;" has the same block structure
asR]g1 (3.20), yielding
zfwi(n) = 2Re{yfui }, (3.37)

wherey r, = W]Ic{wlx. The F-WL-MMSE receiver implements a ML estimation from the outguj ().
The ML estimation generates the symbg},_; minimizing the following (real) metric:

wal(a2n—1) = stlHR;IfIGQQn_l - 2a2n—1szl(n)- (338)

As mentioned in 3.3.1, we also consider an approximated version of the MWE&E receiver. If
the Signal to Global Noise Ratio is high, i.e fff (R;, + m:££11)"'f; > 1, we haver f/R;'f; ~ 1.
In this case the metric (3.38) can be approximated)y ; — 2a2,—12 f41(n), giving rise to the so-called
Approximated F-WL-MMSE receiver (AF-WL-MMSE). This Approximat&MSE receiver generates
the symboks,, 1 minimizing the simple following metric:

Caffwl(a&n—l) = ’a2n—1 - Zf’wl(n)’ (339)

3.3.4 The F-WL-MMSE receiver, a breakthrough

The available Alamouti receivers of the literature (the P-WL-MMSE reasivsee 3.3.2) fully exploit the
orthogonal STBC structure of the Alamouti scheme but do not make gaodfuke real-valued nature
of the constellations. They are therefore sub-optimal: they cannotatepaore tharv Alamouti users
from N receive antennas. SAIC (Single Antenna Interference Cancellatiomteeference cancellation
for N = 1) is thus impossible for these receivers.

On the opposite, the WL MMSE receiver presented in [54], introduceg@yfnchronous single an-
tenna users using real-valued constellations, fully exploits the real-vahtade of the sources symbols
and is able to separate upad’ single antenna users froivi receive antennas, hence its SAIC capability
of one internal interference. However this receiver is not exploitingotieeent STBC structure; the
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Alamouti users with real-valued symbols are seer Aauncorrelated single antenna users. Hence, it
cannot separate more thahAlamouti users fromV antennas and therefore cannot perform SAIC.

As for the F-WL-MMSE receiver, it exploits both the real-valued natdréne sources symbols and
the orthogonal STBC nature of the Alamouti scheme. This breakthroughr@gpiect to the receivers
of the literature allows this new receiver to separate up/X¥oAlamouti users fromV receive antennas
— this rejection capacity will be shown later in section 3.5.2. The F-WL-MMSfeiwer can therefore
perform SAIC of one intra-network Alamouti interference, giving rise¢hte Alamouti SAIC concept.
Its extension to a numbe¥ > 1 of receiving antennas will be called the Alamouti MAIC (Multiple
Antenna Interference Cancellation) concept.

3.3.5 Adaptive implementation of the MMSE Alamouti receivers

We already mentioned in section 3.3.1 that in situations of practical interesotisédered MMSE re-
ceivers need to estimate several parameters:

e the associated MMSE filter,

¢ the parametett which appears in the MMSE filter output.

We notedw the MMSE filter estimating:2,,_1 from observationa in the general casey is given by
(3.23). Assuming the channels constant over the burst, the rece®edsta perform the estimation
for each burst. To that end the receiver udéscouples of training symbol&ia,,—1, a2,,) Which are
available for each burst. Notingy/, the position of the first couple of training symbols in the burst we
haveM, < m < My + M. In these conditions, an estimateof the MMSE Alamouti filterw may be
obtained by

~

w =R, 'Rua,, ,, (3.40)

whereR,, andR,, asn_, are defined by

The quick convergence speedwfwill be later shown in the simulations by the Approximated MMSE
receivers (section c)). An attempt to explain this result is that the estimation iarR, somehow
compensates the estimation errolRR ,,_,, thanks to the inversion of matri.,.
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An estimaten of parametery can be similarly obtained. As = w/ Ry, , /7., We can estimate
a with &, which is defined by:

~
~

H
. W 'Ruyay,
Q= —"727""

(3.41)

Ta
However, contrary to the estimationaf, an accurate estimation afrequires in practice a high number
of training symbols, as already mentioned earlier in section 3.3.1.

3.4 MMSE Alamouti receivers vs. the ML Alamouti receiver

We outlined in previous section that the F-WL-MMSE receiver introducadisgakthrough with respect
to the receivers of the literature. We now prove that this new receiveseis @ptimal in the ML sense
in some cases of practical interest. To that end we first introduce ahgzarhe ML Alamouti receiver
before comparing it to the MMSE Alamoulti receivers introduced in previaaesion.

3.4.1 The ML Alamouti receiver

We compute in this section the ML receiver for the demodulation of a real-dalemouti signal cor-
rupted by potential intra-network and external interferences. As iqulan section 3.2.3, in the pres-
ence of synchronous intra-network interferences maiixis nonzero: the total noise vectb(n) be-
comes SO non-circular. Assuming a Gaussian and non-circular de@tgr although the intra-network
interferences are not Gaussian, the probability densi&(m), i.e. the joint probability density of the
real and imaginary part d§(n), becomes [96, 97]:

-1

D [B(n)] = (WQN\/det(RB) exp (lN)HRf_)lf))> (3.42)

wheredet(A) means determinant o§. Besides, ag(n) = \/7s/m, Fa(n) + b(n) (see (3.7)), the ML
receiver for the demodulation of vectafn) = [as,_1, a2,]” in SO non-circular total noise is such that
a(n) maximizes the ML criterion defined by

Coc-i(a(n)) = p Br) = x00) = | [T Fa(n) /(o) (3.43)

Using (3.42), we easily deduce that the maximization of (3.43) is equivaléhetminimization of the
following ML criterion

Cri(a(n)) :a22n71 leRglﬁ + a22n fZHRglfg + 2a2n_1a2nf1HRglf'2

T L L (3.44)
-2, /W—S (agn_lff{Rglx(n) + aganHRglx(n)) .
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Note that it is straightforward to see from (3.20) R _'f, £’ R_'%(n) andf}'R_'x(n) are real-
valued quantities. The ML receiver exploits all the information containeﬁgm i.e. inR1, Ro, Rio,

C1, C; andCys. Itis a coupled receiver in the general case of arbitrary m&gixand vectorg:;h;

andyushy, i.e. it requires the joint estimation af,,_; andas,. This generate& tests for vectoa(n),

whereK is the number of states of the constellation.

a) Decoupling condition of the ML receiver

We now derive the condition which decouples the ML receiver, i.e. thdition under which the ML
receiver reduces to two separate and independent ML receivethefastimation oo, 1 andas,
respectively. Indeed, as the MMSE Alamouti receivers estimate symbgpls anda,,, separately, the
ML receiver needs to be decoupled in order to correspond to a MMSIEB®IH receiver.

We deduce from (3.44) that the minimization@f,;(a(n)) reduces to two independent minimiza-
tions of Cy,1.1 (a2n,—1) @andCyy; 2(a2,) When the following conditior'1 is verified.

c1: fH Rglf‘g =0 (3.45)

The two metrics’,,;; 1 (agn—1) andCi,y; 2(a2y,) are then defined by

Ts ~ 1% = 1~
Conia(agn_1) = a2, | /7T f/RM) — 202, 1R, '%(n) (3.46)
Ts % g = 1~
Crnio(azn) = a3, /7T R — 242,55 R_'%(n) (3.47)

It is shown in Appendix 3.A that conditiofi'1 is in particular verified in the absence of interferences or
in the presence of an arbitrary number of synchronous intra-netwtekeénences. In such situations,
the ML receiver becomes decoupled. This reduces in particular the cdtyméthe search procedure
to the test oR K possibilities fora(n) instead ofK2.

As in previous section we now focus on the estimatiomf ; through metric (3.46). Indeed, the
analysis of the estimation af,,, would provide the same results. To get a better insight of metric (3.46)
we define thel NV x 1 fully WL filter w,,; defined by

~ —1p
Wl = RB fl.

Note that, thanks th L structure (3.20), filte#,,,; can also be written as

W*

o,y = [Wml] , (3.48)
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wherew,,,; = [A, D]fl. The outputz,,,;(n) of this filter is therefore real-valued:
zmi(n) = wiix(n) = 2Re{wk,x(n)}. (3.49)

Using (3.7) this output can also be written

Mg =17 1=
Zmi(n) = a2n—1\/:f1HR51f1 + by (n).

whereb,,;(n) = agn \/%f'IHRglfg + £//R_"b(n) is the global noise in the outpu,; for the es-
timation of symbolas,_1. Similarly to the MMSE receivers in section 3.3.1, assuming a Gaussian
global noiseb,,,;(n), an ML estimate ofua,,—; from z,,;(n) generates the symbab,,_; minimizing
|a2n,1\/7rs/77raleRglf'1 — zmi(n)|? or, equivalently, minimizing the following metric:

2 Ts ZHp—1F
A3n-1 4] — fi'R; 11 — 2a2n—12mu(n).
a

This is equivalent to minimizing,,,; 1 (a2,—1) defined in (3.46); the symbal,,,_; which minimizes
(3.46) therefore corresponds to the ML estimate®f ; from z,,;(n), which can thus be referred to as
the output of the decoupled ML receiver.

b) Specific case of a SO circular temporally and spatially white noise

We now consider the particular case of a SO circular, temporally and spatiaily background noise
with no interferences. In such a ca®y, = %I andCy, = 0, wheres? is the mean power of the noise
per receive antenna. This generdigssuch thalR; = o21. In this case, conditiod'1 is verified since

Heo1s 2
fIR ' = — Re{ffif,} = 0.

In this specific case, minimizing metric (3.46) is then equivalent to minimizing Mewg, 1 (azn—1),
defined by

[Ts
Ccom,’l(agn,l) = a22n_1 ; lefl — 20,2”,1 Re{lex(n)}

Ts _
= a3, \/:gflg — 2as,-1 Re{gx(n)}. (3.50)

This metric corresponds to the metric of the Conventional Alamouti rece8&r fhat we hereafter
denote CONV receiver. The symbml,,_; minimizing (3.50) corresponds to the ML estimatengf,_|
from the outputycon, (n) of filter w.,,, = g1 applied on observatioR(n), which can be written as

Yeonv (n) = g{{i(n) (351)

’7T S
= G2n-1 7_‘_78 g{{gl + g{{b(n)a
V Ta
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It also corresponds to the ML estimateaf,_; from z..,,(n) defined by

Zcom;(n) = Re{ycmw(n)}' (352)
We can thus considet,,,, as being the output of the CONV receiver. Note that,,(n) is also equal

to Re{f{Tx(n)}.

3.4.2 Optimality conditions of the F-WL-MMSE receiver

We analyze in this section the conditions under which the F-WL-MMSE Alameagiver corresponds
to the ML Alamouti receiver. To that end, &s;,,; definition (3.35) involves matriR;l, we apply the
matrix inversion Lemma tRx = 7, FF? + R; = fif{! + 7, 6£ + Ry (3.18), yielding:

X

1
R:'f) = L — (Rgl] — stziﬁ E Rg%) . (3.53)
1+ st‘lH <7Ts%2f'2H + RB) f‘l 1+ 7Tsf2 Rf) f2

We deduce from (3.53) that when conditiofi, defined by (3.45), is verified, vectod,,; = /7,7,
R;'f; andw,, = Rglﬂ are collinear. This means thag, (n), given by (3.49), and ., (n), given
by (3.36), are proportional. A similar result would naturally be obtainedHerfilters involved in the
demodulation of symbats,,. We then deduce that, wheil is verified, the F-WL-MMSE receiver is
optimal and corresponds to the ML receiver, whereas it remains drmrb-optimal otherwise.

For a given total noise vectds(n), conditionC'1 may be verified only for some particular channel
vectorsui1hy andushs. Nevertheless, it is shown in Appendix 3.A that conditih is verified for all
channel vectorg, h; anduohs if and only if the total noise vectds(n) verifies the following condition:

R; = Ro,
C1 = Cy,
RiL = —Rys,
cl, = —Cpa.

C2: (3.54)

We deduce from (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) tadlition C2 is in particular verified in
the absence of interference for a SO circular, temporally and spatially mbige vectob(n). Indeed,
R, = Ry = ¢%I, C; = Cy = Ci» = Ry» = 0in this case. ConditiolC'2 is also verified in the
presence of one or several synchronous intra-network intedfieseplus SO circular, temporally and
spatially white background noise. The six SO statistic matrices associated veithiaary synchronous
intra-network interference have indeed the same algebraic structueesis 80 statistic matrices related
to the useful signal in (3.8), (3.9), (3.10), (3.11), (3.12) and (3.48)ch verify conditionC2. Hence,
conditionC2 is verified in this case. Finally, conditiofi2 is still verified in the presence of external
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interferences as long &s, (n) andbs(n) remain uncorrelated®;2 = Rj2 = 0) with the same SO
statistics R; = Ro, C; = Cs). Hence, the F-WL-MMSE receiver is optimal in numerous situations of
practical interest.

3.4.3 Optimality conditions of the P-WL-MMSE and L-MMSE receivers

To give examples of situations for which the F-WL-MMSE receiver reduo either a P-WL-MMSE or
a L-MMSE receiver, we describe in this section the conditions under wthigP-WL-MMSE and the
L-MMSE Alamouti receivers correspond to the ML Alamouti receiver.

a) P-WL-MMSE receivers

As mentioned earliefw,,,; = /757, R;lgl only exploits the information contained in matricBs,
R, andCy5. A necessary condition for the ML/P-WL-MMSE equivalence is theeefdf = C, =
R12 = 0. We show in fact in Appendix 3.B that the P-WL-MMSE receiver is optimal aarresponds
to the ML receiver if and only if conditiod’3 is verified, where”'3 is defined by

AR-lgy =0
c3:J 8L Tp 827 (3.55)
Ci=Cy =Ry = 0.

Otherwise, it remains generally sub-optimal.

Furthermore, we show in Appendix 3.C that conditiof is verified for all channel vectorg; h;
andusqhs if and only if the total noise vectds(n) verifies conditionC'4 defined by

Rl = R27
C4: Cl = CQ = R12 =0. (356)

In this case, the P-WL-MMSE receiver is optimal and the F-WL-MMSE ikezeeduces in fact to a P-
WL-MMSE receiver. ConditiorC'4 is verified in particular in the absence of interferences for a circular,
temporally and spatially white noise vectofn). Itis also verified in the presence of SO circular external
interferences@€; = Co = 0) as long ash;(n) andbs(n) remain uncorrelated;2 = Ri2 = 0)
with the same SO statisticRf{ = Ry, C; = C,). However, the P-WL-MMSE receiver, used in
[40, 42,43, 45, 47], becomes sub-optimal in the presence of oneveratsynchronous intra-network
interferences as we hen hatg = Cy; # 0 andRi2 # 0. It remains sub-optimal in the presence
of external interferences which are either SO non-circular or sudtbtt{a) andbs(n) are correlated,
which is in particular the case for very narrow-band external intenfars.
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b) L-MMSE receiver

Similarly, we show in Appendix 3.D that the L-MMSE receiver is optimal andegponds to the ML
receiver if and only if conditio’5 defined by

fH —lf _
o5 ] TR £2=0, (3.57)
C1:C22012:0.

is verified. Otherwise, it remains generally sub-optimal. Moreover, weepho Appendix 3.E that
conditionC'5 can never be optimal for all channel vectargh; and ushs, hence the interest of WL-
MMSE receivers for the reception of real-valued Alamouti signals. hiqadar, in the presence of a SO
circular, spatially and temporally white noisBy, = ¢I), (3.57) shows that the L-MMSE receiver is
optimal only iflefz =0,ie.if Im{h{{hg} = 0, but becomes sub-optimal otherwise. In this latter case,
the optimal receiver is the P-WL-MMSE receiver for whigfig, = 0 in all cases (note that, as already
mentioned, the F-WL-MMSE receiver then reduces to the P-WL-MMSEiver).

3.5 Performance of Alamouti receivers in multiuser context

In this section we analyze the performance of the F-WL-MMSE Alamoutiivecén the presence of
both synchronous intra-network and external interferences andomgare the latter to those of the
receivers of the literature. We describe in a first part the total noiselmaféethen evaluate, in a second
part, the maximal number of interferences which may be processed byWie MMSE receiver and
the receivers of the literature, highlighting in particular the SAIC capabilitgred synchronous intra-
network interference of the F-WL-MMSE Alamouti receiver. Finally, vigcdss the performance of the
previous receivers by first giving a simple geometrical interpretationaf tsehavior in the presence
of one intra-network interference in a third part, then analyzing their e @mnal to Interference plus
Noise Ratio (SINR) and Symbol Error Rate (SER) in the presence of mainaerk interferences in a
fourth and fifth part respectively.

3.5.1 Total Noise Model

We assume in this section that the total noise vedig(s) andbs(n) are composed aP = Pj,; + Peyy
interferences and a background noise, where

e P;,: is the number of synchronous intra-network (or internal) interferermoesesponding to other
Alamouti users of the network with the same real-valued constellation as the sig@al,

e P..; is the number of external interferences, coming from other networksronjag.
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We denote by; ,, the symboln transmitted by the internal interferencand byyiz;11ha; 1 (resp.
u2;12ho; 1 2) the channel vector of internal interferencbetween the transmit antenmgresp. 2) and
the receive array of antennas. The scalgr ; andus;1 o are real parameters controlling the received
power of the interferencécoming from transmit antenndsand?2 respectively. TheV x 1 complex-
valued vectorshy; ;1 andhs; 9, such thaﬁE[hg ho2i1] = E[hg 4ohoi o] = N, are the associated
normalized propagation channel vectors between transmit anteand?2 respectively and the receive
array of antennas.

The external interferendeis characterized by its complex envelopg(¢) and itsN x 1 complex-
valued channel vectgy,, constant over at least the durati2ii of a couple of symbols, and such that
E[ijjk] = N. An external interferencé is said to be rectilinear if there exists a real such that
me(t)* = mg(t)e 7% and is said to be non-rectilinear otherwise. It is said to be coherent if there
exists a reaty;, such thatmy(2nT) ~ my((2n — 1)T)e/¥* and is said to be non-coherent otherwise.
A coherent interference corresponds to a very narrow-band énégr€e compared to the useful signal
bandwidth. In this context, we assume that thg; external interferences are composed of

P, . rectilinear and coherent interferences,

P, . rectilinear and non-coherent interferences,

P, non-rectilinear and coherent interferences,

e P, n. NON-rectilinear and non coherent interferences,
suchthatP.,; = Py + Pr e + Porc + Porne. We also denote in the following

e P.= P, .+ P, .the number of coherent interferences,
o Pnc = Prpe + Purne the number of non-coherent interferences,

o P, = Py .+ Purne the number of non-rectilinear interferences.

3.5.2 Maximal number of interferences processed by the recers

Under the previous assumptions, we deduce from the observation m8d®is (8.5) and (3.7) that

an internal interference generates two statistically uncorrelated intecgseén vectord(n), b(n) and

b(n) As for an external interference, it is easy to verify that the number &dréifit interferences which
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is generated in vectois(n), b(n) andb(n), denoted byP,, Py and P;, respectively, is such that

szzf)int+Pc+2Pnc>
PE: 2Pmt +Pr7c+2(Pr,nc+Pnr)7 (358)
Pf) = QJDint + Pr,c + 2(Pr,nc + Pnr,c) + 4Pm",nc-

The F-WL-MMSE and the ML Alamouti receivers exploit in different wathe information con-
tained in matrice®x or R (see (3.35) and (3.44)), i.e. in the correlation matrix of the extended-obser
vation model (3.7), with or without the useful signal part. This model is@ated with a virtual array of
N, = 4N virtual antennas, as explained in section d), and the number of dedfeesdnm available to
reject interferences containedhiin) is N, — 2 for the two latter receivers. Indeed, for the ML receiver
and in the absence of background noise, as one can see in (3.44xteespanned by the interferences
contained irb(n) has to be orthogonal to both vectd?%lf‘l annglfQ, which are not collinear in the
general case. The maximal rank of this space is tign 2. For the F-WL-MMSE receiver, one degree
of freedom is used to keep one useful symbol in (3.7). Another dexjrfeedom is used to reject the
other useful symbol, which is an interference for the first one. Herare treV, — 2 residual degrees of
freedom to reject the interferencesﬁ'm). The maximal number of interferences which may be rejected
by the two previous receivers is then such tNat- 2 = P;. A similar analysis may be done for both the
P-WL-MMSE and the L-MMSE receivers giving rise ¢ —2 = Py andN, —2 = P, respectively with
N, = 2N. Using (3.58), we obtain that the maximal number of interferences which mg@ydressed
by the previous receivers is such that

2(N —1) =2Py + P. + 2P, for L-MMSE
2(N — 1) = 2Pins + Prc + 2(Prpe + Puy) for P-WL-MMSE (3.59)
22N — 1) = 2Pipt + Pre + 2(Prpe + Pare) + 4Pprpne  for ML, F-WL-MMSE

These expressions show in particular that the L-MMSE and P-WL-MM&Eivers, i.e. the receivers
of the literature, are not able to process more than- 1 internal interferences from an array of
sensors. They cannot thus process any interference, interngieona, from/N = 1 antenna. On the
contrary, the F-WL-MMSE Alamouti receiver that we proposed and tlheAldmouti receiver are able
to process up t@N — 1 internal interferences fronV antennas. Hence, they can both perform SAIC
of one synchronous intra-network Alamouti interferencefoe= 1. Besides, these latter receivers may
also process up tBN — 1 rectilinear or coherent, and up #aV — 2 rectilinear and coherent external
interferences fromiV antennas, hence the SAIC of one rectilinear or coherent externdeietece and

of two rectilinear and coherent interferences respectively. Finallyoatiye considered receivers is able
to process more thalN — 1 non-rectilinear and non-coherent external interferences ffoamtennas.
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3.5.3 Geometrical interpretation

For a better understanding of the structure of the receivers we sidrggassume in this section that
the total noise is composed &f = P;,; = 1 synchronous internal interference plus a spatially and
temporally white background noise. The observation model is describefirgt part, the Conventional
Alamouti receiver (CONV) is analyzed in a second part and the F-WLS®\eceiver in a third part.

a) Observation model

Under the previous assumption and using notations of section 3.5.1, theswectndx, of (3.1) can
be written as

x1(n) = pragn—1hy + poazpho + pzean—1hg + paeshy + byi(n) (3.60)

x2(n) = —prazphy + poagn—1hy — pseshs + paegn—1hy + bya(n)

We recall thatushs and i4hy have been defined in section 3.5.1. Note #hat introduced in section
3.5.1 for internal interferencehas been replaced lay to simplify notations. Vectorb,; andb,» are the
N x 1 background noise vectorsi andx, respectively, such that tieV x 1 vectorb, = [bl, bl ]
is SO circular, temporally and spatially white, i.e. such gt = 02T andCy,, = 0. The observation
system (3.60) gives rise to the following expressions for the total noistensb (), b(n) andb(n):

b(n) = Uzl (egn_lfg + €2nf4) + by(n), (361)
b(n) = \/? (e2n—183 + €2n84) + by (n), (3.62)
b(n) = \/? <€2n—1f.3 + 62nf4> +b,(n), (3.63)

where the scalar; = 7,(u3 + p3)/2 corresponds to the mean power of each interfering symbol per
receive antenna, where the vectéysty, g3, gu, f3, £, are defined similarly td;, £, g1, g2, f; andf,
respectively and whers, = [b,,b/]7 b, = [bl, b7,

It was established in section 3.5.2 that the F-WL-MMSE receiver presags toF;,,; = 2N — 1
internal interferers. As we consider only = P,,; = 1 internal interferer, corresponding to another
Alamouti user of the network, we expect the F-WL-MMSE receiver tgprty cancel this interferer.
The purpose of this paper is to analyze the behavior of the conventidamdoiti receiver and of the
F-WL-MMSE receiver to understand how the latter properly cancels tkeenal interference.
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Figure 3.5: Scheme of the Conventional Alamouti receiver (CONV)

b) Conventional Alamouti receiver

We recall the definition of the Conventional Alamouti receiver describesation b) through Fig. 3.5.
The Conventional Alamouti receiver is based on fi€g,,, = g1 = /7 /7s[u1h?, pu2hi 7. We can
derive the outpuy.on, (n) of filter w,y,, defined in (3.51):

Ta %
yconv(n) - —_ (Mlhlqul (n) + M2th2(n) ) (364)
= agn—1 (pth{'hy + p3hih3) + agnpipe (hi'hy — hihi) + gf'b(n) (3.65)
= agn1 (4ih{'hy + p3hih3) + g{'b(n) (3.66)

Using the total noise model (3.62), we can also wiitg,, as

T T —
Yeonu(n) = 4/ W—Saznqgf] gty — (e2n—181 g3 + eangi’gs) + g1'by(n). (3.67)
a a

And eventually, the output of the Conventional Alamouti receivgf,(n) = Re{yconv(n)} can be
written

s T _
Zeonw (1) = 4 | ;azn_lgfl g1+ ;f (e2n—1Re{g{'gs} + e2nRe{gi’gs}) + Re{g{’b,(n)} (3.68)

We deduce from expressions (3.64) and (3.65) that the ConventidexaloAiti receiver first implements

a filter matched, in amplitude and phase, to the useful symbol channel ixpothandxs(n)* before
summing the associated outputs,hi’x;(n) and uohlxy(n)*. This operation generates the output
Yeonw(n) IN Which the Signal to background Noise Ratio (SNR) is maximized. This maximizetion
kept in z.ony (1) due to the SO circularity of the background noise. Moreover, due to thegwnality
structure of the Alamouti scheme, these matched filtering operations geopgaisite contributions

of symbolas,, in their outputs, as seen in (3.65). The contribution of symabglis thus automatically
removed inycony (1), hence ire.on, (n). Unfortunatelyz..n, (n) still contains the real part of the residual
interferencegs,,—1 andes, iN y.ony(n), which have no reasons to be canceled in the general case. The
internal interference thus degrades the output performance. Thiveeexploits the orthogonality of
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Figure 3.6: Constellations variation inside CONV receiver

Alamouti code but does not exploit the structure of the noise. As a caesegq, it cannot cancel any
intra-network interfering Alamouti user.

The results of the different steps on both the useful symbgl; and the associated interferences
asn, 2,1 andes, contained inx; (n) andxz(n) are illustrated in Fig. 3.6 foN = 1, w,/0? = 0dB,
n1/0? = 20dB and fixed propagation channels, where large and thin full lines aceiased withig,,
andas,, respectively whereas large and thin dotted lines are associatedswithande,,, respectively.
Note in particular the matched filtering #y andx? for the useful symbol channel and the opposite
channels irx; andx? for the interference generated by,.

Note that, forV = 1 and P = 1, the P-WL-MMSE receiver reduces to the CONV receiver; indeed
Appendix 3.C shows that for internal interferenses,,; is proportional tCB%lgl. Moreover, it is easy
to check tha’c’[{%1 is proportional tol; for N = 1 and P = 1 (using the expression (3.96) Rgl
derived in the next section). Hence, the P-WL-MMSE receiver alsviges the constellation variations
of Fig. 3.6.

c) F-WL-MMSE receiver

In this section we prove that the F-WL-MMSE receiver is properly climgehe internal interferences
for the estimation of symbal,,,_; at high INR. We first derive the expression of filtér,, for the
considered total noise model and then derive the contributions of umeduihterfering symbols in the
output of the F-WL-MMSE receiver. We recall from section 3.3.3 thatRh&/L-MMSE receiver im-
plements a ML decision from the outpuf,;, = 2Re{ysy} whereys,,(n) = wfwlx(n). Noting
W pwl = [Why 1, Wy ol we can display the F-WL-MMSE receiver as on Fig. 3.7.
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Figure 3.7: Scheme of the F-WL-MMSE receiver
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W fwi 2

Deriving filter w .-
We have proved in Appendix 3.A that conditidrl was verified in the case of internal interferences.
Moreover, it has been shown in section 3.4.2 that under conditigrthe filterw ¢, is proportional to
W = R

Wit = kW = KR, (3.69)
with k = (1 + mf (m,BE7 + Ry) " 'f1) ™ > 0. In the following we thus derive filtef,,,; instead
of w .. Using the extended observation model (3.63), the correlation matrix obiken(n) can be
written asRy;, = 7, (f3£8 + £4£7) + o%1. Thanks to the orthogonality d§ andf,, a direct application
of the Woodbury matrix identity yields its inverse:

_ 1 26[ fng f4fH
R '=— [I- -3 4 24 3.70
b o2 ( 142 (yf3||2 [|£4]2 ( )
wheree; = ||fs]|>m;/0? = L||f5||?7;/0? corresponds to the ratio between the interference power and
the background noise power received by the array. We can nowwjieunder the following form:

B 1 (= 2er fg{f'l ~ f‘ffll Z
Wy = — | f — s g g ) ) 3.71
o (1 I+22 (Hf3||2 g @70
We obtain the expression @f,,; by multiplying (3.71) byk. We have seen tha& ;,,; = [wT,,;, w/,,|"
in section 3.3.3. Using (3.71), vectar;,,; can be written as:

k 25] fg{fl El[{fl
ok she BB 3.72
ful = 5o < 52 (Hfgw TR o
We deduce from (3.72) the expressionsaof,; 1 andw s, 2, defined byw 7., = [w;‘fwz,l, W?wl,Z]T.
k 251 fg{fll f‘ff‘l
N I 3.73
ful,1 02< R (yf?,||2 T o
k 2er £y £
oo sf,  fifiy 3.74
fuwl2 = 3 ( 27 14 2¢; (]f3||2 ! [1£4]12 ’ o
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The filterw f,; generates the outpyt,;(n) given by

Yrwr(n) = W?wuxl(n) + W?wuxl(”) (3.75)
m T
= 7TS (a2n—1Whf1 + aon Wi f2) + 4/ 7?[ (e2n—1Wihyfs + eon Wi £s) + Wil by (n).
a a
(3.76)

Case wheref; belongs tospan{fs, f;}:
Let us first consider the case whdfebelongs to the space spanned by the orthogonal veftarsdf;.
Noting 5 the angle betweefy and the space spanned fayandf;, this means that

cos? 4 = 1. (3.77)
Angle# is defined by the following relation:

£HF,)2 + |FHE
25 = If] §| 2+~| 12 4
(€[] |£5]]

(3.78)

: : : ~ gi'gs geg
Note that, using spatial correlation coefficients, = ‘17 andags = |

1 2z
_ i el i s €05 7 can also be
written as

cos? 7 = Re{ai3}% + Re{ays }2. (3.79)

Note also that condition (3.77) is equivalent to say has a linear combination with real-valued coef-
ficients off; andfy, i.e., asfs andf, are orthogonal,

%7;{’-3]{%1" fffl”’

1= 2 —f5+ =—f (3.80)
I£s1> sl
Under this assumption, we deduce from (3.72) that
= Lf (3.81)
Wl = o2 (1+2e) :

As Re{f{’x(n)} = Re{gl’x(n)}, we deduce that.,,,(n) andz,,;(n) are proportional, which means
that the F-WL-MMSE receiver corresponds to the Conventional veceivhose behavior is described

in section b). The conditionos?4 = 1 corresponds to the absence of both phase and spatio-temporal
discrimination between the Alamouti useful signal and the interferencelNFer1, denoting byy; the
phase of;, such that; = |h;|e’?:, i = 1,...,4, it is straightforward to verify that this condition is

in particular verified ifp; = w2 = w3 = @4, i.e. in the absence of phase diversity between the useful
signal and interference.
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Case wheref; does not belong taspan{fs, f;}:

Let us now assume thdt does not belong to the space spanned-pgndf,, which is equivalent to
cos?4 < 1, i.e. there is a phase and/or a spatio-temporal discrimination between the Alaseful
signal and interference. FdY = 1, this occurs as soon d$1,p2) # (3, p4) andlor(ey, v2) #
(p4,3), i.e. as soon as there is a phase discrimination between the useful signateaference. In
order to understand the behavior of the F-WL-MMSE receiver, wéyaeats output by deriving the
contributions of the useful and interfering symbols.

Using (3.71) we directly derive the contribution of the useful signal | in z¢,; = Gvfwli, ie.
Wil g

“H & 2eg -
2 2
i = I (1= 25 ot )
2k 1
ped el (sin% 1T cos” &)

In Appendix 3.F, we derive the contribution of all interferenceg ip;; the contributions ofiz,,, 2,1
ande,,, can be written as

H .
fo = —
wal 2 0_2 5213
k .
wihfs = ;(043 +iB3),
k .
Wity = —z(aa +iba),
wheress, as, B3, ag, B4 € R are defined by

27ra,u1,u2 H 261 fgfffffg
= Im{ 2y,
& m{ e e R P AP

Re (f5'f 4Re {1 f
a3 = TE-Q 1}7 63:Im{f1Hf3_7raMgu4 lei; 1}hfh3}7
€1 g €1
Re {f{"f1 } H mapizpa ARe {£5761}
T T e & m{l T T g2 B 4}

We can now conclude by writing the output,; = 2Re{y .} of the F-WL-MMSE receiver.

2k ([1£1]|* cos® 7) azn—1 + Re{f{' f1} ean—1 + Re{f{'f1} €2,

wl = —5 f1]|? e
Zful = 3 ((H 1% sin® §)agn—1 + 112,
+ 2Re{wfc{wlby(n)} (3.82)

First note that whemos? ¥ < 1, the contribution of the useful symbab,,_; in z,; cannot be zero,
even for a strong interference;(>> 1). Moreover, due to the orthogonality structure of the Alamouti

112



3.5. PERFORMANCE OF ALAMOUTI RECEIVERS IN MULTIUSER CONTEXT

scheme, (3.82) shows that;,,; puts the contribution of symbahk,, on the imaginary axis whatever the
intra-network interference scenario. The contribution of synabglis thus completely removed ity

by the real part operation. As for the interfering Alamouti usef’wlfg andw}i’wlﬁl are approximately
on the imaginary axis focos?5 < 1 ande; >> 1, as their real part is then negligible compared to
vvﬁwlﬁ ~ %HleZSinQ’? (# 0), whatever the channel vectorghs and u4hy. Hence, for a strong
interference £; >> 1), the contribution of all interferences is properly canceled jp;(n) after the
projection on the real axis. Fef >> 1, the outputzy,,;(n) reduces to

k

2ol = —3 (If1]1? sin® 4) agn—1 + 2Re{w}{wlby(n)} (e1 > 1, cos?5 < 1) (3.83)
Note that in the particular case ofs25 = 0, f; is orthogonal to the space spannedfpyndf, and
both the F-WL-MMSE receiver and the CONV receiver, which becomsvatent, completely reject the

interference.

The previous analysis shows that the F-WL-MMSE receiver cancelsitteenetwork interference,
even forN = 1, by exploiting both the real-valued nature of the symbols and the particuletste of
the Alamouti code. For this reason it is a breakthrough with respect to thaMrhouti receivers of the
literature [40-43,45,47,82]. More precisely, fiir= 1, the number of degrees of freedom of the F-WL-
MMSE receiver corresponds to the phases and moduli ofwegth ; andw ¢,,; ». One degree of freedom
is used to keep the useful symhbol,_; in 2z, (n) while, for a strong intra-network interference, the
three remaining degrees of freedom allow to generate jfy, ;x1(n) andwl, ,x(n) contributions
of interference symbolas,, e2,_1 andes, having an opposite real part, through homotheties and/or
rotations on bottx; (n) andxz(n). As a consequence, this puts on the imaginary axis the contribution
in yr(n) of the three interference symbals,,, e2,—1 andes,, thus canceling these interferences in
Zfuwi(n).

Fig. 3.8 sums up the previous different steps on the received constedlafiboth the useful symbol
as,—1 and the associated interferenegs, e2,, 1 andes,, in x;(n) andxz(n) for N = 1, 7y /0 = 0dB,
71/0% = 20dB and fixed propagation channels, where large and thin full lines aceiased withig,,
andasy, respectively whereas large and thin dotted lines are associatedsyithandes,, respectively.
Note in particular the opposite real partifn andx? of the three interference channels associated o
ean—1 andey,, which are therefore on the imaginary axigjip,;(n) and hence canceled iy,;.

This section gave an enlightening geometrical interpretation of the Alamouti/SBIC concept,
which extends, for synchronous Alamouti users, the SAIC/MAIC cphdescribed in [54]. The WL
MMSE receiver presented in [54] has been introduced for syncu®single antenna users using real-
valued constellations; it fully exploits the real-valued nature of the sossgabols and is able to separate
up to2N single antenna users froi receive antennas, hence its SAIC capability of one internal inter-
ference forN = 1. It has been shown in [54] that, in the case of a strong INR (Interéerém Noise
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Figure 3.9: Constellations variations inside the mentioned receivers (SASL) [54]

Ratio), the optimal WL filtering of this receiver can be seen as a rotation afdhstellations followed
by a projection on the | axis. The rotation puts the interferer constellationeo® txis and the interfer-
ence is therefore canceled by the projection (see Fig. 3.9(b) takeri%#jin On the opposite, the usual
receiver just uses a rotation to put the constellation of the useful signiédeol axis; the interference
constellation is not considered (see Fig. 3.9(a) taken from [54]). Natethie SAIC/MAIC concept
corresponds to the previous results if taking,; » = 0 anduz = 4 = 0.

3.5.4 SINR performance

In this section, we want to quantify the performance of the F-WL-MMSIeikex in the presence of in-
ternal and/or external interferences for the demodulation of symihah and to highlight quantitatively
the great interest of this receiver with respect to the receivers of thatlite. To that end, we first com-
pute the general expressions of the SINRs at the output of the F-WISEIN?-WL-MMSE and CONV
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receivers and then compare them for the particular case of one initeleréérence P = P;,,; = 1). We
finally analyze these SINRs in the casefoE= P;,,; > 1, i.e. for any number of internal interferences.

a) General expressions of the SINRs

The SINRs of the F-WL-MMSE, P-WL-MMSE, L-MMSE and CONYV receig are respectively denoted
by SINR .1, SINR,,,1, SINR; andSINR...,,..; they are defined as the ratio between the powerpf |
and the power of the global noise at the considered output. From thessigms of the outputs (3.36),
(3.30), (3.34) and (3.52), we deduce the following results

T fARIf)?
SINR = —=—— (i i 131 = (3.84)
7Ts(f1 Ri f2)2—|—f1 Rfc RBRi f
Hp-1_ 12
Ts\8 Ri g
SINR . = e (_1 _11) —— (3.85)
7s(Re{g] Rx 82})* + 5(81' R RyRg¢ 81 + Re{g)' Ry CyRL"g]})
o (TR 1)2
SINR; = Hp—1f 12 4 1/ ¢H (—11 —11) Hp—1 - (3.86)
ﬂs(Re{fl Ry fz}) + §(f1 Ry RpRx f1+Re{f1 Ry CpRx fl })
2ms (FI1£;)?
STNR cony = g (i 1)H (3.87)
fl Rbfl +Re{f1 bef}
Note that when conditiod’1, defined by (3.45), is verifieGINR ;,,; reduces to
SINR fy = msff! Rglﬁ. (3.88)

If in addition the total noise is assumed to be SO circular, temporally and spatfatty (ve., Ry = o’1),
we obtain the well-known result

SINR 4 = SINRpu = SINR come

27,
o2

27,

6017 = =5 (ud|ha |* + 43| ha )

o2
b) SINRs for P = 1 internal interference

We assume in this section that the total noise is composétd-sfP;,,; = 1 internal interference plus a
spatially and temporally white background noise. Under this assumption, mvpute the SINR at the
output of the F-WL-MMSE receiver and we compare it to the SINR at thpuiwf both the P-WL-
MMSE and the CONV receivers. We do not compute the SINR at the oufghed.-MMSE receiver
since this receiver is rarely used. The observation model is describadiist part, the SINRs are
computed in a second part, discussed in a third part and illustrated in a pautth
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Observation model:
As we supposé = P;,; = 1, the observation model is then the same as in section 3.5.3 a). We recall
from (3.60) that the vectors, andx, of (3.1) can be written as

x1(n) = praz,—1hy + p2az,hy + pzes,—1hs + pyeshy + b1 (n),

(3.89)
Xo(n) = —paz,h1 + poag,—1he — pgeanhs + pyesn1hy + bya(n),
giving rise to the following expression for the observation vegior):
T T
x(n) = Vo (a2n—1f1 + agnfa) + Vo (e2n—1f3 + e2,f4) + by (n). (3.90)

SINRs computation:
We derive in this section the SINRSs for the CONV, P-WL-MMSE and F-WMSBE receivers under the
previous assumptions.

In order to derivé&SINR .., We first need to note that, for one internal interferelg,= m(fg,f§1+
£1£1) + 02T andCy, = 7/ (f3£1 + £4,£]). We can then derive the terms in the denominator of (3.87):

£ R = o?|If1]|* (1 + er(Joas] + |awa]?)) (3.91)
£ Coff = o®|f1]%er (afs + afy) , (3.92)

where we recall that the spatial correlation coefficientsanday4 are defined as

H H
3 4
Q13 = _BLEs y Q14 = _SLE1 (3.93)
g1 lllgs]] g1 llllgal
and wheres; (resp.c;) corresponds to the ratio between the interference power (respl psefer) and
the background noise power received by the array:
T T,
o1 = SI6 IR = 25 (ks + 23 b))
7T 2 T 2 2 2 2
eo = SSIAN? = 5 (b + 3 ] ?) -

As |z|? 4+ Re{22} = 2Re{z}? for any complex numbet, using (3.91) and (3.92) in (3.87) leads to the
following SINR expression:

2¢e,
1+ 2¢7 (Re{a13}? + Re{a14}?)’

2e5
SR S E— (3.94)

SINRconw =

1+ 2e7cos? ¥

We recall thatj is the angle formed by the vectfrand the space spanned by the interfering vedtprs
andf;, (see (3.78), (3.79)).

116



3.5. PERFORMANCE OF ALAMOUTI RECEIVERS IN MULTIUSER CONTEXT

Concerning the P-WL-MMSE receiver, it has been shown in Appen@(tl?patg{{Rglgg = 0 for
internal interferences and that, as a consequdiigég; andR%lgl are collinear. Hencg{{Rglgg =0
and the SINR derived in (3.85) can be written as

275 (g{ Ry 'g1)?

SINRpy = ——— —
" gl R-'g1 + Re{gl/R_'CyR_"g;}

(3.95)

As we consider only one internal interferend®; = m1(gsgl! + gagll) + 021, Besides, as interfer-
ence vectorgs andg, are orthogonal, matrii{%1 is easily computed through a direct application of
Woodbury matrix identity.

_ 1 Er g3g§q g4gf
R1_ L (1 B ( n 3.96
b 52 L+er \lgsl?  [lgall? (290

Using (3.96) we obtain the following expression fag{ R 'g::

Hpy—1 €I 2
elR g =e, (1— , 3.97
gl R-"g, e( 1+gﬁ°s”) (3.97)
where¥, such thatos? 7 = W = |a13|? + |a14/?, is the angle formed by the vectgr and
the space spanned by the interfering vectprandg,. Moreover, asCy = ms(gsgl + gagl), we can
deriveRe{g{{PL:CglL;l*g’{} using (3.96), leading to:
Hp-1 —1x_xy _ _ Es€I 2 2
Re{g' Ry CpR g1} = mRe{am +aig},
o EsEy 2~ 2 _
= m (QCos v — cos ’y) .
The last equality comes from the propefty? + Re{z?} = 2Re{z}? applied ona;3 andai4. We can
now write (3.95) into the following form:

2e5(1 — 54 cos?7)?

1 — by (e cos? 7 + 2 (cos? § — cos? 7))

SINR = (3.98)

We now derive the SINR at the output of the F-WL-MMSE receiver. Vagehpreviously seen
that, in the case of internal interferences, condititin(3.45) is verified (see Appendix 3.A). Besides,
we showed that under conditiaril the SINR of the F-WL-MMSE filter reduces to (3.88). Using the
expression oR]g1 for P = P, = 1 (see (3.70)) in (3.88) leads to

2er 9~
INR ;= 265 (1 — : .
SINR fy = 2¢ ( 172, cos 'y> (3.99)

where we recall thaf is the angle formed by the vectéy and the space spanned by the interfering
vectorsf; andf;.
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SINRs discussion:
In this section we discuss the SINRs depending on the valuessdfy andcos?7 (or equivalently,
depending orf; belonging or not tepan{fs, f;} and ong; belonging or not tepan{gs, g4}).

e Case wheref] belongs tospan{fs, f;}: This corresponds t§ such thatos?5 = 1, or to (3.80)
(i.e. f; is a linear combination with real-valued coefficientsfgfand f;). In this case, there
is no ST and no phase discrimination between the Alamouti useful signal aridtérference.
Furthermorecos® 7 is necessarily equal to 1 and expressions (3.94), (3.98) and (3d®)a¢o

2e,

SINwal = SINRPUJZ = SINRcony = TQ&I[

(3.100)

which decreases with; and which tends to zero as becomes large. In this case, both the F-
WL-MMSE and the P-WL-MMSE receivers behave like a CONV receiwdrich does not reject
the interference. In particular, fé¥ = 1, denoting byy; the phase oh;, such thah; = |h;|e??:,
i=1,...,4, itis straightforward to verify thatos? ¥ = 1 is in particular verified ifp; = ¢y =

©3 = @4, i.€. in the absence of phase diversity between the useful signal arfdiiatee.

e Case wheref; does not belong taspan{fs, f;}: This is equivalent taos?5 < 1, i.e. there is
a ST and/or a phase discrimination between the Alamouti useful signal anctehierence. In
particular, forN = 1, this occurs as soon %1, p2) # (3, p4) and/or(e1, v2) # (4, ¢3), i.€.
as soon as there is a phase discrimination between the Alamouti usefulasigrthk interference.
In this case, expression (3.99) becomes, for a strong interferepce (),

SINR fy1 ~ 2e5 (1 — cos? ’y) (er>1, cos®y < 1). (3.101)

SINR f,,; then becomes independent=gfand is solely controlled b§s, andcos? . This proves
an interference rejection by the F-WL-MMSE receiver depending oarpetery. For N =
1, (3.101) shows the SAIC capability of the F-WL-MMSE receiver as loadhere is a phase
discrimination between the Alamouti useful signal and the interference.thatteshercos? ¥ < 1
the quantitycos? ¥ may be equal to 1 or not.

e Case whereg; belongs tospan{gs,gs}: This is equivalent tacos?5 = 1, which occurs in
particular forN = 1. The P-WL-MMSE receiver then behaves like a CONV receiver: (3.98
reduces to (3.94). Itos?>4 = 0 this receiver completely rejects the interference and coincide
with the F-WL-MMSE receiver. Nonetheless,dfs? 5 # 0, it does not reject the interference
and its SINR decreases ag becomes large, contrary to the F-WL-MMSE receiver, hence its
sub-optimality.

e Case whereg; does not tospan{gs, g4}: This amounts to saying thabs?>% < 1, which neces-
sarily requires multiple receive antenndé ¢ 1). For a strong interference, (3.98) then reduces
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Figure 3.10: Receivers SINRs foFf = 1

to
SINR 1 ~ 265 (1 — cos? 7) (1> 1, cos’7 < 1). (3.102)

SINR,,.; thus becomes independentsgfand is solely controlled b®e, andcos? 7. This proves
an interference rejection capability of the P-WL-MMSE receiver, contrathe CONV receiver,
depending on parametgr However, despite of this rejection capability, sines’?5 > cos? 7,
we deduce from (3.101) and (3.102) that

SINR, < SINR fy1, (3.103)

which proves the sub-optimality of the P-WL-MMSE receiver of the literainigeneral.

SINRs illustration:
The previous results are illustrated for = 1 at Fig. 3.10, which shows the variations SifNR ..oy,
SINR;, SINR,,,; andSINRf,,; as a function ofp,, the phase oh;, wheny, = —117.7°, p3 = 78.9°,
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Figure 3.11: Receivers SINRs fof = 2

w4 = —174.3°, pilhy| = 0.9, polha| = 0.48, uslhs| = 2.52, pglhy| = 2.02, 7, = 5 (4-ASK
constellation)g? = 0.5, ¢, = 10dB ande; = 20dB. We observe a much better performance of the
F-WL-MMSE receiver with respect to the other receivers. Note thévatpnt performance of the P-WL-
MMSE and the CONV receivers. Note also the best performance of tMMISE with respect to the
P-WL-MMSE receiver in most cases due, in the latter case, to the exploit#tioformation contained

in Ry, x, in addition to the one contained Ry, andRx,.

We also displayed the previous results fér = 2 on Fig. 3.11, which shows the variations of
SINR ¢onv, SINRy, SINR,,,; andSINR ¢, as a function ok;/(2V), which corresponds to the mean
Interference to noise ratio per antenna and per interference symibel iajput. We chose the following
values for the simulationh; = [0.89 — 0.717, 1.15 + 0.214]7, hy = [0.45 — 0.02i, —0.50 + 0.664]7,
hy = [-0.67 — 1.47i, 1.39 + 0.214]7, hy = [0.19 + 0.144, —0.05 — 0.77i)7, y1 = po = 1, ug =
uy = 1, 7y = 5, e, = 10dB. We observe on Fig. 3.11 the optimality of the F-WL-MMSE, the P-
WL-MMSE and the CONV receivers jointly with the sub-optimality of the L-MMSteeiver for a very
low interference. Note the decreasing performance of the four mrsegjwintly with both the absence
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of interference rejection of the CONV receiver (absence of a plateadithe interference rejection of
the other receivers (presence of a plateaw);d$2NV) increases. Note also the higher performance of
the F-WL-MMSE receivers compared to the other receivers and thehggrformance of the L-MMSE
receiver with respect to the P-WL-MMSE for strong interference.

c) SINRsfor P > 1 internal interference

In the presence aP > 1 internal interferences plus a spatially and temporally white background,nois
conditionC'1 (3.45) is still verified, as shown in Appendix A. Therefore the F-WL-MBI&ceiver still
corresponds to the ML receiver, whose output SINR is given by [3.8®r interference numbei,
i=1,...,P, we define vector; 1, faii2, 82it1, B2it2, f2iyro andfy; o similarly tofi, £, g1, g2, fi
andf,. It is straightforward to show that in the presenceé®of- 1 internal interferences, the SINR at the
output of the CONYV receiver is given by

2¢e,

SINR = )
R Zfil 2 cos? 7;

(3.104)

wheree; = 7,||f2i11]|2/0? corresponds to the ratio between the power ofithénterference and the
background noise power received by the antenna array, whesaich thaicos® 5; = (|f"1Hf‘2i+1|2 +

£ f2i121%) / (||£1]|? || £2641 /1), is the angle formed by the vectfr and the space spanned by the inter-
fering vector§2i+1 andszQ. Note that, similarly to the case = 1, SINR,,, decreases with; ; and
tends to zero asy; becomes large.

On the opposite, using well-known array processing results [98] asdrasg strong interferences
(1 > 1,4 = 1,...,P), the SINR at the output of the P-WL-MMSE and F-WL-MMSE receivers
become

SINRyu = 25 (1 — cos®7;) (g1 > 1, cos® 7, < 1) (3.105)

SINR fp =~ 2e5 (1 — cos? %) (er;>1, cos?Ar < 1) (3.106)
where7; is the angle formed by the vectgr and the space spanned byl interfering vectorgs;+1,
g2it2, @ = 1,..., P, and wherej; is the angle formed by the vectfr and the space spanned by all
2P interfering vectorf}iﬂ, f‘gi+2, 1 =1,...,P. Both SINRs are then solely controlled by and the

angle7; or 47, showing the rejection capability of both considered receivers. Notenatbatill have
SINR . < SINR f41, ascos?7; > cos?~; holds.

3.5.5 SER performance

In this section we analyze the SER performance of all the receiversdeoed in this chapter. We
present the total noise model in a first part, then compute the SER for the&/JOWL-MMSE and
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F-WL-MMSE receivers in a second part and finally display in the lagttharSER performances of all
the considered receivers thanks to numerical simulations.

a) Observation model

We considerP = P;,; > 1 internal interferences plus a spatially and temporally white background
noise. Note that under these assumptions condiior§3.45) is still verified, as shown in Appendix A,
and therefore the F-WL-MMSE receiver corresponds to the ML vecelUsing the notations of section
3.5.1, the observation vectaxs andxs of (3.1) can be written as

P

x1(n) = pagm—1hy + poas,hy + Z (2i+1€i,2n—1hoip1 + poir2€i 2nhoiio) + byi(n),
i—1
P
x2(n) = —p1azphy + poas,—1hy + Z (—p2it1€i2n2i41 + p2i42€i2n—1h2i42) + bya(n).

=1

(3.107)
We recall thak; ,,, 112,11h2;+1 and g 2ho; o have been defined in section 3.5.1. Like in the previous
sections vectord,; andb,, are theN x 1 background noise vectors #y andxs respectively, such
that the2N' x 1 vectorb, = [bl;,b%,]7 is SO circular, temporally and spatially white, i.e. such that
Ry, = o’T andCy,, = 0. We define, for theé’” internal interference; = 1,..., P, vectorsg; 1,
8212, Gy, Fairo, F2i 0 andF; similarly togy, g, G, fi, f> andF. The observation system (3.107) gives
rise to the foIIowing expressions for the total noise vectsrs) andb(n):

P

\/7 €i2n—182i+1 + €i2n82i42) + by (n) = Z

1/ W” €z on—1f2i1 + €2nf21+2> +b,( 1 / ”F ie; + b, ( (3.109)

where the scalarsu = 7Ta(,u§2-+1 + u3;.5)/2 correspond to the mean power of each interfering symbol
from thei'" interference per receive antenna, and whgre= [b’,, b]7, b, = [bl, b7,

G i€ +by(n),  (3.108)

b) SER computation

We consider 2L-ASK constellationA = {£1,+3, ..., =(2L — 1)}. Supposing all symbols equally
likely, for interferers signals as for the useful signal, we derive theviang expression of the SER valid
for the CONV, P-WL-MMSE and F-WL-MMSE receivers:

SER=Fk, > Q < V\SﬁNR \'/'\f ) (3.110)

eP 1 ,GP 26/1
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Table 3.2: SNR, INRandu; definitions

CONYV receiver| P-WL-MMSE receiver| F-WL-MMSE receiver

SNR| 2% g 2 (gf' Ry 'g1)” m R
02 1 anlHR%le O‘QleRngl

INR: 277 ||Re{gl G, }||? 2m7|Re{gf'R- G} |2 7FI||?1qu,gll‘iiH2
¢ o?(g1[l? o2g'R_"g\ TR

—1 s — 11

uH Re{ggGi} Re{g{_IR'EIGi} leRBIF‘z
v [IRe{g7” G}l [Re{g{' R G} £ R, TF|

where

o e =le1, ei,z]T refers to the signal of interfereéy
e Q(u) is the Gaussian tail functio (v) = ([ e=**/2dv)/v/2r,

o k; =2(2L —1)/(2L0)*P+!

SNR is the Signal to Noise Ratio at the output of the considered receiver,

INR; is the Interference to Noise Ratio induced by interferat the output of the considered
receiver,

e u; is the unitary vector induced by interfereat the output of the considered receiver.

The SNR, the INRand theu; are defined in Table 3.2, where we denoiee{ v} the vector whose
components are the real part of the components of vactdfote that, thanks to the orthogonality of
the Alamouti code, there is no interference produced by symhplEquation (3.110) extends the SER
expressior(Q(\/SNR +VINR)+ Q(VSNR — \/INR)> /2 of the SISO case with BPSK constel-
lation derived in [54].

¢) SERillustration

We consider a-ASK (L = 2) Alamouti radio communication link perturbed B = 1 synchronous
4-ASK Alamouti interference. The channel vectols, ¢ = 1,...,4 of the sources are assumed to
be constant over a burst duration but are random vectors fromsa tuanother and correspond to
independent realizations of a zero mean vectorial complex and circuless@a law whose covariance
matrix isI. The sources are such that = us andus = g are constant for each burst and such that
n1/0? = ms/o?+10dB. For a given receiver the SER has been computed for each hdrten averaged
over10° bursts. Under these assumptions, Fig. 3.12(a) and 3.12(b) show ihtover of these average
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SERs at the output of the CONV, the P-WL-MMSE, the F-WL-MMSE and #igreated AF-WL-MMSE
(EAF-WL-MMSE) receivers as a function of the SNRR/o?, for N = 1 and2 respectively. The EAF-
WL-MMSE(M) receiver corresponds to the approximated F-WL-MMSEeiver estimated from/
couples of training symbols inserted in each burst, as described in secidn Which is assumed to
also contair2 x 56 information symbols. We added the SERs computed directly from (3.110)hwhic
are perfectly in line with the average SERs. On these figures we also didpaya reference curve the
average SER at the output of the CONV receiver without any interderevioreover, for Figure 3.12(b),
we added the SERs of the P-WL-MMSE, F-WL-MMSE and E-AF-WL-MM®Eeivers in the presence
of one internal and one external circular non-coherent interferamse power per antenna is equal to
mr = 207s.

As expected from the SINR comparison, we can see that the F-WL-MM&&wver performs better
than the other receivers in terms of SER. Poe= 1 (Fig. 3.12(a)), the P-WL-MMSE receiver does not
handle the interference while the F-WL-MMSE performs SAIC, as state@.59). ForNV = 2 (Fig.
3.12(b)), both receivers handle the internal interference, but M4 RMMSE requires a lowerr, /o>
than the P-WL-MMSE for a given SER; e.g. the F-WL-MMSE hasdB gain over the P-WL-MMSE
at a SER ofl0~2. Moreover, forN = 2 receiving antennas, the F-WL-MMSE receiver can handle
one external interference together with one internal interferenceaeatd¢he P-WL-MMSE cannot, as
predicted by (3.59). Note also the quick convergence of the EAF-WLSEMT hese figures highlight
the F-WL-MMSE capability to perform SAIC of one internal interferencel ds robustness to both
internal and external interferences.

3.6 Conclusion

In this chapter, a WL MMSE receiver, called the F-WL-MMSE receigeempletely new for IC purposes
in the context of radio communications using the Alamouti scheme, has beeduicgieh analyzed and
compared to the available receivers of the literature for the demodulatiom Afaanouti signal using
real-valued constellations, such as ASK constellations, in the presebethafynchronous intra-network
and external interferences. This WL MMSE receiver is a breakthratith respect to the receivers of the
literature since it jointly exploits both the real-valued nature of the sourcebalg and the ST structure
of the Alamouti scheme. As a consequence, it has been shown to outpehfe existing receivers
of the literature, to be easy to implement, to converge quickly and to implement thesbliver in
the presence of synchronous intra-network interferences. In plartichis receiver has been shown
to be able to separate up 2V synchronous Alamouti users frof receiving antennas, displaying
its capability to perform SAIC of one synchronous Alamouti intra-netwotkrfierence forv = 1,
thanks to a phase discrimination exploitation between the useful signal arférietee. This Alamouti
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Figure 3.12: Theoretical and simulated SERs

SAIC/MAIC concept extends, for users with two transmit antennas usiagAtamouti scheme, the
SAIC/MAIC concept already available for single carrier users andd&8VIO links presented in [54].
A geometrical interpretation of this new SAIC/MAIC Alamouti concept hasilgieen, highlighting the
simple behavior of the receiver. Performance, in terms of output SINRS&R, of the F-WL-MMSE
receiver in the presence of internal interferences have been caingmuddytically and compared with
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those of the receivers of the literature. These computations have shewnetit interest of the F-WL-
MMSE receiver, for bothV = 1 (SAIC Alamouti concept) andv > 1 (MAIC Alamouti concept). In
particular, this new receiver allows to mitigate both intra-network and exterteaferences fotvV > 1.
An adaptive implementation of the F-WL-MMSE receiver from training symbatsdiso been proposed.
Thanks to its properties and low complexity, the F-WL-MMSE receiver spgm new prospects for
interference management in radio communication networks using the Alambetnsc Indeed, this
receiver may be used for many applications, such as 4G communicationrketfar both downlink
and uplink, providing SAIC capability for handsets with one receivingrameut also MAIC capability
for handsets with more than one antenna and for base stations, or sdlitaay ad hoc networks, as
they require simple and robust systems (here ensured by the SAIC/Mdébdity and the open-loop
system) enhancing the range (here provided by the diversity througkiah®euti scheme).
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3.A. DEVELOPING CONDITIONC1 : ff/R'f, = 0

Appendices

3.A  Developing conditionC1 : f{/R_'f, = 0

In this part, we show that conditiafi1l, defined by (3.45), is verified for all channel vectarg; and
u2ho if and only if conditionC'2, defined by (3.54) is verified. We recall the blockwise expression}3.20
of R-!:

b

A D
R-! = , 3.111
- [D* A*] @111)

with A# = A andD” = D. We can write matriced andD under the following form:

A A D; D
A= TR D= |0 TR (3.112)

where theN x N complex matriced\ 1, Az, Ajo, D1, Dy andDy, are such thap i’ = A, AL = A,,
D! = D; andD? = D,. We then deduce from (3.111) and (3.112) that

f'R; (n) 'f =2Re [f{T Afy] + 2Re [f{ D*f)
22%{M1M2Re [hi’(A; — Ag)hy + hi’(D; — Dy)hj]

— 42Re [ (A15hy + Dysh})] + p2Re [n2 (A%, + D% h3)] } (3.113)

It is straightforward to show from (3.113) that quantﬁﬁRgl(n)fQ is equal to zero whatever;h; and
uoho if and only if the four following equalities hold:

Al — Ay =0, (3.114)
D, — D, =0, (3.115)
iRe [hi’ (A1ohy + Diohf)] =0 Vyuhy, (3.116)
3Re [h (Athhy + Di)h3)] =0 Vpohs. (3.117)

By considering vectorg;h; of the formuih; = ver + (e, (1 < k,1 < N), whereey istheN x 1
vector whosek!" component isl while the others are zero, and by choosing successively particular
couples(v, ¢) such that(v,¢) € {(1,0),(4,0),(—4,0),(1,1),(4,7), (—4,—7), (1,7)}, we find that if
(3.117) is verified, then necessariy;, = —AlL andD;, = —D7,. Conversely ifA;; = —All and
D, = —DIL,, itis easy to verify that (3.117) is verified. Consequently Condititinis verified for all
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channel vectorg;hy andushs if and only if

It is straightforward to check that this condition is equivalent to condifi@r(3.54).

In the case of a total noise composed of an arbitrary number of syrmisantra-network interfer-
ences plus a SO circular, temporally and spatially white background nogéseamw check using (3.8),
(3.9), (3.10), (3.11), (3.12) and (3.13) tH& = Ry, R, = —Rjy, C; = Cy andCi, = —Cya.
ConditionC2 (3.54) is verified and thus conditiaril (3.45) is also verified.

3.B Deriving a condition for the ML/P-WL-MMSE equivalence

In this section we derive a necessary and sufficient condition for i PMMSE receiver to correspond
to the ML receiver.

As mentioned in 3.3.2, the partially WL MMSE filt&¥,,,,; only exploits the information contained
in matricesR1, Ry andC5 but not the one irfC,, Cs andR5. A necessary condition for the ML/P-
WL-MMSE equivalence is therefore

C;=Csy =Ry, =0. (3.118)

This condition is equivalent to

D; =Dy = Ajp = 0. (3.119)

whereDq, D5 and A - are defined in (3.112). Under this condition, matri]§{a§,andR]g1 can then be
written as:

R1 0 0 C12 A1 0 0 D12
0 Ry CIL, o0 0 A, DL o0
R; = 2 M2 - Rl = 2 M2 (3.120)
0 Ci Ri 0 b 0 Di A} 0
cih o 0 R DL 0o 0 Aj

We now complete the previous necessary condition (3.118) to make it soiffibieorder to have the
equivalence between the ML and the P-WL-MMSE receivers, their taitpgfore the ML decision need
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to be proportional. We first derivg,,; from (3.49) and (3.120), assuming (3.118) is verified:

Zml = (Rglfl)Hi
A 0 0 DI
— 2Re ¢ ff ! x + 121 x
0 A DL 0
Ay D
= 2Re {g{f [ o 1*2] x}. (3.121)
D12 AQ
Besides, writingﬁglRB = I with (3.120) leads to
A; D |R1 Cyo
D, Aj||CH R3|

where we recogniz&y, expression (3.17). We derived this way the invers®&gf which in fact corre-
sponds to the matrix in (3.121). Hence,

2t = 2Re {(R;gl)Hi} (3.122)

As for the output of the P-WL-MMSE receiver, it can be written using 13.2nd (3.28) under the
following form:

Zpwl = Re {\/ 7"'37"'(1(]-:{fglgl)Hi} . (3.123)

Therefore, in order to havg,,; andz,,,; proportional, vectorﬁglgl andR%lgl need to be collinear.
Applying the matrix inversion Lemma Bx = 7,GG + Ry = m,g1g! + m.g2gl! + Ry, we obtain

R 'g =

1 1 nggR%Igl
5 81—

R-lg,|. (3.124)
1 -1
1+ mogl (Ry + o282 ) &1 1+7gyRo'go P

We deduce from (3.124) th@{{Rgng have to be equal t0 to have vectorR_'g; and R%lgl
collinear. We have thus obtained the following necessary condition for tH@WL-MMSE receivers
equivalence:

AR-lg, =0
c3:4 8L Tp 827 (3.125)
Ci=Cy=Ri3=0.

It is straightforward to check that conditi@r3 is moreover sufficient.

3.C  Developing conditiong{R_"'g, = 0

In this section, we show that the conditiglﬁ‘Rglgg = 0 is verified for all channel vectorg, h; and
uoho, ifand only if Ry = Ro andCTf2 = —Cj32. We can show thﬁi%1 has the same block structure of
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R;, thatis

R-1 A; Dy
b DY A3

where theNV x N complex matrice\; and A are such thaA” = A; andAZ’ = A,. Note that these

matrices do not correspond to those of Appendices 3.A and 3.B in gekiégahen obtain

_ Ta "
g1 Ry'g2 = —* [ipohy’ (A1 = Ag) hy — pfhi'Dighi + i3hy Diyho] (3.126)

We first assume th@t{{Rglgg = 0 for all channel vectorgh; andush,. In particular, considering
(,u,ghg, y,lhl) = (O, ek) and(ughz, ,u,lhl) = (O, ek—i—el) with & 7é l,we find thaTg{IR,%ng =0 Implles

DI, = —Dy,.
Then, (3.126) becomes
_ Ta
gfIRglgz = 7?/11#211{{ (A1 — Az) hy.
We now considefushs, u1hy) = (ex, e;), (1 < k,1 < N), which yieldsA; = A,.

Conversely ifA; = Ay andDq, = —D7,, it is straightforward to verify that (3.126) is verified.
Consequentl;g{{Rglgg = 0 for all channel vectorgi1h; and ushs, if and only if Ay = A, and
DZ, = —Dj». One can check by blockwise inversion that this is equivalent to

Ri = Ro,
In the case of a total noise composed of an arbitrary number of syrmisantra-network interferences
plus a SO circular, temporally and spatially white background noise, we ﬂrnameg{{R;gz = 0.

Indeed, we can check using (3.8), (3.9) and (3.13) that we thenRRave R, andC?, = —C1,. We
recall that, from (3.124), this implies that vectd?glgl andP%lgl are then collinear.

We can now conclude: conditiofi3, defined by (3.55), is therefore equivalent to condit©G#
defined by

R, = Ro,
C4: Cl = CQ = R12 = 0, (3127)
Cl, = —Cya.

3.D Deriving a condition for the ML/L-MMSE equivalence

In this section we derive a necessary and sufficient condition for treak MMSE receiver to correspond
to the ML receiver.
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As mentioned in 3.3.2, the Linear MMSE filtev,,,,,s. Only exploits the information contained in
matricesR1, R, andR5 but not the one inC;, C, and C15. Hence, a necessary condition for the
ML/P-WL-MMSE equivalence is that

Ci=Cy=Cj2=0, (3.128)
is verified, i.e. thab(n) is SO circular. This condition is equivalent® = 0, whereD is defined in

(3.22).

We now complete the previous necessary condition (3.128) to make it suiffitmeorder to have the
equivalence between the ML and the Linear MMSE receivers, their taiiiore the ML decision need
to be proportional. We first derivg,,; from (3.49) and (3.19), assuming (3.128) is verified:

Zml = (Rglfl)Hi

= 2Re {f{'R;,'x} . (3.129)

2t = 2Re {(R;gl)Hi} (3.130)

As for the output of the Linear MMSE receiver, it can be written usingZBuhder the following form:

z = Re {y/moma(R 1) x} (3.131)

Therefore, in order to have,,; andz,,,; proportional, vectorR 1 annglfl need to be collinear.
Applying the matrix inversion Lemma B, = 7, FF¥ + Ry, = m,fif + m.fof + Ry, we obtain

sfH *1f
Rflfl _ 1 Rgl | — Tslg Rb 711
14+ 7TSf2HRb o

R f 3.132
x 1+ msfH (R + msfoff )16 b 2 ( )

We deduce from (3.132) th&f R, 'f, has to be equal t0 in order to have vectorB 'f; andR,, ' f;
collinear. We have thus obtained the following necessary condition for theivear MMSE receivers

equivalence:
iRy =0
C5:{ L7 2T (3.133)
012022012:0.

It is straightforward to check that conditi@rb is moreover sufficient.

3.E Developing conditionfR,'f, = 0

In this section, we show that we cannot hﬁﬁd{glfg = 0 for all channel vectorg,h; andushs.

131



CHAPTER 3. THE SAIC/MAIC ALAMOUTI CONCEPT

The structure oR ' matrix is given by

_ A A
Ry'=| ,
Ay Az

where theN x N complex matrices\; andA, are such thaA ! = A; andAZ = A,. Note that these
matrices do not correspond in general to those of Appendices 3.A, B3PD. We can now derive
fAR, .

fIR, ' = % [p1pz [bff Ayhy — hif Aohy] — pfh{’ Ajohy + p3hif Afhh,)] (3.134)
S
We assume thdtlHRglfQ = 0 for any channel vectorgih; andushs. In particular, considering first
the case ofiohs = 0 and then the case @fih; = 0, we obtain that

—puihi’ Ajahy = pihy! Afbhy = 0V phy, pgho.

HenceA > = 0. This result simplifies the expressionﬁ{nglfg given in (3.134), which can then be
written as

_ ™
leRblfg = W—a,ul,ug [h{IAth - thth} . (3135)

We now consider the special cagesh, = p1h; andushe = juih; in (3.135). They generate the
following equality

pihi’ (Ay — Ag)hy = i’ (A1 + Az)hy =0V g,
which implies thatA; = A, = 0. As we also showed thak;5> = 0, we eventually have th&tgl =0.
Nonetheless we cannot ha]?t—_gl = 0 for finite entries ofRy,. It would happen, e.g., for a Gaussian

circular noise of infinite variance. Restricting ourselves to the study of fiiiteer signals and noise, we
can conclude that the ML receiver and the L-MMSE receiver neveespond.

3.F Interferences contribution at the F-WL-MMSE output

In this appendix we analyze the impact of the interferences in the oufputof the F-WL-MMSE
receiver forP = P;,; = 1. We then derive the contributions @$,,, e2,,—1 andea, in ys,,; = w]’?wlx.
We recall that the output of the F-WL-MMSE receiver is givenzby,; = 2Re{ys.} (3.37).
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3.F. INTERFERENCES CONTRIBUTION AT THE F-WL-MMSE OUTPUT

3.F.1 Contribution of the interfering signal a,,

We derive the contribution afy,, in i, which corresponds tW]Ic—lefQ.

k(e 2e1 (B781) (£5"62) + (B F0) (£ £)
o2 \ V2T 152 A

k(g 2e1 (B781) (£ 62) — (B7F) (£5761)
o2 \ PP 12y A ’

asf/'f, = —fif, andf/'f, = £f,. Eventually, a$i’f, = £7/f, + (fJ1f,)* andfl f, = £ 6, + (F7£,)*,

. k 2m 142 26] (f fl)*f f2
H a H 3 3
W fo=i-—Im{ —hjihy — .
fuwl 2 ! 02 { Tg 172 1+251 ||f3||2

The interference induced lay,, has a phase of 7/2 due to the orthogonality of the Alamouti code; its
contribution inzy,,; is therefore canceled by the real part operation.

3.F.2 Contribution of the interfering signal through e,,_; and e,,,

We now calculate the contribution induced by the interfering Alamouti usee ifiterfering symbol
ean—1 IS carried bwa;fwlfg in 4, and

He Kk (.n 2, (EF£)(£745) + (£1761) (£)'fs)
walf3 — 72 fl f3 — =
o L+ 2 &I
Re{fHf)} . i Im{ZFalstahHy
_F fify — 21 Re{fif} + i) U hiho)
o2 1+ 2 || £3]2

k Re{lefg} . H AT 3 fig H H
= (=2 S g Im{fH e - et £, f; Hm{h, h: .
o2 ( 1+ 2¢; ¢ it fs o?(1 +251)Re{ & fijtm{hihs}

We similarly obtain the contribution ek, in y;.

kE (Re{ff'f;} AT o 13104
H 1 H a H H
wi oty =— | —— + Im{f"f;} — ————Re{f3'f; HIm{hh .
fwl™ = 2 ( 1+ 2¢; ‘ (£ 44} o2(1+ 2¢yp) o{fs fi}im{hy by}
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Conclusion

HIS thesis aimed to study the frequency selective channels for single-dearismitters on two lev-
T els: mutual information and diversity. We concentrated on the optimization @fiploé covariance
matrix w.r.t. the ergodic mutual information in a first part before studying thersity for fixed target
rate and MMSE receivers in a second part. We completed in a third pagttbgslts by studying a way
to achieve optimal diversity: the use of orthogonal STBC such as the Alanuale, which was analyzed
in multiuser context with a new kind of MMSE receiver at the receiver.

Capacity optimization

In chapter 1 we have confirmed the validity of the asymptotic approximation oérpedic mutual
information derived by Moustakas and Simon thanks to a rigorous prodad. h&Ve also shown that
the approximation error was@(1/t) term, wheret is the number of transmit antennas. Besides, we
established that the approximation is a strictly concave function of the ingatiaace matrix and that
the average mutual information evaluated at the argmax of the approximatiqnatste the capacity
of the channel up to & (1/t) term. This latter result justified our indirect maximization approach
which consists in optimizing the approximation instead of the ergodic mutual infammaro that end
we proposed an algorithm based on an iterative waterfilling scheme anaigiedsits convergence to
some extent. We also illustrated our results by numerical simulations which dhtbeeelevance of
our algorithm: the new approach provides the same results as the direchelpp- i.e., maximizing the
ergodic mutual information — even for a small number of transmit and reeeiannas.

Following these results, it would be interesting to conduct a similar appraacbptimizing the
mutual information of a MIMO system using a MMSE receiver at receptiamdeéd, our approach
assume an optimal receiver at reception, that is, a ML receiver, wtms@lexity compared to the
MMSE receivers is in practice dissuasive. In fact we easily deriMadge system approximation of the
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ergodic mutual information, which can be written as

L —1
Funel@) =~ S (10 (L@t )x) |
=1 ji
whereK is the precoder, i.eKs(n) is sent at the transmitter, whesg:) components are i.i.d. with unit
variance, hence, the input covarianc&s= KK'. Nevertheless its optimization is different from the

previous case; we showed that the optimization is equivalent to optimizingltbeiftg term:

L
L +Q (Z 5Z<Q>é<”> -
=1

Unfortunately the iterative waterfilling algorithm is not relevant anymoretlier optimization of this

term, even though in all conducted simulatidQs which maximizesl (Q) was a local maximum for

Tmmse(Q). A Newton algorithm, coupled with a barrier interior-point method, could themeler be

used. Once the optim&),,; matrix is obtained, the optimal precoding matk,,, is easily recovered:
Kopt = Q(l)propt, whereU,,, is the eigenvectors unitary matrix of

log

Q2 (zal Qup)C ) QU2 — U,

Hence K., is the matrix such tha (Zle 5Z(Qopt)C(l)) Koy is diagonal and,,; = Ko K.
Nonetheless, we did not consider this approach since the Newton algavithrbarrier method is less
attractive in terms of implementation.

MMSE Diversity Analysis

In chapter 2 we evaluated the maximal diversity of a MIMO system using a ElMSeiver. To that
end we used the Diversity-Multiplexing Trade-off approach with a multiplgxjain of0, i.e. for finite
(w.r.t. the SNR) target ratd’. For frequency selective fading channels with cyclic prefix, we rigsip
proved the surprising behavior observed by Hedayat et al. for fiaigsR: in this case, the MMSE
receiver causes the MIMO system to take several diversity valuendam on the fixed target rate value,
achieving in particular the full diversity/ N L, which is the diversity of the ML receiver, for sufficiently
low rates =M being the number of transmitting antennasthe number of receiving antennas althe
number of independent taps.

The result stated for frequency selective fading channels with cyadifixpcould probably be im-
proved. Indeed we assumed in the frequency selective case thatribmigaion data block length’
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is large enoughX > M?(L — 1). But most of all, the diversity has not been derived for rateger-
ifying —log (%7 + £2L (M — (m — 1)) < £ < log A for a givenm € {1,...,M}. Actually
the derived bounds are not tight in this case. This corresponds to thé@tem(LN — M + m) to
(m+1)(LN =M+ (m+1)),m e {1,...,M — 1}, of the diversity function. It would therefore be

interesting to analyze how the diversity behaves in this rate range.

The SAIC/MAIC Alamouti concept

In chapter 3 we focused on the diversity implied by the use of the Alamouthgottal STBC. We in-
troduced in the multiuser context, with users using real-valued modulations;\tfie- MMSE receiver,
which makes the most of the degrees of freedom available in the channedhaed indeed that this
receiver is robust to internal and external interferences; in partiitusaable to separateN users of the
network fromN receiving antennas, hence its SAIC capability. In this sense, it extea &GNIC/MAIC
concept to the MISO/MIMO cases. Besides, we proved that in the caséafal interferences the F-
WL-MMSE receiver is optimal in the ML sense. Furthermore we derivediNiRsand SER and showed
that this receiver outperforms the receivers of the literature in termsNRR @nd SER, highlighting its
optimality. We also provided a geometrical interpretation of the SAIC/MAIC Alatincancept which
underlines its simple behavior. Lastly, an easy adaptive implementation of\ttie-MMSE has been
proposed, which converges quickly in practice. Thanks to these regdts-WL-MMSE receiver of-
fers new prospects for interference management in 4G communicationrketamd military ad hoc
networks.

The analysis was however limited to the case of flat fading channels (gvagently, of frequency
selective channels with an OFDM waveform). An interesting research wwhich was unfortunately not
tackled in this thesis, would be to extend these results to frequency seldwineels with single carrier
waveforms, then using STBCs in the frequency domain. It would also begtileg to analyze the more
common case of complex constellations, considering circular constellatidradsiounon-circular con-
stellations, whose relevance has recently been pointed out to some gxf{@al. bl his study is currently
ongoing. Another worthwhile research point which is underway is the casisynchronous interfer-
ences. Indeed, we assumed in this thesis that the internal interfereacgmahronous, which rarely
occurs in practice. It would be interesting to analyze how the asyncimdnmipacts the performance of
the MMSE Alamoulti receivers and to find a way to prevent the asynchrooimsequences.
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