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Introduction

L A présente thèse s’est déroulée dans le cadre d’un contrat CIFRE entre l’université de Paris Est

(Marne-la-Vallée) et Thales Communications (Colombes). Cette thèse s’articule autour des canaux

MIMO sélectifs en fréquence pour des émetteurs mono-porteuses. Il est connu depuis longtemps que

les systèmes multi-antennes, ou systèmes MIMO, permettent d’augmenter substantiellement les débits

de transmission des systèmes mono-antenne, ou systèmes SISO ; un premier axe de recherche concerne

ainsi l’optimisation de la capacité ergodique dans les canaux sélectifs en fréquence. L’utilisation de

plusieurs antennes d’émission permet également d’augmenter les performances en réception grâce à la

diversité de transmission induite ; un second axe s’attache donc à étudier ladiversité pour des récepteurs

MMSE dans des canaux sélectifs en fréquence.

Capacité ergodique

Depuis une quinzaine d’années de nombreux travaux s’attachent à utiliser les systèmes MIMO (Mul-

tiple Input / Multiple Output), c’est-à-dire des systèmes équipés de plusieurs antennes d’émission et de

plusieurs antennes de réception, afin d’augmenter la capacité de Shannon associée aux traditionnels sys-

tèmes SISO (Single Input / Single Output). Dans ce but, un problème crucialconsiste en la conception de

l’émetteur optimal au sens de la capacité de Shannon, c’est-à-dire en la relation optimale entre le vecteur

x(n) transmis sur les antennes d’émission et les symboles d’information à transmettre. Ces probléma-

tiques ont fait l’objet de nombreuses études dans le cas où le canal de transmission MIMO est non sélectif

en fréquence ; elles sont cependant nettement moins matures dans le cadre d’un canal MIMO sélectif en

fréquence. Cette thèse s’intéresse ainsi dans cette première partie à l’optimisation, au sens de la capacité

ergodique, de la matrice de covariance du vecteur transmis dans le cas où seules les statistiques du canal,

et non la valeur instantanée du canal, sont connues à l’émetteur.
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INTRODUCTION

État de l’art des cas non sélectifs en fréquence

Dans le cas d’un canal non sélectif en fréquence on peut représenter le canal MIMO par une matriceH

de tailler × t, où r est le nombre d’antennes en réception ett le nombre d’antennes en émission. Le

vecteury(n) obtenu en échantillonnant le signal reçu à la période symbole sur les antennes de réception

peut donc s’écrire sous la forme :

y(n) = Hx(n) + b(n), (1)

oùx(n) est le vecteur transmis sur les antennes d’émission etb(n) un bruit additif supposé Gaussien de

varianceσ2. Telatar a établi le premier la formule explicite de l’information mutuelle entrex(n) ety(n)

pour une matriceH donnée [1,2] :

log det

(
Ir +

1

σ2
HQHH

)
, (2)

oùQ est la covariance du vecteur émisx supposé Gaussien, i.e.Q = E
[
xxH

]
, qui vérifie la contrainte

de puissance1tTrQ ≤ 1. Lorsque l’on a accès à la valeur deH, le maximum surQ de l’information

mutuelle (2) correspond à la capacité du canal MIMO et représente le débit maximum auquel on peut

transmettre de façon fiable l’information. Il est bien connu [3] que les vecteurs propres de la matriceQ

optimale, notéeQ∗, coïncident avec les vecteurs singuliers à droite deH et les valeurs propres deQ∗
s’obtiennent grâce à un algorithme de type “waterfilling” – la connaissancedu canal instantanéH est

donc requise à l’émetteur. Il est peu réaliste dans le cas des communicationsmobiles de supposer disposer

de la matriceH à l’émetteur. Le canal de transmission est en pratique versatile, à cause notamment de

la mobilité des utilisateurs et de la diversité des trajets de propagation. Il est donc d’usage de modéliser

H comme la réalisation d’une matrice aléatoire Gaussienne de statistiques connues. On s’intéresse alors

non plus à l’optimisation de (2) lui-même mais à l’optimisation de l’espérance de l’information mutuelle,

appelée information mutuelle ergodique et que nous noteronsI(Q) :

I(Q) = E

[
log det

(
Ir +

1

σ2
HQHH

)]
. (3)

L’optimisation de l’information mutuelle ergodique ne nécessite alors que la connaissance des statis-

tiques du canal à l’émetteur. Ceci est une hypothèse plus réaliste dans le cadre des communications sans

fil que la connaissance du canal instantané. En effet, les statistiques du canal varient en pratique de ma-

nière beaucoup plus lente que le canal lui-même. Une première étape consisteà étudier le cas où les

entrées de la matriceH sont i.i.d. Gaussiennes complexes de moyenne nulle et de variance1/
√
t, qui est

un modèle simplifié d’un canal de Rayleigh. Telatar a montré dans [2] que pour un tel modèle de canal la

matrice de covariance optimale au sens de l’information mutuelle ergodique étaitQ∗ = It. L’information

mutuelle ergodique vaut alors

I(Q∗) = E

[
log det

(
Ir +

1

σ2
HHH

)]
. (4)
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INTRODUCTION

Ce problème d’optimisation a ensuite été étudié pour des modèles de canaux plusélaborés, comme le

modèle de Kronecker ou le canal de Rice. Le modèle de Kronecker prenden compte la corrélation

spatiale entre les différents trajets en considérant que la matriceH peut s’écrire sous la formeC
1
2WC̃

1
2 ,

oùW est une matrice dont les entrées sont i.i.d. Gaussiennes complexes de moyenne nulle et de variance

1/
√
t ; on suppose dans ce modèle une séparation des corrélations à l’émetteurC̃ et au récepteurC –

d’où le nom également de covariance séparable. Dans le cas d’un canal de Kronecker, il a été montré

par de nombreux auteurs que les vecteurs propres de la covariance optimaleQ∗ doivent coïncider avec

les vecteurs propres de la matrice de corrélation à l’émissionC̃ (voir, entre autres, [4, 5]). Un canal de

Rice à corrélation séparable correspond à un modèle de Kronecker avec une moyenne non nulle, i.e. la

matriceH peut être modélisée de la sorte :H = A + C
1
2WC̃

1
2 , oùA déterministe est la composante

en ligne de vue (ou LOS - Line Of Sight). On parle de canal de Rice décorrélé lorsqueC = Ir et

C̃ = It. De manière similaire au cas du modèle de Kronecker, [6] a montré pour un canal de Rice

décorrélé que les vecteurs propres de la covariance optimaleQ∗ doivent coïncider avec les vecteurs

singuliers à droite de la matriceA. Il suffit alors, dans les deux cas précédemment cités, d’estimer

les valeurs propres deQ∗ par des algorithmes classiques d’optimisation, de type “waterfilling”. Dans

le cas du canal de Rice à corrélation séparable, l’optimisation est plus complexe ; les vecteurs propres

de la covariance optimaleQ∗ n’ont pas d’expression explicite. Une approche directe a cependantété

étudiée dans [7], où les entrées de la matriceQ∗ sont estimés par un algorithme de Newton, associé

à une méthode de barrière, appliqué directement sur l’expression de l’information mutuelle ergodique

(3). Cette méthode d’optimisation directe de l’information mutuelle ergodique nécessite l’utilisation de

méthodes de Monte-Carlo, très coûteuses en terme de calculs numériques, pour estimer l’information

mutuelle ergodiqueI(Q) au cours de l’algorithme d’optimisation – ainsi que pour estimer les vecteurs

gradient et les matrices Hessiennes pour l’algorithme de Newton.

Afin d’éviter l’utilisation de méthodes basées sur des simulations de Monte-Carlo, divers auteurs ont

proposé de remplacer l’optimisation deI(Q) par l’optimisation d’un approximant en grande dimension,

c’est-à-dire pourr et t tendant vers l’infini de sorte quer/t→ c avecc ∈]0,+∞[. Le point de départ est

de remarquer que1r log det
(
I+ 1

σ2HQHH
)

se met sous la forme

1

r

r∑

i=1

log

(
1 +

λi
σ2

)
, (5)

où les(λi)i=1,...,r représentent les valeurs propres deHQHH . Dans nombre de situation d’intérêt pra-

tique (5) a le même comportement asymptotique qu’une quantité déterministe ne dépendant que deQ et

des statistiques deH. Dès lors, on peut approximerI(Q) par une fonctionI(Q) dont l’expression dépend

du canal considéré. Par exemple, il a été montré par [8, 9] que, dans le cas d’un modèle de Kronecker,

I(Q) peut s’écrire sous la forme suivante :

I(Q) = log det
(
Ir + δ̃C

)
+ log det

(
It + δQC̃

)
− σ2tδδ̃, (6)
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INTRODUCTION

où δ et δ̃ sont deux réels strictement positifs solutions d’un système d’équations couplées. Le calcul de

Moustakas et al. [8] se base cependant sur la méthode des répliques, dont la pertinence mathématique

n’a pas été prouvée à ce jour dans le cas présent. Il est par ailleurs intéressant d’étudier le rythme de

convergence de l’approximantI(Q) versI(Q) ; il a été montré par [8,10] queI(Q)− I(Q) = O (1/t).

La preuve de [8] repose à nouveau sur les méthodes des répliques, tandis que l’approche simple et ri-

goureuse de [10] utilise les méthodes dites Gaussiennes, qui utilisent le caractère Gaussien du modèle

de canal considéré. Un résultat similaire est également obtenu pour un canal de Rice à corrélation sépa-

rable, comme il a été montré dans [11] par la méthode des répliques, puis dans[12] par les méthodes

Gaussiennes : l’approximantI(Q) peut dans ce cas s’écrire

I(Q) = log det
(
Ir + δ̃C

)
+ log det

(
It + δQC̃+

1

σ2
QAH

(
Ir + δ̃C

)−1
A

)
− σ2tδδ̃, (7)

oùδ et δ̃ sont à nouveau deux réels strictement positifs solutions d’un système d’équations couplées non

linéaires.

Cet approximant permet alors une approche indirecte d’optimisation de l’information mutuelle ergo-

dique consistant à utiliser l’approximantI(Q) pour optimiser la covariance, plutôt que d’utiliser direc-

tement l’information mutuelle ergodiqueI(Q). Les expressions deI(Q) sont explicites ce qui permet

d’éviter l’utilisation des méthodes de Monte-Carlo pour estimerI(Q). La mise en œuvre de l’optimisa-

tion deI(Q) est donc plus aisée que pourI(Q) et le gain en terme de complexité de calcul important.

Dans le cas du modèle de Kronecker, [13] propose ainsi un algorithme itératif d’optimisation basé sur

l’approximant de l’information mutuelle ergodique. Une extension de cet algorithme au canal de Rice à

corrélation séparable est proposée dans [12], qui montre également lastricte concavité de l’approximant

et donne des résultats partiels de convergence. L’approche indirecteest également justifiée dans [12] : il

y est montré que

I(Q∗) = I(Q∗) + O

(
1

t

)
. (8)

oùQ∗ est la matrice de covariance maximisantI(Q) et oùQ∗ est la matrice de covariance maximisant

I(Q). Pour ce type de canal un algorithme similaire a été introduit par [14] avant d’être étudié tout

récemment plus en détail par [15]. Il est notamment prouvé par [15] quel’algorithme considéré converge

dans le cas d’un canal de Rayleigh et des cas d’oscillation de l’algorithme introduit par [12] sont exhibés.

Cas sélectif en fréquence

La première contribution de cette thèse est l’optimisation de l’information mutuelle ergodique pour les

canaux sélectifs en fréquence. Lorsque le canal est sélectif en fréquence et que l’émetteur utilise des

modulation mono-porteuses, le modèle de réception (1) n’est plus valable. Le signal reçuy(n) se met
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INTRODUCTION

alors sous la forme :

y(n) =
L∑

l=1

H(l)x(n− l + 1) + b(n) (9)

= [H(z)]x(n) + b(n),

où l’on note désormaisH(z) la fonction de transfert du canal équivalent à temps discret défini par

H(z) =
∑L

l=1H
(l) z−(l−1), chaque matriceH(l) correspondant à un trajet. Un modèle répandu (voir

par ex. [16, 17]) pour ces matricesH(l) consiste à considérer qu’elles sont indépendantes, ce qui cor-

respond à des trajets indépendants, et qu’elles suivent chacune un modèle de Kronecker :H(l) =
1√
t
(C(l))1/2Wl(C̃

(l))1/2, oùWl est une matrice aléatoire dont les entrées sont Gaussiennes complexes

standards. On noteQ(e2iπν) la densité spectrale de la matrice de covariance du vecteur transmisx.

L’information mutuelle ergodique du canal peut alors s’écrire

I(Q(e2iπν)) = E

[∫ 1

0
log det

(
Ir +

1

σ2
H(e2iπν)Q(e2iπν)H(e2iπν)H

)
dν

]
. (10)

Nous avons montré que dans le cadre de l’optimisation deI(Q(e2iπν)) on pouvait se ramener au cas de

matrices de covarianceQ(e2iπν) ne dépendant pas de la fréquence. On considère désormaisQ(e2iπν) =

Q ∀ν. Un approximant deI(Q) en grande dimension notéI(Q) a été établi par [17] en utilisant la

méthode des répliques :

I(Q) = log det

(
Ir +

L∑

l=1

δ̃lC
(l)

)
+ log det

(
It +Q

(
L∑

l=1

δlC̃
(l)

))
− σ2t

L∑

l=1

δlδ̃l, (11)

où lesδl et δ̃l, l = 1, . . . , L, sont les réels positifs solutions d’un système non linéaire de2L équa-

tions couplées. Nous vérifions dans un premier temps la pertinence de cet approximant en utilisant une

approche rigoureuse inspirée des résultats de [12] précédemment évoqués. Nous justifions tout d’abord

l’existence et l’unicité desδl et δ̃l, un point qui n’avait pas été abordé par [17]. Nous précisons également

les hypothèses techniques nécessaires à la convergence deI(Q) vers l’approximant ainsi que la vitesse

de cette convergence :

I(Q) = I(Q) + O

(
1

t

)
. (12)

Nous nous intéressons dans un second temps à l’optimisation deI(Q) via son approximationI(Q).

Pour cela nous justifions la stricte concavité de la fonctionQ 7→ I(Q), avant d’établir le résultat suivant :

I(Q∗) = I(Q∗) + O

(
1

t

)
, (13)

oùQ∗ est la matrice maximisantI(Q) sous la contrainte de puissanceTrQ = t, et oùQ∗ est la matrice

maximisantI(Q) sous la contrainte de puissanceTrQ = t. Autrement dit, il est cohérent de maximiser
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INTRODUCTION

l’approximationI(Q) au lieu deI(Q). Nous proposons ainsi un algorithme de maximisation deI(Q)

qui se base sur un waterfilling itératif : chaque itération résout le système de2L équations couplées

évoqué précédemment ainsi qu’un problème classique de waterfilling [18]. Cet algorithme peut être vu

comme une extension de celui proposé par [13] dans le cas d’un canal de Rayleigh et par [12] dans le cas

d’un canal de Rice. Nous prouvons également que s’il converge l’algorithme converge vers la covariance

optimaleQ∗ – la convergence en elle-même n’a pu être prouvée.

Diversité des récepteurs MMSE

Pour ce second axe de la thèse, nous nous intéressons aux récepteurs MMSE. A l’inverse des récepteurs

du maximum de vraisemblance (ou ML pour Maximum Likelihood) ces récepteurs sont sous-optimaux

mais plus simples à mettre en œuvre. Dans un premier temps, nous étudions la diversité de tels récepteurs

à haut SNR pour des canaux sélectifs en fréquence. Nous nous attardons dans un second temps sur

un facteur de diversité, l’utilisation des codes spatio-temporels en bloc (STBC), plus spécifiquement

l’utilisation du code d’Alamouti. Ainsi, nous proposons et analysons un nouveau récepteur MMSE adapté

à la non-circularité des signaux qu’occasionne l’utilisation du codage d’Alamouti. Cette dernière analyse

a cependant été limitée au cas des canaux non sélectifs en fréquence – oude manière équivalente au cas

des canaux sélectifs en fréquence avec une forme d’onde OFDM.

Analyse de l’ordre de diversité

On définit l’ordre de diversitéd d’un système par la pente de la décroissance exponentielle de la proba-

bilité d’erreurPe en fonction du SNRρ, à haut SNR :

d = − lim
ρ→+∞

logPe
log ρ

(14)

On a alors, pourρ ≫ 1, Pe ∼ kρ−d. Il existe deux approches pour étudier la diversité d’un système. La

plus répandue (voir entre autres [19–21]) consiste à analyser le rythmede décroissance de la probabilité

d’erreur par paire (PEP) en fonction du SNR. Cette approche nécessite cependant l’élaboration de sché-

mas de codage spécifique pour atteindre la diversité maximale. Nous nous intéressons ici à la seconde

approche qui est basée sur la probabilité d’outagePout(R), oùR est le débit cible :

Pout(R) = P (I < R) , (15)

où I représente l’information mutuelle du système. Pour un système bien conçu, la probabilité d’ou-

tage correspond à la probabilité que la transmission soit non fiable. Il est alors pertinent d’étudier la

décroissance exponentielle non pas de la probabilité d’erreurPe mais de la probabilité d’outagePout.
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Cette approche est également commode car elle permet d’éviter le problème deconception du codage à

l’émetteur. On définit alors la diversité de la manière suivante :

d(R) = − lim
ρ→+∞

logPout(R)

log ρ
. (16)

Cette approche est utilisée par de nombreux auteurs, dans le cadre de l’analyse du compromis diversité-

multiplexage (ou Diversity-Multiplexing Trade-off – DMT), introduit par Zheng et Tse [22]. L’étude de

ce compromis permet d’obtenir la diversité maximale atteignable. Nous nous attardons donc désormais

sur l’étude du DMT.

Le compromis diversité-multiplexage :

Comme évoqué dans la section précedente, les systèmes MIMO permettent à haut SNR un gain linéaire

en capacité par rapport aux systèmes SISO [2] :

I(ρ) ∼ min{M,N} log ρ pour ρ≫ 1, (17)

où I(ρ) est l’information mutuelle,M le nombre d’antennes en émission,N le nombre d’antennes en

réception. La capacité croît donc enlog ρ à haut SNR. Il est donc pertinent d’écrire le débit cible sous la

forme

R = r log ρ, (18)

où r ≤ min{M,N} est le coefficient – ou l’ordre, le gain – de multiplexage. Ce gain correspond au

multiplexage spatial : le canal MIMO peut être décomposé en sous-canauxSISO indépendants dont le

nombre est le rang de la matrice canalH, qui estmin{M,N} siH est bien conditionnée. Le multiplexage

spatial revient à utiliser les degrés de liberté disponibles pour transmettre des signaux indépendants sur

ces canaux parallèles, au lieu de les utiliser pour améliorer la fiabilité de la transmission : il existe

un compromis fondamental entre le coefficient de multiplexager et la diversitéd(R), appelé DMT ou

compromis diversité-multiplexage [22]. Il est alors intéressant d’étudierla dépendance enr de la diversité

d(R) = d(r log ρ) défini par (16) ; on notera désormaisd(r) la fonction donnant la diversité en fonction

du coefficient de multiplexager :

d(r) = − lim
ρ→+∞

logPout(r log ρ)

log ρ
. (19)

On obtient alors, a priori, l’ordre de diversité maximal atteignabledmax en prenantr = 0. Zheng et Tse

ont établid(r) pour un canal MIMO non sélectif en fréquence dans [22] :

d(r) = (M − r)(N − r). (20)

On a doncdmax = MN pourR fixé. Une extension de ce résultat au cas SISO sélectif en fréquence

a rapidement suivi [23, 24], puis le cas du canal MIMO sélectif en fréquence a été analysé [25–27].
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En notantL le nombre de trajets indépendants, il est montré que, sous certaines conditions, l’ordre de

diversitéd(r) vérifie

d(r) = L(M − r)(N − r), (21)

d’où un ordre de diversité maximaldmax = LMN . Ces calculs de diversité supposent cependant un

récepteur optimal, c’est-à-dire un récepteur ML. Un tel récepteur est en pratique trop complexe à mettre

en œuvre. On lui préfère des récepteurs linéaires sous-optimaux tel le récepteur MMSE, ce qui nous

amène à l’étude qui suit.

Étude du DMT pour les récepteurs MMSE :

La seconde contribution de la thèse est l’étude du DMT pour les récepteurs MMSE pour un débit cible

R fixe, i.e. pour un coefficient de multiplexager = 0. Il a été montré par [28] que dans le cas d’un

canal MIMO non sélectif en fréquence les récepteurs MMSE détériorent grandement le DMT : en effet,

l’expression suivante ded(r) est obtenue :

d(r) = (N −M + 1)
(
1− r

M

)+
, (22)

où (·)+ = max{0, ·}. On s’attend donc au mieux à une diversité dedmax = N −M + 1. Cependant,

pour un débit cibleR fini, i.e. pourr = 0, il a été observé par Hedayat et al. dans [29] que les récepteurs

MMSE exhibent des ordres de diversité qui diffèrent selon le débit cible R choisi (voir également [30,

31]). En particulier, la diversité maximaleLMN évoquée précédemment est atteinte pour des débitsR

suffisamment faibles, d’où le grand intérêt de ces récepteurs simples à mettre en œuvre. Ce comportement

inattendu a été expliqué dans [28, 32] pour des canaux MIMO non sélectifs en fréquence et dans [33]

pour des canaux MIMO sélectifs en fréquence, mais dans les deux cas l’explication est malheureusement

partielle. Nous mettons en exergue le caractère inexact de la preuve donnée par [32] dans le cas d’un

canal non sélectif en fréquence et donnons une preuve rigoureusede la diversité pour un tel système. Par

ailleurs, en ce qui concerne les canaux sélectifs en fréquence avec préfixe cyclique, Mehana et Nosratinia

[33] n’établissent la diversité que dans le cas particulier d’un nombre detrajetsL égal à la longueur du

bloc de données émis. Par conséquent nous établissons la diversité dans le cas sélectif en fréquence avec

préfixe cyclique – nous supposons toutefois une longueur de bloc de données émis suffisamment grande.

Diversité apportée par les STBC

Le compromis diversité-multiplexage se retrouve au niveau de la conceptiondes systèmes MIMO : on

peut par exemple privilégier le multiplexage en utilisant le schéma V-BLAST (Vertical Bell Layered

Space-Time [34,35]) ou préférer maximiser le gain en diversité en utilisantun Code Spatio-Temporel en

Bloc (ou STBC pour Space-Time Block Code [36]) en émission. Zheng et Tse [22] ont d’ailleurs mis

en évidence les comportements opposés de ces deux schémas par l’étude de leur DMT. Comme dans
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cette partie nous nous intéressons avant tout à la diversité, qui permet d’augmenter la portée et la fiabilité

des communications, nous nous penchons ici sur l’utilisation des STBC. LesSTBC orthogonaux [37]

sont particulièrement attractifs ; ils permettent d’atteindre la diversité spatialemaximale pour un nombre

fixe d’antennes d’émission et de réception. Nous nous pencherons sur l’utilisation du premier STBC

orthogonal, qui est également le plus simple et le plus connu, présenté parAlamouti dans [38]. Il est

standardisé dans les normes UMTS, GSM, EDGE, IEEE 802.11n, IEEE 802.16 [39].

Afin d’exploiter au mieux le spectre disponible et la diversité inhérente au canal de transmission nous

nous intéressons dans cette thèse au cas multi-utilisateur Alamouti, c’est-à-dire au cas où plusieurs uti-

lisateurs partagent les mêmes ressources spectrales et utilisent chacun un codage Alamouti. Ce contexte

requiert le développement de techniques d’annulation d’interférences(Interference Cancellation - IC)

pour permettre aux utilisateurs de partager les mêmes ressources spectrales sans avoir d’incidence sur

la qualité de transmission de chacun. Plusieurs schémas d’annulation d’interférences [40–47] ont été

introduits permettant àP utilisateurs équipés deM antennes en émission et utilisant un STBC de par-

tager le même canal. Winters et al. ont montré [48] que l’ordre de diversité de chaque utilisateur était

M si le nombre d’antennes en réception estN = M(P − 1) + 1. Cependant, si la structure du STBC

est exploitée, on peut montrer queN = P antennes de réception suffisent pour un même ordre de di-

versité deM . Ce résultat a d’abord été prouvé par Naguib et al. dans [40, 42] pour le cas du codage

Alamouti etM = N = P = 2. Une généralisation de ce résultat à un nombre d’antennes de réception

N ≥ P a ensuite été établie par [43] (voir également [47] pour une approche alternative). Kazemitabar

et Jafarkhani ont finalement présenté dans [46] un schéma d’annulation d’interférences pour des STBC

quasi-orthogonaux (voir [49, 50]) qui permet de séparerP utilisateurs équipés deM > 2 antennes

d’émission à partir deN ≥ P antennes de réception. Toutes ces techniques d’annulation d’interférences

requièrent doncN > 1, i.e. plusieurs antennes en réception, ce qui reste un point bloquant auniveau du

terminal mobile pour des raisons de coût et de dimensions. Ceci justifie le développement des techniques

d’annulation d’interférences dites SAIC (Single Antenna InterferenceCancellation), qui ne nécessitent

qu’une seule antenne en réception et sont une alternative aux techniques complexes d’estimation ML

multi-utilisateur [51].

Les techniques SAIC ont tout d’abord été développées pour des utilisateurs équipés d’une seule an-

tenne d’émission et des transmissions mono-porteuses [52–56]. La plupart [52,54–56] de ces techniques

exploitent la non-circularité au second ordre [57] des modulations à valeurs réelles (BPSK, ASK) ou des

modulations quasi-rectilignes (c’est-à-dire correspondant à la filtrée complexe de modulations à valeurs

réelles) après une opération de dérotation (MSK, GMSK, OQAM [58]). Ces techniques implémentent un

filtrage linéaire au sens large (LSL, ou encore WL pour Widely Linear [59]) optimal des observations et

permettent la séparation de deux utilisateurs à partir d’une unique antenne de réception [54]. Ce concept,

simple et efficace, est rapidement devenu populaire dans les réseaux 2G-3G :
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• 3G Americas [60] a présenté le concept de SAIC comme une grande amélioration pour les récep-

teurs GSM des terminaux mobiles,

• cette technologie a été standardisé en 2005 pour le GSM et est donc désormais opérationnelle dans

la plupart des terminaux mobiles GSM,

• une nouvelle normalisation de cette technologie permettant à plusieurs utilisateurs GSM d’utiliser

le même slot TDMA (Multi-User Reusing One Slot - MUROS) est actuellement à l’étude,

• une extension de ce concept à plusieurs antennes de réception, dite MAIC (Muliple Antenna Inter-

ference Cancellation) [54], est d’un grand intérêt notamment pour les réseaux GPRS [61].

Dans le cadre des réseaux 4G, les réseaux d’antennes pour le terminalmobile ont été standardisés, ce qui

suppose donc l’emploi des techniques MAIC uniquement. Cependant la miseen œuvre de ces réseaux

d’antennes reste un point bloquant ; les techniques SAIC sont donc toujours d’actualité pour les réseaux

4G. Ainsi, une extension à l’OFDM de ces techniques a été récemment présentée par [62], pour des

utilisateurs munis d’une antenne d’émission et utilisant la modulation ASK. Par ailleurs, le concept

SAIC/MAIC est également d’un grand intérêt pour les réseaux militaires adhoc, qui demandent avant

tout des systèmes simples et robustes.

La modulation ASK est certes moins efficace en terme de puissance que la modulation QAM : seule

la dimension réelle est utilisée pour l’émission. Cependant, dans un contexte multi-utilisateur, la modu-

lation ASK peut être plus avantageuse qu’une modulation QAM par l’utilisation des degrés de liberté

disponibles en réception pour séparer les différents utilisateurs. Les degrés de liberté non utilisés en

émission dans la modulation sont en quelque sorte retrouvés en réception par un traitement adéquat : le

filtrage LSL. Plusieurs travaux [62–64] semblent d’ailleurs mettre en évidence, toujours dans le contexte

multi-utilisateur, une plus grande efficacité spectrale des modulations à valeurs réelles couplées à des

récepteurs LSL par rapport à des modulations à valeurs complexes couplées à des récepteurs linéaires.

Les concepts de SAIC et MAIC concernent uniquement les systèmes SISO et SIMO. Nous éten-

dons dans cette partie ces concepts aux systèmes MISO et MIMO, grâce àl’utilisation d’un STBC,

plus spécifiquement du codage Alamouti, pour des constellations à valeurs réelles. Nous introduisons

à cette fin un nouveau récepteur MMSE LSL (qui a cependant déjà été introduit par [65] pour des fins

d’égalisation). Ce récepteur permet de traiter les interférences internesaux réseau (c’est-à-dire les autres

utilisateurs Alamouti) mais également les interférences externes. Nous montrons que dans le cas d’in-

terférence internes ce récepteur est optimal au sens ML, contrairementaux récepteurs existants. Nous

étudions ensuite, toujours pour des interférences internes, les performances d’un tel récepteur en terme

de capacité de rejet d’interférences, de SINR et de SER afin de mettre enévidence sa supériorité par rap-

port aux récepteurs MMSE existant. Nous montrons notamment qu’il peut rejeter2N − 1 interférences
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internes à partir deN antennes de réception. Nous donnons également une interprétation géométrique

simple de son fonctionnement.

Plan de la thèse

La première partie de ce document s’intéresse à l’optimisation de la capacité ergodique dans les canaux

sélectifs en fréquence ; elle est traitée dans le chapitre 1. Nous y établissons dans un premier temps un ap-

proximant en grande dimension de l’information mutuelle ergodique avant de s’attacher dans un second

temps à son optimisation vis-à-vis de la covariance en émission. Nous proposons ainsi un algorithme per-

formant pour obtenir la covariance optimale. La seconde partie de ce manuscrit traite des questions de

diversité en présence d’un récepteur MMSE : dans le chapitre 2 nous nous intéressons ainsi à la diversité

maximale atteignable du récepteur MMSE pour des débits fixes dans le cadre des canaux non sélectifs en

fréquence puis dans le cadre des canaux sélectifs en fréquence, tandis que dans le chapitre 3 nous nous

intéressons à la diversité assurée par le codage d’Alamouti. Dans ce dernier chapitre nous proposons un

nouveau récepteur MMSE exploitant au mieux les degrés de liberté du canal en contexte multi-utilisateur.

Ce récepteur est ainsi robuste aux interférences et permet d’élargirle concept de SAIC/MAIC aux sys-

tèmes MIMO, d’où le nom de concept SAIC/MAIC Alamouti.

Contributions

Les différents travaux menés au cours de ces trois années de thèse ontdonné naissance aux deux articles

de revue suivants :

• F. Dupuy et P. Loubaton, “On the capacity achieving covariance matrix for frequency selective

MIMO channels using the asymptotic approach,” IEEE Transactions on Information Theory, vol.

57, n◦ 9, pp 5737–5753 , Septembre 2011

• P. Chevalier et F. Dupuy, “Widely linear Alamouti receivers for the reception of real-valued signals

corrupted by interferences - the Alamouti-SAIC/MAIC concept,” IEEE Transactions on Signal Pro-

cessing, vol. 59, n◦ 7, pp 3339–3354, Juillet 2011.

L’article de revue IEEE IT correspond au chapitre 1, tandis que l’articlede revue IEEE SP sert de base

au chapitre 3. Les cinq articles suivants ont également été présentés lorsde conférences :

• F. Dupuy et P. Loubaton, “Diversity of the MMSE receiver in flat fading and frequency selective

MIMO channels at fixed rate,” Forty-Fifth Asilomar Conference on Signals, Systems and Compu-

ters, Pacific Grove, Californie, Novembre 2011,
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• F. Dupuy et P. Chevalier, “Fonctionnement et performance des récepteurs Alamouti linéaires au

sens large pour la réception de constellations réelles en contexte multi-utilisateur - Analyse du

concept SAIC/MAIC Alamouti,” GRETSI Conference, Bordeaux, France, Septembre 2011,

• F. Dupuy et P. Chevalier, “Performance Analysis of WL Alamouti Receivers for real-valued constel-

lations in Multiuser Context,” European Signal Processing Conference (EUSIPCO), Barcelone,

Espagne, Septembre 2011,

• F. Dupuy et P. Loubaton, “On the capacity achieving covariance matrix for frequency selective

MIMO channels using the asymptotic approach,” IEEE International Symposium on Information

Theory (ISIT), Austin, Texas, Juin 2010,

• P. Chevalier et F. Dupuy, “Single and multiple antennas Alamouti receivers for the reception of

real-valued signals corrupted by interferences - the Alamouti SAIC/MAICconcept,” Forty-Third

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Californie, Novembre

2009.

Les résultats du chapitre 2 seront ainsi présentés à la conférence d’Asilomar 2011. Un brevet a par ailleurs

été déposé dans le cadre de cette thèse, correspondant au récepteurprésenté au chapitre 3 :

• P. Chevalier et F. Dupuy, “Procédé et dispositif de réception mono et multi-antennes pour liaisons

de type Alamouti,” n◦ FR 09.05263, 3 Novembre 2009.

18



Introduction

THIS thesis has been carried out within the framework of a CIFRE convention between Thales Com-

munications and Université Paris Est. It is dedicated to the frequency selective MIMO channels

with single-carrier transmitters. It is acknowledged that the multi-antenna systems, also known as MIMO

(Multiple In / Multiple Out) systems, allow to increase the transmission rate of singleantenna systems

significantly; the first area of research is thus the optimization of the ergodiccapacity in frequency selec-

tive channels. Using multiple transmitting antennas also gives rise to transmit diversity, thus improving

the receiving performance; the second area of research is therefore the analysis of diversity for MMSE

(Minimum Mean-Square Error) receivers in frequency selective channels.

Ergodic capacity

For fifteen years many studies have sought to use MIMO (Multiple Input / Multiple Output) systems,

that is, systems equipped with several transmitting antennas and several receiving antennas, in order

to increase the Shannon capacity related to the usual SISO (Single Input /Single Output) systems. To

that end, conceiving the optimal transmitter in terms of the Shannon capacity, i.e. the optimal relation

between the transmitted vectorx(n) and the information symbols to transmit, is a crucial issue. This

problem has been studied extensively in the case of flat fading MIMO channels. Nevertheless, few

authors have tackled the case of frequency selective channels. Hence, the first part of this thesis focuses

on the optimization of the ergodic capacity w.r.t. the covariance matrix of the transmit vectorx(n), when

only the channel statistics are known at the transmitter side instead of the instantaneous channel state

information.

Flat fading channels

In the case of flat fading channels one can describe the MIMO channelwith ar× t matrixH, wherer is

the number of transmitting antennas andt the number of receiving antennas. The vectory(n) obtained
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by sampling the signal received at the symbol period can then be written under the following form

y(n) = Hx(n) + b(n), (23)

wherex(n) is the transmitted vector andb(n) an additive noise, assumed Gaussian with varianceσ2.

The first results about the MIMO mutual information have been obtained by Telatar; in [1,2] he derived

the explicit expression of the mutual information between vectorsx(n) andy(n) for a given matrixH :

log det

(
Ir +

1

σ2
HQHH

)
, (24)

whereQ = E
[
xxH

]
, verifying the power constraint1tTrQ ≤ 1, is the covariance matrix of the input

vectorx, which is assumed Gaussian. When the instantaneous channel state information (CSI), i.e.

matrixH, is available, the maximum overQ of the mutual information (24) corresponds to the MIMO

capacity and accounts for the maximum rate at which the information can be transmitted in a reliable

way. It is well known [3] that the eigenvectors of the optimal input covariance matrix, which we denote

Q∗, correspond to the right singular vectors ofH – as for the eigenvalues ofQ∗, they can be obtained

by a “waterfilling” type algorithm. The value ofH, i.e. the instantaneous CSI, is therefore needed at

the transmitter. Nonetheless, within the framework of mobile communications, knowing the value of

H at the transmitter is not realistic. Indeed, the transmission channel varies quickly in practice, due in

particular to the user mobility and to the diversity of propagation paths. Therefore, one usually models

H as the realization of a Gaussian random matrix with known statistics. It is then more relevant to tackle

the optimization of the expectation of the mutual information, instead of the optimizationof (24) itself.

The expectation of the mutual information is called ergodic mutual information andis here denoted by

I(Q):

I(Q) = E

[
log det

(
Ir +

1

σ2
HQHH

)]
. (25)

Optimizing the ergodic mutual information only requires the knowledge of the channel statistics at the

transmitter, which is a more realistic assumption than the instantaneous CSI knowledge within the frame-

work of wireless communications. Indeed, the statistics of the channel varyin practice a lot more slowly

than the channel itself. A first step for this approach is to study the case ofa channel matrixH whose

entries are zero mean i.i.d. Gaussian random variables with1/
√
t variance, which corresponds to a sim-

plified Rayleigh channel. Telatar proved in [2] that, for such a channel, the optimal input covariance

matrix isQ∗ = It. The ergodic mutual information then becomes

I(Q∗) = E

[
log det

(
Ir +

1

σ2
HHH

)]
. (26)

This optimization problem has then been studied for more elaborate channel models, like the Kronecker

channel model or the Rician channel. The Kronecker channel model takes into account the spatial cor-

relation between paths by considering that matrixH can be written asC
1
2WC̃

1
2 , whereW is a matrix
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whose entries are zero mean i.i.d. complex Gaussian with a1/
√
t variance. This model assumes that

the correlations at the transmitterC̃ and at the receiverC are separable – hence its alternative name of

separable covariance model. In the case of a Kronecker channel, numerous authors have shown that the

optimal input covariance matrixQ∗ has the same eigenvectors as the transmitting correlation matrixC̃

(see, e.g., [4, 5]). The Rician channel model with separable correlationcorresponds to the Kronecker

channel model but with a non-zero mean, that is, matrixH can be written under the following form:

H = A+C
1
2WC̃

1
2 , where the deterministic matrixA corresponds to the Line Of Sight (LOS) compo-

nent of the channel. The so-called decorrelated Rician channel model corresponds to the specific case of

C = Ir, C̃ = It. Similarly to the Kronecker channel case, it has been shown by [6] that, for decorrelated

Rician channels, the eigenvectors of the optimal covarianceQ∗ correspond to the right singular vectors

of matrix A. In both optimization cases mentioned previously, the eigenvalues of the optimalmatrix

Q∗ are then simply estimated by classical “waterfilling” type optimization algorithms. Theoptimization

is more complex for Rician channels with separable correlation. The eigenvectors of the optimal input

covarianceQ∗ have no explicit expression and thus have to be numerically evaluated. A direct approach

has been proposed and analyzed by [7]: the entries ofQ∗ are estimated by a Newton algorithm, associ-

ated with a barrier interior-point method, which directly optimizes the ergodic mutual information (25).

Yet, this direct approach requires the use of Monte-Carlo simulations, which are computationally costly,

to estimate the ergodic mutual informationI(Q), together with the gradient and Hessian ofI(Q) for the

Newton algorithm, along the optimization algorithm.

In order to avoid the use of Monte-Carlo simulation, various authors have proposed to optimize not

I(Q) itself but rather a large system approximation ofI(Q), i.e. an approximation fort → ∞, r → ∞
in such a way thatt/r → c ∈]0,∞[. The starting point is to notice that1r log det

(
I+ 1

σ2HQHH
)

can

be written as
1

r

r∑

i=1

log

(
1 +

λi
σ2

)
, (27)

where the(λi)i=1,...,r are the eigenvalues ofHQHH . In numerous situations of practical interest, (27)

has the same asymptotic behavior as a deterministic quantity which depends only on Q and on the

statistics ofH. Hence,I(Q) can be approximated by a function denotedI(Q) whose expression depends

on the considered channel. For instance [8,9] have shown that for a Kronecker channel the approximation

I(Q) can be written as

I(Q) = log det
(
Ir + δ̃C

)
+ log det

(
It + δQC̃

)
− σ2tδδ̃, (28)

whereδ andδ̃ are the positive solutions of a coupled equations system. Nonetheless, the proof of Mous-

takas et al. [8] is based on the replica method, whose mathematical relevancehas not yet been proved

in this context. Furthermore, it is interesting to study the convergence speedof the approximationI(Q)

towardsI(Q); it has been proved by [8, 10] thatI(Q) − I(Q) = O (1/t). The approach of [8] is based
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once again on the replica methods, while the simple and rigorous approach of[10] uses the so-called

Gaussian methods, which use the Gaussian nature of the considered channel model. A similar result is

also obtained for Rician channels with separable correlation, as shown by[11] through the replica meth-

ods and later by [12] with the Gaussian methods. In this case the approximationI(Q) can be written

as

I(Q) = log det
(
Ir + δ̃C

)
+ log det

(
It + δQC̃+

1

σ2
QAH

(
Ir + δ̃C

)−1
A

)
− σ2tδδ̃, (29)

whereδ andδ̃ are this time the positive solutions of a coupled nonlinear equations system.

The large system approximationI(Q) of I(Q) gives rise to an indirect approach to optimize the

ergodic mutual information: the input covariance is optimized using the approximationI(Q) instead of

using the ergodic mutual informationI(Q) directly. One great advantage of this approach comes from

the explicit expressions ofI(Q), which avoid in particular the use of Monte-Carlo methods to estimate

I(Q). The optimization implementation is thus easier forI(Q) than forI(Q) and computationally much

more efficient. For Kronecker channels [13] proposed this way an iterative optimization algorithm based

on the large system approximation of the ergodic mutual information. This algorithm has been extended

to Rician channels with separable correlation by [12], which also proves the strict concavity of the ap-

proximation and gives some details about the convergence. The indirect approach is also legitimized

in [12] by showing that

I(Q∗) = I(Q∗) + O

(
1

t

)
. (30)

whereQ∗ is the input covariance matrix maximizingI(Q) and whereQ∗ is the input covariance matrix

maximizingI(Q) – both maximizations under the power constraintTrQ = t. Taricco and Riegler have

introduced a similar algorithm in [14] and have analyzed it more thoroughly very recently in [15]. In

particular, they have proved in the case of Rayleigh channels that their algorithm converges and that the

algorithm introduced by [12] may not converge in some particular cases.

Frequency selective channels

The first contribution of this thesis is the optimization of the ergodic mutual information for frequency

selective channels. When the channel is frequency selective and when the transmitter uses a single-

carrier waveform, the receiving model (23) is not valid anymore. The received signaly(n) then takes the

following form

y(n) =
L∑

l=1

H(l)x(n− l + 1) + b(n) (31)

= [H(z)]x(n) + b(n),

22



INTRODUCTION

whereH(z) now denotes the transfer function of the discrete-time equivalent channel defined byH(z) =∑L
l=1H

(l) z−(l−1), where matrixH(l) is associated to thelth channel tap. A common model (see,

e.g., [16, 17]) for these matricesH(l) is to consider that they are independent, which corresponds to

independent paths, and that they each follow a Kronecker model:H(l) = 1√
t
(C(l))1/2Wl(C̃

(l))1/2,

whereWl is a random matrix whose entries are i.i.d. standard complex Gaussian. Denoting Q(e2iπν)

the spectral density of the transmitted vectorx, the ergodic mutual information can be written as

I(Q(e2iπν)) = E

[∫ 1

0
log det

(
Ir +

1

σ2
H(e2iπν)Q(e2iπν)H(e2iπν)H

)
dν

]
. (32)

We have shown that for the optimization ofI(Q(e2iπν)) we could restrict ourselves to the covariance

matricesQ(e2iπν) which do not depend on the frequency. Hence, we consider hereafter Q(e2iπν) =

Q ∀ν. A large system approximationI(Q) of I(Q) was derived by [17] using the replica method:

I(Q) = log det

(
Ir +

L∑

l=1

δ̃lC
(l)

)
+ log det

(
It +Q

(
L∑

l=1

δlC̃
(l)

))
− σ2t

L∑

l=1

δlδ̃l, (33)

where theδl andδ̃l, l = 1, . . . , L, are the positive solutions of a system of2L coupled nonlinear equa-

tions. We confirm in the first place the relevance of this approximation by using a rigorous approach

inspired by the results of [12] previously mentioned. We justify in particular the existence and unique-

ness of theδl and δ̃l, which had not been discussed in [17]. We also specify the technical assumptions

needed for the convergence ofI(Q) towards its approximationI(Q). Furthermore, we provide the speed

of this convergence:

I(Q) = I(Q) + O

(
1

t

)
. (34)

We can then tackle the optimization of the ergodic mutual informationI(Q) via its large system

approximationI(Q). To that end, we justify the strict concavity of functionQ 7→ I(Q). Similarly to the

Rician case, we establish the following key result which legitimizes our indirectapproach:

I(Q∗) = I(Q∗) + O

(
1

t

)
, (35)

whereQ∗ is the input covariance matrix maximizingI(Q) under the power constraintTrQ = t and

whereQ∗ is the input covariance matrix maximizingI(Q) under the power constraintTrQ = t. In

other words, it is relevant, up toO(1/t) term, to maximize the approximationI(Q) instead of the ergodic

mutual informationI(Q) itself. We then propose a maximization algorithm forI(Q) which is based on

an iterative waterfilling: each iteration solves first the mentioned system of2L coupled equations, then

a classical waterfilling problem [18]. This algorithm is to some extent an extension of the algorithm

introduced by [13] for a Kronecker channel and by [12] for a Ricianchannel. We finally prove that, if the

algorithm converges, it converges towards the optimal input covarianceQ∗ – yet the convergence itself

has not been proved.
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MMSE receivers diversity

In this second area of research we consider the MMSE (Minimum Mean-Square Error) receivers. Unlike

the ML (Maximum Likelihood) receivers, these receivers are sub-optimal yet simpler to implement. In

the first place we analyze the diversity of the MMSE receivers at high SNR (Signal to Noise Ratio) for

frequency selective channels. Secondly, we focus on systems enhancing diversity through the use of

Space-Time Block Codes (STBC), more specifically through the use of the Alamouti code. In particular,

we propose and analyze a new MMSE receiver in multiuser context, which isrobust to the encountered

intra-network but also external interferences. This latter analysis has however been limited to the case

of flat fading channels – or, equivalently, to the case of frequency selective channels with an OFDM

waveform.

Diversity order

The diversity orderd of a system is by definition the exponential decrease slope of the error probability

Pe as a function of the SNRρ, for high SNRs:

d = − lim
ρ→+∞

logPe
log ρ

. (36)

The probability error then verifiesPe ∼ kρ−d for ρ ≫ 1, wherek does not depend onρ. There are two

approaches to study the diversity of a system. The most common one (see, e.g., [19–21]) is based on the

analysis of the Pairwise Error Probability (PEP) decrease rate w.r.t. the SNR. Nevertheless, this approach

requires the design of specific coding schemes to achieve the maximum diversity. We here consider the

second approach which is based on the outage probabilityPout(R),R being the target rate:

Pout(R) = P (I < R) , (37)

whereI denotes the mutual information of the system. For a well designed system, the outage probability

corresponds to the probability of a non reliable transmission. It is thereforeconsistent to study the

exponential decrease of the outage probabilityPout instead of the error probabilityPe. This approach is

moreover convenient as it bypasses the coding design issue at the transmitter. In this case the diversity is

defined as

d(R) = − lim
ρ→+∞

logPout(R)

log ρ
. (38)

This approach is used by many authors within the framework of the DMT (Diversity-Multiplexing Trade-

off) analysis introduced by Zheng and Tse [22]. Hence, we now focus on studying the DMT.

The Diversity-Multiplexing Trade-off:

As mentioned in previous section, MIMO systems enable at high SNR a linear capacity gain compared
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to SISO systems [2]:

I(ρ) ∼ min{M,N} log ρ for ρ≫ 1, (39)

whereI(ρ) stands for the mutual information,M for the number of transmitting antennas,N for the

number of receiving antennas. The capacity thus increases likelog ρ at high SNR. It is therefore relevant

to write the target rate under the following form:

R = r log ρ, (40)

wherer ≤ min{M,N} is called the multiplexing coefficient – or multiplexing order, multiplexing gain.

Parameterr corresponds to the spatial multiplexing gain: the MIMO channel can be decoupled into

independent SISO subchannels which amount to the rank of channel matrix H, which ismin{M,N} if

H is well conditioned. Spatial multiplexing is equivalent to using the available degrees of freedom to

transmit independent signals on these parallel channels instead of using them to improve the transmission

reliability; there is a fundamental trade-off between the multiplexing coefficient r and the diversityd(R),

which is called Diversity-Multiplexing Trade-off (DMT) [22]. It is then interesting to analyze how the

diversity orderd(R) = d(r log ρ) defined by (38) depends on the multiplexing gainr; hence, we hereafter

consider the diversity order as a function ofr and denote itd(r):

d(r) = − lim
ρ→+∞

logPout(r log ρ)

log ρ
. (41)

We then obtain a priori the maximum achievable diversitydmax for r = 0. Zheng and Tse have derived

d(r) for a flat fading MIMO channel in [22]:

d(r) = (M − r)(N − r). (42)

For a fixed target rateR, i.e. forr = 0, the diversity is thendmax =MN . This result has been extended

rapidly to the frequency selective SISO channel [23, 24], followed bythe analysis of the frequency

selective MIMO channel [25–27]. NotingL the number of independent paths, it has been shown that,

under certain conditions, the diversity orderd(r) verifies

d(r) = L(M − r)(N − r), (43)

hence, a maximum diversity orderdmax = LMN . Nevertheless, these results assume an optimal re-

ceiver, that is a Maximum Likelihood (ML) receiver. Such a receiver isin practice complex to implement.

Sub-optimal linear receivers such as the MMSE receivers are then preferred.

Analysis of the DMT for MMSE receivers:

The second contribution of the thesis is the DMT analysis for MMSE receivers, for a fixed target rateR,

i.e. for a multiplexing coefficientr = 0. In the case of a flat fading MIMO channel it has been shown
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by [28] that the MMSE receivers considerably damage the DMT. Indeed, the following expression of

d(r) is then obtained:

d(r) = (N −M + 1)
(
1− r

M

)+
, (44)

with (·)+ = max{0, ·}. Hence, we expect at most a diversity ofdmax = N −M + 1. Nonetheless, for

a finite target rateR, i.e. forr = 0, Hedayat et al. have observed in [29] that the MMSE receivers give

rise to several diversity orders depending on the value of target rateR (see also [30, 31]). In particular,

the maximum diversityLMN previously mentioned is achieved for sufficiently low values ofR, hence

the great interest of these receivers simple to implement. This unexpected behavior has been explained

in [28, 32] for flat fading MIMO channels and in [33, 66] for frequency selective channels, yet in both

cases the explanations are incomplete. We highlight the inaccuracy of the proof given in [32] for a

flat fading channel and give a rigorous proof of the diversity for such a system. As for the frequency

selective channels with cyclic prefix, Mehana and Nosratinia [33,66] have only derived the diversity for

the specific case of a number of pathsL equal to the transmission data block length. Hence, we derive

the diversity order in the general case – yet we assume that the transmission data block length is large

enough.

Diversity through STBC

The diversity-multiplexing trade-off mentioned previously occurs naturallyat the system design level:

one can for instance favor multiplexing by using the V-BLAST scheme (Vertical Bell Layered Space-

Time [34,35]), or favor the diversity gain by using a STBC (Space-Time Block Code [36]) at the transmit-

ter. Zheng et Tse [22] have in fact highlighted the opposite behavior of these two schemes by analyzing

their DMT. As we focus in this part on diversity, which helps increasing thetransmission range and re-

liability, we here concentrate on the use of STBC. The orthogonal STBCs are particularly attractive as

they achieve maximum spatial diversity for a given number of transmitting and receiving antennas. We

tackle the use of the first orthogonal STBC, which is also the simplest and most-known, introduced by

Alamouti in [38]. It has been standardized in the following norms: UMTS, GSM, EDGE, IEEE 802.11n,

IEEE 802.16 [39].

In order to make the most of the available spectrum and of the diversity inherent in the transmission

channel, we focus in this thesis on the multiuser Alamouti case, that is to say the case where several users

share the same spectral resources and all use the Alamouti scheme. In thiscontext Interference Cancel-

lation (IC) schemes are required to allow users to share the same spectral resources without impacting

the transmission quality. Several IC schemes [40–47] have been introduced allowingP users, all having

M transmitting antennas and using a STBC, to share the same channel. Winters etal. have shown [48]

that the diversity order of each user isM for N = M(P − 1) + 1 receiving antennas. However, if the

STBC structure is used properly,N = P receiving antennas are sufficient to provide this diversity order
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of M . This result was first proved by Naguib et al. in [40, 42] for the case of the Alamouti scheme

with M = N = P = 2. The latter has been generalized to a number of receiving antennasN ≥ P

by [43] (see also [47] for an alternative approach). Eventually, Kazemitabar and Jafarkhani have pre-

sented in [46] an IC scheme for quasi-orthogonal STBC (see [49, 50]), allowing a receiver withN ≥ P

antennas to separateP users, all equipped withM > 2 transmitting antennas. Nonetheless, all these IC

techniques requireN > 1, that is several receiving antennas, which remains a challenge at the handset

level due to cost and size limitations. This supports the development of the so-called SAIC techniques

(Single Antenna Interference Cancellation), which only require one receiving antenna and which are an

alternative to the complex ML multiuser demodulation techniques [51].

The SAIC techniques were first developed for users with only one transmitting antenna using single

carrier transmission [52–56]. Most of these techniques [52, 54–56] use the second order non-circularity

property [57] of real-valued modulations, such as BPSK and ASK, or ofquasi-rectilinear modulations

(that is, corresponding to a complex filtering of real-valued constellations)after a derotation operation,

such as MSK, GMSK, OQAM [58]. They implement an optimal WL (Widely Linear[59]) filtering of

the observations and allow a receiver to separate two users from only one receiving antenna [54]. This

simple and efficient concept has received significant attention within the framework of 2G-3G networks:

• 3G Americas [60] has presented the SAIC technology as a great improvement for GSM mobile

station receivers allowing significant network capacity gains for the GSM system [55,67],

• this technology has been standardized in 2005 for GSM and is currently operational in most of

GSM handsets,

• a new standardization of this technology, called MUROS (Multi-User ReusingOne Slot), which

enables several GSM users reuse the same TDMA slot, is currently underinvestigation,

• an extension of the SAIC concept for several receiving antennas, called MAIC (Multiple Antenna

Interference Cancellation) [54], is of great interest for GPRS networks in particular [61].

As for the 4G networks, antenna arrays have been standardized at thehandset. The MAIC concept, which

assumes several receiving antennas but is still of great interest, can then be used instead of the SAIC

concept. Nevertheless, the implementation of antenna arrays at the handset level remains a challenge;

hence, the SAIC techniques are still relevant and of great interest for4G networks. In fact, an extension

of these techniques to OFDM has been recently introduced by [62] for users with one single transmitting

antenna using ASK modulation. Note, moreover, that the SAIC/MAIC concept is also very attractive for

military ad hoc networks, which require most of all simple and robust systems.

The real-valued modulations, such as the ASK modulation, are certainly less power efficient than the

traditional QAM modulation: the transmitter only uses the real dimension. Yet, in a multiuser context, the

ASK modulation may become more attractive than a QAM modulation by properly using the available
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degree of freedom to separate the users at the receiver. The degree of freedom which have not been

used by the transmitter are somehow recovered at the receiver, where they can be used if an appropriate

processing is used, that is, WL filtering. Several studies [62–64] seemto show that, in multiuser contexts,

transmissions using real-valued modulations together with WL receivers may provide a higher spectral

efficiency compared to transmissions using complex-valued modulation together with linear receivers.

As a consequence, the use of ASK constellations coupled with WL receivers, instead of complex ones

with linear receivers, does not seem to be a limitation and may even bring advantages in terms of error

probability and spectral efficiency in multiuser environments.

The SAIC/MAIC concepts only concern SISO and SIMO systems. We propose in this thesis an

extension of these concepts to MISO and MIMO systems, thanks to the Alamoutiorthogonal STBC

used with real-valued constellations. To that end we introduce in multiuser context a new WL MMSE

receiver – which has already been introduced by [65] but for equalization purposes. This receiver, called

the F-WL-MMSE receiver, is robust to intra-network interferences (that is, interferences which arise

from the other users of the network), but also to external interferences. We prove that, contrary to the

receivers of the literature, this receiver is optimal in the ML sense for internal interferences. We then

analyze its performance, in terms of interferences rejection capability, of SINR and of SER, in order to

highlight its great interest compared to the receivers of the literature. In particular, we show that the

F-WL-MMSE receiver can reject2N − 1 internal interferences fromN receiving antennas and provide

a simple geometrical interpretation of its behavior. We also propose an adaptive implementation of this

receiver.

Thesis outline

The first part of this manuscript focuses on the ergodic capacity optimization for frequency selective

channels and is discussed in chapter 1. We establish in the first place a large system approximation of the

ergodic mutual information before secondly tackling its optimization w.r.t. the inputcovariance matrix.

To that end we propose an efficient iterative algorithm to obtain the optimal covariance. The second part

of this thesis deals with diversity issues in the presence of a MMSE receiver: in chapter 2 we focus on the

maximum achievable diversity of the MMSE receiver for flat fading and frequency selective channels,

while in chapter 3 we focus on systems enhancing diversity through the useof the Alamouti scheme. In

this latter chapter we introduce a new MMSE receiver in multiuser contexts, which makes the most of

the degrees of freedom available in the channel. This receiver is robust to interferences and extends the

SAIC/MAIC concept to MIMO systems, hence the name of SAIC/MAIC Alamouticoncept.
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Contributions

The two following journal articles arose from the work carried out duringthis thesis:

• F. Dupuy and P. Loubaton, “On the capacity achieving covariance matrix for frequency selective

MIMO channels using the asymptotic approach,” IEEE Transactions on Information Theory, vol.

57, n◦ 9, pp 5737–5753 , September 2011

• P. Chevalier and F. Dupuy, “Widely linear Alamouti receivers for the reception of real-valued

signals corrupted by interferences - the Alamouti-SAIC/MAIC concept,” IEEE Transactions on

Signal Processing, vol. 59, n◦ 7, pp 3339–3354, July 2011.

The IEEE IT journal article corresponds to chapter 1, whereas the IEEE SP journal article serves as a

basis for chapter 3. Moreover, the five following articles have been presented at various conferences:

• F. Dupuy and P. Loubaton, “Diversity of the MMSE receiver in flat fading and frequency selective

MIMO channels at fixed rate,” Forty-Fifth Asilomar Conference on Signals, Systems and Com-

puters, Pacific Grove, California, November 2011,

• F. Dupuy and P. Chevalier, “Fonctionnement et performance des récepteurs Alamouti linéaires au

sens large pour la réception de constellations réelles en contexte multi-utilisateur - Analyse du

concept SAIC/MAIC Alamouti,” GRETSI Conference, Bordeaux, France, September 2011,

• F. Dupuy and P. Chevalier, “Performance Analysis of WL Alamouti Receivers for real-valued con-

stellations in Multiuser Context,” European Signal Processing Conference (EUSIPCO), Barcelona,

Spain, September 2011,

• F. Dupuy and P. Loubaton, “On the capacity achieving covariance matrix for frequency selective

MIMO channels using the asymptotic approach,” IEEE International Symposium on Information

Theory (ISIT), Austin, Texas, June 2010,

• P. Chevalier and F. Dupuy, “Single and multiple antennas Alamouti receivers for the reception of

real-valued signals corrupted by interferences - the Alamouti SAIC/MAICconcept,” Forty-Third

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California, November

2009.

In particular, chapter 2 corresponds to the results which will be presented at Asilomar conference 2011.

A patent has also been filed within the framework of this thesis, corresponding to the receiver introduced

in chapter 3:
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• P. Chevalier and F. Dupuy, “Procédé et dispositif de réception mono et multi-antennes pour liaisons

de type Alamouti,” n◦ FR 09.05263, 3 November 2009.
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Chapter 1

Capacity optimization

I N this chapter we propose an algorithm for evaluating the capacity-achievinginput covariance matri-

ces for frequency selective Rayleigh MIMO channels. In contrast withthe flat fading Rayleigh case,

no closed-form expressions for the eigenvectors of the optimum input covariance matrix are available.

Classically, both the eigenvectors and eigenvalues are computed numericallyand the corresponding opti-

mization algorithms remain computationally very demanding. In this chapter, it is proposed to optimize

(w.r.t. the input covariance matrix) a large system approximation of the average mutual information

derived by Moustakas and Simon. The validity of this asymptotic approximation isclarified thanks to

Gaussian large random matrices methods. It is shown that the approximation isa strictly concave func-

tion of the input covariance matrix and that the average mutual information evaluated at the argmax of

the approximation is equal to the capacity of the channel up to aO (1/t) term, wheret is the number of

transmit antennas. An algorithm based on an iterative waterfilling scheme is proposed to maximize the

average mutual information approximation, and its convergence studied. Numerical simulation results

show that, even for a moderate number of transmit and receive antennas,the new approach provides the

same results as direct maximization approaches of the average mutual information.

1.1 Introduction

When the channel state information is available at both the receiver and the transmitter of a MIMO

system, the problem of designing the transmitter in order to maximize the (Gaussian) mutual information

of the system has been addressed successfully in a number of chapters. This problem is, however, more

difficult when the transmitter has the knowledge of the statistical properties ofthe channel, the channel

state information being still available at the receiver side, a more realistic assumption in the context

of mobile systems. In this case, the mutual information is replaced by the average mutual information
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(EMI), which, of course, is more complicated to optimize.

The optimization problem of the EMI has been addressed extensively in the case of certain flat

fading Rayleigh channels. In the context of the so-called Kronecker model, it has been shown by various

authors (see, e.g., [68] for a review) that the eigenvectors of the optimalinput covariance matrix must

coincide with the eigenvectors of the transmit correlation matrix. It is therefore sufficient to evaluate

the eigenvalues of the optimal matrix, a problem which can be solved by using standard optimization

algorithms. Similar results have been obtained for flat fading uncorrelated Rician channels ( [6]).

In this chapter, we consider this EMI maximization problem in the case of popular frequency se-

lective MIMO channels (see, e.g., [16, 17]) with independent paths. Inthis context, the eigenvectors of

the optimum transmit covariance matrix have no closed-form expressions, so that both the eigenvalues

and the eigenvectors of the matrix have to be evaluated numerically. For this, itis possible to adapt

the approach of [7] developed in the context of correlated Rician channels. However, the corresponding

algorithms are computationally very demanding as they heavily rely on intensive Monte-Carlo simula-

tions. We therefore propose to optimize the approximation of the EMI, derived by Moustakas and Simon

( [17]), in principle valid when the number of transmit and receive antennas converge to infinity at the

same rate, but accurate for realistic numbers of antennas. This will turn out to be a simpler problem. We

mention that, while [17] contains some results related to the structure of the argument of the maximum

of the EMI approximation, [17] does not propose any optimization algorithm.

We first review the results of [17] related to the large system approximation of the EMI. The analysis

of [17] is based on the so-called replica method, an ingenious trick whose mathematical relevance has not

yet been established mathematically. Using a generalization of the rigorous analysis of [10], we verify

the validity of the approximation of [17] and provide the convergence speed under certain technical

assumptions. Besides, the expression of the approximation depends on thesolutions of a non linear

system. The existence and the uniqueness of the solutions are not addressed in [17]. As our optimization

algorithm needs to solve this system, we clarify this crucial point. We show in particular that the system

admits a unique solution that can be evaluated numerically using the fixed point algorithm. Next, we

study the properties of the EMI approximation, and briefly justify that it is a strictly concave function of

the input covariance matrix. We show that the mutual information corresponding to the argmax of the

EMI approximation is equal to the channel capacity up to aO
(
1
t

)
term, wheret is the number of transmit

antennas. Therefore it is relevant to optimize the EMI approximation to evaluate the capacity achieving

covariance matrix. We finally present our maximization algorithm of the EMI approximation. It is

based on an iterative waterfilling algorithm which, in some sense, can be seen as a generalization of [13]

devoted to the Rayleigh context and of [12,69] devoted to the correlated Rician case: Each iteration will

be devoted to solve the above mentioned system of nonlinear equations as well as a standard waterfilling

problem. It is proved that the algorithm converges towards the optimum inputcovariance matrix as long
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as it converges1.

The chapter is organized as follows. Section 1.2 is devoted to the presentation of the channel model,

the underlying assumptions, the problem statement. In section 1.3, we rigorously derive the large system

approximation of the EMI with Gaussian methods and establish some properties of the asymptotic ap-

proximation as a function of the covariance matrix of the input signal. The maximization problem of the

EMI approximation is then studied in section 1.4. Numerical results are provided in section 1.5.

1.2 Problem Statement

1.2.1 General Notations

In this chapter, the notationss, x, M, stand for scalars, vectors and matrices, respectively. As usual,

‖x‖ represents the Euclidian norm of vectorx, and‖M‖, ρ(M) and |M| respectively stand for the

spectral norm, the spectral radius and the determinant of matrixM. The superscripts(.)T and (.)H

represent respectively the transpose and transpose conjugate. Thetrace ofM is denoted byTr(M).

The mathematical expectation operator is denoted byE(·). We denote byδi,j the Kronecker delta, i.e.

δi,j = 1 if i = j and0 otherwise.

All along this chapter,r andt stand for the number of receive and transmit antennas. Certain quan-

tities will be studied in the asymptotic regimet → ∞, r → ∞ in such a way thatt/r → c ∈ (0,∞).

In order to simplify the notations,t → ∞ should be understood from now on ast → ∞, r → ∞
and t/r → c ∈ (0,∞). A matrix Mt whose size depends ont is said to be uniformly bounded if

supt ‖Mt‖ <∞.

Several variables used throughout this chapter depend on various parameters, e.g., the number of

antennas, the noise level, the covariance matrix of the transmitter, etc. In order to simplify the notations,

we may not always mention all these dependencies.

1.2.2 Channel Model

We consider a wireless MIMO link witht transmit andr receive antennas corrupted by a multipath

propagation channel. The discrete-time propagation channel between thetransmitter and the receiver is

characterized by the input-output equation

y(n) =
L∑

l=1

H(l)s(n− l + 1) + n(n) = [H(z)]s(n) + n(n), (1.1)

1Note however that we have been unable to prove formally its convergence.
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wheres(n) = [s1(n), . . . , st(n)]
T andy(n) = [y1(n), . . . , yr(n)]

T represent the transmit and the

receive vector at timen respectively.n(n) is an additive Gaussian noise such thatE[nnH ] = σ2I. H(z)

denotes the transfer function of the discrete-time equivalent channel defined by

H(z) =
L∑

l=1

H(l) z−(l−1). (1.2)

Each coefficientH(l) is assumed to be a Gaussian random matrix given by

H(l) =
1√
t
(C(l))1/2Wl(C̃

(l))1/2, (1.3)

whereWl is ar × t random matrix whose entries are independent and identically distributed complex

circular Gaussian random variables, with zero mean and unit variance. The matricesC(l) and C̃(l)

are positive definite, and respectively account for the receive and transmit antenna correlation. This

correlation structure is called a separable or Kronecker correlation model. We also assume that for each

k 6= l, matricesH(k) andH(l) are independent. Note that our assumptions imply thatH(l) 6= 0 for

l = 1, . . . , L. However, it can be checked easily that the results stated in this chapter remain valid if

some coefficients(H(l))l=1,...,L are zero.

In this chapter the channel matrices are assumed perfectly known at the receiver side. However, only

the statistics of the(H(l))l=1,...,L, i.e. matrices(C̃(l),C(l))l=1,...,L, are available at the transmitter side.

1.2.3 Ergodic Capacity of the Channel.

Let Q(e2iπν) be thet× t spectral density matrix of the transmit signals(n), which is assumed to verify

the transmit power condition
1

t

∫ 1

0
Tr(Q(e2iπν))dν = 1. (1.4)

Then, the (Gaussian) ergodic mutual informationI(Q(.)) between the transmitter and the receiver is

defined as

I(Q(.)) = EW

[∫ 1

0
log

∣∣∣∣Ir +
1

σ2
H(·)Q(·)H(·)H

∣∣∣∣ dν
]
, (1.5)

whereEW[.] = E(Wl)l=1,...,L
[.]. The ergodic capacity of the MIMO channel is equal to the maximum

of I(Q(.)) over the set of all spectral density matrices satisfying the constraint (1.4). The hypotheses

formulated on the statistics of the channel allow however to limit the optimization to the set of positive

matrices which are independent of the frequencyν. This is because the probability distribution of matrix

H(e2iπν) is clearly independent of the frequencyν. More precisely, the mutual informationI(Q(.)) is

also given by

I(Q(.)) = EH

[∫ 1

0
log

∣∣∣∣Ir +
1

σ2
HQ(e2iπν)HH

∣∣∣∣ dν
]
,
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whereH =
∑L

l=1H
(l) = H(1). Using the concavity of the logarithm, we obtain that

I(Q(.)) ≤ EH

[
log

∣∣∣∣Ir +
1

σ2
H

(∫ 1

0
Q(e2iπν)dν

)
HH

∣∣∣∣
]
.

We denote byC the cone of non negative hermitian matrices, and byC1 the subset of all matricesQ of C

satisfying1
tTr(Q) = 1. If Q is an element ofC1, the mutual informationI(Q) reduces to

I(Q) = EH

[
log

∣∣∣∣Ir +
1

σ2
HQHH

∣∣∣∣
]
. (1.6)

Q 7→ I(Q) is strictly concave on the convex setC1 and reaches its maximum at a unique element

Q∗ ∈ C1. It is clear that ifQ(e2iπν) is any spectral density matrix satisfying (1.4), then the matrix∫ 1
0 Q(e2iπν)dν is an element ofC1. Therefore,

EH

[
log

∣∣∣∣Ir +
1

σ2
H

(∫ 1

0
Q(e2iπν)dν

)
HH

∣∣∣∣
]
≤ EH

[
log

∣∣∣∣Ir +
1

σ2
HQ∗H

H

∣∣∣∣
]
.

In other words,

I(Q(.)) ≤ I(Q∗)

for each spectral density matrix verifying (1.4). This shows that the maximumof functionI over the set

of all spectral densities satisfying (1.4) is reached on the setC1. The ergodic capacityCE of the channel

is thus equal to

CE = max
Q∈C1

I(Q). (1.7)

We note that property (1.7) also holds if the time delays of the channel are non integer multiples of the

symbol period, provided that the receiving filter coincides with the ideal low-pass filter on the[− 1
2T ,

1
2T ]

frequency interval, whereT denotes the symbol period. If this is the case, the transfer functionH(e2iπν)

is equal toH(e2iπν) =
∑L

l=1H
(l)e−2iπντl , whereτl is the delay associated to pathl for l = 1, . . . , L.

The probability distribution ofH(e2iπν) does not depend onν and this leads immediately to (1.7).

If the matrices(C(l))l=1,...,L all coincide with a matrixC, matrix H follows a Kronecker model

with transmit and receive covariance matrices1
L

∑L
l=1 C̃

(l) andC respectively [70]. In this case, the

eigenvectors of the optimum matrixQ∗ coincide with the eigenvectors of1L
∑L

l=1 C̃
(l). The situation is

similar if the transmit covariance matrices(C̃(l))l=1,...,L coincide. In the most general case, the eigenvec-

tors ofQ∗ have however no closed-form expression. The evaluation ofQ∗ and of the channel capacity

CE is thus a more difficult problem. A possible solution consists in adapting the Vu-Paulraj approach

( [7]) to the present context. However, the algorithm presented in [7] is very demanding since the needed

evaluations ofI(Q) gradient and Hessian require intensive Monte-Carlo simulations.
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1.2.4 The Large System Approximation ofI(Q)

Whent andr converge to∞ while t/r → c, c ∈ (0,∞), [17] showed thatI(Q) can be approximated

by I(Q) defined by

I(Q) = log

∣∣∣∣∣Ir +
L∑

l=1

δ̃l(Q)C(l)

∣∣∣∣∣+ log

∣∣∣∣∣It +Q

(
L∑

l=1

δl(Q)C̃(l)

)∣∣∣∣∣− σ2t

(
L∑

l=1

δl(Q)δ̃l(Q)

)
, (1.8)

where(δ1(Q), . . . , δL(Q))T = δ(Q) and(δ̃1(Q), . . . , δ̃L(Q))T = δ̃(Q) are the positive solutions of

the system of2L equations: {
κl = fl(κ̃)

κ̃l = f̃l(κ,Q)
for l = 1, . . . , L, (1.9)

with κ = (κ1, . . . , κL)
T andκ̃ = (κ̃1, . . . , κ̃L)

T , and with




fl(κ̃) =
1
tTr

[
C(l)T(κ̃)

]
,

f̃l(κ,Q) = 1
tTr

[
Q1/2C̃(l)Q1/2T̃(κ,Q)

]
.

(1.10)

Ther × r matrixT(κ̃) and thet× t matrix T̃(κ,Q) are respectively defined by:

T(κ̃) =

[
σ2

(
Ir +

L∑

j=1

κ̃jC
(j)

)]−1

, (1.11)

T̃(κ,Q) =

[
σ2

(
It +

L∑

j=1

κjQ
1/2C̃(j)Q1/2

)]−1

. (1.12)

1.3 Deriving the Large System Approximation

1.3.1 The Canonical Equations

In [17], the existence and the uniqueness of positive solutions to (1.9) is assumed without justification.

Moreover no algorithm is given for the calculation of theδl and δ̃l, l = 1, . . . , L. We therefore clarify

below these important points. We consider the caseQ = I in order to simplify the notations. To address

the general case it is sufficient to change matrices(C̃(l))l=1,...,L into (Q1/2C̃(l)Q1/2)l=1,...,L in what

follows.

Theorem 1. The system of equations (1.9) admits unique positive solutions(δl)l=1,...,L and(δ̃l)l=1,...,L,

which are the limits of the following fixed point algorithm:

- Initialization: δ(0)l > 0, δ̃(0)l > 0, l = 1, . . . , L.
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- Evaluation of theδ(n+1)
l and δ̃(n+1)

l fromδ(n) = (δ
(n)
1 , . . . , δ

(n)
L )T and δ̃(n) = (δ̃

(n)
1 , . . . , δ̃

(n)
L )T :

{
δ
(n+1)
l = fl(δ̃

(n)),

δ̃
(n+1)
l = f̃l(δ

(n), I).
(1.13)

Proof: We prove the existence and uniqueness of positive solutions.

Existence: Using analytic continuation technique, we show in Appendix 1.A that the fixed point

algorithm introduced converges to positive coefficientsδl andδ̃l, l = 1, . . . , L. As functionsκ̃ 7→ fl(κ̃)

andκ 7→ f̃l(κ, I) are clearly continuous, the limit of(δ(n), δ̃(n)) whenn → ∞ satisfies (1.9). Hence,

the convergence of the algorithm yields the existence of a positive solution to(1.9).

Uniqueness: Let (δ, δ̃) and (δ′, δ̃′) be two solutions of the canonical equation (1.9) withQ =

I. We denote(T, T̃) and(T′, T̃′) the associated matrices defined by (1.11) and (1.12), where(κ, κ̃)

respectively coincide with(δ, δ̃) and(δ′, δ̃′). Introducinge = δ − δ′ = (e1, . . . , eL)
T we have:

el =
1

t
Tr
[
C(l)T(T′−1 −T−1)T′

]

=
σ2

t

L∑

k=1

(δ̃′k − δ̃k)Tr
(
C(l)TC(k)T′

)
. (1.14)

Similarly, with ẽ = δ̃ − δ̃′ = (ẽ1, . . . , ẽL)
T ,

ẽk =
σ2

t

L∑

l=1

(δ′l − δl)Tr
(
C̃(k)T̃C̃(l)T̃′

)
. (1.15)

And (1.14) and (1.15) can be written together as
[

I σ2A(T,T′)

σ2Ã(T̃, T̃′) I

][
e

ẽ

]
= 0, (1.16)

whereL × L matricesA(T,T′) andÃ(T̃, T̃′) are defined byAkl(T,T
′) = 1

tTr
(
C(k)TC(l)T′) and

Ãkl(T̃, T̃′) = 1
tTr(C̃

(k)T̃C̃(l)T̃′). We will now prove thatρ(M) < 1, where matrixM is defined by

M = σ4Ã(T̃, T̃′)A(T,T′).

This will imply that the matrix governing the linear system (1.16) is invertible, and thus thate = ẽ = 0,

i.e. the uniqueness.

|Mkl| =
∣∣∣∣
σ4

t2

L∑

j=1

Tr(C̃(k)T̃C̃(j)T̃′)Tr(C(j)TC(l)T′)

∣∣∣∣

≤ σ4

t2

L∑

j=1

∣∣∣Tr(C̃(k)T̃C̃(j)T̃′)
∣∣∣
∣∣∣Tr(C(j)TC(l)T′)

∣∣∣ . (1.17)
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Using Cauchy-Schwarz inequality|Tr(AB)|2 ≤ Tr(AAH)· Tr(BBH), we have:




1

t

∣∣∣Tr(C̃(k)T̃C̃(j)T̃′)
∣∣∣ ≤

√
Ãkj(T̃, T̃)Ãkj(T̃′, T̃′),

1

t

∣∣∣Tr(C(j)TC(l)T′)
∣∣∣ ≤

√
Ajl(T,T)Ajl(T′,T′).

Using these two inequalities in (1.17) gives

|Mkl| ≤ σ4
L∑

j=1

√
Ãkj(T̃)Ãkj(T̃′)Ajl(T)Ajl(T′),

where matricesA(T) andÃ(T̃) are defined by




Akl(T) =
1

t
Tr(C(k)TC(l)T) = Akl(T,T),

Ãkl(T̃) =
1

t
Tr(C̃(k)T̃C̃(l)T̃) = Ãkl(T̃, T̃).

(1.18)

Using Cauchy-Schwarz inequality then yields:

|Mkl| ≤ Pkl,

whereP is theL× L matrix whose entries are defined by

Pkl =
√(

σ4Ã(T̃)A(T)
)
kl

√(
σ4Ã(T̃′)A(T′)

)
kl
.

Theorem 8.1.18 of [71] then yieldsρ(M) ≤ ρ(P). Besides, Lemma 5.7.9 of [72] used on the definition

of P gives:

ρ(P) ≤
√
ρ
(
σ4Ã(T̃)A(T)

)√
ρ
(
σ4Ã(T̃′)A(T′)

)
. (1.19)

Lemma 1 (ii) in Appendix 1.C implies thatρ(σ4Ã(T̃)A(T)) < 1 andρ(σ4Ã(T̃′)A(T′)) < 1, so that

(1.19) finally implies:

ρ(M) ≤ ρ(P) < 1.

This completes the proof of Theorem 1. �

1.3.2 Deriving the Approximation of I(Q = It) With Gaussian Methods

We consider in this section the caseQ = It. We noteI = I(It), I = I(It). We have proved in the

previous section the consistency ofI(Q) definition. To establish the approximation ofI(Q), [17] used

the replica method, a useful and simple trick whose mathematical relevance is not yet proved in the

present context. Moreover, no assumptions were specified for the convergence ofI(Q) towardsI(Q).

However, using large random matrix techniques similar to those of [10] and [12], it is possible to prove

rigorously the following theorem, in which the (mild) suitable technical assumptions are clarified.
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Theorem 2. If we assume that, for everyj ∈ {1, . . . , L}, supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞,

inft
(
1
tTrC

(j)
)
> 0 andinft

(
1
tTr C̃

(j)
)
> 0, then

I = I + O

(
1

t

)
.

Sketch of proof: The proof is done in three steps:

1. In a first step we derive a large system approximation ofEH[TrS], whereS = (HHH + σ2Ir)
−1

is the resolvent ofHHH at point−σ2. Nonetheless the approximation is expressed with the terms

αl =
1
tEH[Tr

(
C(l)S

)
], l = 1, . . . , L, which still depend on the entries ofEH[S].

2. A second step refines the previous approximation to obtain an approximation which this time only

depends on the variance structure of the channels, i.e. matrices(C(l))l∈{1,...,L} and(C̃(l))l∈{1,...,L}.

3. The previous approximation is used to get the asymptotic behavior of mutualinformation by a

proper integration.

Proof: We now sketch the three steps stated above. We provide the missing details in theAppendix.

a) A first large system approximation ofEH[TrS]

We introduce vectorsα = [α1, . . . , αL]
T andα̃ = [α̃1, . . . , α̃L]

T defined by
{
αl =

1
tTr

[
C(l)

EH[S]
]

α̃l =
1
tTr
[
C̃(l)R̃

] for l = 1, . . . , L, (1.20)

wheret × t matrix R̃ is defined byR̃(α) =
[
σ2
(
It +

∑L
j=1 αjC̃

(j)
)]−1

. Using large random matrix

techniques similar to those of [10] and [12], the following proposition is proved in Appendix 1.B.

Proposition 1. Assume that, for everyj ∈ {1, . . . , L}, supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞. Then

EH[S] can be written as

EH[S] = R+Υ, (1.21)

where matrixΥ is such that1tTr(ΥA) = O
(
1
t2

)
for any uniformly bounded matrixA and where matrix

R is defined byR(α̃) =
[
σ2
(
Ir +

∑L
j=1 α̃jC

(j)
)]−1

.

One can check that the entries of matrixΥ areO
(

1
t3/2

)
; nevertheless this result is not needed here.

It follows from Proposition 1 that, for anyr × r matrixA uniformly bounded inr,

1

t
EH[Tr(SA)] =

1

t
Tr(RA) + O

(
1

t2

)
. (1.22)
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TakingA = I gives a first approximation ofEH[TrS]:

EH[TrS] = TrR+ O

(
1

t

)
. (1.23)

Nonetheless matrixR depends onEH[S] through vectorα.

b) A refined large system approximation ofEH[Tr S]

We first recall from Section 1.3.1 thatT is the matrix defined by (1.11) associated to the solutions(δ, δ̃)

of the canonical equation (1.9) withQ = It: T =
(
σ2
(
Ir +

∑L
l=1 δ̃lC

(l)
))−1

. We introduce the

following proposition which will lead to the desired approximation ofEH[Tr S]:

Proposition 2. Assume that, for everyj ∈ {1, . . . , L}, supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞,

inft
(
1
tTrC

(j)
)
> 0 andinft

(
1
tTr C̃

(j)
)
> 0. LetA be ar × r matrix uniformly bounded inr, then

1

t
Tr(RA) =

1

t
Tr(TA) + O

(
1

t2

)
. (1.24)

The proof is given in Appendix 1.C. It relies on the similarity of the systems of equations verified by

the(αl, α̃l) and the(δl, δ̃l). Actually, takingA = C(l) in (1.22) yieldsαl = 1
tTr(C

(l)R) + O
(
1
t2

)
and

therefore 



αl =
1
tTr
[
C(l)

[
σ2(I+

∑L
j=1 α̃jC

(j))
]−1
]
+ O

(
1
t2

)

α̃l =
1
tTr
[
C̃(l)

[
σ2(I+

∑L
j=1 αjC̃

(j))
]−1
]

for l = 1, . . . , L. TakingA = Ir in (1.24) together with (1.23) leads to

EH[TrS] = TrT+ O

(
1

t

)
(1.25)

c) The resulting large system approximation ofI

The ergodic mutual informationI can be written in terms of the resolventS:

I = EH

[
log

∣∣∣∣Ir +
HHH

σ2

∣∣∣∣
]
= EH

[
log
∣∣σ2S(σ2)

∣∣−1
]
.

As the differential ofg(A) = log |A| is given byg(A + δA) = g(A) + Tr[A−1δA] + o(‖δA‖), we

obtain:

dI

dσ2
= −EH

[
Tr[S(σ2)HHH ]

σ2

]

= −EH

[
Tr[Ir − σ2S(σ2)]

σ2

]
,
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where the last equality follows from the so-called resolvent identity

σ2S(σ2) = Ir − S(σ2)HHH . (1.26)

The resolvent identity is inferred easily from the definition ofS(σ2). As I(σ2 = +∞) = 0, we now

have the following expression of mutual information:

I(σ2) =

∫ +∞

σ2

(
r

ρ
− EH [Tr S(ρ)]

)
dρ.

This equality clearly justifies the search of a large system equivalent ofEH [TrS] done in the previous

sections. The term under the integral sign can be written as

r

σ2
− EH [TrS] = t

L∑

l=1

δ̃lδl + EH [Tr (T− S)] ,

as r
σ2−TrT = Tr

[
((σ2T)−1−Ir)T

]
= Tr

[
(
∑

l δ̃lC
(l))T

]
= t

∑
l δ̃lδl. We need to integrateε(t, σ2) =

EH [Tr (T− S)] with respect toσ2 on (ρ > 0,+∞). We therefore introduce the following proposition:

Proposition 3. ε(t, σ2) = EH [Tr (T− S)] is integrable with respect toσ2 on (ρ > 0,+∞) and
∫ +∞

ρ
ε(t, σ2)dσ2 = O

(
1

t

)
.

Proof: We prove in Appendix 1.D that there existst0 such that, fort > t0, |ε(t, σ2)| ≤ 1
σ8t
P
(

1
σ2

)
,

whereP is a polynomial whose coefficients are real positive and do not depend onσ2 nor ont. Therefore∫ +∞
ρ ε(t, σ2)dσ2 = O

(
1
t

)
.

�

We now prove that the termt
∑

l δ̃lδl corresponds to the derivative ofI(σ2) with respect toσ2. To

this end, we consider the functionV0(σ
2,κ, κ̃) defined by

V0(σ
2,κ, κ̃) = log |I+C(κ̃)|+ log |I+ C̃(κ)| − σ2t

L∑

l=1

κlκ̃l,

whereC̃(κ) =
∑L

l=1 κlC̃
(l) andC(κ̃) =

∑L
l=1 κ̃lC

(l). Note thatV0(σ
2, δ, δ̃) = I(σ2). The derivative

of I(σ2) can then be expressed in terms of the partial derivatives ofV0.

dI

dσ2
=
∂V0

∂σ2
(σ2, δ, δ̃) +

L∑

l=1

∂V0

∂κl
(σ2, δ, δ̃) · dδl

dσ2

+
L∑

l=1

∂V0

∂κ̃l
(σ2, δ, δ̃) · dδ̃l

dσ2
.
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It is straightforward to check that





∂V0

∂κl
(σ2,κ, κ̃) = −σ2t

(
f̃l(κ, It)− κ̃l

)
,

∂V0

∂κ̃l
(σ2,κ, κ̃) = −σ2t

(
fl(κ̃)− κl

)
.

(1.27)

Both partial derivatives are equal to zero at point(σ2, δ, δ̃), as(δ, δ̃) verifies by definition (1.9) with

Q = It. Therefore,

dI

dσ2
=
∂V0

∂σ2
(σ2, δ, δ̃) = −t

L∑

l=1

δlδ̃l,

which, together with Proposition 3, leads toI = I + O
(
1
t

)
.

�

1.3.3 The Approximation I(Q)

We now consider the dependency inQ of the approximation̄I(Q). We previously considered the case

Q = It; to address the general case it is sufficient to change matrixC̃(l) into Q1/2C̃(l)Q1/2 for every

l = 1, . . . , L in 1.3.1 and 1.3.2. Hence the following Corollary of Theorem 2:

Corollary 1. Assume that, for everyj ∈ {1, . . . , L}, supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞,

inft
(
1
tTrC

(j)
)
> 0 andinft λmin(C̃

(j)) > 0. Then, forQ such assupt ‖Q‖ < +∞,

I(Q) = I(Q) + O

(
1

t

)
.

Note that the technical assumptions on matrices(C̃(l))l=1,...,L are slightly stronger than in Theorem

2 in order to ensure thatinft
(
1
tTr

[
QC̃(j)

])
> 0.

We can now state an important result about the concavity of the functionQ 7→ I(Q), a result which

will be highly needed for its optimization in section 1.4.

Theorem 3. Q 7→ I(Q) is a strictly concave function over the compact setC1.

Proof: We here only prove the concavity ofI(Q). The proof of the strict concavity is quite tedious, but

essentially the same as in [12] section IV (see also the extended version [69]). It is therefore omitted.

Denote by⊗ the Kronecker product of matrices. Let us introduce the following matrices:

∆(l) = Im ⊗C(l), ∆̃(l) = Im ⊗ C̃(l), Q̌ = Im ⊗Q.
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We now denoteȞ(z) =
∑L

l=1 Ȟ
(l)z−(l−1) with Ȟ(l) = 1√

mt
(∆(l))1/2W̌l(∆̃

(l))1/2. whereW̌ is a

rm × tm matrix whose entries are independent and identically distributed complex circular Gaussian

random variables with variance1. IntroducingIm(Q̌) the ergodic mutual information associated with

channelȞ(z):

Im(Q̌) = EȞ log

∣∣∣∣I+
ȞQ̌Ȟ

H

σ2

∣∣∣∣,

whereȞ = Ȟ(1) =
∑

l Ȟ
(l). Using the results of [17] and Theorem 2, it is clear thatIm(Q̌) admits an

asymptotic approximation̄Im(Q̌). Due to the block-diagonal nature of matrices∆(l), ∆̃(l) andQ̌, it is

straightforward to show thatδl(Q) = δl(Q̌), δ̃l(Q) = δ̃l(Q̌) and that, as a consequence,

1

m
Īm(Q̌) = Ī(Q),

and thus

lim
m→∞

1

m
Im(Q̌) = Ī(Q).

As Q̌ 7→ Im(Q̌) is concave, we can conclude thatĪ(Q) is concave as a pointwise limit of concave

functions. �

As I(Q) is strictly concave onC1 by Theorem 3, it admits a unique argmax that we denoteQ∗. We

recall thatI(Q) is strictly concave onC1 and that we denotedQ∗ its argmax. In order to clarify the rela-

tion betweenQ∗ andQ∗ we introduce the following proposition which establishes that the maximization

of I(Q) is equivalent to the maximization ofI(Q) overC1, up to aO
(
1
t

)
term.

Proposition 4. Assume that, for everyj ∈ {1, . . . , L}, supt ‖C(j)‖ < +∞, supt ‖C̃(j)‖ < +∞,

inft λmin(C
(j)) > 0 andinft λmin(C̃

(j)) > 0. Then

I(Q∗) = I(Q∗) + O

(
1

t

)
.

Proof: The proof is very similar to the one of [12, Proposition 3]. Assuming thatsupt ‖Q∗‖ < +∞ and

supt ‖Q∗‖ < +∞ we can apply Theorem 1 onQ∗ andQ∗, hence

(
I(Q∗)− I(Q∗)

)
+
(
I(Q∗)− I(Q∗)

)
=
(
I(Q∗)− I(Q∗)

)
+
(
I(Q∗)− I(Q∗)

)
= O

(
1

t

)
.

BesidesI(Q∗) − I(Q∗) ≥ 0 andI(Q∗) − I(Q∗) ≥ 0, asQ∗ andQ∗ respectively maximizeI(Q) and

I(Q). ThereforeI(Q∗)− I(Q∗) = O
(
1
t

)
.

One can provesupt ‖Q∗‖ < +∞ using the same arguments as in [12, Appendix III]. It essentially

lies in the fact thatQ∗ is the solution of a waterfilling algorithm, which will be shown independently

from this result in next section (see Proposition 7).
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Concerningsupt ‖Q∗‖ < +∞, the proof is identical to [12, Appendix III]; one just needs to replace
√
K√
K+1

A by 1√
t

∑L
l=2(C

(l))1/2Wl(C̃
(l))1/2,

1√
K+1

1√
t
C

1/2
R WC

1/2
T by 1√

t
(C(1))1/2W1(C̃

(1))1/2

in the definition ofH. ThenSj , defined in [12, (134)], can be written as

Sj = 2Re

{
1

t
u⊥H
j

(
C(1)

)1/2
Rj

(
L∑

l=2

(
C(l)

)1/2
zl,j +

(
C(1)

)1/2
uj

)}

+
1

t
u⊥H
j

(
C(1)

)1/2
Rj

(
C(1)

)1/2
u⊥
j ,

(1.28)

whereRj has the same definition as in [12],zl,j is thejth column of matrixWl(C̃
(l))1/2 andzj =

z1,j = uj + u⊥
j with uj the conditional expectationuj = E

[
z1,j
∣∣(z1,k)1≤k≤t,k 6=j

]
. As the vectoru⊥

j is

independent fromRj and fromzl,k, k = 1, . . . , t, l = 2, . . . , L, we can easily prove that the first term

of the right-hand side of (1.28) is aO
(
1
t

)
. The second term of the right-hand side of (1.28) is moreover

close fromρj = 1
t

[
(C̃(1))−1

]−1

jj
Tr(RjC

(1)). In fact it is possible to prove that there exists a constant

C1 such thatE
[
(Sj − ρj)

2
]
< C1

t (see [12] for more details).

The rest of the proof of [12, Proposition 3 (ii)] can then follow.

�

1.4 Maximization Algorithm

Proposition 4 shows that it is relevant to maximizeI(Q) overC1. In this section we propose a maxi-

mization algorithm for the large system approximationI(Q). We first introduce some classical concepts

and results needed for the optimization ofQ 7→ I(Q).

Definition 1. Let φ be a function defined on the convex setC1. LetP,Q ∈ C1. Thenφ is said to be

differentiable in the Gâteaux sense (or Gâteaux differentiable) at pointQ in the directionP −Q if the

following limit exists:

lim
λ→0+

φ(Q+ λ(P−Q))− φ(Q)

λ
.

In this case, this limit is noted〈φ′(Q),P−Q〉.

Note thatφ(Q+ λ(P−Q)) makes sense forλ ∈ [0, 1], asQ+ λ(P−Q) = (1− λ)Q+ λP naturally

belongs toC1. We now establish the following result:

Proposition 5. For eachP,Q ∈ C1, functionsQ 7→ δl(Q), Q 7→ δ̃l(Q), l = 1, . . . , L, as well as

functionQ 7→ I(Q) are Gâteaux differentiable atQ in the directionP−Q.
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Proof: See Appendix 1.E. �

In order to characterize the matrixQ∗ maximizingI(Q), we recall the following result:

Proposition 6. Letφ : C1 → R be a strictly concave function. Then,

(i) φ is Gâteaux differentiable atQ in the directionP−Q for eachP,Q ∈ C1,

(ii) Qopt is the unique argmax ofφ onC1 if and only if it verifies:

∀Q ∈ C1, 〈φ′(Qopt),Q−Qopt〉 ≤ 0. (1.29)

This proposition is standard (see for example [73, Chapter 2]).

In order to introduce our maximization algorithm, we consider the functionV(Q,κ, κ̃) defined by:

V(Q,κ, κ̃) = log |Ir +C(κ̃)|+ log |It +QC̃(κ)|

− σ2t
L∑

l=1

κlκ̃l. (1.30)

We recall thatC̃(κ) =
∑

l κlC̃
(l) andC(κ̃) =

∑
l κ̃lC

(l). Note that we haveV(Q, δ(Q), δ̃(Q)) =

I(Q). We then have the following result:

Proposition 7. Denote byδ∗ and δ̃∗ the quantitiesδ(Q∗) and δ̃(Q∗). Matrix Q∗ is the solution of the

standard waterfilling problem: maximize overQ ∈ C1 the functionlog |It +QC̃(δ∗)|.

Proof: We first remark that maximizing functionQ 7→ log |I + QC̃(δ∗)| is equivalent to maximizing

functionQ 7→ V(Q, δ∗, δ̃∗) by (1.30). The proof then relies on the observation hereafter proven that, for

eachP ∈ C1,

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉, (1.31)

where〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉 is the Gâteaux differential of functionQ 7→ V(Q, δ∗, δ̃∗) at pointQ∗ in

directionP−Q∗. Assuming (1.31) is verified, (1.29) yields that〈V′(Q∗, δ∗, δ̃∗),P−Q∗〉 ≤ 0 for each

matrixP ∈ C1. And as the functionQ 7→ V(Q, δ∗, δ̃∗) is strictly concave onC1, its unique argmax on

C1 coincides withQ∗.

It now remains to prove (1.31). ConsiderP, Q ∈ C1. Then,

〈I ′(Q),P−Q〉 =〈V′(Q, δ(Q), δ̃(Q)),P−Q〉+
L∑

l=1

∂V

∂κl
(Q, δ(Q), δ̃(Q))〈δ′l(Q),P−Q〉

+

L∑

l=1

∂V

∂κ̃l
(Q, δ(Q), δ̃(Q))〈δ̃′l(Q),P−Q〉.

(1.32)
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Similarly to (1.27), partial derivatives∂V∂κl (Q,κ, κ̃) = −σ2t
(
f̃l(κ,Q) − κ̃l

)
and ∂V

∂κ̃l
(Q,κ, κ̃) = −σ2t(

fl(κ̃) − κl
)

are equal to zero at point(Q, δ(Q), δ̃(Q)), as(δ(Q), δ̃(Q)) verifies (1.9) by definition.

Therefore, lettingQ = Q∗ in (1.32) yields:

〈I ′(Q∗),P−Q∗〉 = 〈V′(Q∗, δ(Q∗), δ̃(Q∗)),P−Q∗〉.

�

Proposition 7 shows that the optimum matrix is solution of a waterfilling problem associated to

the covariance matrix̃C(δ∗). This result cannot be used to evaluateQ∗, because the matrix̃C(δ∗)

itself depends onQ∗. However, it provides some insight on the structure of the optimum matrix: the

eigenvectors ofQ∗ coincide with the eigenvectors of a linear combination of matricesC̃(l), theδl(Q∗)

being the coefficients of this linear combination. This is in line with the result of [17, Appendix VI].

We now introduce our iterative algorithm for optimizingI(Q):

• Initialization: Q0 = I.

• Evaluation ofQk from Qk−1: (δ(k), δ̃(k)) is defined as the unique solution of (1.9) in which

Q = Qk−1. ThenQk is defined as the maximum of functionQ 7→ log
∣∣It +QC̃(δ(k))

∣∣ onC1.

We now establish a result which implies that, if the algorithm converges, then it converges towards

the optimal covariance matrixQ∗.

Proposition 8. Assume that

lim
k→∞

δ(k) − δ(k−1) = lim
k→∞

δ̃(k) − δ̃(k−1) = 0. (1.33)

Then, the algorithm converges towards matrixQ∗.

Proof: The sequence(Qk) belongs to the setC1. As C1 is compact, we just have to verify that every

convergent subsequence(Qψ(k))k∈N extracted from(Qk)k∈N converges towardsQ∗. For this, we denote

by Qψ,∗ the limit of the above subsequence, and prove that this matrix verifies property (1.29) with

φ = I. Vectorsδψ(k)+1 andδ̃ψ(k)+1 are defined as the solutions of (1.9) withQ = Qψ(k). Hence, due

to the continuity of functionsQ 7→ δl(Q) andQ 7→ δ̃l(Q), sequences(δψ(k)+1)k∈N and(δ̃ψ(k)+1)k∈N
converge towardsδψ,∗ = δ(Qψ,∗) andδ̃ψ,∗ = δ̃(Qψ,∗) respectively. Moreover,(δψ,∗, δ̃ψ,∗) is solution

of system (1.9) in which matrixQ coincides withQψ,∗. Therefore,

∂V

∂κl

(
Qψ,∗, δ

ψ,∗, δ̃ψ,∗
)
=
∂V

∂κ̃l

(
Qψ,∗, δ

ψ,∗, δ̃ψ,∗
)
= 0.

As in the proof of Proposition 7, this leads to

〈I ′(Qψ,∗),P−Qψ,∗〉 = 〈V′(Qψ,∗, δψ,∗, δ̃ψ,∗),P−Qψ,∗〉 (1.34)
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for everyP ∈ C1. It remains to show that the right-hand side of (1.34) is negative to complete the proof.

For this, we use thatQψ(k) is the argmax overC1 of functionQ 7→ V
(
Q, δψ(k), δ̃ψ(k)

)
. Therefore,

〈V′(Qψ(k), δψ(k), δ̃ψ(k)),P−Qψ(k)〉 ≤ 0 ∀ P ∈ C1. (1.35)

By condition (1.33), sequences(δψ(k)) and(δ̃ψ(k)) also converge towardsδψ,∗ and δ̃ψ,∗ respectively.

Taking the limit of (1.35) whenk → ∞ eventually shows that〈V′(Qψ,∗, δψ,∗, δ̃ψ,∗),P −Qψ,∗〉 ≤ 0 as

required. �

To conclude, if the algorithm is convergent, that is, if the sequence of(Qk)k∈N converges towards

a certain matrix, then theδ(k)l = δl(Qk−1) and theδ̃(k)l = δ̃l(Qk−1) converge as well whenk →
∞. Condition (1.33) is then verified, hence, if the algorithm is convergent, it converges towardsQ∗.

Although the convergence of the algorithm has not been proved, this result is encouraging and suggests

that the algorithm is reliable. In particular, in all the conducted simulations the algorithm was converging.

In any case, condition (1.33) can be easily checked. If it is not satisfied, it is possible to modify the initial

pointQ0 as many times as needed to ensure the convergence.

1.5 Numerical Results

We provide here some simulations results to evaluate the performance of the proposed approach. We

use the propagation model introduced in [16], in which each path corresponds to a scatterer cluster

characterized by a mean angle of departure, a mean angle of arrival and an angle spread for each of these

two angles.

In the featured simulations for Fig. 1.1(a) (respectively Fig. 1.1(b)), weconsider a frequency selec-

tive MIMO system withr = t = 4 (respectivelyr = t = 8), a carrier frequency of 2GHz, a number

of pathsL = 5. The paths share the same power, and their mean departure angles and angles spreads

are given in Table 1.1 in radians. In both Fig. 1.1(a) and 1.1(b), we haverepresented the EMII(It)

(i.e. without optimization), and the optimized EMII(Q∗) (i.e. with an input covariance matrix maxi-

mizing the approximationI). The EMI are evaluated by Monte-Carlo simulations, with2 · 104 channel

realizations. The EMI optimized with Vu-Paulraj algorithm [7] is also represented for comparison.

Vu-Paulraj’s algorithm is composed of two nested iterative loops. The innerloop evaluatesQ(n)
∗ =

argmax {I(Q) + kbarrier log |Q|} thanks to the Newton algorithm with the constraint1
tTrQ = 1, for

a given value ofkbarrier and a given starting pointQ(n)
0 . MaximizingI(Q) + kbarrier log |Q| instead of

I(Q) ensures thatQ remains positive semi-definite through the steps of the Newton algorithm; this is

the so-called barrier interior-point method. The outer loop then decreases kbarrier by a certain constant

factorµ and gives the inner loop the next starting pointQ
(n+1)
0 = Q

(n)
∗ . The algorithm stops when the

desired precision is obtained, or, as the Newton algorithm requires heavyMonte-Carlo simulations for
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Figure 1.1: Comparison with Vu-Paulraj algorithm

Table 1.1: Paths angular parameters(in radians)

l = 1 l = 2 l = 3 l = 4 l = 5

mean departure angle 6.15 3.52 4.04 2.58 2.66

departure angle spread0.06 0.09 0.05 0.05 0.03

mean arrival angle 4.85 3.48 1.71 5.31 0.06

arrival angle spread 0.06 0.08 0.05 0.02 0.11

the evaluation of the gradient and of the Hessian ofI(Q), when the number of iterations of the outer loop

reaches a given numberNmax. As in [7] we tookNmax = 10, µ = 100, 2 ·104 trials for the Monte-Carlo

simulations, and we started withkbarrier = 1
100 .

Both Fig. 1.1(a) and 1.1(b) show that maximizingI(Q) over the input covariance leads to significant

improvement forI(Q). Our approach provides the same results as Vu-Paulraj’s algorithm. Moreover

our algorithm is computationally much more efficient: in Vu-Paulraj’s algorithm, theevaluation of the

gradient and of the Hessian ofI(Q) needs heavy Monte-Carlo simulations. Table 1.2 gives for both

algorithms the average execution time in seconds to obtain the input covariancematrix, on a 3.16GHz

Intel Xeon CPU with 8GB of RAM, for a number of pathsL = 3, L = 4 andL = 5, givenr = t = 4.
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Table 1.2: Average execution time(in seconds)

L = 3 L = 4 L = 5

Vu-Paulraj 681 884 1077

New algorithm 7.0 · 10−3 7.4 · 10−3 8.3 · 10−3

1.6 Conclusion

In this chapter we have addressed the evaluation of the capacity achievingcovariance matrices of fre-

quency selective MIMO channels. We have first clarified the definition ofthe large system approximation

of the EMI and rigorously proved its expression and convergence speed with Gaussian methods. We have

then proposed to optimize the EMI through this approximation, and have introduced an attractive itera-

tive algorithm based on an iterative waterfilling scheme. Numerical results have shown that our approach

provides the same results as a direct approach, but in a more efficient way in terms of computation time.
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Appendices

1.A Proof of the existence of a solution

To study (1.9), it is quite useful to interpret functionsfl and f̃l as functions of the parameter−σ2 ∈
R
−, to extend their domain of validity fromR− to C − R

+, and to use powerful results concerning

certain class of analytic functions. We therefore define the functionsg(ψ̃)(z) andg(ψ)(z), withψ(z) =

[ψ1(z), ..., ψL(z)]
T , ψ̃(z) = [ψ̃1(z), ..., ψ̃L(z)]

T , as

g(ψ̃)(z) =



g1(ψ̃)(z)

...

gL(ψ̃)(z)


 , g̃(ψ)(z) =



g̃1(ψ)(z)

...

g̃L(ψ)(z)


 ,

where functionsgl(ψ̃) andg̃l(ψ) are defined by

gl(ψ̃)(z) =
1

t
Tr
[
C(l)Tψ̃(z)

]
,

g̃l(ψ)(z) =
1

t
Tr
[
C̃(l)T̃ψ(z)

]
.

MatricesTψ̃(z) andT̃ψ(z) are defined by

Tψ̃(z) =

[
− z

(
Ir +

L∑

j=1

ψ̃j(z)C
(j)

)]−1

, (1.36)

T̃ψ(z) =

[
− z

(
It +

L∑

j=1

ψj(z)C̃
(j)

)]−1

. (1.37)

In order to explain the following results, we now have to introduce the concept of Stieltjès transforms.

Definition 2. Let µ be a finite2 positive measure carried byR+. The Stieltjès transform ofµ is the

functions(z) defined forz ∈ C− R
+ by

s(z) =

∫

R+

dµ(λ)

λ− z
. (1.38)

In the following, the class of all Stieltjès transforms of finite positive measurescarried byR+ is

denotedS(R+). We now state some of the properties of the elements ofS(R+).

Proposition 9. Lets(z) ∈ S(R+), andµ its associated measure. Then we have the following results:

2finite means thatµ(R+) < ∞
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(i) s(z) is analytic onC− R
+,

(ii) Im(s(z)) > 0 if Im(z) > 0, andIm(s(z)) < 0 if Im(z) < 0,

(iii) Im(zs(z)) > 0 if Im(z) > 0, andIm(zs(z)) < 0 if Im(z) < 0,

(iv) s(−σ2) > 0 for σ2 > 0,

(v) |s(z)| ≤ µ(R+)
d(z,R+)

for z ∈ C− R
+,

(vi) µ(R+) = lim
y→∞

−iy s(iy).

Proof: All the stated properties are standard material, see e.g. Appendix of [74]. �

Conversely, a useful tool to prove that a certain function belongs toS(R+) is the following proposi-

tion:

Proposition 10. Let s be a function holomorphic onC− R
+ which verifies the three following proper-

ties:

(i) Im(s(z)) > 0 if Im(z) > 0,

(ii) Im(zs(z)) > 0 if Im(z) > 0,

(iii) sup
y>0

|iy s(iy)| <∞.

Thens ∈ S(R+) and, ifµ represents the corresponding positive measure,

µ(R+) = lim
y→∞

(−iy s(iy)).

Proof: see Appendix of [74]. �

Now that we have recalled the notion of Stieltjès transforms and its associated basic properties we

can introduce the following proposition:

Proposition 11. Let (ψl, ψ̃l)l=1,...,L ∈ S(R+). We define functionsϕl(z) andϕ̃l(z), l = 1, . . . , L, as

{
ϕl(z) =

1
tTr
[
C(l)Tψ̃(z)

]
,

ϕ̃l(z) =
1
tTr
[
C̃(l)T̃ψ(z)

]
.

Then we have the following results:

(i) Tψ̃, T̃ψ are holomorphic onC− R
+,

51



CHAPTER 1. CAPACITY OPTIMIZATION

(ii) ‖Tψ̃(z)‖ ≤ 1
d(z,R+)

, ‖T̃ψ(z)‖ ≤ 1
d(z,R+)

onC− R
+,

(iii) ϕl ∈ S(R+) with the corresponding massµl verifyingµl(R+) = 1
tTrC

(l), ϕ̃l ∈ S(R+) with the

corresponding mass̃µl verifyingµ̃l(R+) = 1
tTr C̃

(l).

Proof: For item (i) we only have to check thatz
(
Ir +

∑L
j=1 ψ̃j(z)C

(j)
)

is invertible for everyz ∈
C− R

+ to prove thatTψ̃ is holomorphic onC− R
+. The key point is to notice that, for any vectorv,

for z such thatIm(z) > 0,

Im
{
vHz

(
Ir +

L∑

j=1

ψ̃j(z)C
(j)
)
v
}
= Im{z}vHv +

L∑

j=1

Im
{
zψ̃j(z)

}
vHC(j)v > 0.

A similar inequality holds forIm(z) < 0, and the casez ∈ R
− is straightforward.

Item (iii) can easily be proved thanks to Proposition 10.

As for item (ii), the proof is essentially the same as the proof of Proposition 5.1 item 3 in [75], and is

therefore omitted. �

We consider the following iterative scheme:
{
ψ(n+1)(z) = g(ψ̃(n))(z),

ψ̃(n+1)(z) = g̃(ψ(n))(z),
(1.39)

with a starting point(ψ(0)(z), ψ̃(0)(z)) in (S(R+))
2L. Item (iii) of Proposition 11 then ensures that, for

eachn ≥ 1,ψ(n)(z) andψ̃(n)(z) belong to(S(R+))L. Moreover,
∣∣(ψ(n+1)

l − ψ
(n)
l )(z)

∣∣ =
∣∣∣gl(ψ(n))(z)− gl(ψ

(n−1))(z)
∣∣∣

=
1

t

∣∣∣Tr
[
C(l)(T(n)(z)−T(n−1)(z))

]∣∣∣, (1.40)

where matricesT(n)(z) andT̃(n)(z) are defined byT(n)(z) = Tψ̃
(n)

(z), T̃(n)(z) = T̃ψ
(n)

(z). Note

that in the following we may not always mention the dependency inz of T(n), T̃(n), ψ(n)
j andψ̃(n)

j for

reading ease. Using the equalityA−B = A
(
B−1 −A−1

)
B, we then obtain:

T(n) −T(n−1) = T(n)

(
− z

L∑

j=1

(
ψ̃
(n−1)
j − ψ̃

(n)
j

)
C(j)

)
T(n−1). (1.41)

Using (1.41) in (1.40) then yields:

∣∣∣ψ(n+1)
l − ψ

(n)
l

∣∣∣ = |z|
t

∣∣∣∣
L∑

j=1

(
ψ̃
(n−1)
j − ψ̃

(n)
j

)
Tr
[
C(l)T(n)C(j)T(n−1)

] ∣∣∣∣

≤ |z|
t

L∑

j=1

∣∣∣ψ̃(n−1)
j − ψ̃

(n)
j

∣∣∣
∣∣∣Tr
[
C(l)T(n)C(j)T(n−1)

]∣∣∣ .
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The trace in the above expression can be bounded with the help ofCmax = maxj{‖C(j)‖, ‖C̃(j)‖}:

∣∣∣ψ(n+1)
l − ψ

(n)
l

∣∣∣ ≤ |z|r
t

L∑

j=1

∣∣∣ψ̃(n)
j − ψ̃

(n−1)
j

∣∣∣ ‖C(l)‖‖T(n)‖‖C(j)‖‖T(n−1)‖

≤ |z|C2
max

r

t
‖T(n)‖‖T(n−1)‖

L∑

j=1

∣∣∣ψ̃(n)
j − ψ̃

(n−1)
j

∣∣∣ .

For z ∈ C− R
+, T(n)(z) andT(n−1)(z) have a spectral norm less than1/d(z,R+) by item (ii) of

Proposition 11. Therefore,

∣∣∣(ψ(n+1)
l − ψ

(n)
l )(z)

∣∣∣ ≤ rC2
max

t

|z|
(d(z,R+))2

L∑

j=1

∣∣∣
(
ψ̃
(n)
j − ψ̃

(n−1)
j

)
(z)
∣∣∣ . (1.42)

A similar computation leads to

∣∣∣(ψ̃(n+1)
j − ψ̃

(n)
j )(z)

∣∣∣ ≤ C2
max

|z|
(d(z,R+))2

L∑

l=1

∣∣∣
(
ψ
(n)
l − ψ

(n−1)
l

)
(z)
∣∣∣ . (1.43)

We now introduce the following maximum:

M (n)(z) = max
j

{∣∣(ψ(n+1)
j − ψ

(n)
j )(z)

∣∣,
∣∣(ψ̃(n+1)

j − ψ̃
(n)
j )(z)

∣∣}

Equations (1.42) and (1.43) can then be combined into:

M (n)(z) ≤ ε(z)M (n−1)(z),

whereε(z) = ε1|z|
(d(z,R+))2

, with ε1 = LC2
maxmax

{
r
t , 1
}

. We now define the following domain:U =
{
z ∈ C, d(z,R+) ≥ 2ε1

K , |z|
d(z,R+)

≤ 2
}

, with 0 ≤ K < 1. On this domainU we haveM (n)(z) ≤
KM (n−1)(z). Hence, forz ∈ U , ψ(n)

l (z) andψ̃(n)
j (z) are Cauchy sequences and, as such, converge. We

denote byψl(z) andψ̃j(z) their respective limit.

One wants to extend this convergence result onC − R
+. We first notice that, asψ(n)

l is a Stieltjès

transform whose associated measure has mass1
tTrC

(l) by Proposition 11 item (iii), item (v) of Propo-

sition 9 implies

ψ
(n)
l (z) ≤

1
tTrC

(l)

d(z,R+)
.

The ψ(n)
l are thus bounded on any compact set included inC − R

+, uniformly in n. By Montel’s

theorem,
(
ψ
(n)
l

)
n∈N is a normal family. Therefore one can extract a subsequence converging uniformly

on compact sets ofC − R
+, whose limit is thus analytic overC − R

+. This limit coincides withψl on

domainU . The limit of any converging subsequence of
(
ψ
(n)
l

)
thus coincides withψl onU . Therefore,
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these limits all coincide onC − R
+ with a function analytic onC − R

+, that we still denoteψl. The

converging subsequences of
(
ψ
(n)
l

)
have thus the same limit. We have therefore shown the convergence

of the whole sequence
(
ψ
(n)
l

)
n≥0

on C − R
+ towards an analytic functionψl. Moreover, as one can

check thatψl verifies Proposition 10, we haveψl(z) ∈ S(R+). The same arguments hold for thẽψl(z).

We have proved the convergence of iterative sequence (1.39). Taking z = −σ2 then yields the

convergence of the fixed point algorithm (1.13). Note that the starting point (δ(0), δ̃(0)) only needs to

verify δ(0)l > 0, δ̃(0)l > 0 (l = 1, . . . , L), as any positive real number can be interpreted as the value at

point z = −σ2 of some elements(z) ∈ S(R+). Moreover, the limitsψl(z), ψ̃l(z) (l = 1, . . . , L) of

the iterative sequence (1.39) are positive for anyz = −σ2 by item (iv) of Proposition 9, as they all are

Stieltjès transforms. Therefore, the limitsδl, δ̃l (l = 1, . . . , L) are positive.

1.B A first large system approximation ofEH[TrS]

We will prove Proposition 1 by deriving the matrixΥ defined by (1.21), before proving that it satisfies
1
tTr (ΥA) = O

(
1
t2

)
for any uniformly bounded matrixA. To that end, as the entries of matrices

H(l) are Gaussian, we can use the classical Gaussian methods: we introduce here two Gaussian tools,

an Integration by Parts formula and the Nash-Poincaré inequality, both widely used in Random Matrix

Theory (see e.g. [76]).

In this section, ifx is a random variable we denote byx̊ the zero mean random variable̊x = x−E(x).

We first present an Integration by Parts formula which provides the expectation of some functionals

of Gaussian vectors (see e.g. [77]).

Theorem 4. Letξ = [ξ1, . . . , ξM ]T a complex Gaussian random vector such thatE[ξ] = 0, E[ξξT ] = 0

andE[ξξH ] = Ω. If Γ = Γ(ξ, ξ∗) is a C1 complex function polynomially bounded together with its

derivatives, then

E[ξpΓ(ξ)] =

M∑

m=1

ΩpmE

[
∂Γ(ξ)

∂ξ∗m

]
. (1.44)

In the present context we considerξ being the vector of the stacked columns of matricesH(l),

where the channelsH(l) are independent and follow the Kronecker model, i.e.EH

[
H

(k)
ij H

(l)∗
mn

]
=

δk,l
1
tC

(l)
imC̃

(l)
jn. Then (1.44) becomes

EH

[
H

(l)
ij Γ
(
(H(l))l=1,...,L

)]
=

1

t

r∑

m=1

t∑

n=1

C
(l)
imC̃

(l)
jnEH

[
∂Γ

∂H
(l)∗
mn

]
. (1.45)

The second useful tool is the Poincaré Nash inequality which bounds the variance of certain func-

tionals of Gaussian vectors (see e.g. [10,76]).
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Theorem 5. Letξ = [ξ1, . . . , ξM ]T a complex Gaussian random vector such thatE[ξ] = 0, E[ξξT ] = 0

andE[ξξH ] = Ω. If Γ = Γ(ξ, ξ∗) is a C1 complex function polynomially bounded together with its

derivatives, then, noting∇ξΓ = [ ∂Γ∂ξ1 , . . . ,
∂Γ
∂ξM

]T and∇ξ∗Γ = [ ∂Γ∂ξ∗1
, . . . , ∂Γ

∂ξ∗M
]T ,

var(Γ(ξ)) ≤ E

[
∇ξΓ(ξ)T Ω ∇ξΓ(ξ)

]
+ E

[
∇ξ∗Γ(ξ)H Ω ∇ξ∗Γ(ξ)

]
. (1.46)

In the following we will use the Nash-Poincaré inequality withξ being the vector of the stacked

columns of independent matricesH(l), where the channelsH(l) follow the Kronecker model. Then

(1.46) can be written under the following form:

var
(
Γ
(
(H(l))l=1,...,L

))
≤ 1

t

r∑

i,m=1

t∑

j,n=1

L∑

l=1

C
(l)
imC̃

(l)
jnEH

[
∂Γ

∂H
(l)
ij

(
∂Γ

∂H
(l)
mn

)∗

+

(
∂Γ

∂H
(l)∗
ij

)∗
∂Γ

∂H
(l)∗
mn

]
.

(1.47)

Using these two Gaussian tools we now prove Proposition 1. In order to derive the matrixΥ de-

fined byEH[S] = R + Υ we study the entries ofEH[S]. Using the resolvent identity (1.26) we have

σ2EH[Spq] = (I− EH[SHHH ])pq. We evaluateEH[(SHHH)pq] by first studyingEH

[
SpiH

(l)
ij H

(l′)∗
qk

]
.

Calculation begins with an integration by parts onH
(l)
ij (1.45):

EH

[
SpiH

(l)
ij H

(l′)∗
qk

]
=

1

t

∑

m,n

C
(l)
imC̃

(l)
jnEH


∂(SpiH

(l′)∗
qk )

∂H
(l)∗
mn




=
1

t

∑

m,n

C
(l)
imC̃

(l)
jnEH

[
Spiδl,l′δq,mδk,n +H

(l′)∗
qk

∂Spi

∂H
(l)∗
mn

]
.

As ∂Spi

∂H
(l)∗
mn

= −
(
S ∂S−1

∂H
(l)∗
mn

S
)
pi
= −(SH)pnSmi, we obtain

EH

[
SpiH

(l)
ij H

(l′)∗
qk

]
=

1

t
C

(l)
iq C̃

(l)
jkEH[Spi]δl,l′ −

1

t

∑

n

C̃
(l)
jnEH

[
H

(l′)∗
qk (SH)pn(C

(l)S)ii

]
.

Summing overi, l andl′ then leads to:

EH

[
(SH)pjH

∗
qk

]
=
∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk −

∑

n,l

C̃
(l)
jnEH

[
H∗
qk(SH)pn

1

t
Tr(SC(l))

]
.

To separate the terms under the last expectation, we denoteηl =
1
tTr(SC

(l)) = αl + η̊l, whereαl =

EH[ηl]. We can then writeEH

[
H∗
qk(SH)pnηl)

]
= αlEH

[
H∗
qk(SH)pn

]
+ EH

[
H∗
qk(SH)pnη̊l

]
, hence

EH

[
(SH)pjH

∗
qk

]
=
∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk −

∑

n,l

αlC̃
(l)
jnEH

[
(SH)pnH

∗
qk

]
−Ξ

(p,q)
jk , (1.48)
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whereΞ(p,q)
jk =

∑
l EH

[
η̊lH

∗
qk(SHC̃(l)T )pj

]
. We here notice the presence ofEH

[
(SH)p_H

∗
qk

]
on both

sides of equation (1.48). Hence, let us denote∆
(p,q)
jk = EH

[
(SH)pjH

∗
qk

]
. Then (1.48) becomes

∆
(p,q)
jk =

∑

l

1

t
EH[(SC(l))pq]C̃

(l)
jk −

(∑

l

αlC̃
(l)∆(p,q)

)
jk

−Ξ
(p,q)
jk .

Recalling thatR̃ =
(
σ2
(
It +

∑
l αlC̃

(l)
))−1

, this leads to

∆(p,q) = σ2
∑

l

1

t
EH[(SC(l))pq]R̃C̃(l) − σ2R̃Ξ(p,q).

Besides, noticing thatEH[(SHHH)pq] = Tr(∆(p,q)) allows us to come back to the calculation of

EH[Spq] =
1
σ2 (Ir − EH[SHHH ])pq:

EH[Spq] =
δp,q
σ2

−
∑

l

α̃lEH[(SC(l))pq] + Tr
(
R̃Ξ(p,q)

)
,

recalling from (1.20) that̃αl = 1
tTr
(
R̃C̃(l)

)
. Coming back to the definition of matrixΞ(p,q), we notice

thatTr
(
R̃Ξ(p,q)

)
=
∑

l EH

[
η̊l(SHC̃(l)T R̃THH)pq

]
. Hence matrixEH[S] can be written as

EH[S] =
1

σ2
Ir − EH[S]

∑

l

α̃lC
(l) +

∑

l

EH

[
η̊lSHC̃(l)T R̃THH

]
.

And finally,EH[S] = R+Υ, where we recall thatR =
(
σ2
(
Ir +

∑
l α̃lC

(l)
))−1

and where matrixΥ

is defined as

Υ = σ2
∑

l

EH

[
η̊lSHC̃(l)T R̃THH

]
R. (1.49)

To end Proposition 1 proof, we now need to prove that1
tTr (ΥA) = O

(
1
t2

)
for any uniformly

bounded matrixA. LetA be ar × r matrix uniformly bounded inr. Using (1.49),

1

t
Tr (ΥA) =

σ2

t

∑

l

EH

[
η̊lTr

(
SHC̃(l)T R̃THHRA

)]

=
σ2

t

∑

l

EH

[
η̊l

◦︷ ︷
Tr(SHC̃(l)T R̃THHRA)

]
.

We can now bound1tTr (ΥA) thanks to Cauchy-Schwartz inequality.

∣∣∣1
t
Tr (ΥA)

∣∣∣ ≤ σ2

t

∑

l

√√√√√EH

[
|̊ηl|2

]
EH

[∣∣∣∣∣

◦︷ ︷
Tr(SHC̃(l)T R̃THHRA)

∣∣∣∣∣

2]

=
σ2

t

∑

l

√
var (ηl) var

(
Tr(SHC̃(l)T R̃THHRA)

)
, (1.50)
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asEH

[
|̊x|2

]
= var (x) for any random variablex. We now prove thatvar(ηl) = O

(
1
t2

)
. The Nash-

Poincaré inequality (1.47) states that

var(ηl) ≤
1

t

∑

i,j,m,n,k

C
(k)
imC̃

(k)
jn E

[
∂ηl

∂H
(k)
ij

(
∂ηl

∂H
(k)
mn

)∗
+

(
∂ηl

∂H
(k)∗
ij

)∗ ∂ηl

∂H
(k)∗
mn

]
. (1.51)

As ∂Spq/∂H
(k)
ij = −(S(∂S−1/∂H

(k)
ij )S)pq = −Spi(H

HS)jq the partial derivative∂ηl/∂H
(k)
ij can be

written as

∂ηl

∂H
(k)
ij

=
1

t
Tr

(
∂S

∂H
(k)
ij

C(l)

)

=
1

t

∑

p,q

∂Spq

∂H
(k)
ij

C(l)
qp

= −1

t
(HHSC(l)S)ji.

Similarly we obtain∂ηl/∂H
(k)∗
ij = −1

t (SC
(l)SH)ij . Therefore (1.51) leads to

var(ηl) ≤
1

t3

∑

k

E

[
Tr
(
(HHSC(l)S)C(k)(HHSC(l)S)HC̃(k)T

)

+Tr
(
C̃(k)T (SC(l)SH)HC(k)(SC(l)SH)

)]
.

(1.52)

Both traces in the right-hand side of (1.52) can be upper bounded thanksto the following inequality:

|Tr(B1B2)| ≤ ‖B1‖TrB2,

whereB2 is non-negative hermitian.

var(ηl) ≤
2

t3
‖C(l)‖2

∑

k

‖C(k)‖ E
[
‖S‖4Tr

(
HC̃(k)THH

)]

≤ 2

t3
‖C(l)‖2

∑

k

‖C(k)‖‖C̃(k)‖ E
[
‖S‖4Tr

(
HHH

)]

≤ 1

t2
2LC4

sup

σ8
E

[
1

t
Tr
(
HHH

)]
, (1.53)

where the second inequality follows from‖S‖ ≤ 1
σ2 and from the definition ofCsup:

Csup = sup
t
Cmax (1.54)

= sup
t

{
max
k

{
‖C(k)‖, ‖C̃(k)‖

}}
.
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The hypotheses of Proposition 1 ensure thatCsup < +∞. We now prove thatE
[
1
tTr

(
HHH

)]
=

O (1). Using the fact that the channelsH(l) are independent and follow the Kronecker model, that is

EH

[
H

(k)
ij H

(l)∗
mn

]
= δk,l

1
tC

(l)
imC̃

(l)
jn,

EH

[
1

t
Tr
(
HHH

) ]
=

1

t

∑

i,j,k,l

EH

[
H

(k)
ij H

(l)∗
ij

]
=

1

t2

∑

i,j,l

C
(l)
ii C̃

(l)
jj

=
1

t2

∑

l

TrC(l)Tr C̃(l) ≤ r

t
LC2

sup.

We have therefore proved thatEH

[
1
tTr

(
HHH

)]
= O (1). Coming back to (1.53) gives

var(ηl) ≤
1

t2

(
r

t

2C6
supL

2

σ8

)
, (1.55)

hence

var(ηl) = O

(
1

t2

)
. (1.56)

We evaluate similarly the behavior of the second term of the right-hand side of(1.50) and we obtain

var
(
Tr(SHC̃(l)T R̃THHRA)

)
≤ k

σ12

(
1 +

1

σ2

)
‖A‖2, (1.57)

wherek does not depend onσ2 nor ont. Therefore,

var
(
Tr(SHC̃(l)T R̃THHRA)

)
= O (1) . (1.58)

Using (1.56) and (1.58) in (1.50), we eventually have:

1

t
Tr(ΥA) = O

(
1

t2

)
,

which completes the proof of Proposition 1.

Remark 1. Note that using(1.55)and (1.57)in (1.50)leads to

1

t
Tr(ΥA) ≤ 1

σ8t2
P

(
1

σ2

)
, (1.59)

whereP is a polynomial with real positive coefficients which do not depend onσ2 nor ont.

58



1.C. A REFINED LARGE SYSTEM APPROXIMATION OFEH[TrS]

1.C A refined large system approximation ofEH[TrS]

We prove in this section Proposition 2, i.e. that, under the technical assumptions made in the Proposition

statement,
1

t
Tr(RA) =

1

t
Tr(TA) + O

(
1

t2

)

for anyr × r matrixA uniformly bounded in r.

We first note that the difference1tTr (RA)− 1
tTr (TA) can be written as

1

t
Tr ((R−T)A) =

1

t
Tr
(
R
(
T−1 −R−1

)
TA
)

= −σ
2

t

∑

l

(α̃l − δ̃l)Tr(RC(l)TA). (1.60)

As ‖T‖ ≤ 1
σ2 and‖R‖ ≤ 1

σ2 , equation (1.60) yields

1

t
|Tr ((R−T)A)| ≤ r

t

Csup‖A‖
σ2

∑

l

∣∣α̃l − δ̃l
∣∣, (1.61)

whereCsup < +∞ is defined by (1.54). We derive similarly the difference1
tTr(R̃Ã) − 1

tTr(T̃Ã) for

anyt× t matrix Ã uniformly bounded in t.

1

t

∣∣∣Tr
((

R̃− T̃
)
Ã
)∣∣∣ ≤ Csup‖Ã‖

σ2

∑

l

|αl − δl| (1.62)

TakingA = C(k) in (1.61),Ã = C̃(k) in (1.62) and using Proposition 1 gives

∣∣αk − δk
∣∣ ≤ r

t

C2
sup

σ2

∑

l

∣∣α̃l − δ̃l
∣∣+ O

(
1

t2

)
, (1.63)

∣∣α̃k − δ̃k
∣∣ ≤

C2
sup

σ2

∑

l

|αl − δl| , (1.64)

which leads to (
1− r

t

C4
supL

2

σ4

)
∑

k

∣∣αk − δk
∣∣ ≤ O

(
1

t2

)
.

Therefore it is clear that there existsσ20 such that
∣∣αk−δk

∣∣ = O
(
1
t2

)
for σ2 > σ20 for anyk ∈ {1, . . . , L}.

In particular,
∣∣αk − δk

∣∣ t→∞−−−→ 0 for σ2 > σ20. We now extend this result to anyσ2 > 0. To this end,

similarly to Appendix 1.A, it is useful to considerαl andδl as functions of the parameter(−σ2) ∈ R
−

and to extend their domain of validity fromR− to C − R
+ in order to use the results about Stieltjès

transforms. The functionδl(z) then corresponds to the functionψl(z) of Appendix 1.A and therefore
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belongs toS(R+) with an associated measure of mass1
tTrC

(l), for l = 1, . . . , L. It is easy to check

that functionαl(z) also belongs toS(R+) with an associated measure of mass1
tTrC

(l) for any l ∈
{1, . . . , L}. Hence, by Proposition 9 (v), we can upper bound the Stieltjès transformsαl(z) andδl(z) on

C− R
+, yielding:

|αl(z)− δl(z)| ≤ 2
1
tTrC

(l)

d(z,R+)
≤ 2

r
tCsup

d(z,R+)
.

The (αl(z) − δl(z))t∈N are thus bounded on any compact set included inC − R
+, uniformly in t.

Moreover(αl(z) − δl(z))t∈N is a family of analytic functions. Using Montel’s theorem similarly to

Appendix 1.A, we obtain that
∣∣αl(z) − δl(z)

∣∣ t→∞−−−→ 0 on C− R
+ for any l ∈ {1, . . . , L}, thus in

particular ∣∣αl − δl
∣∣ t→∞−−−→ 0 (1.65)

for anyσ2 > 0, l ∈ {1, . . . , L}. And (1.64) then yields
∣∣α̃l − δ̃l

∣∣ t→∞−−−→ 0 (1.66)

for anyσ2 > 0, l ∈ {1, . . . , L}. Using (1.66) in (1.61) and (1.65) in (1.62) gives

1

t
Tr (A(R−T))

t→∞−−−→ 0, (1.67)

1

t
Tr
(
Ã(R̃− T̃)

)
t→∞−−−→ 0. (1.68)

We now refine (1.67) and (1.68) to prove that these two traces areO
(
1
t2

)
. TakingA = C(l) in (1.60)

leads toαk − δk = σ2

t

∑
l(δ̃l − α̃l)Tr

(
C(l)TC(k)R

)
+ 1

tTr
(
C(k)Υ

)
, whereΥ = EH[S] − R, and

similarly δ̃k − α̃k = σ2

t

∑
l(αl − δl)Tr

(
C̃(l)T̃C̃(k)R̃

)
. We can rewrite these two equalities under the

following matrix form:
(
I2L −N(R,T, R̃, T̃)

)[α− δ
δ̃ − α̃

]
=

[
ε

0

]
, (1.69)

whereε is aL×1 vector whose entries defined byεk = 1
tTr

(
C(k)Υ

)
verify εk = O

(
1
t2

)
, k = 1, . . . , L,

by Proposition 1, and where matrixN(R,T, R̃, T̃) is defined by

N(R,T, R̃, T̃) = σ2

[
0 B(R,T)

B̃(R̃, T̃) 0

]
, (1.70)

where matricesB(R,T) andB̃(R̃, T̃) areL × L matrices whose entries are defined byBkl(R,T) =
1
tTr

(
C(l)TC(k)R

)
andB̃kl(R̃, T̃) = 1

tTr
(
C̃(l)T̃C̃(k)R̃

)
. Besides, takingA = C(l)TC(k) in (1.67)

andÃ = C̃(l)T̃C̃(k) in (1.68) leads to




Bkl(R,T)
t→∞−−−→ 1

tTr
(
C(l)TC(k)T

)
,

B̃kl(R̃, T̃)
t→∞−−−→ 1

tTr
(
C̃(l)T̃C̃(k)T̃

)
.

(1.71)

We now introduce the following lemma:
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Lemma 1. Let T, T̃ be the matrices defined by(1.11)and (1.12)with (δ, δ̃) verifying the canonical

equation (1.9) withQ = It. LetA(T) andÃ(T) be theL × L matrices whose entries are defined by

Akl(T) = 1
tTr

(
C(k)TC(l)T

)
andÃkl(T̃) = 1

tTr(C̃
(k)T̃C̃(l)T̃) andM(T, T̃) the matrix defined by

M(T, T̃) = σ2

[
0 A(T)

Ã(T̃) 0

]
.

Assume that, for everyl ∈ {1, . . . , L}, supt ‖C(l)‖ < +∞, supt ‖C̃(l)‖ < +∞, inft
(
1
tTrC

(l)
)
> 0

andinft
(
1
tTr C̃

(l)
)
> 0. Then there existsk0 > 0 andk1 <∞ both independent ofσ2 such that

(i) supt [ρ (M))] ≤ 1− k0σ4

(σ2+k1)2
< 1,

(ii) supt

[
ρ
(
σ4Ã(T̃)A(T)

)]
≤
(
1− k0σ4

(σ2+k1)2

)2
< 1,

(iii) supt

[ ∣∣∣
∣∣∣
∣∣∣(I2L −M(T, T̃))−1

∣∣∣
∣∣∣
∣∣∣
∞

]
≤ (σ2+k1)2

k0σ4 ,

where
∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∞ is the max-rowℓ1 norm defined by

∣∣∣∣∣∣P
∣∣∣∣∣∣
∞ = maxj∈{1,...,M}

∑N
k=1 |Pjk| for a M × N

matrixP.

Proof: Using the expression ofT−1 = σ2(Ir +
∑

k δ̃kC
(k)), δl can be written as:

δl =
1

t
Tr(C(l)TT−1T)

=
σ2

t
Tr(C(l)TT) +

σ2

t

L∑

k=1

δ̃kTr(C
(l)TC(k)T).

Similarly δ̃l verifies

δ̃l =
σ2

t
Tr
(
C̃(l)T̃T̃

)
+
σ2

t

∑

k

δkTr
(
C̃(l)T̃C̃(k)T̃

)
.

Thus, [
δ

δ̃

]
= σ2

[
0 A(T)

Ã(T̃) 0

][
δ

δ̃

]
+

[
w

w̃

]
,

wherew and w̃ areL × 1 vectors such thatwl = σ2

t Tr(C
(l)TT) and w̃l = σ2

t Tr(C̃
(l)T̃T̃). This

equality is of the formu = M(T, T̃)u+ v, with u =
[
δT , δ̃T

]T
andv =

[
wT , w̃T

]T
, the entries ofu

andv being positive, and the entries ofM(T, T̃) non-negative. A direct application of Corollary 8.1.29

of [71] then impliesρ(M(T, T̃)) ≤ 1− minvl
maxul

.

We first considersupt
{
maxul

}
. As u =

[
δT , δ̃T

]T
we need to upper boundδk and δ̃k. As

‖T‖ ≤ 1
σ2 and‖C(l)‖ ≤ Csup we have

δk =
1

t
Tr
(
C(k)T

)
≤ r

σ2t
Csup. (1.72)
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Similarly, as‖T̃‖ ≤ 1
σ2 and‖C̃(l)‖ ≤ Csup,

δ̃k =
1

t
Tr
(
C̃(k)T̃

)
≤ 1

σ2
Csup. (1.73)

As t/r
t→∞−−−→ c > 0 we have thatsupt [r/t] < +∞. Thereforesupt {maxul} ≤ λ0

σ2 < +∞, where

λ0 = Csupmax {1, supt [r/t]}.

We now considerinft {minl vl}. As minl vl = mink
{
σ2

t Tr(C
(k)TT), σ

2

t Tr(C̃
(k)T̃T̃)

}
, we need

to lower boundσ
2

t Tr(C
(k)TT) and σ

2

t Tr(C̃
(k)T̃T̃). We use the Cauchy-Schwarz inequality:

|Tr(AB)| ≤
√

Tr(AAH)
√
Tr(BBH). (1.74)

TakingA =
(
C(l)

)1/2
T andB =

(
C(l)

)1/2
in (1.74) leads to

σ2

t
Tr
(
C(l)TT

)
≥ σ2

(
1
tTr

(
C(l)T

))2
1
tTrC

(l)
=

σ2δ2l
1
tTrC

(l)
. (1.75)

We now need to lower boundδl. Using again inequality (1.74) withA =
(
C(l)

)1/2
T1/2 andB =

T−1/2
(
C(l)

)1/2
yields

δl =
1

t
Tr
(
C(l)T

)
≥

(
1
tTrC

(l)
)2

1
tTr

(
C(l)T−1

) . (1.76)

Thanks to (1.73),‖T−1‖ = ‖σ2(Ir +
∑

l δ̃lC
(l))‖ ≤ σ2 + LC2

sup. Hence (1.76) leads to

δl ≥
1
tTrC

(l)

‖T−1‖ ≥
1
tTrC

(l)

σ2 + LC2
sup

. (1.77)

Eventually, using (1.77) in (1.75) gives

σ2

t
Tr
(
C(l)TT

)
≥ σ2 1tTrC

(l)

(
σ2 + LC2

sup

)2 . (1.78)

Similarly, we prove that
σ2

t
Tr
(
C̃(l)T̃T̃

)
≥ σ2 1tTr C̃

(l)

(
σ2 + r

tLC
2
sup

)2 .

Thereforeinft
{
minl vl

}
≥ σ2λ1

(σ2+k1)2
, whereλ1 = minl

{
inft

[
1
tTrC

(l)
]
, inft

[
1
tTr C̃

(l)
]}

> 0 and

k1 = LC2
supmax {1, inft[r/t]} = LCsupλ0 < +∞. Notingk0 = λ1

λ0
> 0 we can now conclude about

statement (i) of the lemma:

sup
t
ρ(M(T, T̃)) ≤ 1− inft(minl vl)

supt(maxl ul)

≤ 1− k0σ
4

(σ2 + k1)2
.
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As for statement (ii) of the lemma, we note that
∣∣M(T, T̃) − λI2L

∣∣ =
∣∣σ4Ã(T̃)A(T) − λ2IL

∣∣.
Hence

ρ(σ4Ã(T̃)A(T)) =
(
ρ(M(T, T̃))

)2

≤
(
1− k0σ

4

(σ2 + k1)2
)2
< 1.

Concerning statement (iii), the proof is the same as in [78, Lemma 5.2]. Nonetheless we provide it

here for the sake of completeness. Asρ(M(T, T̃)) < 1, the series
∑

k∈NM(T, T̃)k converges, matrix

I2L−M(T, T̃) is invertible and its inverse can be written as
(
I2L−M(T, T̃)

)−1
=
∑

k∈NM(T, T̃)k.

Therefore the entries of
(
I2L −M(T, T̃)

)−1
are non-negative. Hence,

uk =
2L∑

l=1

[
(I2L −M(T, T̃))−1

]
kl
vl

≥ min
l
(vl)

2L∑

l=1

[
(I2L −M(T, T̃))−1

]
kl
.

Thereforemaxk
∑2L

l=1

[(
I2L −M(T, T̃)

)−1]
kl
≤ maxl(ul)

minl(vl)
and it eventually follows that:

sup
t

[∣∣∣
∣∣∣
∣∣∣
(
I2L −M(T, T̃)

)−1 ∣∣∣
∣∣∣
∣∣∣
∞

]
≤ supt(maxl ul)

inft(minl vl)

≤ (σ2 + k1)
2

k0σ4
.

�

Remark 2. Lemma 1(ii) is used in the proof of Theorem 1 for the uniqueness of solutions to(1.9), but

we took care not to use any consequences of this uniqueness in the proof above; this proof only requires

the existence of solutions to(1.9).

Remark 3. Unfortunately assumptionsinft
(
1
tTrC

(l)
)
> 0 and inft

(
1
tTr C̃

(l)
)
> 0 made in Lemma 1

cannot be restrained, as1tTr
(
C(l)TT

)
≤ 1

σ4

(
1
tTrC

(l)
)

and similarly 1
tTr
(
C̃(l)T̃T̃

)
≤ 1

σ4

(
1
tTr C̃

(l)
)
.

Equation (1.71) shows that the entries ofB(R,T) andB̃(R̃, T̃) respectively converge to the entries

of A(T) andÃ(T̃). Hence there existst0 such that, fort > t0,

• the matrixI2L −N(R,T, R̃, T̃) is invertible,

• supt

[∣∣∣∣∣∣(I2L −N(R,T, R̃, T̃))−1
∣∣∣∣∣∣
∞

]
≤ 2(σ2+k1)2

k0σ4 .
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Then, fort > t0, (1.69) yields
[
α− δ
δ̃ − α̃

]
=
(
I2L −N(R,T, R̃, T̃)

)−1
[
ε

0

]
. (1.79)

Thanks to (1.79) we can now upper bound all theαl − δl andδ̃l − α̃l.

max
l

{∣∣αl − δl
∣∣,
∣∣α̃l − δ̃l

∣∣} ≤
∣∣∣∣∣∣(I2L −N(R,T, R̃, T̃))−1

∣∣∣∣∣∣
∞max

k
|εk|

≤ 2(σ2 + k1)
2

k0σ4
max
k

|εk|

As εl = Tr
(
C(l)Υ

)
= O

(
1
t2

)
for l = 1, . . . , L, we eventually have that

α̃l − δ̃l = O

(
1

t2

)
. (1.80)

Using (1.80) in (1.61) completes the proof of Proposition 2.

1.D Integrability of EH [Tr (T− S)]

We prove in this section Proposition 3, i.e. the integrability ofEH [Tr (T− S)].

We first considerEH [Tr (R− S)], which is equal toTrΥ by Proposition 1. As noted in Remark 1

of Appendix 1.B, we have
∣∣1
tTr(ΥA)

∣∣ ≤ 1
σ8t2

P0

(
1
σ2

)
, whereP0 is a polynomial with real positive

coefficients which do not depend onσ2 nor ont. Therefore

|EH [Tr (R− S)]| ≤
P0

(
1
σ2

)

σ8t
. (1.81)

We now considerTr (R−T). We showed in Appendix 1.C that there existst0 such that, fort > t0,

I2L−N(R,T, R̃, T̃) is invertible and such that
∣∣∣∣∣∣(I2L−N(R,T, R̃, T̃))−1

∣∣∣∣∣∣
∞ ≤ 2(σ2+k1)2

k0σ4 , wherek0
andk1 are given by Lemma 1. Equation (1.69) then implies

∣∣α̃l − δ̃l
∣∣ ≤

∣∣∣
∣∣∣
∣∣∣(I2L −N(R,T, R̃, T̃))−1

∣∣∣
∣∣∣
∣∣∣
∞
max
k

|εk|

≤ 2(σ2 + k1)
2

k0σ4
max
k

|εk| ,

whereεk = Tr
(
C(k)Υ

)
. Besides, Remark 1 of Appendix 1.B ensures that|εk| ≤ 1

σ8t2
P1

(
1
σ2

)
, where

P1 is a polynomial with real positive coefficients which do not depend onσ2 nor ont. Hence, fort > t0,

∣∣α̃l − δ̃l
∣∣ ≤

P1

(
1
σ2

)

σ8t2
2(σ2 + k1)

2

k0σ4
(1.82)
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for anyl ∈ {1, . . . , L}. Using (1.82) in (1.61) withA = Ir then gives, fort > t0,

|Tr (R−T)| ≤ 1

σ8t

(
k2
σ2

(
1 +

k1
σ2

)2

P1

(
1

σ2

))
(1.83)

wherek2 =
2LCsup

k0
supt{r/t} < +∞.

Eventually, (1.81) and (1.83) yield
∣∣EH

[
Tr
(
T−S

)]∣∣ ≤ 1
σ8t
P
(

1
σ2

)
for t > t0, where the coefficients

of the polynomialP
(

1
σ2

)
= P0

(
1
σ2

)
+ k2

σ2

(
1 + k1

σ2

)2
P1

(
1
σ2

)
are real positive coefficients and do not

depend onσ2 nor ont. This completes the proof of Proposition 3.

1.E Differentiability of Q 7→ δ(Q), Q 7→ δ̃(Q) andQ 7→ I(Q)

We prove in this section Proposition 5, i.e. that for allP,Q ∈ C1 functionsQ 7→ δ(Q), Q 7→ δ̃(Q) and

Q 7→ I(Q) are Gâteaux differentiable at pointQ in the directionP −Q, whereδ, δ̃ are defined as the

solutions of system (1.9) and whereI(Q) is given by (1.8). The proof is based on the implicit function

theorem.

LetP,Q ∈ C1. We introduce the functionΓ : RL+ × R
L
+ × [0, 1] → R

2L defined by

Γ(δ, δ̃, λ) =

[
δ − f(δ̃)

δ̃ − f̃(δ,Q+ λ(P−Q))

]
,

with f(δ̃) =
[
f1(δ̃), . . . , fL(δ̃)

]T
andf̃(δ,Q) =

[
f̃1(δ,Q), . . . , f̃L(δ,Q)

]T
, where thefl and thef̃l

are defined by (1.10). Note thatδ(Q+λ(P−Q)) andδ̃(Q+λ(P−Q)) are defined byΓ(δ, δ̃, λ) = 0.

We want to apply the implicit theorem on a neighbourhood ofλ = 0; this requires the differentiability of

Γ on this neighbourhood, and the invertibility of the partial JacobianD(δ,δ̃)(Γ(δ, δ̃, λ)) at pointλ = 0.

We first note thatfl : δ̃ 7→ 1
σ2t

Tr
[
C(l)

(
Ir +

∑
k δ̃kC

(k)
)−1]

is clearly continuously differentiable

onR
L
+. Concerningf̃l, we first need to use the matrix equality(I + AB)−1B = B(I + BA)−1, with

A = Q1/2 andB = C̃Q1/2:

f̃l(δ,Q) =
1

σ2t
Tr

[
Q1/2C̃(l)Q1/2

(
It +Q1/2C̃(δ)Q1/2

)−1
]

=
1

σ2t
Tr
[
C̃(l)Q(It + C̃(δ)Q)−1

]
. (1.84)

Recall thatC̃(δ) =
∑

k δkC̃
(k). Function(δ, λ) 7→ f̃(δ,Q+λ(P−Q)) is therefore clearly continuously

differentiable onRL+× [0, 1]. Nevertheless, as we want to use the implicit theorem forλ = 0, we need to

enlarge the continuous differentiability on an open set includingλ = 0. Note that forλ < 0, Q+λ(P−
Q) might have negative eigenvalues. Yet,det

[
It+C̃(δ)(Q+λ(P−Q))

]
> 0 for δ = δ(Q) andλ = 0.
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Therefore it exists a neighbourhoodV of (δ(Q), 0) on whichdet
[
It + C̃(δ)(Q + λ(P − Q))

]
> 0.

Defining f̃l by (1.84), the functions(δ, λ) 7→ f̃l(δ,Q + λ(P − Q)) are continuously differentiable on

V . Hence,Γ(δ, δ̃, λ) is continuously differentiable onRL+ × V .

We still have to check that the partial JacobianD(δ,δ̃)(Γ(δ, δ̃, λ)) is invertible at the pointλ = 0.

D(δ,δ̃)Γ(δ,δ̃,0) =

[
IL −Dδf(δ̃) −D

δ̃
f(δ̃)

−Dδ f̃(δ,0) IL −D
δ̃
f̃(δ,0)

]

=

[
IL −σ2A(T)

−σ2Ã(T̃) IL

]
= M(T, T̃),

where the entries of matricesA(T) and Ã(T̃) are defined byAkl(T) = 1
tTr(C

(k)TC(l)T) and

Ãkl(T̃) = 1
tTr(Q

1/2C̃(k)Q1/2T̃Q1/2C̃(l)Q1/2T̃), and whereT = T(δ̃(Q)) andT̃ = T̃(δ(Q)) are

respectively defined by (1.11) and (1.12). MatricesA(T), Ã(T̃) andM(T, T̃) correspond to those

defined in Lemma 1, but in which̃C(l) is replaced byQ1/2C̃(l)Q1/2. Lemma 1 item (i) therefore gives

the invertibility ofD(δ,δ̃)Γ at pointλ = 0.

We now are in position to apply the implicit function theorem, which asserts that functionsλ 7→
δ(Q + λ(P − Q)) andλ 7→ δ̃(Q + λ(P − Q)) are continuously differentiable on a neighbourhood

of 0. Hence,δ and δ̃ are Gâteaux differentiable at pointQ in the directionP − Q. As I(Q) =

log
∣∣Ir+

∑
l δ̃l(Q)C(l)

∣∣+log
∣∣It+Q

(∑
l δl(Q)C̃(l)

)∣∣−σ2t
(∑

l δl(Q)δ̃l(Q)
)

it is clear thatQ 7→ I(Q)

is as well Gâteaux differentiable at pointQ in the directionP−Q.
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Chapter 2

MMSE Diversity Analysis

I N this chapter, the evaluation of the diversity of the MIMO MMSE receiver is addressed for finite rates

in both flat fading channels and frequency selective fading channels with cyclic prefix. It has been

observed recently that in contrast with the other MIMO receivers, the MMSE receiver has a diversity

depending on the target finite rate, and that for sufficiently low rates the MMSE receiver reaches the full

diversity - that is, the diversity of the ML receiver. This behavior has so far only been partially explained.

The purpose of this chapter is to provide complete proofs for flat fading MIMO channels, and to improve

the partial existing results in frequency selective MIMO channels with cyclicprefix.

2.1 Introduction

The diversity-multiplexing trade-off (DMT) introduced by [22] studies thediversity function of the mul-

tiplexing gain in the high SNR regime. [28] showed that the MMSE linear receivers, widely used for

their simplicity, exhibit a largely suboptimal DMT in flat fading MIMO channels. Nonetheless, for a

finite data rate (i.e. when the rate does not increase with the signal to noise ratio), the MMSE receivers

take several diversity values, depending on the target rate, as noticedearlier in [29], and also in [30, 31]

for frequency-selective MIMO channels. In particular they achieve full diversity for sufficiently low data

rates, hence their great interest. This behavior was partially explained in [28, 32] for flat fading MIMO

channels and in [33] for frequency-selective MIMO channels. Indeed the proof of the upper bound on

the diversity order for the flat fading case given in [32] contains a gap, and the approach of [32] based

on the Specht bound seems to be unsuccessfull. As for MIMO frequency selective channels with cyclic

prefix, [33] only derives the diversity in the particular case of a numberof channel taps equal to the

transmission data block length, and claims that this value provides an upper bound in more realistic

cases, whose expression is however not explicitly given. In this chapter we provide a rigorous proof of
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Figure 2.1: Considered MIMO system

the diversity for MMSE receivers in flat fading MIMO channels for finitedata rates. We also derive the

diversity in MIMO frequency selective channels with cyclic prefix for finite data rates if the transmis-

sion data block length is large enough. Simulations corroborate our derived diversity in the frequency

selective channels case.

2.2 Problem statement

We consider a MIMO system withM transmitting,N ≥ M receiving antennas, with coding and ideal

interleaving at the transmitter, and with a MMSE linear equalizer at the receiver, followed by a de-

interleaver and a decoder (see Fig. 2.1). We evaluate in the following sections the achieved diversity by

studying the outage probability, that is the probability that the capacity does not support the target data

rate, at high SNR regimes. We denoteρ the SNR,I the capacity andR the target data rate. We use the

notation
.
= for exponential equality[22], i.e.

f(ρ)
.
= ρd ⇔ lim

ρ→∞
log f(ρ)

log ρ
= d, (2.1)

and the notationṡ≤ and≥̇ for exponential inequalities, which are similarly defined. We notelog the

logarithm to base2.

2.3 Flat fading MIMO channels

In this section we consider a flat fading MIMO channel. The output of the MIMO channel is given by

y =

√
ρ

M
Hx+ n, (2.2)

wheren ∼ CN(0, IN ) is the additive white Gaussian noise andx the channel input vector,H theN×M
channel matrix with i.i.d. entries∼ CN(0, 1).
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Theorem 6. For a rateR such thatlog M
m < R

M < log M
m−1 , withm ∈ {1, . . . ,M}, the outage proba-

bility verifies

P(I < R)
.
= ρ−m(N−M+m), (2.3)

that is, a diversity ofm(N −M +m).

Note that for a rateR < M log M
M−1 (i.e. m = M ) full diversity MN is attained, while for a rate

R > M logM the diversity corresponds to the one derived by DMT approach. This result was stated

by [32]. Nevertheless the proof of the outage lower bound in [32] omits that the event notedBa is not

independent from the eigenvalues ofH∗H, hence questioning the validity of the given proof. We thus

provide an alternative proof based on an approach suggested by the analysis of [28] in the case where

R = r log ρ with r > 0.

Proof. The capacityI of the MIMO MMSE considered system is given by

I =
M∑

j=1

log(1 + βj),

whereβj is the SINR for thejth stream:

βj =
1([

I+ ρ
MH∗H

]−1
)
jj

− 1.

We lower bound in the first placeP(I < R) and prove in the second place that the bound is tight by

upper boundingP(I < R) with the same bound.

2.3.1 Outage probability lower bound

We here assume thatR/M > log(M/m). In order to lower boundP(I < R) we need to upper bound

the capacityI. Using Jensen’s inequality on functionx 7→ log x yields

I ≤M log

[
1

M

M∑

j=1

(1 + βj)

]
(2.4)

=M log

[
1

M

M∑

j=1

([(
I+

ρ

M
H∗H

)−1
]

jj

)−1
]
. (2.5)

We noteH∗H = U∗ΛU the SVD ofH∗H with Λ = diag(λ1, . . . , λM ), λ1 ≤ λ2 . . . ≤ λM . We

recall that the(λk)k=1,...,M are independent from the entries of matrixU and thatU is a Haar distributed
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unitary random matrix, i.e. the probability distribution ofU is invariant by left (or right) multiplication

by deterministic matrices. Using this SVD we can write

1

M

M∑

j=1

([(
I+

ρ

M
H∗H

)−1
]

jj

)−1

=
1

M

M∑

j=1

( M∑

k=1

|Ukj |2
1 + ρ

M λk

)−1

. (2.6)

a) Casem = 1

In order to better understand the outage probability behavior, we first consider the casem = 1. In this

caseR/M > logM . We review the approach of [28, III], which consists in upper bounding (2.6) by(
1 + ρ

M λ1
)

1
M

∑M
j=1

1
|U1j |2 , as

∑M
k=1

|Ukj |2
1+ ρ

M
λk

≥ |U1j |2
1+ ρ

M
λ1

. Using this bound in (2.5) gives

I ≤M log

[(
1 +

ρ

M
λ1

) 1

M

M∑

j=1

1

|U1j |2
]
.

Therefore
((

1 +
ρ

M
λ1

) 1

M

M∑

j=1

1

|U1j |2
< 2R/M

)
⊂ (I < R).

In order to lower boundP(I < R), [28] introduced the setA1 defined by

A1 =

{
1

M

M∑

j=1

1

|U1j |2
< M + ε

}

for ε > 0. Then,

P(I < R) ≥ P ((I < R) ∩A1)

≥ P

[((
1 +

ρ

M
λ1

) 1

M

M∑

j=1

1

|U1j |2
< 2R/M

)
∩A1

]

≥ P

[(
1 +

ρ

M
λ1 <

2R/M

M + ε

)
∩A1

]

= P(A1) · P
[
1 +

ρ

M
λ1 <

2R/M

M + ε

]
,

where the last equality comes from the independence between eigenvectors and eigenvalues of Gaussian

matrixH∗H. It is shown in [28, Appendix A] thatP(A1) 6= 0. Besides, as we supposed2R/M > M ,

we can takeε such that2
R/M

M+ε > 1, ensuring thatP
[ (

1 + ρ
M λ1

)
< 2R/M

M+ε

]
6= 0. Hence there existsκ > 0

such that

P(I < R) ≥̇ P

(
λ1 <

κ

ρ

)
,

which is asymptotically equivalent toρ−(N−M+1) in the sense of (2.1) (see, e.g., [79, Th. II.3]).
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b) General case1 ≤ m ≤M

By the same token as form = 1 we now consider the general case – we recall that we assumed that

log(M/m) < R/M . We first lower bound
∑

k
|Ukj |2
1+ ρ

M
λk

which appears in (2.6) by them first terms of the

sum and then use Jensen’s inequality applied onx 7→ x−1, yielding

M∑

k=1

|Ukj |2
1 + ρ

M λk
≥

m∑

k=1

|Ukj |2
1 + ρ

M λk

≥
(∑m

l=1 |Ulj |2
)2

∑m
k=1 |Ukj |2

(
1 + ρ

M λk
) .

Using this inequality in (2.6), we obtain that

1

M

M∑

j=1

([(
I+

ρ

M
H∗H

)−1
]

jj

)−1

≤ 1

M

M∑

j=1

∑m
k=1 |Ukj |2

(
1 + ρ

M λk
)

(
∑m

l=1 |Ulj |2)2

=
m∑

k=1

(
1 +

ρ

M
λk

)
δk(U), (2.7)

whereδk(U) = 1
M

∑M
j=1

|Ukj |2

(
∑m

l=1 |Ulj |2)
2 . Equation (2.7), together with (2.5), yields the following inclu-

sion:
(

m∑

k=1

δk(U)
(
1 +

ρ

M
λk

)
< 2R/M

)
⊂ (I < R).

Similarly to the casem = 1, we introduce the setAm defined by

Am =

{
δk(U) <

M

m2
+ ε, k = 1, . . . ,m

}

for ε > 0. We now use this set to lower boundP(I < R).

P(I < R) ≥ P ((I < R) ∩Am)

≥ P

[( m∑

k=1

δk(U)
(
1 +

ρ

M
λk

)
< 2R/M

)
∩Am

]

≥ P

[(
m∑

k=1

(
1 +

ρ

M
λk

)
<

2R/M

M
m2 + ε

)
∩Am

]

= P(Am) · P
[
m∑

k=1

(
1 +

ρ

M
λk

)
<

2R/M

M
m2 + ε

]
.

The independence between eigenvectors and eigenvalues of Gaussianmatrix H∗H justifies the last

equality. As we assumed thatlog(M/m) < R/M , that ism < 2R/M

M/m2 , we can chooseε such that
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m < 2R/M

M/m2+ε
. That ensures thatP

[∑m
k=1

(
1 + ρ

M λk
)
< 2R/M

M/m2+ε

]
6= 0. We show in Appendix 2.A

that this probability is asymptotically equivalent toρ−m(N−M+m) in the sense of (2.1), leading to

P(I < R) ≥̇ P(Am)

ρm(N−M+m)
. (2.8)

We still need to prove thatP(Am) 6= 0. Any Haar distributed random unitary matrix can be pa-

rameterized byM2 independent angular random variables(α1, . . . , αM2) = α whose probability dis-

tributions are almost surely positive (see [80, 81] and Appendix 2.C). WenoteΦ the function such that

U = Φ(α). Consider a deterministic unitary matrixU∗ such that|(U∗)ij |2 = 1
M ∀i, j, and denote by

α∗ a correspondingM2 dimensional vector. It is straightforward to check thatδk ◦ Φ(α∗) = M/m2.

Functionsα 7→ (δk ◦ Φ)(α) are continuous at pointα∗ for 1 ≤ k ≤ m and therefore there existsη > 0

such that the ballB (α∗, η) is included in the set
{
α, (δk ◦ Φ)(α) < M

m2 + ε, k = 1, . . . ,m
}

. We have

thereforeP(Am) 6= 0 as

P(Am) =

∫
{

(δk ◦Φ)(α)< M
m2+ε, k=1,...,m

}

p(α)dα

>

∫

B(α∗,η)
p(α)dα > 0

Coming back to (2.8), we eventually have

P(I < R) ≥̇ 1

ρm(N−M+m)
,

that is the diversity of the MMSE receiver is upper bounded bym(N −M +m).

2.3.2 Outage probability upper bound

We now conclude by studying the upper bound of the outage probability, showing thatm(N −M +m)

is also a lower bound for the diversity. Note that this lower bound has beenderived in [28, 32] using

however rather informal arguments; we provide a more rigorous proof here for the sake of completeness.

We now assume thatR/M < log(M/(m− 1)), i.e.m− 1 < M2−R/M . Using Jensen inequality on

functiony 7→ log(1/y), the capacityI can be lower bounded:

I = −
M∑

j=1

log

([(
I+

ρ

M
H∗H

)−1
]

jj

)

≥ −M log

(
1

M
Tr

[(
I+

ρ

M
H∗H

)−1
])

,
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which leads to an upper bound for the outage probability:

P(I < R) ≤ P

[
Tr

[(
I+

ρ

M
H∗H

)−1
]
> M2−R/M

]
. (2.9)

We need to derive the probability in the right-hand side of the above inequality. NotingB0 =
{
λ1 ≤

λ2 . . . ≤ λM ,
∑M

k=1

(
1 + ρ

M λk
)−1

> M2−R/M
}

,

P

[
Tr
[(

I+
ρ

M
H∗H

)−1]
> M2−R/M

]
=

∫

B0

p(λ1, . . . , λM )dλ1 . . . dλM . (2.10)

We now introduceµm = sup(λ1,...,λM )∈B0
{ρ λm} and prove by contradiction thatµm < +∞. If

µm = +∞, there exists a sequence(λ(n)1 , λ
(n)
2 , . . . , λ

(n)
M )n∈N such thatλ(n)k → +∞ for anyk ≥ m.

Besides,

M2−R/M<
M∑

k=1

(
1 +

ρ

M
λ
(n)
k

)−1
≤ (m− 1) +

M∑

k=m

(
1 +

ρ

M
λ
(n)
k

)−1
.

In particularM2−R/M < (m − 1) +
∑M

k=m

(
1 + ρ

M λ
(n)
k

)−1
, which, taking the limit whenn → +∞,

leads tom−1 ≥M2−R/M , a contradiction with the assumptionm−1 < M2−R/M . Hence,µm < +∞.

We introduce the setB1 = {λ1 ≤ λ2 . . . ≤ λM , 0 < λk ≤ µm
ρ , k = 1, . . . ,m}, which verifies

B0 ⊂ B1. Using (2.9) and (2.10), this implies that

P(I < R) ≤
∫

B1

p(λ1, . . . , λM )dλ1 . . . dλM ,

which is shown to be asymptotically smaller thanρ−m(N−M+m) in the sense of (2.1) in Appendix 2.B.

The diversity is thus lower bounded bym(N −M +m), ending the proof.

2.4 Frequency selective MIMO channels with cyclic prefix

We consider a frequency selective MIMO channel withL independent taps. We consider a block trans-

mission cyclic prefix scheme, with a block length ofK. The output of the MIMO channel at timet is

given by

yt =

√
ρ

ML

L−1∑

l=0

Hlxt−l + nt =

√
ρ

ML
[H(z)]xt + nt

wherext is the channel input vector at timet, nt ∼ CN(0, IN ) the additive white Gaussian noise,Hl is

theN ×M channel matrix associated tolth channel tap, forl ∈ {0, . . . , L − 1}, andH(z) denotes the
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transfer function of the discrete-time equivalent channel defined by

H(z) =
L−1∑

l=0

Hl z
−l.

We make the common assumption that the entries ofHl are i.i.d andCN(0, 1) distributed. Note that,

thanks to the cyclic prefix, the output during one transmission block of lengthK can be written



y0

...

yK−1


 = H




x0

...

xK−1


+ n, (2.11)

wheren ∼ CN(0, σ2INK) is the equivalent white Gaussian noise and whereKN × KM matrix H

is the traditional block circulant matrix constructed from coefficientsH0,H1, . . . ,HL−1. We can now

state the second diversity theorem of the chapter.

Theorem 7. Assume that the non restrictive conditionK > M2(L− 1) holds, ensuring thatlog M
m <

− log
(
m−1
M + (L−1)(M−(m−1))

K

)
for anym = 1, . . . ,M . Then, for a rateR verifying

log M
m < R

M < − log
(
m−1
M + (L−1)(M−(m−1))

K

)
, (2.12)

m ∈ {1, . . . ,M}, the outage probability verifies

P(I < R)
.
= ρ−m(LN−M+m), (2.13)

that is a diversity ofm(LN −M +m).

The diversity of the MMSE receiver is thusm(LN −M +m), corresponding to a flat fading MIMO

channel withM transmit antennas andLN receive antennas. For a large block lengthK, the upper

bound for rateR is close to the bound of the previous flat fading caselog M
m−1 . Concerning data rates

verifying− log
(
m−1
M + L−1

K (M − (m− 1))
)
< R

M < log M
m−1 , them(LN −M +m) diversity is only

an upper bound; nevertheless the diversity is also lower bounded by(m− 1)(LN −M + (m− 1)).

Proof. Similarly to previous section the capacity of the MIMO MMSE system is written

I =
M∑

j=1

log(1 + βj),

whereβj is the SINR for thejth stream ofxt. It is standard material that in MIMO frequency selective

channel with cyclic prefix the SINR of the MMSE receiver is given by

βj =
1

1
K

∑K
k=1

[(
S
(
k−1
K

))−1
]
jj

− 1, (2.14)

whereS(ν) = IN + ρ
MH(e2iπν)∗H(e2iπν).
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2.4.1 Outage probability lower bound

We assume thatR/M > log(M/m).

One can show that functionA 7→ (A−1)jj , defined over the set of positive-definite matrices, is

convex. Using Jensen’s inequality then yields

1

K

K∑

k=1

[(
S
(
k−1
K

))−1
]
jj

≥
([

1

K

K∑

k=1

S
(
k−1
K

)]−1)

jj

=

([
IN +

L−1∑

l=0

ρ

M
H∗
lHl

]−1)

jj

.

The last equality follows from the fact that1K
∑K

k=1 e
2iπ k−1

K
(l−n) = δln. Using this inequality in the

SINR expression (2.14) gives

1 + βj ≤
(([

IN +
L−1∑

l=0

ρ

M
H∗
lHl

]−1)

jj

)−1

.

We now come back to the capacityI of the system; similarly to (2.4), using Jensen’s inequality yields

I ≤M log

[
1

M

M∑

j=1

(1 + βj)

]

≤M log

[
1

M

M∑

j=1

(([
IN +

ρ

M

L−1∑

l=0

H∗
lHl

]−1)

jj

)−1
]
.

We can now use the results of section 2.3.1 by simply replacingN ×M matrixH in (2.5) byLN ×M

matrixH̃ = [HT
0 ,H

T
1 , . . . ,H

T
L−1]

T . They lead to the following lower bound for the outage capacity, for

a rateR verifyingR/M > log(M/m):

P(I < R) ≥̇ 1

ρm(LN−M+m)
.

2.4.2 Outage probability upper bound

We assume thatRM < − log
(
m−1
M + (L−1)(M−(m−1))

K

)
, that is2−R/M < m−1

M +L−1
K (M−(m− 1)).

We first derive a lower bound for the capacityI.

I = −
M∑

j=1

log

(
1

K

K∑

k=1

([
S
(
k−1
K

)]−1
)
jj

)

≥ −M log

(
1

KM

K∑

k=1

Tr
([

S
(
k−1
K

)]−1
))
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The latter inequality follows once again from Jensen’s inequality on functionx 7→ log x.

We now analyzeTr
(
S(ν)−1

)
. To that end, we writeLN ×M matrixH̃ = [HT

0 , . . . ,H
T
L−1]

T under

the formH̃ = Θ(H̃∗H̃)1/2, whereΘ = [ΘT
0 , . . . ,Θ

T
L−1]

T andΘ∗Θ = IM . Besides, we noteU∗ΛU

the SVD ofH̃∗H̃ with Λ = diag(λ1, . . . , λM ), λ1 ≤ . . . ≤ λM . Hence,

H(e2iπν) = Θ(e2iπν)U∗Λ1/2U,

whereΘ(z) =
∑L−1

l=0 Θlz
−l. Using this parametrization,

Tr
(
S(ν)−1

)
= Tr

[(
I+

ρ

M
UΘ∗(e2iπν)Θ(e2iπν)U∗Λ

)−1
]

≤ Tr

[(
I+

ρ

M
γ(e2iπν)Λ

)−1
]
,

whereγ(ν) = λmin(Θ
∗(e2iπν)Θ(e2iπν)). Coming back to the outage probability,

P(I < R) ≤P


 1

K

K−1∑

k=0

M∑

j=1

(
1 +

ρλj
M

γ

(
k

K

))−1

> M2−R/M




= P

[
H̃ ∈ B0

]
, (2.15)

whereB0 =
{
H̃, 1

K

∑K−1
k=0

∑M
j=1

(
1 +

ρλj
M γ

(
k
K

) )−1
> M2−R/M

}
.

We now prove by contradiction thatµm < +∞, whereµm = sup
H̃∈B0

{ρλm}. If µm = +∞ there

exists a sequence of matricesH̃(n)∈B0 such thatρλ(n)m → +∞. Besides,

M2−
R
M <

1

K

K−1∑

k=0

M∑

j=1

(
1 +

ρλ
(n)
j

M
γ(n)

(
k

K

))−1

≤ (m− 1) +
1

K

K−1∑

k=0

M∑

j=m

(
1 +

ρλ
(n)
j

M
γ(n)

(
k

K

))−1

(2.16)

As Θ(n) belongs to a compact we can extract a subsequenceΘ(ψ(n)) which converges towards a matrix

Θ∞. For this subsequence, inequality (2.16) becomes

M2−
R
M ≤ (m− 1) +

1

K

K−1∑

k=0

M∑

j=m

(
1 +

ρλ
(ψ(n))
j

M
γ(ψ(n))

(
k

K

))−1

(2.17)

Let γ∞ be the function defined byγ∞(ν) = λmin(Θ
∗
∞(e2iπν)Θ∞(e2iπν)) andk1, . . . , kp be the integers

for which γ∞(kj/K) = 0. ThendetΘ∞(z) = det
(∑L−1

l=0 Θ∞,lz
−l) = 0 for all z ∈

{
e2iπkj/K , j =

1, . . . , p
}

. Nevertheless, polynomialz 7→∑L−1
l=0 Θ∞,lz

−l has a maximum degree ofM(L−1), therefore
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Figure 2.2: Outage probability of the MMSE receiver, L=2, K=64, M=N=2

p ≤M(L− 1). Inequality (2.17) then leads to

M2−
R
M ≤ (m− 1) +

M(L− 1)

K
+

1

K

∑

k/∈{k1,...,kp}

M∑

j=m

(
1 +

ρλ
(ψ(n))
j

M
γ(ψ(n))

(
k

K

))−1

(2.18)

Moreover, ifk /∈ {k1, . . . , kp}, λ(ψ(n))j γ(ψ(n))( kK ) → +∞ for j ≥ m, asγ(ψ(n))
(
k
K

)
→ γ∞

(
k
K

)
6= 0

for k /∈ {k1, . . . , kp}. Therefore taking the limit of (2.18) whenn→ +∞ gives

M2−
R
M ≤ (m− 1) +

M(L− 1)

K
,

which is in contradiction with the original assumption2−R/M < m−1
M + L−1

K (M− (m − 1)). Hence

µm < +∞, andB0 ⊂ B1 = {H̃, ρλm(H̃∗H̃) < µm}. Using (2.15), we thus have

P(I < R) ≤ P(H̃ ∈ B1),

which, by Appendix 2.B, is asymptotically smaller thanρ−m(NL−M+m) in the sense of (2.1), therefore

ending the proof.

2.5 Numerical Results

We here illustrate the derived diversity in the frequency selective case.In the conducted simulation we

took a block length ofK = 64, a number of transmitting and receiving antennasM = N = 2, L = 2

77



CHAPTER 2. MMSE DIVERSITY ANALYSIS

channel taps and a target data rateR = 3 bits/s/Hz. RateR then verifies (2.12) withm = 1, therefore

the expected diversity isLN −M +1 = 3. The outage probability is displayed on Fig. 2.2 as a function

of SNR. We observe a slope of−10−3 per decade, hence a diversity of3, confirming the result stated in

section 2.4.

2.6 Conclusion

In this chapter we provided rigorous proofs regarding the diversity ofthe MMSE receiver at fixed rate,

in both flat fading and frequency selective MIMO channels. The higherthe target rate the less diversity

is achieved; in particular, for sufficiently low rates, the MMSE receiver achieves full diversity in both

MIMO channel cases, hence its great interest. Nonetheless, in frequency selective channels, the diversity

bounds are not tight for some specific rates; this could probably be improved. Simulations corroborated

our results.
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2.A. ASYMPTOTIC LOWER BOUND FORP(
∑m

k=1 ρλk < b)

Appendices

2.A Asymptotic lower bound for P(
∑m

k=1 ρλk < b)

We prove in this appendix that, forb > 0, P(
∑m

k=1 ρλk < b) ≥̇ ρ−m(N−M+m).

We noteCm the set defined byCm = {λ1, . . . , λm : 0 < λ1 ≤ . . . ≤ λm,
∑m

k=1 ρλk < b}. As the

λi verify 0 < λ1 ≤ . . . ≤ λM , we can write

P

(
m∑

k=1

ρλk < b

)
=

∫

(λ1,...,λm)∈Cm

∫ +∞

λm

. . .

∫ +∞

λM−1

pM,N (λ1, . . . , λM ) dλ1 . . . dλM , (2.19)

wherepM,N : RM → R is the joint probability density function of the ordered eigenvalues of aM ×M

Wishart matrix with scale matrixIM andN degrees of freedom, given by (see, e.g., [22]):

pM,N = K−1
M,N

M∏

i=1

(
λN−M
i e−λi

)∏

i<j

(λi − λj)
2, (2.20)

whereKM,N is a normalizing constant. We now try to separate the integral in (2.19) in two integrals, one

overλ1, . . . , λm, the other overλm+1, . . . , λM . As we have(λ1, . . . , λm) ∈ Cm in (2.19),λm < b/ρ

and thus
∫

λm≤λm+1≤...≤λM
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM

≥
∫

(λm+1,...,λM )∈D
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM

(2.21)

whereD = {(λm+1, . . . , λM ) ∈ R
M−m
+ ; b/ρ ≤ λm+1 ≤ . . . ≤ λM}. This integral can be sim-

plified by noticing thatpM,N (λ1, . . . , λM ) explicit expression (2.20) is invariant by permutation of its

parametersλ1, . . . , λM , in particular by permutation of its parametersλm+1, . . . , λM . Therefore, noting

S = Sym({λm+1, . . . , λM}) the group of permutations over the finite set{λm+1, . . . , λM}, we get

∫ +∞

b/ρ
. . .

∫ +∞

b/ρ
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM

=
∑

s∈S

∫

s(λm+1,...,λM )∈D
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM

= Card(S)

∫

(λm+1,...,λM )∈D
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM

= (M −m)!

∫

(λm+1,...,λM )∈D
pM,N (λ1, . . . , λM ) dλm+1 . . . dλM . (2.22)
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Using (2.21) and (2.22) in (2.19), we obtain

P

(
m∑

k=1

ρλk < b

)
≥ 1

(M −m)!

∫

Cm

∫ +∞

b/ρ
. . .

∫ +∞

b/ρ
pM,N (λ1, . . . , λM ) dλ1 . . . dλM .

We now replacepM,N by its explicit expression (2.20) and then try to separate them first eigenvalues

from the others. Note that we can drop the constants(M−m)! andKM,N as we only need an asymptotic

lower bound.

P

(
m∑

k=1

ρλk < b

)
≥̇
∫

Cm

∫ +∞

b/ρ
. . .

∫ +∞

b/ρ

M∏

i=1

(
λN−M
i e−λi

)∏

i<j

(λi − λj)
2 dλ1 . . . dλM

=

∫

Cm

∫ +∞

b/ρ
. . .

∫ +∞

b/ρ

(
m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2

)

·
(

M∏

i=m+1

(
λN−M
i e−λi

) ∏

i≤m<j
(λi − λj)

2
∏

m<i<j

(λi − λj)
2

)
dλ1 . . . dλM

For i ≤ m < j, we have thatλi ≤ b/ρ and thus(λi − λj)
2 ≥

(
λj − b

ρ

)2
. Hence,

P

(
m∑

k=1

ρλk < b

)
≥̇
(∫

Cm

m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2 dλ1 . . . dλm

)
(2.23)

·
(∫ +∞

b/ρ
. . .

∫ +∞

b/ρ

M∏

i=m+1

(
λN−M
i e−λi

) M∏

j=m+1

(
λj −

b

ρ

)2m ∏

m<i<j

(λi − λj)
2 dλm+1 . . . dλM

)

We now have two separate integrals. We first consider the second one, inwhich we make the substitution

βi = λi − b/ρ for i = m+ 1, . . . ,M .

∫ +∞

b/ρ
. . .

∫ +∞

b/ρ

M∏

i=m+1

(
λN−M
i e−λi

) M∏

j=m+1

(
λj −

b

ρ

)2m ∏

m<i<j

(λi − λj)
2 dλm+1 . . . dλM

= e−(M−m)b/ρ

∫ +∞

0
. . .

∫ +∞

0

M∏

i=m+1

((
βi +

b
ρ

)N−M
e−βiβ2mi

) ∏

m<i<j

(βi − βj)
2 dβm+1 . . . dβM

≥ 1

2

∫ +∞

0
. . .

∫ +∞

0

M∏

i=m+1

(
βN−M+2m
i e−βi

) ∏

m<i<j

(βi − βj)
2 dβm+1 . . . dβM (2.24)

for ρ large enough, i.e. such thate−(M−m)b/ρ > 1/2. It is straightforward to see that the integral in

(2.24) is nonzero, finite, independent fromρ and therefore asymptotically equivalent to1 in the sense of

(2.1). Hence, we can drop the second integral in (2.23), leading to:

P

(
m∑

k=1

ρλk < b

)
≥̇
∫

Cm

m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2 dλ1 . . . dλm. (2.25)
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Making the substitutionαi = ρλi for i = 1, . . . ,m in (2.25) and notingC′
m = {α1, . . . , αm : 0 < α1 ≤

. . . ≤ αm,
∑m

k=1 αk < b} we then have

P

(
m∑

k=1

ρλk < b

)
≥̇
(
ρ−m−m(N−M)−m(m−1)

∫

C′

m

m∏

i=1

(
αN−M
i e−αi/ρ

) ∏

i<j≤m
(αi − αj)

2 dα1 . . . dαm

)

≥ ρ−m(N−M+m)

∫

C′

m

m∏

i=1

(
αN−M
i e−αi

) ∏

i<j≤m
(αi − αj)

2 dα1 . . . dαm (2.26)

for ρ ≥ 1, as we have thene−αi/ρ ≥ e−αi for i = 1, . . . ,m. As b > 0 it is straightforward to see that

the integral in (2.26) is nonzero but also finite and independent fromρ; it is therefore asymptotically

equivalent to1 in the sense of (2.1), yielding

P

(
m∑

k=1

ρλk < b

)
≥̇ ρ−m(N−M+m),

which concludes the proof.

2.B Asymptotic upper bound for P(ρλm < b)

We prove in this section thatP (B1) ≤̇ ρ−m(M−N+m), where the setB1 is defined by

B1 = {λ1 ≤ λ2 . . . ≤ λM , 0 < λk ≤ b, k = 1, . . . ,m},

with b > 0 andλ1, . . . , λM the ordered eigenvalues of the Wishart matrixH∗H. We use the same

approach as in Appendix 2.A. For we notepM,N the joint probability density function of the ordered

eigenvalues of aM ×M Wishart matrix with scale matrixIM andN degrees of freedom, the probability

P(B1) can be written as

P(B1) =

∫

(λ1,...,λM )∈B1

pM,N (λ1, . . . , λM ) dλ1 . . . dλM .

Similarly to Appendix 2.A we try to upper boundP(B1) by the product of two integrals, one containing

them first eigenvalues and the other theM − m remaining eigenvalues. We first replacepM,N by it

explicit expression (2.20):

P(B1) = K−1
M,N

∫

(λ1,...,λM )∈B1

M∏

i=1

λN−M
i e−λi

∏

i<j

(λi − λj)
2 dλ1 . . . dλM

.
=

∫

(λ1,...,λM )∈B1

(
m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2

)

·
(

M∏

i=m+1

(
λN−M
i e−λi

) ∏

i≤m<j
(λi − λj)

2
∏

m<i<j

(λi − λj)
2

)
dλ1 . . . dλM .
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Note that we dropped the normalizing constantKM,N , asK−1
M,N

.
= 1. For i ≤ m < j, we have

|λi − λj | ≤ λj and thus
∏
i≤m<j(λi − λj)

2 ≤∏M
j=m+1 λ

2m
j , yielding

P(B1) ≤̇
∫ b/ρ

0

∫ b/ρ

λ1

. . .

∫ b/ρ

λm−1

∫ +∞

λm

. . .

∫ +∞

λM−1

(
m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2

)

·
(

M∏

i=m+1

(
λN+2m−M
i e−λi

) ∏

m<i<j

(λi − λj)
2

)
dλ1 . . . dλM

In order to obtain two separate integrals we discard theλm in the integral bound simply by noticing that

λm > 0, therefore

P(B1) ≤̇
(∫ b/ρ

0

∫ b/ρ

λ1

. . .

∫ b/ρ

λm−1

m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2 dλ1 . . . dλm

)

·
(∫ +∞

0

∫ +∞

λm+1

. . .

∫ +∞

λM−1

M∏

i=m+1

(
λN+2m−M
i e−λi

) ∏

m<i<j

(λi − λj)
2 dλm+1 . . . dλM

)

As the second integral (inλm+1, . . . , λM ) is nonzero, finite and independent ofρ it is asymptotically

equivalent to1 in the sense of (2.1). Hence,

P(B1) ≤̇
∫ b/ρ

0

∫ b/ρ

λ1

. . .

∫ b/ρ

λm−1

m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2 dλ1 . . . dλm. (2.27)

We now make the substitutionsαi = ρλi for i = 1, . . . ,m inside the remaining integral.
∫ b/ρ

0

∫ b/ρ

λ1

. . .

∫ b/ρ

λm−1

m∏

i=1

(
λN−M
i e−λi

) ∏

i<j≤m
(λi − λj)

2 dλ1 . . . dλm

= ρ−m(N−M+m)

∫ b

0

∫ b

α1

. . .

∫ b

αm−1

m∏

i=1

(
αN−M
i e−αi/ρ

) ∏

i<j≤m
(αi − αj)

2 dα1 . . . dαm

≤ ρ−m(N−M+m)

∫ b

0

∫ b

α1

. . .

∫ b

αm−1

m∏

i=1

αN−M
i

∏

i<j≤m
(αi − αj)

2 dα1 . . . dαm, (2.28)

ase−αi/ρ ≤ 1. The remaining integral in (2.28) is nonzero (b > 0), finite and does not depend onρ;

therefore, (2.28) is asymptotically equivalent toρ−m(N−M+m) in the sense of (2.1). Coming back to

(2.27) we obtain

P(B1) ≤̇ ρ−m(N−M+m).

2.C Angular parameterization of uM−1

In this appendix, we review the results of [80,81] for the reader’s convenience.
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It has been shown in [80] that anyn× n unitary matrixAn can be written as

An = dnOn

[
1 0

0 An−1

]
, (2.29)

with An−1 a (n− 1)× (n− 1) unitary matrix,dn a diagonal phases matrix, that isdn = diag(eiϕ1 , . . . ,

eiϕn) with ϕ1, . . . , ϕn ∈ [0, 2π], andOn an orthogonal matrix (the angles matrix). MatrixOn can be

written in terms of parametersθ1, . . . , θn ∈ [0, π2 ] thanks to the following decomposition:

On = Jn−1,nJn−2,n−1 . . . J1,2,

where

Ji,i+1 =




Ii−1 0 0 0

0 cos θi − sin θi 0

0 cos θi − sin θi 0

0 0 0 In−i−1



.

LetUM be aM ×M unitary Haar distributed matrix. Then, using decomposition (2.29),

UM = DM (ϕ1)VM (θ1)

[
1 0

0 UM−1

]
,

with ϕ1 = (ϕ1,1, . . . , ϕ1,M ) ∈ [0, 2π]M , θ1 = (θ1,1, . . . , θ1,M−1) ∈ [0, π2 ]
M−1, DM (ϕ1) the diago-

nal matrix defined byDM (ϕ1) = diag(eiϕ1,1 , . . . , eiϕ1,M ), VM (θ1) the orthogonal matrix defined by

VM (θ1) = JM−1,MJM−2,M−1 . . . J1,2 andUM aM − 1 ×M − 1 unitary matrix. MatrixUM−1 can

naturally be similarly factorized.

Similarly to [81], we can show that, in orderUM to be a Haar matrix it is sufficient that(ϕ1,i)i=1,...,M

are i.i.d. random variables uniformly distributed over interval[0, 2π[, thatθ1,1, . . . , θ1,M−1 are indepen-

dent with densities respectively equal to(sin θ1)M−2, (sin θ2)M−3, . . . , (sin θM−2), 1 and independent

from ϕ1 and thatUM−1 is Haar distributed and independent fromϕ1 andθ1. The proof consists in

first showing, by a simple variable change, that if the(ϕ1,i)i=1,...,M and theθ1,1, . . . , θ1,M−1 follow the

mentioned distributions thenDM (ϕ1)VM (θ1) is uniformly distributed over the unity sphere ofCM .

The proof is then completed by showing that ifUM−1 is a Haar matrix independent fromϕ1 andθ1 then

UM is Haar distributed.

Finally one can parameterize a Haar matrixUM by ϕ1, θ1 andUM−1. Repeating the same pa-

rameterization forUM−1 we obtain thatUM can be parameterized by theM2 following independent

variables

(ϕ1,1, . . . , ϕ1,M ), (θ1,1, . . . , θ1,M−1), (ϕ2,1, . . . , ϕ2,M−1), (θ2,1, . . . , θ2,M−2), . . . ,

(ϕM−2,1, ϕM−2,2), θM−2,1, ϕM−1,1,

whose probability laws are almost surely positive.
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Chapter 3

The SAIC/MAIC Alamouti concept

ORTHOGONAL space-time block codes (STBC), and the Alamouti scheme in particular, are of par-

ticular interest in Multiple-Input Multiple-Output (MIMO) systems since they achieve full spatial

diversity over fading channels and are decoded from linear processing at the receiver. Nevertheless, due

to the expensive spectral resource, increasing network capacity requires the development of interference

cancellation techniques allowing several users to share the same spectralresources without impacting

the transmission quality. In this context several interference cancellation schemes have been developed

during this last decade, where each user is equipped with multiple antennas and employs STBC at trans-

mission. However, these IC techniques require multiple antennas at reception, which remains a challenge

at the handset level due to cost and size limitations. For this reason, low complexity Single Antenna In-

terference Cancellation (SAIC) techniques, currently operational in GSM handsets, have been developed

recently for single antenna users using real-valued modulations or complexfiltering of real-valued mod-

ulations, by using a widely linear (WL) filtering at reception. Extension to multipleantennas at reception

is called Multiple Antenna Interference Cancellation (MAIC) technique. Thepurpose of this chapter is

to extend the SAIC/MAIC technology to users using both real-valued constellations, such as Amplitude

Shift Keying (ASK) constellations, and the Alamouti scheme at transmission.

3.1 Introduction

Increasing network capacity without requiring additional bandwidth is a great challenge for wireless

networks, due to the expensive spectral resource,. This motivates the development of IC techniques

allowing several users to share the same spectral resources without impacting the transmission quality

of each user. In this context several IC schemes allowingP + 1 users to share the same channel at a

given time, have been developed during this last decade, where each user is equipped withM antennas
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and employs STBC at transmission [40–47, 82]. In such environments, it has been shown in [48] that

each user can be demodulated withM -order diversity if the receiver is equipped withN = MP + 1

antennas. However the number of receiving antennas can be reducedif the STBC structure is exploited.

Indeed, in this case, to provideM -order diversity gain and suppressP co-channel space-time users with

M transmit antennas, the required number of antennas at the receiver becomesN = P + 1. Such an

IC scheme has been proposed in [40,42] for a two antennas receiverand for two co-channel users, each

equipped with two transmit antennas and applying the Alamouti STBC [38]. A generalization of this

scheme to a higher number of users fromN > P receive antennas has been proposed in [43], whereas

alternative approaches are presented in [47]. A multi-user receiver having similar properties has been

proposed in [82] for CDMA systems. Finally an IC scheme allowing a receiver withN > P antennas to

separateP + 1 transmitted signals, each equipped withM > 2 transmit antennas and employing quasi-

orthogonal STBC [49, 50], is presented in [46]. As indicated above, available IC techniques compatible

with STBC schemes at transmission require multiple antennas at reception. However, if this is not a

strong constraint at the base station level, it remains a challenge at the handset level due to cost and size

limitations. For this reason, SAIC techniques, alternative to the complex ML multi-user demodulation

technique [51], are still of interest for 4G wireless networks using the MIMO technology and STBC in

particular.

SAIC techniques have received significant attention in recent years for the reception of several single

antenna and single carrier (SC) users [52–56]. Among these techniques, those which exploit the sec-

ond order (SO) non-circularity [57] (or impropriety [83]) property ofreal-valued modulation, such as

Binary Phase Shift Keying (BPSK) or Amplitude Shift Keying (ASK) modulations, or of modulations

corresponding, after a derotation operation, to a complex filtering of real-valued modulations, such as

Minimum Shift Keying (MSK), Gaussian MSK (GMSK) or Offset Quadrature Amplitude Modulations

(OQAM) [58], have received a particular attention [52,54–56]. These techniques implement an optimal

WL filtering [59] of the observations and allow the separation of two users from only one receive an-

tenna [54]. The powerfulness of this concept jointly with its low complexity arethe reasons why the

3G Americas [60] has presented the SAIC technology as a great improvement for GSM mobile station

receivers allowing significant network’s capacity gains for the GSM system [55, 67]. This technology

has been standardized in 2005 for GSM and is currently operational in most of GSM handsets. A further

standardization of this technology, called MUROS (Multi-User Reusing One Slot), is currently under

investigation to make several GSM users reuse the same TDMA slot. Extensionof the SAIC concept to

a multi-antennas reception is called MAIC [54] and is of great interest for GPRS networks in particu-

lar [61].

As SAIC technology remains of great interest for 4G wireless networks,an extension of this technol-

ogy to Orthogonal Frequency Division Multiplex (OFDM) transmissions using one transmit antenna and

the real-valued ASK modulation has been presented very recently in [62].Despite of the fact that ASK
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modulation is less power efficient than a corresponding complex QAM modulation, since only one real

dimension is used for data transmission, additional degrees of freedom are available and can be exploited

for interference suppression at the receiver. Besides, it has beenreported in [63] for DS-CDMA trans-

missions, in [64] for V-BLAST-based MIMO systems and in [62] for OFDMlinks, that transmission

with real-valued data symbols using a WL receiver can lead to a higher spectral efficiency than using a

complex symbol alphabet with linear receivers in multiuser contexts. As a consequence, the use of ASK

constellations coupled with WL receivers instead of complex ones with linear receivers does not seem

to be a limitation and may even bring advantages in terms of error probability and spectral efficiency, in

multi-user environments.

In the context of MIMO systems, WL receivers have been used very recently, implicitly or explicitly,

in [64, 84–87] to improve the reception of an user which uses the V-BLASTspatial multiplexing tech-

nology [88]. In [84,87] a WL receiver is used to exploit the SO non-circularity property exhibited by the

noise which is generated by the successive interference cancellation process used to jointly demodulate

the parallel independent data streams generated by the V-BLAST scheme.In [64, 85, 86] a WL receiver

is used to exploit the SO non-circularity of the transmitted symbols, assumed to bereal-valued. For

transmission with STBC, WL receivers have been used in [65, 89, 90] for equalization purposes of fre-

quency selective propagation channels, in [91] to decode Linear Dispersion STBC and in [40,42,45,47]

for IC purposes. In [89, 90], the use of WL receivers is motivated bythe presence of real-valued sym-

bols at the transmitter whereas in [40, 42, 45, 47, 65, 91], WL receivers are used to exploit the structural

SO non-circularity property of the signals generated by the Alamouti schemeor some linear dispersion

STBC respectively. However, despite of these works, the extension ofthe SAIC/MAIC technology to

transmission with STBC, such as the Alamouti scheme, has not been developed.

The purpose of this chapter is to extend the SAIC and MAIC technologies, currently available and

described in [54] for Single-Input Single-Output (SISO) and Single-Input Multiple-Outputs (SIMO) links

respectively, to Multiple-Inputs Single-Output (MISO) and MIMO links respectively, which use both

real-valued constellations, such as ASK constellations, and the Alamouti scheme. Note that the Alamouti

MIMO-MAIC technology allows to mitigate both intra-network Alamouti and external interferences.

More precisely, we introduce in this chapter a WL MMSE receiver, completely new for IC purposes in

the context of Alamouti transmissions, and we study its link with the ML Alamouti receiver. We show

in particular that, in the presence of synchronous Alamouti intra-network interferences, this WL receiver

implements the ML receiver and outperforms both the existing WL receivers of the literature and the

SAIC/MAIC receiver described in [54]. The proposed WL receiveris shown to be able to separate up

to 2N synchronous Alamouti users from a receiver withN antennas, displaying the capability to do,

for N = 1, SAIC of one synchronous Alamouti intra-network interference. We then provide a simple

geometrical interpretation of this receiver in order to better understand its behavior. A performance

analysis, in terms of SINR and SER, in the presence of Alamouti intra-network interferences and an
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Figure 3.1: 4-ASK constellation

adaptive implementation of the proposed WL receiver complete the results.

After introducing the observation model, data statistics and WL filters in section 3.2, the proposed

WL MMSE receiver jointly with its adaptive implementation are presented in section3.3 and briefly

compared with both the existing WL Alamouti receivers of the literature and the SAIC/MAIC receiver

described in [54]. The link between the proposed WL MMSE receiver and the ML Alamouti receiver is

analyzed in section 3.4. The maximal number of interferences which may be processed by the proposed

WL MMSE receiver jointly with an analytical performance analysis of the latterin the presence of one

or several synchronous Alamouti intra-network interferences respectively are presented in section 3.5.

Finally, section 3.6 concludes the chapter. The main results of the chapter have been patented in [92] and

presented in [93–95].

3.2 Problem Statement

In this section we first state the hypotheses required for our system model,before presenting three spatio-

temporal observation models. We eventually define the second order statistics of the observations and of

the total noise.

3.2.1 Hypotheses

We consider a radio communication system that employs a real-valued constellation (e.g. the 4-ASK

constellation depicted on Fig. 3.1) and the well-known Alamouti scheme [38] withM = 2 transmit

antennas andN receive antennas, as depicted on Fig. 3.2. We denote byT the symbol period. We

assume either flat fading propagation channels with a single-carrier waveform and square-root Nyquist

filter at both transmitter and receiver, or, equivalently, frequency selective propagation channels with an

OFDM waveform, then considering the system sub-carrier by sub-carrier thanks to the Discrete Fourier
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... ...
x1(n)µ1h1

µ2h2odd time slots
a2n−1

a2n

µ1h1

µ2h2

x2(n)

even time slots
−a2n

a2n−1

Figure 3.2: Alamouti scheme

Transform. The waveforms are assumed to be narrow-band at transmitterand receiver, that is the propa-

gation delay between two transmit or two receive antennas reduces to a simplephase shift. The channel

is assumed invariant over at least two successive symbol periods (andtypically a burst). In addition

we assume ideal timing and frequency information. Under these assumptions the observation vectors

sampled at time(2n− 1)T and2nT , respectively denotedx1(n) andx2(n), can be written as





x1(n) = µ1a2n−1h1 + µ2a2nh2 + b1(n)

x2(n) = −µ1a2nh1 + µ2a2n−1h2 + b2(n)
(3.1)

wherex1(n) andx2(n) are theN × 1 observation vectors at symbol periods(2n− 1)T and2nT respec-

tively, the quantitiesan are i.i.d real-valued random variables corresponding to the transmitted symbols,

µi (i=1,2) is a real scalar which controls the power of the two transmitted signals received by the array

of antennas;hi (i=1,2), such thatE[hHi hi] = N , is the normalized propagation channel vector between

transmit antennai and the receive array of antennas;AH is the conjugate transpose ofA; b1(n) and

b2(n) are the sampled total noise vector at sample times(2n − 1)T and2nT respectively, potentially

composed of intra-network interferences, external interferences (not generated by the network itself) and

background noise.

All along this chapter,Ruv andCuv are the correlation matrices defined byRuv = Ec[uv
H ],

Cuv = Ec[uv
T ], whereu andv are vectors of same size, whereEc(·) is the conditional expected

value with respect to the channel vectors of the sources and whereT means transpose. Moreover, we

respectively denote byRv andCv the correlation matricesRvv andCvv. Note that, in order to simplify

the notations, we may not always mention the dependency inn of the variables.
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3.2.2 Observation models

We here introduce the three spatio-temporal (ST) observation models usedalong this chapter, together

with their associated filtering.

a) Basic observation model

We first note that the observation system (3.1) can be reduced into a simple observation vectorx(n),

wherex(n) is the concatenation ofx1(n) andx2(n):

x =

[
x1

x2

]
. (3.2)

We noteπs = πa(µ
2
1 + µ22)/2, with πa = E[a2n], the mean power of each useful symbol per receive

antenna. Defining the2N×1 vectors,x(n),b(n), f1, f2 and the2×1 vectora(n) byx = [xT1 ,x
T
2 ]
T ,b =

[bT1 ,b
T
2 ]
T , f1 =

√
πa/πs[µ1h

T
1 , µ2h

T
2 ]
T , f2 =

√
πa/πs[µ2h

T
2 ,−µ1hT1 ]T anda(n) = [a2n−1, a2n]

T ,

system (3.1) can be written in the following form:

x(n) =
√
πs/πa(a2n−1f1 + a2nf2) + b(n)

=
√
πs/πa Fa(n) + b(n),

(3.3)

where the2N × 2 matrixF is simply defined byF = [f1, f2]. The filtering ofx is called a linear filtering

in the following.

b) Classical observation model

Nonetheless most of Alamouti receivers currently available for interference cancellation of intra-network

interferences, see, e.g., [40,42,43,82], use the classical observation model; they exploit the information

contained in the2N × 1 ST observation vectorx(n), defined by

x =

[
x1

x∗
2

]
. (3.4)

Defining the2N × 1 vectorsb(n), g1 andg2 by b = [bT1 ,b
H
2 ]T , g1 =

√
πa/πs[µ1h

T
1 , µ2h

H
2 ]T and

g2 =
√
πa/πs[µ2h

T
2 ,−µ1hH1 ]T , and defining the2N × 2 matrixG by G = [g1,g2], system (3.1) can

be written in a more compact form.

x(n) =
√
πs/πa (a2n−1g1 + a2ng2) + b(n),

=
√
πs/πa Ga(n) + b(n).

(3.5)

The filtering ofx is hereafter called a partially Widely Linear (WL) filtering.
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Table 3.1: Observation models

Observation Expression Ne Filtering

x =

[
x1

x2

]
=
√

πs
πa
(a2n−1f1 + a2nf2) + b(n) =

√
πs
πa
Fa(n) + b(n) 2N linear

x =

[
x1

x∗
2

]
=
√

πs
πa

(a2n−1g1 + a2ng2) + b(n) =
√

πs
πa
Ga(n) + b(n) 2N partially WL

x̃ =

[
x

x∗

]
=
√

πs
πa

(
a2n−1f̃1 + a2nf̃2

)
+ b̃(n) =

√
πs
πa
F̃a(n) + b̃(n) 4N fully WL

c) Extended observation model

We finally introduce the extended observation model, which is the basis of the receiver presented in this

chapter. This observation model is the concatenationx̃ of x1, x2, x∗
1, x

∗
2, that is ofx andx∗:

x̃ =

[
x

x∗

]
. (3.6)

We then define the vectors̃f1, f̃2 and b̃(n) of size4N × 1 by f̃1 = [fT1 , f
H
1 ]T , f̃2 = [fT2 , f

H
2 ]T and

b̃ = [bT ,bH ]T respectively. Eventually, defining the4N × 2 matrix F̃ by F̃ = [f̃1, f̃2], observation

vectorx̃(n) becomes

x̃(n) =
√
πs/πa

(
a2n−1f̃1 + a2nf̃2

)
+ b̃(n)

=
√
πs/πa F̃a(n) + b̃(n)

(3.7)

We call in the following fully Widely Linear (WL) filtering the filtering of̃x.

d) Equivalent reception model

These three ST models, which are summed up in Table 3.1, can be seen as the equivalent reception at

time nTb, whereTb = 2T is the duration of a block of two symbols, of two narrow-band uncorrelated

sources (a2n−1 anda2n) by a virtual array ofNe antennas, with a mean power per receiving antennaπs.

The number of virtual receiving antennas isNe = 2N for (3.3) and (3.5),Ne = 4N for (3.7). The two

sources mentioned are associated with the linearly independent virtual channel vectorsf1 andf2 (3.3),

g1 andg2 (3.5) and̃f1 and f̃2 (3.7) respectively, and corrupted by a total noiseb, b andb̃ respectively.

Note that the channel vectors are orthogonal in models (3.5) and (3.7) but not in model (3.3).
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3.2.3 Second order statistics

The SO (second order) statistics of the observation system (x1,x2) (3.1) correspond to the sixN × N

matricesRx1 ,Rx2 ,Rx1x2 ,Cx1 ,Cx2 andCx1x2 . Similarly the SO statistics of the total noise correspond

to the sixN × N matricesRb1 , Rb2 , Rb1b2 , Cb1 , Cb2 andCb1b2 . To simplify notations they are

respectively denotedR1, R2, R12, C1, C2 andC12 in the following. Using (3.1) we can now write the

second order statistics of the observation as

Rx1 = πa
(
µ21h1h

H
1 + µ22h2h

H
2

)
+R1 (3.8)

Rx2 = πa
(
µ21h1h

H
1 + µ22h2h

H
2

)
+R2 (3.9)

Rx1x2 = µ1µ2πa
(
h1h

H
2 − h2h

H
1

)
+R12 (3.10)

Cx1 = πa
(
µ21h1h

T
1 + µ22h2h

T
2

)
+C1 (3.11)

Cx2 = πa
(
µ21h1h

T
1 + µ22h2h

T
2

)
+C2 (3.12)

Cx1x2 = µ1µ2πa
(
h1h

T
2 − h2h

T
1

)
+C12 (3.13)

Note that, in all six second order statistics, the part related to the useful signal of the observation is

nonzero in general, except inCx1x2 for N = 1. Naturally, this would also be the case for the part

generated by a synchronous intra-network interference, which thus generate non-circular noise [57].

The2N × 2N correlation matricesRx, Cx andRx can be written in terms of the SO statistics of

the observation introduced above, or in terms of the correlation matrices of the noiseRb, Cb andRb.

Rx =

[
Rx1 Rx1x2

RH
x1x2

Rx2

]
= πsFF

H +Rb (3.14)

Cx =

[
Cx1 Cx1x2

CT
x1x2

Cx2

]
= πsFF

T +Cb (3.15)

Rx =

[
Rx1 Cx1x2

CH
x1x2

R∗
x2

]
= πsGGH +Rb (3.16)

Similarly the statistics of the noiseRb, Cb andRb can be written blockwise in terms of the SO statistics

of the noise introduced earlier

Rb =

[
R1 R12

RH
12 R2

]
; Cb =

[
C1 C12

CT
12 C2

]
; Rb =

[
R1 C12

CH
12 R∗

2

]
. (3.17)

The MIMO receivers of the literature [40, 42, 43, 45, 47, 82] are based on partially WL filtering,

hence only taking into account the information insideRx. By (3.16) and (3.17), we see that matrixRx

contains only three of the six second order matrices of the total noise, that is, matricesR1, R2 andC12.

Therefore the receivers of the literature are expected to be second order suboptimal in the presence of
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another Alamouti user, i.e. for internal interferences. On the opposite, the receiver which we introduce

in this chapter is based on a fully WL filtering. It thus takes into account the information contained in

the4N × 4N matrixRx̃, which contain all six correlation matrices of the total noise. Indeed, matrixRx̃

can be written as

Rx̃ =

[
Rx Cx

C∗
x R∗

x

]
= πsF̃F̃

H +R
b̃

(3.18)

and matrixR
b̃

is given by

R
b̃
=

[
Rb Cb

C∗
b R∗

b

]
. (3.19)

Note that, performing a blockwise inversion ofR
b̃
, we can write matrixR−1

b̃
, which we will use a

lot in the following, under the following form:

R−1

b̃
=

[
A D

D∗ A∗

]
, (3.20)

where the2N × 2N complex matricesA andD are given respectively by

A = (Rb −CbR
−∗
b C∗

b)
−1, (3.21)

D = −ACbR
−∗
b . (3.22)

MatricesA andD respectively verifyAH = A andDT = D. Note that, asR
b̃

has the same block

structure asRx̃ (see (3.18)), we have a similar result for the structure ofR−1
x̃ .

3.3 The MMSE Alamouti receivers

In this section we first recall some results about MMSE receivers, then present the MMSE Alamouti

receivers of the literature before introducing a new WL MMSE Alamouti receiver called Fully WL

MMSE Alamouti receiver. We outline the breakthrough of this new receiver. We finally present an

adaptive implementation of the Fully WL MMSE Alamouti receiver. Note that all along this chapter

we only consider the receivers for the estimation of symbola2n−1, as the analysis for the estimation of

symbola2n is very similar, if not identical.

3.3.1 About MMSE receivers

A MMSE receiver implements a ML (Maximum Likelihood) estimation from the outputy of a MMSE

filter. The MMSE filter ofu is the filter linear inu minimizing the Mean Square Error between its output
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... wH z(n)y(n)
u(n)

Re{·} ML â2n−1

w α

Figure 3.3: MMSE receiver structure

y and the symbola to estimate. The MMSE filter ofu for the estimation of symbola2n−1 can be written

as

w = R−1
u Ru a2n−1 . (3.23)

We hereafter respectively call Linear MMSE, Partially WL MMMSE and Fully WL MMSE filters the

MMSE filters ofx, x andx̃ for the estimation of symbola2n−1.

The vector carryinga2n−1 in u can be obtained by simply derivingRu a2n−1/πa. Hence, looking at

the outputy of the MMSE filter, we have

y = wHRu a2n−1

πa
a2n−1 + b(n)

= αa2n−1 + b(n), (3.24)

whereb(n) is the global noise at the output of the filter and whereα = wHRu a2n−1/πa = RH
u a2n−1

R−1
u Ru a2n−1/πa. Parameterα is therefore real positive. Assuming the global noiseb(n) Gaussian, the

ML estimation ofa2n−1 from outputy then generates the symbola2n−1 minimizing |αa2n−1 − y(n)|2,
or, equivalently, asα is real positive and asa2n−1 is real, minimizing the following metric:

Cmmse(a2n−1) = αa 2
2n−1 − 2a2n−1Re{y(n)}. (3.25)

Hence,z(n) = Re{y(n)} is a sufficient statistic for the MMSE receiver. Furthermore,z(n) = Re{α
a2n−1 + b(n)} = αa2n−1 + Re{b(n)}. Assuming that the real part of the global noiseRe{b(n)} is

Gaussian, the ML estimate ofa2n−1 from z(n) corresponds to the minimization of (3.25). We can

therefore consider thatz(n) is the output of the MMSE receiver and thus display the MMSE receiver

estimatinga2n−1 from observationu as in Fig. 3.3.

As seen on Fig. 3.3, the MMSE receiver requires the knowledge of parametersα andw. In practice

the receiver needs to estimate these parameters from the observations. This is not restrictive in practice

for the estimation ofw, nevertheless an accurate estimation ofα generally requires a great number

of training symbols. Therefore we also consider the Approximated MMSE receiver, which generates

symbola2n−1 minimizing (3.25), but whereα has been replaced by1, that is minimizinga 2
2n−1 −

94



3.3. THE MMSE ALAMOUTI RECEIVERS

... â2n−1wH z(n)y(n)
Re{·}

u(n)

w

argmin
a2n−1

|a2n−1 − z(n)|

Figure 3.4: Approximated MMSE receiver structure

2a2n−1Re {y(n)}. Minimizing this metric is equivalent to minimizing|a2n−1−y(n)|2, or also, asa2n−1

is real, to minimizing the following Approximated MMSE metric:

Ca−mmse(a2n−1) = |a2n−1 − z(n)|, (3.26)

The structure of the MMSE receiver is therefore simplified and the Approximated MMSE receiver can

be modeled by Fig. 3.4. Furthermore, if the Signal to Global noise ratio inu is high, we haveRu ≃
Ru a2n−1R

H
u a2n−1

/πa. Hence, for high Signal to Global noise ratios,α = RH
u a2n−1

R−1
u Ru a2n−1/πa ≃

1 and the approximated MMSE metric approximately corresponds to the MMSE metric.

3.3.2 Alamouti MMSE receivers of the literature

The Alamouti MMSE receivers available in the literature to demodulate symbola2n−1 in the presence of

internal interferences are all based on a partially WL MMSE filter [40, 42,45, 47], which can be written

as

wpwl = R−1
x Rxa2n−1

=
√
πsπa R

−1
x g1 (3.27)

The output of this MMSE filter is then

ypwl(n) = wH
pwlx(n) (3.28)

= πs
(
a2n−1g

H
1 R−1

x g1 + a2ng
H
1 R−1

x g2
)
+
√
πsπa g

H
1 R−1

x b(n)

We call the MMSE receiver related towpwl the P-WL-MMSE (Partially WL MMSE) receiver. It gener-

ates the symbola2n−1 minimizing the following metric:

Cpwl(a2n−1) = πsg
H
1 R−1

x g1a
2
2n−1 − 2a2n−1zpwl(n), (3.29)

wherezpwl is defined as the real part ofypwl:

zpwl = Re {ypwl} = Re
{
wH
pwlx(n)

}
(3.30)
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This corresponds to a ML decision from the outputzpwl(n); we therefore considerzpwl as the output

of the P-WL-MMSE receiver in the following. This P-WL-MMSE receiveronly takes into account

the information contained inRx. By (3.16) and (3.17), it therefore only considers the noise information

contained in matricesR1,R2 andC12, but not the one in matricesC1,C2 andR12; it is thus sub-optimal

in the presence of synchronous internal interferences in particular.

We now introduce the Approximated P-WL-MMSE receiver (AP-WL-MMSE). If the Signal to

Global Noise Ratio is high, i.e. ifgH1 (Rb + πsg2g
H
2 )−1g1 ≫ 1, we haveπsgH1 R−1

x g1 ≃ 1. This

justifies the Approximated MMSE receiver approach presented in 3.3.1, which corresponds here to min-

imizing the simple following metric:

Ca−pwl(a2n−1) = |a2n−1 − zpwl(n)| (3.31)

where we recall thatzpwl = Re {ypwl}.

A possible alternative to the P-WL-MMSE receiver is the Linear MMSE (L-MMSE) receiver, based

on the Linear MMSE filterwmmse defined by

wmmse = R−1
x Rxa2n−1 =

√
πsπa R

−1
x f1. (3.32)

The L-MMSE receiver then generates symbola2n−1 minimizing the following metric

Cl(a2n−1) = πsf
H
1 R−1

x f1a
2
2n−1 − 2a2n−1zl(n), (3.33)

wherezl(n) is the output of the Linear MMSE filter, defined by

zl(n) = Re
{
wH
mmsex(n)

}
. (3.34)

Nonetheless, such a receiver is not really considered in the literature, as the orthogonality of the Alamouti

code is lost in this approach. Moreover, it only takes into account the information contained inR−1
x , i.e.

in matricesRx1 , Rx2 andRx1x2 , but not the information contained in matricesCx1 , Cx2 andCx1x2 .

Hence, the L-MMSE receiver is also sub-optimal in the presence of synchronous internal interferences

in particular. Note that an approximated version of the L-MMSE can also be considered.

3.3.3 The Fully WL MMSE receiver

In this section we introduce a new receiver, called the Fully WL MMSE (F-WL-MMSE) receiver, based

on the extended observation vectorx̃(n) (note that a similar fully WL MMSE receiver has already been

introduced in [65] but for equalization purposes in frequency selective propagation channels). Such a

receiver takes into account the information contained in all six second order correlation matricesRx1 ,

Rx2 , Rx1x2 , Cx1 , Cx2 andCx1x2 . It is thus expected to outperform the P-WL-MMSE and L-MMSE
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receivers in the presence of synchronous internal interferences inparticular. The F-WL-MMSE receiver

is based on the Fully WL MMSE filter̃wfwl defined by

w̃fwl = R−1
x̃ Rx̃a2n−1

=
√
πsπa R

−1
x̃ f̃1 (3.35)

The output of the Fully WL MMSE filter is then

zfwl(n) = w̃H
fwlx̃(n) (3.36)

= πs

(
a2n−1f̃

H
1 R−1

x̃ f̃1 + a2nf̃
H
1 R−1

x̃ f̃2

)
+
√
πsπa f̃

H
1 R−1

x̃ b̃(n)

Note thatzfwl(n) is real. We have indeed̃wfwl = [wT
fwl,w

H
fwl]

T , asR−1
x̃ has the same block structure

asR−1

b̃
(3.20), yielding

zfwl(n) = 2Re{yfwl}, (3.37)

whereyfwl = wH
fwlx. The F-WL-MMSE receiver implements a ML estimation from the outputzfwl(n).

The ML estimation generates the symbola2n−1 minimizing the following (real) metric:

Cfwl(a2n−1) = πsf̃
H
1 R−1

x̃ f̃1a
2
2n−1 − 2a2n−1zfwl(n). (3.38)

As mentioned in 3.3.1, we also consider an approximated version of the F-WL-MMSE receiver. If

the Signal to Global Noise Ratio is high, i.e. iff̃H1 (R
b̃
+ πsf̃2f̃

H
2 )−1f̃1 ≫ 1, we haveπsf̃H1 R−1

x̃ f̃1 ≃ 1.

In this case the metric (3.38) can be approximated bya 2
2n−1−2a2n−1zfwl(n), giving rise to the so-called

Approximated F-WL-MMSE receiver (AF-WL-MMSE). This ApproximatedMMSE receiver generates

the symbola2n−1 minimizing the simple following metric:

Ca−fwl(a2n−1) = |a2n−1 − zfwl(n)|. (3.39)

3.3.4 The F-WL-MMSE receiver, a breakthrough

The available Alamouti receivers of the literature (the P-WL-MMSE receivers, see 3.3.2) fully exploit the

orthogonal STBC structure of the Alamouti scheme but do not make good use of the real-valued nature

of the constellations. They are therefore sub-optimal: they cannot separate more thanN Alamouti users

fromN receive antennas. SAIC (Single Antenna Interference Cancellation, i.e. interference cancellation

for N = 1) is thus impossible for these receivers.

On the opposite, the WL MMSE receiver presented in [54], introduced for synchronous single an-

tenna users using real-valued constellations, fully exploits the real-valuednature of the sources symbols

and is able to separate up to2N single antenna users fromN receive antennas, hence its SAIC capability

of one internal interference. However this receiver is not exploiting thepresent STBC structure; theP
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Alamouti users with real-valued symbols are seen as2P uncorrelated single antenna users. Hence, it

cannot separate more thanN Alamouti users fromN antennas and therefore cannot perform SAIC.

As for the F-WL-MMSE receiver, it exploits both the real-valued nature of the sources symbols and

the orthogonal STBC nature of the Alamouti scheme. This breakthrough withrespect to the receivers

of the literature allows this new receiver to separate up to2N Alamouti users fromN receive antennas

– this rejection capacity will be shown later in section 3.5.2. The F-WL-MMSE receiver can therefore

perform SAIC of one intra-network Alamouti interference, giving rise tothe Alamouti SAIC concept.

Its extension to a numberN > 1 of receiving antennas will be called the Alamouti MAIC (Multiple

Antenna Interference Cancellation) concept.

3.3.5 Adaptive implementation of the MMSE Alamouti receivers

We already mentioned in section 3.3.1 that in situations of practical interest the considered MMSE re-

ceivers need to estimate several parameters:

• the associated MMSE filter,

• the parameterα which appears in the MMSE filter output.

We notedw the MMSE filter estimatinga2n−1 from observationu in the general case;w is given by

(3.23). Assuming the channels constant over the burst, the receivers need to perform the estimation

for each burst. To that end the receiver usesM couples of training symbols(a2m−1, a2m) which are

available for each burst. NotingM0 the position of the first couple of training symbols in the burst we

haveM0 ≤ m < M0 +M . In these conditions, an estimatêw of the MMSE Alamouti filterw may be

obtained by

ŵ = R̂−1
u R̂u a2n−1 , (3.40)

whereR̂u andR̂u a2n−1 are defined by

R̂u =
1

M

M0+M−1∑

m=M0

u(m)u(m)H ,

R̂u a2n−1 =
1

M

M0+M−1∑

m=M0

u(m) a2m−1.

The quick convergence speed ofŵ will be later shown in the simulations by the Approximated MMSE

receivers (section c)). An attempt to explain this result is that the estimation error in R̂u somehow

compensates the estimation error inR̂u a2n−1 , thanks to the inversion of matrix̂Ru.
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An estimatêα of parameterα can be similarly obtained. Asα = wHRu a2n−1/πa, we can estimate

α with α̂, which is defined by:

α̂ =
ŵHR̂u a2n−1

πa
. (3.41)

However, contrary to the estimation ofw, an accurate estimation ofα requires in practice a high number

of training symbols, as already mentioned earlier in section 3.3.1.

3.4 MMSE Alamouti receivers vs. the ML Alamouti receiver

We outlined in previous section that the F-WL-MMSE receiver introduced isa breakthrough with respect

to the receivers of the literature. We now prove that this new receiver is even optimal in the ML sense

in some cases of practical interest. To that end we first introduce and analyze the ML Alamouti receiver

before comparing it to the MMSE Alamouti receivers introduced in previoussection.

3.4.1 The ML Alamouti receiver

We compute in this section the ML receiver for the demodulation of a real-valued Alamouti signal cor-

rupted by potential intra-network and external interferences. As explained in section 3.2.3, in the pres-

ence of synchronous intra-network interferences matrixCb is nonzero: the total noise vectorb(n) be-

comes SO non-circular. Assuming a Gaussian and non-circular vectorb(n), although the intra-network

interferences are not Gaussian, the probability density ofb̃(n), i.e. the joint probability density of the

real and imaginary part ofb(n), becomes [96,97]:

p
[
b̃(n)

]
=

(
π2N

√
det(R

b̃
) exp

(
b̃HR−1

b̃
b̃
))−1

(3.42)

wheredet(A) means determinant ofA. Besides, as̃x(n) =
√
πs/πa F̃a(n) + b̃(n) (see (3.7)), the ML

receiver for the demodulation of vectora(n) = [a2n−1, a2n]
T in SO non-circular total noise is such that

a(n) maximizes the ML criterion defined by

Cnc−ml(a(n)) = p

[
b̃(n) = x̃(n)−

√
πs
πa

F̃a(n)
/
a(n)

]
(3.43)

Using (3.42), we easily deduce that the maximization of (3.43) is equivalent tothe minimization of the

following ML criterion

Cml(a(n)) =a
2
2n−1 f̃

H
1 R−1

b̃
f̃1 + a 2

2n f̃H2 R−1

b̃
f̃2 + 2a2n−1a2nf̃

H
1 R−1

b̃
f̃2

− 2

√
πa
πs

(
a2n−1f̃

H
1 R−1

b̃
x̃(n) + a2nf̃

H
2 R−1

b̃
x̃(n)

)
.

(3.44)
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Note that it is straightforward to see from (3.20) thatf̃H1 R−1

b̃
f̃2, f̃H1 R−1

b̃
x̃(n) andf̃H2 R−1

b̃
x̃(n) are real-

valued quantities. The ML receiver exploits all the information contained inR
b̃
, i.e. inR1, R2, R12,

C1, C2 andC12. It is a coupled receiver in the general case of arbitrary matrixR
b̃

and vectorsµ1h1

andµ2h2, i.e. it requires the joint estimation ofa2n−1 anda2n. This generatesK2 tests for vectora(n),

whereK is the number of states of the constellation.

a) Decoupling condition of the ML receiver

We now derive the condition which decouples the ML receiver, i.e. the condition under which the ML

receiver reduces to two separate and independent ML receivers for the estimation ofa2n−1 anda2n
respectively. Indeed, as the MMSE Alamouti receivers estimate symbolsa2n−1 anda2n separately, the

ML receiver needs to be decoupled in order to correspond to a MMSE Alamouti receiver.

We deduce from (3.44) that the minimization ofCml(a(n)) reduces to two independent minimiza-

tions ofCml,1(a2n−1) andCml,2(a2n) when the following conditionC1 is verified.

C1 : f̃H1 R−1

b̃
f̃2 = 0 (3.45)

The two metricsCml,1(a2n−1) andCml,2(a2n) are then defined by

Cml,1(a2n−1) = a 2
2n−1

√
πs
πa

f̃H1 R−1

b̃
f̃1 − 2 a2n−1f̃

H
1 R−1

b̃
x̃(n) (3.46)

Cml,2(a2n) = a 2
2n

√
πs
πa

f̃H2 R−1

b̃
f̃2 − 2 a2nf̃

H
2 R−1

b̃
x̃(n) (3.47)

It is shown in Appendix 3.A that conditionC1 is in particular verified in the absence of interferences or

in the presence of an arbitrary number of synchronous intra-network interferences. In such situations,

the ML receiver becomes decoupled. This reduces in particular the complexity of the search procedure

to the test of2K possibilities fora(n) instead ofK2.

As in previous section we now focus on the estimation ofa2n−1 through metric (3.46). Indeed, the

analysis of the estimation ofa2n would provide the same results. To get a better insight of metric (3.46)

we define the4N × 1 fully WL filter w̃ml defined by

w̃ml = R−1

b̃
f̃1.

Note that, thanks toR−1

b̃
structure (3.20), filter̃wml can also be written as

w̃ml =

[
wml

w∗
ml

]
, (3.48)
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wherewml = [A,D]f̃1. The outputzml(n) of this filter is therefore real-valued:

zml(n) = w̃H
mlx̃(n) = 2Re{wH

mlx(n)}. (3.49)

Using (3.7) this output can also be written

zml(n) = a2n−1

√
πs
πa

f̃H1 R−1

b̃
f̃1 + bml(n).

wherebml(n) = a2n
√

πs
πa

f̃H1 R−1

b̃
f̃2 + f̃H1 R−1

b̃
b̃(n) is the global noise in the outputzml for the es-

timation of symbola2n−1. Similarly to the MMSE receivers in section 3.3.1, assuming a Gaussian

global noisebml(n), an ML estimate ofa2n−1 from zml(n) generates the symbola2n−1 minimizing

|a2n−1

√
πs/πa f̃

H
1 R−1

b̃
f̃1 − zml(n)|2 or, equivalently, minimizing the following metric:

a 2
2n−1

√
πs
πa

f̃H1 R−1

b̃
f̃1 − 2a2n−1zml(n).

This is equivalent to minimizingCml,1(a2n−1) defined in (3.46); the symbola2n−1 which minimizes

(3.46) therefore corresponds to the ML estimate ofa2n−1 from zml(n), which can thus be referred to as

the output of the decoupled ML receiver.

b) Specific case of a SO circular temporally and spatially white noise

We now consider the particular case of a SO circular, temporally and spatiallywhite background noise

with no interferences. In such a case,Rb = σ2I andCb = 0, whereσ2 is the mean power of the noise

per receive antenna. This generatesR
b̃

such thatR
b̃
= σ2I. In this case, conditionC1 is verified since

f̃H1 R−1

b̃
f̃2 =

2

σ2
Re{fH1 f2} = 0.

In this specific case, minimizing metric (3.46) is then equivalent to minimizing metricCconv,1(a2n−1),

defined by

Cconv,1(a2n−1) = a 2
2n−1

√
πs
πa

fH1 f1 − 2a2n−1Re{fH1 x(n)}

= a 2
2n−1

√
πs
πa

gH1 g1 − 2a2n−1Re{gH1 x(n)}. (3.50)

This metric corresponds to the metric of the Conventional Alamouti receiver [38], that we hereafter

denote CONV receiver. The symbola2n−1 minimizing (3.50) corresponds to the ML estimate ofa2n−1

from the outputyconv(n) of filter wconv = g1 applied on observationx(n), which can be written as

yconv(n) = gH1 x(n) (3.51)

= a2n−1

√
πs
πa

gH1 g1 + gH1 b(n),
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It also corresponds to the ML estimate ofa2n−1 from zconv(n) defined by

zconv(n) = Re{yconv(n)}. (3.52)

We can thus considerzconv as being the output of the CONV receiver. Note thatzconv(n) is also equal

toRe{fH1 x(n)}.

3.4.2 Optimality conditions of the F-WL-MMSE receiver

We analyze in this section the conditions under which the F-WL-MMSE Alamouti receiver corresponds

to the ML Alamouti receiver. To that end, aswfwl definition (3.35) involves matrixR−1
x̃ , we apply the

matrix inversion Lemma toRx̃ = πsFF
H +R

b̃
= πsf̃1f̃

H
1 + πsf̃2f̃

H
2 +R

b̃
(3.18), yielding:

R−1
x̃ f̃1 =

1

1 + πsf̃H1

(
πsf̃2f̃H2 +R

b̃

)−1
f̃1

(
R−1

b̃
f̃1 −

πsf̃
H
2 R−1

b̃
f̃1

1 + πsf̃H2 R−1

b̃
f̃2
R−1

b̃
f̃2

)
. (3.53)

We deduce from (3.53) that when conditionC1, defined by (3.45), is verified, vectors̃wfwl =
√
πsπa

R−1
x̃ f̃1 andw̃ml = R−1

b̃
f̃1 are collinear. This means thatzml(n), given by (3.49), andzfwl(n), given

by (3.36), are proportional. A similar result would naturally be obtained forthe filters involved in the

demodulation of symbola2n. We then deduce that, whenC1 is verified, the F-WL-MMSE receiver is

optimal and corresponds to the ML receiver, whereas it remains generally sub-optimal otherwise.

For a given total noise vectorb(n), conditionC1 may be verified only for some particular channel

vectorsµ1h1 andµ2h2. Nevertheless, it is shown in Appendix 3.A that conditionC1 is verified for all

channel vectorsµ1h1 andµ2h2 if and only if the total noise vectorb(n) verifies the following condition:

C2 :





R1 = R2,

C1 = C2,

RH
12 = −R12,

CT
12 = −C12.

(3.54)

We deduce from (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13) that conditionC2 is in particular verified in

the absence of interference for a SO circular, temporally and spatially whitenoise vectorb(n). Indeed,

R1 = R2 = σ2I, C1 = C2 = C12 = R12 = 0 in this case. ConditionC2 is also verified in the

presence of one or several synchronous intra-network interferences plus SO circular, temporally and

spatially white background noise. The six SO statistic matrices associated with anarbitrary synchronous

intra-network interference have indeed the same algebraic structure as the six SO statistic matrices related

to the useful signal in (3.8), (3.9), (3.10), (3.11), (3.12) and (3.13),which verify conditionC2. Hence,

conditionC2 is verified in this case. Finally, conditionC2 is still verified in the presence of external
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interferences as long asb1(n) andb2(n) remain uncorrelated (C12 = R12 = 0) with the same SO

statistics (R1 = R2,C1 = C2). Hence, the F-WL-MMSE receiver is optimal in numerous situations of

practical interest.

3.4.3 Optimality conditions of the P-WL-MMSE and L-MMSE receivers

To give examples of situations for which the F-WL-MMSE receiver reduces to either a P-WL-MMSE or

a L-MMSE receiver, we describe in this section the conditions under whichthe P-WL-MMSE and the

L-MMSE Alamouti receivers correspond to the ML Alamouti receiver.

a) P-WL-MMSE receivers

As mentioned earlier,wpwl =
√
πsπa R−1

x g1 only exploits the information contained in matricesR1,

R2 andC12. A necessary condition for the ML/P-WL-MMSE equivalence is therefore C1 = C2 =

R12 = 0. We show in fact in Appendix 3.B that the P-WL-MMSE receiver is optimal and corresponds

to the ML receiver if and only if conditionC3 is verified, whereC3 is defined by

C3 :

{
gH1 R−1

b
g2 = 0,

C1 = C2 = R12 = 0.
(3.55)

Otherwise, it remains generally sub-optimal.

Furthermore, we show in Appendix 3.C that conditionC3 is verified for all channel vectorsµ1h1

andµ2h2 if and only if the total noise vectorb(n) verifies conditionC4 defined by

C4 :





R1 = R2,

C1 = C2 = R12 = 0.

CT
12 = −C12.

(3.56)

In this case, the P-WL-MMSE receiver is optimal and the F-WL-MMSE receiver reduces in fact to a P-

WL-MMSE receiver. ConditionC4 is verified in particular in the absence of interferences for a circular,

temporally and spatially white noise vectorb(n). It is also verified in the presence of SO circular external

interferences (C1 = C2 = 0) as long asb1(n) andb2(n) remain uncorrelated (C12 = R12 = 0)

with the same SO statistics (R1 = R2, C1 = C2). However, the P-WL-MMSE receiver, used in

[40, 42, 43, 45, 47], becomes sub-optimal in the presence of one or several synchronous intra-network

interferences as we hen haveC1 = C2 6= 0 andR12 6= 0. It remains sub-optimal in the presence

of external interferences which are either SO non-circular or such that b1(n) andb2(n) are correlated,

which is in particular the case for very narrow-band external interferences.
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b) L-MMSE receiver

Similarly, we show in Appendix 3.D that the L-MMSE receiver is optimal and corresponds to the ML

receiver if and only if conditionC5 defined by

C5 :

{
fH1 R−1

b f2 = 0,

C1 = C2 = C12 = 0.
(3.57)

is verified. Otherwise, it remains generally sub-optimal. Moreover, we prove in Appendix 3.E that

conditionC5 can never be optimal for all channel vectorsµ1h1 andµ2h2, hence the interest of WL-

MMSE receivers for the reception of real-valued Alamouti signals. In particular, in the presence of a SO

circular, spatially and temporally white noise (Rb = σ2I), (3.57) shows that the L-MMSE receiver is

optimal only if fH1 f2 = 0, i.e. if Im{hH1 h2} = 0, but becomes sub-optimal otherwise. In this latter case,

the optimal receiver is the P-WL-MMSE receiver for whichgH1 g2 = 0 in all cases (note that, as already

mentioned, the F-WL-MMSE receiver then reduces to the P-WL-MMSE receiver).

3.5 Performance of Alamouti receivers in multiuser context

In this section we analyze the performance of the F-WL-MMSE Alamouti receiver in the presence of

both synchronous intra-network and external interferences and we compare the latter to those of the

receivers of the literature. We describe in a first part the total noise model. We then evaluate, in a second

part, the maximal number of interferences which may be processed by the F-WL-MMSE receiver and

the receivers of the literature, highlighting in particular the SAIC capability ofone synchronous intra-

network interference of the F-WL-MMSE Alamouti receiver. Finally, we discuss the performance of the

previous receivers by first giving a simple geometrical interpretation of their behavior in the presence

of one intra-network interference in a third part, then analyzing their output Signal to Interference plus

Noise Ratio (SINR) and Symbol Error Rate (SER) in the presence of intra-network interferences in a

fourth and fifth part respectively.

3.5.1 Total Noise Model

We assume in this section that the total noise vectorsb1(n) andb2(n) are composed ofP = Pint+Pext

interferences and a background noise, where

• Pint is the number of synchronous intra-network (or internal) interferences, corresponding to other

Alamouti users of the network with the same real-valued constellation as the useful signal,

• Pext is the number of external interferences, coming from other networks or jamming.
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We denote byei,n the symboln transmitted by the internal interferencei and byµ2i+1h2i+1 (resp.

µ2i+2h2i+2) the channel vector of internal interferencei between the transmit antenna1 (resp. 2) and

the receive array of antennas. The scalarµ2i+1 andµ2i+2 are real parameters controlling the received

power of the interferencei coming from transmit antennas1 and2 respectively. TheN × 1 complex-

valued vectorsh2i+1 andh2i+2, such thatE[hH2i+1h2i+1] = E[hH2i+2h2i+2] = N , are the associated

normalized propagation channel vectors between transmit antenna1 and2 respectively and the receive

array of antennas.

The external interferencek is characterized by its complex envelopemk(t) and itsN × 1 complex-

valued channel vectorjk, constant over at least the duration2T of a couple of symbols, and such that

E[jHk jk] = N . An external interferencek is said to be rectilinear if there exists a realφk such that

mk(t)
∗ = mk(t)e

−j2φk and is said to be non-rectilinear otherwise. It is said to be coherent if there

exists a realψk such thatmk(2nT ) ≃ mk((2n − 1)T )ejψk and is said to be non-coherent otherwise.

A coherent interference corresponds to a very narrow-band interference compared to the useful signal

bandwidth. In this context, we assume that thePext external interferences are composed of

• Pr,c rectilinear and coherent interferences,

• Pr,nc rectilinear and non-coherent interferences,

• Pnr,c non-rectilinear and coherent interferences,

• Pnr,nc non-rectilinear and non coherent interferences,

such thatPext = Pr,c + Pr,nc + Pnr,c + Pnr,nc. We also denote in the following

• Pc = Pr,c + Pnr,c the number of coherent interferences,

• Pnc = Pr,nc + Pnr,nc the number of non-coherent interferences,

• Pnr = Pnr,c + Pnr,nc the number of non-rectilinear interferences.

3.5.2 Maximal number of interferences processed by the receivers

Under the previous assumptions, we deduce from the observation models (3.3), (3.5) and (3.7) that

an internal interference generates two statistically uncorrelated interferences in vectorsb(n), b(n) and

b̃(n) As for an external interference, it is easy to verify that the number of different interferences which
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is generated in vectorsb(n), b(n) andb̃(n), denoted byPb, Pb andP
b̃

respectively, is such that

Pb = 2Pint + Pc + 2Pnc,

Pb = 2Pint + Pr,c + 2(Pr,nc + Pnr),

P
b̃
= 2Pint + Pr,c + 2(Pr,nc + Pnr,c) + 4Pnr,nc.





(3.58)

The F-WL-MMSE and the ML Alamouti receivers exploit in different waysthe information con-

tained in matricesRx̃ or R
b̃

(see (3.35) and (3.44)), i.e. in the correlation matrix of the extended obser-

vation model (3.7), with or without the useful signal part. This model is associated with a virtual array of

Ne = 4N virtual antennas, as explained in section d), and the number of degrees of freedom available to

reject interferences contained iñb(n) isNe − 2 for the two latter receivers. Indeed, for the ML receiver

and in the absence of background noise, as one can see in (3.44) the space spanned by the interferences

contained iñb(n) has to be orthogonal to both vectorsR−1

b̃
f̃1 andR−1

b̃
f̃2, which are not collinear in the

general case. The maximal rank of this space is thenNe − 2. For the F-WL-MMSE receiver, one degree

of freedom is used to keep one useful symbol in (3.7). Another degreeof freedom is used to reject the

other useful symbol, which is an interference for the first one. Hence there areNe−2 residual degrees of

freedom to reject the interferences inb̃(n). The maximal number of interferences which may be rejected

by the two previous receivers is then such thatNe−2 = P
b̃
. A similar analysis may be done for both the

P-WL-MMSE and the L-MMSE receivers giving rise toNe−2 = Pb andNe−2 = Pb respectively with

Ne = 2N . Using (3.58), we obtain that the maximal number of interferences which may be processed

by the previous receivers is such that

2(N − 1) = 2Pint + Pc + 2Pnc for L-MMSE

2(N − 1) = 2Pint + Pr,c + 2(Pr,nc + Pnr) for P-WL-MMSE

2(2N − 1) = 2Pint + Pr,c + 2(Pr,nc + Pnr,c) + 4Pnr,nc for ML, F-WL-MMSE





(3.59)

These expressions show in particular that the L-MMSE and P-WL-MMSE receivers, i.e. the receivers

of the literature, are not able to process more thanN − 1 internal interferences from an array ofN

sensors. They cannot thus process any interference, internal or external, fromN = 1 antenna. On the

contrary, the F-WL-MMSE Alamouti receiver that we proposed and the ML Alamouti receiver are able

to process up to2N − 1 internal interferences fromN antennas. Hence, they can both perform SAIC

of one synchronous intra-network Alamouti interference forN = 1. Besides, these latter receivers may

also process up to2N − 1 rectilinear or coherent, and up to4N − 2 rectilinear and coherent external

interferences fromN antennas, hence the SAIC of one rectilinear or coherent external interference and

of two rectilinear and coherent interferences respectively. Finally anyof the considered receivers is able

to process more thanN − 1 non-rectilinear and non-coherent external interferences fromN antennas.
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3.5.3 Geometrical interpretation

For a better understanding of the structure of the receivers we subsequently assume in this section that

the total noise is composed ofP = Pint = 1 synchronous internal interference plus a spatially and

temporally white background noise. The observation model is described in afirst part, the Conventional

Alamouti receiver (CONV) is analyzed in a second part and the F-WL-MMSE receiver in a third part.

a) Observation model

Under the previous assumption and using notations of section 3.5.1, the vectorsx1 andx2 of (3.1) can

be written as





x1(n) = µ1a2n−1h1 + µ2a2nh2 + µ3e2n−1h3 + µ4e2nh4 + bν1(n)

x2(n) = −µ1a2nh1 + µ2a2n−1h2 − µ3e2nh3 + µ4e2n−1h4 + bν2(n)
(3.60)

We recall thatµ3h3 andµ4h4 have been defined in section 3.5.1. Note thate1,n introduced in section

3.5.1 for internal interference1 has been replaced byen to simplify notations. Vectorsbν1 andbν2 are the

N×1 background noise vectors inx1 andx2 respectively, such that the2N×1 vectorbν = [bTν1,b
T
ν2]

T

is SO circular, temporally and spatially white, i.e. such thatRbν = σ2I andCbν = 0. The observation

system (3.60) gives rise to the following expressions for the total noise vectorsb(n), b(n) andb̃(n):

b(n) =

√
πI
πa

(e2n−1f3 + e2nf4) + bν(n), (3.61)

b(n) =

√
πI
πa

(e2n−1g3 + e2ng4) + bν(n), (3.62)

b̃(n) =

√
πI
πa

(
e2n−1f̃3 + e2nf̃4

)
+ b̃ν(n), (3.63)

where the scalarπI = πa(µ
2
3 + µ24)/2 corresponds to the mean power of each interfering symbol per

receive antenna, where the vectorsf3, f4, g3, g4, f̃3, f̃4 are defined similarly tof1, f2, g1, g2, f̃1 and f̃2
respectively and wherebν = [bTν1,b

H
ν2]

T , b̃ν = [bTν ,b
H
ν ]

T .

It was established in section 3.5.2 that the F-WL-MMSE receiver processes up toPint = 2N − 1

internal interferers. As we consider onlyP = Pint = 1 internal interferer, corresponding to another

Alamouti user of the network, we expect the F-WL-MMSE receiver to properly cancel this interferer.

The purpose of this paper is to analyze the behavior of the conventional Alamouti receiver and of the

F-WL-MMSE receiver to understand how the latter properly cancels the internal interference.
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Figure 3.5: Scheme of the Conventional Alamouti receiver (CONV)

b) Conventional Alamouti receiver

We recall the definition of the Conventional Alamouti receiver described insection b) through Fig. 3.5.

The Conventional Alamouti receiver is based on filterwconv = g1 =
√
πa/πs[µ1h

T
1 , µ2h

H
2 ]T . We can

derive the outputyconv(n) of filter wconv, defined in (3.51):

yconv(n) =

√
πa
πs

(
µ1h

H
1 x1(n) + µ2h

T
2 x2(n)

∗) (3.64)

= a2n−1

(
µ21h

H
1 h1 + µ22h

T
2 h

∗
2

)
+ a2nµ1µ2

(
hH1 h2 − hT2 h

∗
1

)
+ gH1 b(n) (3.65)

= a2n−1

(
µ21h

H
1 h1 + µ22h

T
2 h

∗
2

)
+ gH1 b(n) (3.66)

Using the total noise model (3.62), we can also writeyconv as

yconv(n) =

√
πs
πa
a2n−1g

H
1 g1 +

√
πI
πa

(
e2n−1g

H
1 g3 + e2ng

H
1 g4

)
+ gH1 bν(n). (3.67)

And eventually, the output of the Conventional Alamouti receiverzconv(n) = Re{yconv(n)} can be

written

zconv(n) =

√
πs
πa
a2n−1g

H
1 g1 +

√
πI
πa

(
e2n−1Re{gH1 g3}+ e2nRe{gH1 g4}

)
+Re{gH1 bν(n)} (3.68)

We deduce from expressions (3.64) and (3.65) that the Conventional Alamouti receiver first implements

a filter matched, in amplitude and phase, to the useful symbol channel in bothx1(n) andx2(n)
∗ before

summing the associated outputs,µ1hH1 x1(n) andµ2hT2 x2(n)
∗. This operation generates the output

yconv(n) in which the Signal to background Noise Ratio (SNR) is maximized. This maximizationis

kept inzconv(n) due to the SO circularity of the background noise. Moreover, due to the orthogonality

structure of the Alamouti scheme, these matched filtering operations generateopposite contributions

of symbola2n in their outputs, as seen in (3.65). The contribution of symbola2n is thus automatically

removed inyconv(n), hence inzconv(n). Unfortunately,zconv(n) still contains the real part of the residual

interferencese2n−1 ande2n in yconv(n), which have no reasons to be canceled in the general case. The

internal interference thus degrades the output performance. This receiver exploits the orthogonality of
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Figure 3.6: Constellations variation inside CONV receiver

Alamouti code but does not exploit the structure of the noise. As a consequence, it cannot cancel any

intra-network interfering Alamouti user.

The results of the different steps on both the useful symbola2n−1 and the associated interferences

a2n, e2n−1 ande2n contained inx1(n) andx2(n) are illustrated in Fig. 3.6 forN = 1, πs/σ2 = 0dB,

πI/σ
2 = 20dB and fixed propagation channels, where large and thin full lines are associated witha2n−1

anda2n respectively whereas large and thin dotted lines are associated withe2n−1 ande2n respectively.

Note in particular the matched filtering inx1 andx∗
2 for the useful symbol channel and the opposite

channels inx1 andx∗
2 for the interference generated bya2n.

Note that, forN = 1 andP = 1, the P-WL-MMSE receiver reduces to the CONV receiver; indeed

Appendix 3.C shows that for internal interferenceswpwl is proportional toR−1
b

g1. Moreover, it is easy

to check thatR−1
b

is proportional toI2 for N = 1 andP = 1 (using the expression (3.96) ofR−1
b

derived in the next section). Hence, the P-WL-MMSE receiver also provides the constellation variations

of Fig. 3.6.

c) F-WL-MMSE receiver

In this section we prove that the F-WL-MMSE receiver is properly canceling the internal interferences

for the estimation of symbola2n−1 at high INR. We first derive the expression of filterw̃fwl for the

considered total noise model and then derive the contributions of usefuland interfering symbols in the

output of the F-WL-MMSE receiver. We recall from section 3.3.3 that theF-WL-MMSE receiver im-

plements a ML decision from the outputzfwl = 2Re{yfwl} whereyfwl(n) = wH
fwlx(n). Noting

wfwl = [wT
fwl,1, w

T
fwl,2]

T , we can display the F-WL-MMSE receiver as on Fig. 3.7.
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...
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x1

zfwl2Re{·}
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yfwl â2n−1

Figure 3.7: Scheme of the F-WL-MMSE receiver

Deriving filter w̃fwl:

We have proved in Appendix 3.A that conditionC1 was verified in the case of internal interferences.

Moreover, it has been shown in section 3.4.2 that under conditionC1, the filterw̃fwl is proportional to

w̃ml = R−1

b̃
f̃1:

w̃fwl = kw̃ml = kR−1

b̃
f̃1, (3.69)

with k =
(
1 + πsf̃

H
1

(
πsf̃2f̃

H
2 + R

b̃

)−1
f̃1
)−1

> 0. In the following we thus derive filter̃wml instead

of w̃fwl. Using the extended observation model (3.63), the correlation matrix of the noiseb̃(n) can be

written asR
b̃
= πa(f̃3f̃

H
3 + f̃4f̃

H
4 ) + σ2I. Thanks to the orthogonality of̃f3 andf̃4, a direct application

of the Woodbury matrix identity yields its inverse:

R−1

b̃
=

1

σ2

(
I− 2εI

1 + 2εI

(
f̃3f̃

H
3

‖f̃3‖2
+

f̃4f̃
H
4

‖f̃4‖2

))
(3.70)

whereεI = ‖f3‖2πI/σ2 = 1
2‖f̃3‖2πI/σ2 corresponds to the ratio between the interference power and

the background noise power received by the array. We can now writew̃ml under the following form:

w̃ml =
1

σ2

(
f̃1 −

2εI
1 + 2εI

(
f̃H3 f̃1

‖f̃3‖2
f̃3 +

f̃H4 f̃1

‖f̃4‖2
f̃4

))
. (3.71)

We obtain the expression of̃wfwl by multiplying (3.71) byk. We have seen that̃wfwl = [wT
fwl, w

H
fwl]

T

in section 3.3.3. Using (3.71), vectorwfwl can be written as:

wfwl =
k

σ2

(
f1 −

2εI
1 + 2εI

(
f̃H3 f̃1

‖f̃3‖2
f3 +

f̃H4 f̃1

‖f̃4‖2
f4

))
. (3.72)

We deduce from (3.72) the expressions ofwfwl,1 andwfwl,2, defined bywfwl = [wT
fwl,1, w

T
fwl,2]

T .

wfwl,1 =
k

σ2

(
h1 −

2εI
1 + 2εI

(
f̃H3 f̃1

‖f̃3‖2
h3 +

f̃H4 f̃1

‖f̃4‖2
h4

))
(3.73)

wfwl,2 =
k

σ2

(
h2 −

2εI
1 + 2εI

(
f̃H3 f̃1

‖f̃3‖2
h4 −

f̃H4 f̃1

‖f̃4‖2
h3

))
(3.74)
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The filterwfwl generates the outputyfwl(n) given by

yfwl(n) = wH
fwl,1x1(n) +wH

fwl,1x1(n) (3.75)

=

√
πs
πa

(
a2n−1w

H
fwlf1 + a2nw

H
fwlf2

)
+

√
πI
πa

(
e2n−1w

H
fwlf3 + e2nw

H
fwlf4

)
+wH

fwlbν(n).

(3.76)

Case wherẽf1 belongs tospan{f̃3, f̃4}:

Let us first consider the case wheref̃1 belongs to the space spanned by the orthogonal vectorsf̃3 andf̃4.

Noting γ̃ the angle betweeñf1 and the space spanned byf̃3 andf̃4, this means that

cos2 γ̃ = 1. (3.77)

Angle γ̃ is defined by the following relation:

cos2 γ̃ =
|f̃H1 f̃3|2 + |f̃H1 f̃4|

‖f̃1‖2‖f̃3‖2
(3.78)

Note that, using spatial correlation coefficientsα13 =
gH
1 g3

‖g1‖‖g3‖ andα13 =
gH
1 g4

‖g1‖‖g3‖ , cos2 γ̃ can also be

written as

cos2 γ̃ = Re{α13}2 +Re{α14}2. (3.79)

Note also that condition (3.77) is equivalent to say thatf̃1 is a linear combination with real-valued coef-

ficients off̃3 andf̃4, i.e., as̃f3 andf̃4 are orthogonal,

f̃1 =
f̃H3 f̃1

‖f̃3‖2
f̃3 +

f̃H4 f̃1

‖f̃4‖2
f̃3 (3.80)

Under this assumption, we deduce from (3.72) that

wfwl =
k

σ2 (1 + 2εI)
f1. (3.81)

As Re{fH1 x(n)} = Re{gH1 x(n)}, we deduce thatzconv(n) andzfwl(n) are proportional, which means

that the F-WL-MMSE receiver corresponds to the Conventional receiver, whose behavior is described

in section b). The conditioncos2 γ̃ = 1 corresponds to the absence of both phase and spatio-temporal

discrimination between the Alamouti useful signal and the interference. ForN = 1, denoting byϕi the

phase ofhi, such thathi = |hi|eiϕi , i = 1, . . . , 4, it is straightforward to verify that this condition is

in particular verified ifϕ1 = ϕ2 = ϕ3 = ϕ4, i.e. in the absence of phase diversity between the useful

signal and interference.
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Case wherẽf1 does not belong tospan{f̃3, f̃4}:

Let us now assume thatf̃1 does not belong to the space spanned byf̃3 and f̃4, which is equivalent to

cos2 γ̃ < 1, i.e. there is a phase and/or a spatio-temporal discrimination between the Alamouti useful

signal and interference. ForN = 1, this occurs as soon as(ϕ1, ϕ2) 6= (ϕ3, ϕ4) and/or(ϕ1, ϕ2) 6=
(ϕ4, ϕ3), i.e. as soon as there is a phase discrimination between the useful signal and interference. In

order to understand the behavior of the F-WL-MMSE receiver, we analyze its output by deriving the

contributions of the useful and interfering symbols.

Using (3.71) we directly derive the contribution of the useful signala2n−1 in zfwl = w̃H
fwlx̃, i.e.

w̃H
fwl f̃1.

w̃H
fwl f̃1 =

2k

σ2
‖f1‖2

(
1− 2εI

1 + 2εI
cos2 γ̃

)

=
2k

σ2
‖f1‖2

(
sin2 γ̃ +

1

1 + 2εI
cos2 γ̃

)

In Appendix 3.F, we derive the contribution of all interferences inyfwl; the contributions ofa2n, e2n−1

ande2n can be written as

wH
fwlf2 =

k

σ2
β2i,

wH
fwlf3 =

k

σ2
(α3 + iβ3),

wH
fwlf4 =

k

σ2
(α4 + iβ4),

whereβ2, α3, β3, α4, β4 ∈ R are defined by

β2 = Im

{
2πaµ1µ2

πs
hH1 h2 −

2ε1
1 + 2ε1

fT3 f
∗
1 f
H
3 f2

‖f3‖2
}
,

α3 =
Re
{
fH3 f1

}

1 + 2ε1
, β3 = Im

{
fH1 f3 −

πaµ3µ4
σ2

4Re
{
fH4 f1

}

1 + 2ε1
hH4 h3

}
,

α4 =
Re
{
fH4 f1

}

1 + 2ε1
, β4 = Im

{
fH1 f4 −

πaµ3µ4
σ2

4Re
{
fH3 f1

}

1 + 2ε1
hH3 h4

}
.

We can now conclude by writing the outputzfwl = 2Re{yfwl} of the F-WL-MMSE receiver.

zfwl =
2k

σ2

(
(‖f1‖2 sin2 γ̃)a2n−1 +

(
‖f1‖2 cos2 γ̃

)
a2n−1 +Re{fH3 f1} e2n−1 +Re{fH4 f1} e2n

1 + 2εI

)

+ 2Re{wH
fwlbν(n)} (3.82)

First note that whencos2 γ̃ < 1, the contribution of the useful symbola2n−1 in zfwl cannot be zero,

even for a strong interference (εI ≫ 1). Moreover, due to the orthogonality structure of the Alamouti
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scheme, (3.82) shows thatwfwl puts the contribution of symbola2n on the imaginary axis whatever the

intra-network interference scenario. The contribution of symbola2n is thus completely removed inzfwl
by the real part operation. As for the interfering Alamouti user,wH

fwlf3 andwH
fwlf4 are approximately

on the imaginary axis forcos2 γ̃ < 1 and εI ≫ 1, as their real part is then negligible compared to

w̃H
fwl f̃1 ≃ 2k

σ2 ‖f1‖2 sin2 γ̃ ( 6= 0), whatever the channel vectorsµ3h3 andµ4h4. Hence, for a strong

interference (εI ≫ 1), the contribution of all interferences is properly canceled inzfwl(n) after the

projection on the real axis. ForεI ≫ 1, the outputzfwl(n) reduces to

zfwl ≃
2k

σ2
(
‖f1‖2 sin2 γ̃

)
a2n−1 + 2Re{wH

fwlbν(n)} (εI ≫ 1, cos2 γ̃ < 1) (3.83)

Note that in the particular case ofcos2 γ̃ = 0, f̃1 is orthogonal to the space spanned byf̃3 and f̃4 and

both the F-WL-MMSE receiver and the CONV receiver, which become equivalent, completely reject the

interference.

The previous analysis shows that the F-WL-MMSE receiver cancels theintra-network interference,

even forN = 1, by exploiting both the real-valued nature of the symbols and the particular structure of

the Alamouti code. For this reason it is a breakthrough with respect to the WLAlamouti receivers of the

literature [40–43,45,47,82]. More precisely, forN = 1, the number of degrees of freedom of the F-WL-

MMSE receiver corresponds to the phases and moduli of bothwfwl,1 andwfwl,2. One degree of freedom

is used to keep the useful symbola2n−1 in zfwl(n) while, for a strong intra-network interference, the

three remaining degrees of freedom allow to generate inwH
fwl,1x1(n) andwH

fwl,2x2(n) contributions

of interference symbolsa2n, e2n−1 ande2n having an opposite real part, through homotheties and/or

rotations on bothx1(n) andx2(n). As a consequence, this puts on the imaginary axis the contribution

in yfwl(n) of the three interference symbolsa2n, e2n−1 ande2n, thus canceling these interferences in

zfwl(n).

Fig. 3.8 sums up the previous different steps on the received constellations of both the useful symbol

a2n−1 and the associated interferencesa2n, e2n−1 ande2n in x1(n) andx2(n) forN = 1, πs/σ2 = 0dB,

πI/σ
2 = 20dB and fixed propagation channels, where large and thin full lines are associated witha2n−1

anda2n respectively whereas large and thin dotted lines are associated withe2n−1 ande2n respectively.

Note in particular the opposite real part inx1 andx∗
2 of the three interference channels associated toa2n,

e2n−1 ande2n, which are therefore on the imaginary axis inyfwl(n) and hence canceled inzfwl.

This section gave an enlightening geometrical interpretation of the Alamouti SAIC/MAIC concept,

which extends, for synchronous Alamouti users, the SAIC/MAIC concept described in [54]. The WL

MMSE receiver presented in [54] has been introduced for synchronous single antenna users using real-

valued constellations; it fully exploits the real-valued nature of the sourcessymbols and is able to separate

up to2N single antenna users fromN receive antennas, hence its SAIC capability of one internal inter-

ference forN = 1. It has been shown in [54] that, in the case of a strong INR (Interference to Noise

113



CHAPTER 3. THE SAIC/MAIC ALAMOUTI CONCEPT

−2 0 2

−2

0

2

 

 

Channel vector for a2n−1

Channel vector for a2n (interference)

Channel vector for e1,2n−1 (interference)

Channel vector for e1,2n (interference)

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

2Re{·}

x2

x1

+

w
H
fwl,1

w
H
fwl,2

yfwl zfwl

Figure 3.8: Constellations variation inside F-WL-MMSE receiver

(a) Conventional MMSE receiver (b) Fully-WL MMSE receiver

Figure 3.9: Constellations variations inside the mentioned receivers (SISO case) [54]

Ratio), the optimal WL filtering of this receiver can be seen as a rotation of theconstellations followed

by a projection on the I axis. The rotation puts the interferer constellation on the Q axis and the interfer-

ence is therefore canceled by the projection (see Fig. 3.9(b) taken from[54]). On the opposite, the usual

receiver just uses a rotation to put the constellation of the useful signal on the I axis; the interference

constellation is not considered (see Fig. 3.9(a) taken from [54]). Note that the SAIC/MAIC concept

corresponds to the previous results if takingwfwl,2 = 0 andµ2 = µ4 = 0.

3.5.4 SINR performance

In this section, we want to quantify the performance of the F-WL-MMSE receiver in the presence of in-

ternal and/or external interferences for the demodulation of symbola2n−1 and to highlight quantitatively

the great interest of this receiver with respect to the receivers of the literature. To that end, we first com-

pute the general expressions of the SINRs at the output of the F-WL-MMSE, P-WL-MMSE and CONV
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receivers and then compare them for the particular case of one internalinterference (P = Pint = 1). We

finally analyze these SINRs in the case ofP = Pint ≥ 1, i.e. for any number of internal interferences.

a) General expressions of the SINRs

The SINRs of the F-WL-MMSE, P-WL-MMSE, L-MMSE and CONV receivers are respectively denoted

by SINRfwl, SINRpwl, SINRl andSINRconv; they are defined as the ratio between the power ofa2n−1

and the power of the global noise at the considered output. From the expressions of the outputs (3.36),

(3.30), (3.34) and (3.52), we deduce the following results

SINRfwl =
πs(f̃

H
1 R−1

x̃ f̃1)
2

πs(f̃H1 R−1
x̃ f̃2)2 + f̃H1 R−1

x̃ R
b̃
R−1

x̃ f̃1
(3.84)

SINRpwl =
πs(g

H
1 R−1

x g1)
2

πs(Re{gH1 R−1
x g2})2 + 1

2(g
H
1 R−1

x RbR
−1
x g1 +Re{gH1 R−1

x CbR
−∗
x g∗

1})
(3.85)

SINRl =
πs(f

H
1 R−1

x f1)
2

πs(Re{fH1 R−1
x f2})2 + 1

2(f
H
1 R−1

x RbR
−1
x f1 +Re{fH1 R−1

x CbR
−∗
x f∗1 })

(3.86)

SINRconv =
2πs(f

H
1 f1)

2

fH1 Rbf1 +Re{fH1 Cbf
∗
1 }

(3.87)

Note that when conditionC1, defined by (3.45), is verified,SINRfwl reduces to

SINRfwl = πsf̃
H
1 R−1

b̃
f̃1. (3.88)

If in addition the total noise is assumed to be SO circular, temporally and spatially white (i.e.,R
b̃
= σ2I),

we obtain the well-known result

SINRfwl = SINRpwl = SINRconv

=
2πs
σ2

‖f1‖2 =
2πa
σ2

(µ21‖h1‖2 + µ22‖h2‖2).

b) SINRs for P = 1 internal interference

We assume in this section that the total noise is composed ofP = Pint = 1 internal interference plus a

spatially and temporally white background noise. Under this assumption, we compute the SINR at the

output of the F-WL-MMSE receiver and we compare it to the SINR at the output of both the P-WL-

MMSE and the CONV receivers. We do not compute the SINR at the output of the L-MMSE receiver

since this receiver is rarely used. The observation model is described ina first part, the SINRs are

computed in a second part, discussed in a third part and illustrated in a fourthpart.
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Observation model:

As we supposeP = Pint = 1, the observation model is then the same as in section 3.5.3 a). We recall

from (3.60) that the vectorsx1 andx2 of (3.1) can be written as




x1(n) = µ1a2n−1h1 + µ2a2nh2 + µ3e2n−1h3 + µ4e2nh4 + bν1(n),

x2(n) = −µ1a2nh1 + µ2a2n−1h2 − µ3e2nh3 + µ4e2n−1h4 + bν2(n),
(3.89)

giving rise to the following expression for the observation vectorx(n):

x(n) =

√
πs
πa

(a2n−1f1 + a2nf2) +

√
πI
πa

(e2n−1f3 + e2nf4) + bν(n). (3.90)

SINRs computation:

We derive in this section the SINRs for the CONV, P-WL-MMSE and F-WL-MMSE receivers under the

previous assumptions.

In order to deriveSINRconv we first need to note that, for one internal interference,Rb = πI(f3f
H
3 +

f4f
H
4 ) + σ2I andCb = πI(f3f

T
3 + f4f

T
4 ). We can then derive the terms in the denominator of (3.87):

fH1 Rbf1 = σ2‖f1‖2
(
1 + εI(|α13|2 + |α14|2)

)
, (3.91)

fH1 Cbf
∗
1 = σ2‖f1‖2εI

(
α2
13 + α2

14

)
, (3.92)

where we recall that the spatial correlation coefficientsα13 andα14 are defined as

α13 =
gH1 g3

‖g1‖‖g3‖
, α14 =

gH1 g4

‖g1‖‖g4‖
(3.93)

and whereεI (resp.εs) corresponds to the ratio between the interference power (resp. useful power) and

the background noise power received by the array:

εI =
πI
σ2

‖f3‖2 =
πa
σ2
(
µ23‖h3‖2 + µ24‖h4‖2

)
,

εs =
πs
σ2

‖f1‖2 =
πa
σ2
(
µ21‖h1‖2 + µ22‖h2‖2

)
.

As |z|2 + Re{z2} = 2Re{z}2 for any complex numberz, using (3.91) and (3.92) in (3.87) leads to the

following SINR expression:

SINRconv =
2εs

1 + 2εI (Re{α13}2 +Re{α14}2)
,

=
2εs

1 + 2εI cos2 γ̃
. (3.94)

We recall that̃γ is the angle formed by the vectorf̃1 and the space spanned by the interfering vectorsf̃3

andf̃4 (see (3.78), (3.79)).
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Concerning the P-WL-MMSE receiver, it has been shown in Appendix 3.C thatgH1 R−1
b

g2 = 0 for

internal interferences and that, as a consequence,R−1
x g1 andR−1

b
g1 are collinear. HencegH1 R−1

b
g2 = 0

and the SINR derived in (3.85) can be written as

SINRpwl =
2πs(g

H
1 R−1

b
g1)

2

gH1 R−1
b

g1 +Re{gH1 R−1
b

CbR
−∗
b

g∗
1}

(3.95)

As we consider only one internal interference,Rb = πI(g3g
H
3 + g4g

H
4 ) + σ2I. Besides, as interfer-

ence vectorsg3 andg4 are orthogonal, matrixR−1
b

is easily computed through a direct application of

Woodbury matrix identity.

R−1
b

=
1

σ2

(
I− εI

1 + εI

(
g3g

H
3

‖g3‖2
+

g4g
H
4

‖g4‖2
))

(3.96)

Using (3.96) we obtain the following expression forπsgH1 R−1
b

g1:

πsg
H
1 R−1

b
g1 = εs

(
1− εI

1 + εI
cos2 γ

)
, (3.97)

whereγ, such thatcos2 γ =
|gH

1 g3|2+|gH
1 g4|2

‖g1‖2‖g3‖2 = |α13|2 + |α14|2, is the angle formed by the vectorg1 and

the space spanned by the interfering vectorsg3 andg4. Moreover, asCb = πs(g3g
T
3 + g4g

T
4 ), we can

deriveRe{gH1 R−1
b

CbR
−1∗
b

g∗
1} using (3.96), leading to:

Re{gH1 R−1
b

CbR
−1∗
b

g∗
1} =

εsεI
(1 + εI)2

Re{α2
13 + α2

14},

=
εsεI

(1 + εI)2
(
2 cos2 γ̃ − cos2 γ

)
.

The last equality comes from the property|z|2 + Re{z2} = 2Re{z}2 applied onα13 andα14. We can

now write (3.95) into the following form:

SINRpwl =
2εs(1− εI

1+εI
cos2 γ)2

1− εI
(1+εI)2

(εI cos2 γ + 2 (cos2 γ̃ − cos2 γ))
. (3.98)

We now derive the SINR at the output of the F-WL-MMSE receiver. We have previously seen

that, in the case of internal interferences, conditionC1 (3.45) is verified (see Appendix 3.A). Besides,

we showed that under conditionC1 the SINR of the F-WL-MMSE filter reduces to (3.88). Using the

expression ofR−1

b̃
for P = Pint = 1 (see (3.70)) in (3.88) leads to

SINRfwl = 2εs

(
1− 2εI

1 + 2εI
cos2 γ̃

)
, (3.99)

where we recall that̃γ is the angle formed by the vectorf̃1 and the space spanned by the interfering

vectors̃f3 andf̃4.
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SINRs discussion:

In this section we discuss the SINRs depending on the values ofcos2 γ̃ and cos2 γ (or equivalently,

depending oñf1 belonging or not tospan{f̃3, f̃4} and ong1 belonging or not tospan{g3,g4}).

• Case wherẽf1 belongs tospan{f̃3, f̃4}: This corresponds tõγ such thatcos2 γ̃ = 1, or to (3.80)

(i.e. f̃1 is a linear combination with real-valued coefficients off̃3 and f̃4). In this case, there

is no ST and no phase discrimination between the Alamouti useful signal and the interference.

Furthermore,cos2 γ is necessarily equal to 1 and expressions (3.94), (3.98) and (3.99) reduce to

SINRfwl = SINRpwl = SINRconv =
2εs

1 + 2εI
(3.100)

which decreases withεI and which tends to zero asεI becomes large. In this case, both the F-

WL-MMSE and the P-WL-MMSE receivers behave like a CONV receiver, which does not reject

the interference. In particular, forN = 1, denoting byϕi the phase ofhi, such thathi = |hi|eiϕi ,

i = 1, . . . , 4, it is straightforward to verify thatcos2 γ̃ = 1 is in particular verified ifϕ1 = ϕ2 =

ϕ3 = ϕ4, i.e. in the absence of phase diversity between the useful signal and interference.

• Case wherẽf1 does not belong tospan{f̃3, f̃4}: This is equivalent tocos2 γ̃ < 1, i.e. there is

a ST and/or a phase discrimination between the Alamouti useful signal and theinterference. In

particular, forN = 1, this occurs as soon as(ϕ1, ϕ2) 6= (ϕ3, ϕ4) and/or(ϕ1, ϕ2) 6= (ϕ4, ϕ3), i.e.

as soon as there is a phase discrimination between the Alamouti useful signaland the interference.

In this case, expression (3.99) becomes, for a strong interference (εI ≫ 1),

SINRfwl ≃ 2εs
(
1− cos2 γ̃

)
(εI ≫ 1, cos2 γ̃ < 1). (3.101)

SINRfwl then becomes independent ofεI and is solely controlled by2εs andcos2 γ̃. This proves

an interference rejection by the F-WL-MMSE receiver depending on parameterγ̃. For N =

1, (3.101) shows the SAIC capability of the F-WL-MMSE receiver as long as there is a phase

discrimination between the Alamouti useful signal and the interference. Notethat whencos2 γ̃ < 1

the quantitycos2 γ may be equal to 1 or not.

• Case whereg1 belongs tospan{g3,g4}: This is equivalent tocos2 γ = 1, which occurs in

particular forN = 1. The P-WL-MMSE receiver then behaves like a CONV receiver: (3.98)

reduces to (3.94). Ifcos2 γ̃ = 0 this receiver completely rejects the interference and coincide

with the F-WL-MMSE receiver. Nonetheless, ifcos2 γ̃ 6= 0, it does not reject the interference

and its SINR decreases asεI becomes large, contrary to the F-WL-MMSE receiver, hence its

sub-optimality.

• Case whereg1 does not tospan{g3,g4}: This amounts to saying thatcos2 γ < 1, which neces-

sarily requires multiple receive antennas (N > 1). For a strong interference, (3.98) then reduces
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Figure 3.10: Receivers SINRs forN = 1

to

SINRpwl ≃ 2εs
(
1− cos2 γ

)
(εI ≫ 1, cos2 γ < 1). (3.102)

SINRpwl thus becomes independent ofεI and is solely controlled by2εs andcos2 γ. This proves

an interference rejection capability of the P-WL-MMSE receiver, contrary to the CONV receiver,

depending on parameterγ. However, despite of this rejection capability, sincecos2 γ ≥ cos2 γ̃,

we deduce from (3.101) and (3.102) that

SINRpwl ≤ SINRfwl, (3.103)

which proves the sub-optimality of the P-WL-MMSE receiver of the literaturein general.

SINRs illustration:

The previous results are illustrated forN = 1 at Fig. 3.10, which shows the variations ofSINRconv,

SINRl, SINRpwl andSINRfwl as a function ofϕ1, the phase ofh1, whenϕ2 = −117.7◦, ϕ3 = 78.9◦,
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Figure 3.11: Receivers SINRs forN = 2

ϕ4 = −174.3◦, µ1|h1| = 0.9, µ2|h2| = 0.48, µ3|h3| = 2.52, µ4|h4| = 2.02, πa = 5 (4-ASK

constellation),σ2 = 0.5, εs = 10dB andεI = 20dB. We observe a much better performance of the

F-WL-MMSE receiver with respect to the other receivers. Note the equivalent performance of the P-WL-

MMSE and the CONV receivers. Note also the best performance of the L-MMSE with respect to the

P-WL-MMSE receiver in most cases due, in the latter case, to the exploitationof information contained

in Rx1x2 in addition to the one contained inRx1 andRx2 .

We also displayed the previous results forN = 2 on Fig. 3.11, which shows the variations of

SINRconv, SINRl, SINRpwl andSINRfwl as a function ofεI/(2N), which corresponds to the mean

Interference to noise ratio per antenna and per interference symbol atthe input. We chose the following

values for the simulation:h1 = [0.89 − 0.71i, 1.15 + 0.21i]T , h2 = [0.45 − 0.02i, −0.50 + 0.66i]T ,

h3 = [−0.67 − 1.47i, 1.39 + 0.21i]T , h4 = [0.19 + 0.14i, −0.05 − 0.77i]T , µ1 = µ2 = 1, µ3 =

µ4 = 1, πa = 5, εs = 10dB. We observe on Fig. 3.11 the optimality of the F-WL-MMSE, the P-

WL-MMSE and the CONV receivers jointly with the sub-optimality of the L-MMSE receiver for a very

low interference. Note the decreasing performance of the four receivers jointly with both the absence

120



3.5. PERFORMANCE OF ALAMOUTI RECEIVERS IN MULTIUSER CONTEXT

of interference rejection of the CONV receiver (absence of a plateau)and the interference rejection of

the other receivers (presence of a plateau) asεI/(2N ) increases. Note also the higher performance of

the F-WL-MMSE receivers compared to the other receivers and the higher performance of the L-MMSE

receiver with respect to the P-WL-MMSE for strong interference.

c) SINRs for P > 1 internal interference

In the presence ofP > 1 internal interferences plus a spatially and temporally white background noise,

conditionC1 (3.45) is still verified, as shown in Appendix A. Therefore the F-WL-MMSE receiver still

corresponds to the ML receiver, whose output SINR is given by (3.88). For interference numberi,

i = 1, . . . , P , we define vectorsf2i+1, f2i+2, g2i+1, g2i+2, f̃2i+2 andf̃2i+2 similarly to f1, f2, g1, g2, f̃1
andf̃2. It is straightforward to show that in the presence ofP > 1 internal interferences, the SINR at the

output of the CONV receiver is given by

SINRconv =
2εs

1 +
∑P

i=1 2εI,i cos
2 γ̃i

, (3.104)

whereεI,i = πa‖f2i+1‖2/σ2 corresponds to the ratio between the power of theith interference and the

background noise power received by the antenna array, whereγ̃i, such thatcos2 γ̃i =
(
|f̃H1 f̃2i+1|2 +

|f̃H1 f̃2i+2|2
)
/
(
‖f̃1‖2‖f̃2i+1‖2

)
, is the angle formed by the vectorf̃1 and the space spanned by the inter-

fering vectors̃f2i+1 andf̃2i+2. Note that, similarly to the caseP = 1, SINRconv decreases withεI,i and

tends to zero asεI,i becomes large.

On the opposite, using well-known array processing results [98] and assuming strong interferences

(εI,i ≫ 1, i = 1, . . . , P ), the SINR at the output of the P-WL-MMSE and F-WL-MMSE receivers

become

SINRpwl ≃ 2εs
(
1− cos2 γI

)
(εI,i ≫ 1, cos2 γI < 1) (3.105)

SINRfwl ≃ 2εs
(
1− cos2 γ̃I

)
(εI,i ≫ 1, cos2 γ̃I < 1) (3.106)

whereγI is the angle formed by the vectorg1 and the space spanned by all2P interfering vectorsg2i+1,

g2i+2, i = 1, . . . , P , and wherẽγI is the angle formed by the vectorf̃1 and the space spanned by all

2P interfering vectors̃f2i+1, f̃2i+2, i = 1, . . . , P . Both SINRs are then solely controlled byεs and the

angleγI or γ̃I , showing the rejection capability of both considered receivers. Note thatwe still have

SINRpwl ≤ SINRfwl, ascos2 γI ≥ cos2 γ̃I holds.

3.5.5 SER performance

In this section we analyze the SER performance of all the receivers considered in this chapter. We

present the total noise model in a first part, then compute the SER for the CONV, P-WL-MMSE and
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F-WL-MMSE receivers in a second part and finally display in the last part the SER performances of all

the considered receivers thanks to numerical simulations.

a) Observation model

We considerP = Pint ≥ 1 internal interferences plus a spatially and temporally white background

noise. Note that under these assumptions conditionC1 (3.45) is still verified, as shown in Appendix A,

and therefore the F-WL-MMSE receiver corresponds to the ML receiver. Using the notations of section

3.5.1, the observation vectorsx1 andx2 of (3.1) can be written as




x1(n) = µ1a2n−1h1 + µ2a2nh2 +
P∑

i=1

(µ2i+1ei,2n−1h2i+1 + µ2i+2ei,2nh2i+2) + bν1(n),

x2(n) = −µ1a2nh1 + µ2a2n−1h2 +
P∑

i=1

(−µ2i+1ei,2nh2i+1 + µ2i+2ei,2n−1h2i+2) + bν2(n).

(3.107)

We recall thatei,n, µ2i+1h2i+1 andµ2i+2h2i+2 have been defined in section 3.5.1. Like in the previous

sections vectorsbν1 andbν2 are theN × 1 background noise vectors inx1 andx2 respectively, such

that the2N × 1 vectorbν = [bTν1,b
T
ν2]

T is SO circular, temporally and spatially white, i.e. such that

Rbν = σ2I andCbν = 0. We define, for theith internal interference,i = 1, . . . , P , vectorsg2i+1,

g2i+2, Gi, f̃2i+2, f̃2i+2 andF̃i similarly tog1, g2, G, f̃1, f̃2 andF̃. The observation system (3.107) gives

rise to the following expressions for the total noise vectorsb(n) andb̃(n):

b(n) =
P∑

i=1

√
πI,i
πa

(ei,2n−1g2i+1 + ei,2ng2i+2) + bν(n) =
P∑

i=1

√
πI,i
πa

Giei + bν(n), (3.108)

b̃(n) =
P∑

i=1

√
πI,i
πa

(
ei,2n−1f̃2i+1 + e2nf̃2i+2

)
+ b̃ν(n) =

P∑

i=1

√
πI,i
πa

F̃iei + b̃ν(n), (3.109)

where the scalarsπI,i = πa(µ
2
2i+1 + µ22i+2)/2 correspond to the mean power of each interfering symbol

from theith interference per receive antenna, and wherebν = [bTν1,b
H
ν2]

T , b̃ν = [bTν ,b
H
ν ]

T .

b) SER computation

We consider a2L-ASK constellationA = {±1,±3, ..., ±(2L − 1)}. Supposing all symbols equally

likely, for interferers signals as for the useful signal, we derive the following expression of the SER valid

for the CONV, P-WL-MMSE and F-WL-MMSE receivers:

SER= kL
∑

e1,1,e1,2,...,
eP,1,eP,2∈A

Q

(√
SNR√
πa

+
P∑

i=1

uHi ei

√
INRi√
πa

)
(3.110)
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Table 3.2: SNR, INRi andui definitions

CONV receiver P-WL-MMSE receiver F-WL-MMSE receiver

SNR 2πs
σ2 ‖g1‖2

2πs(gH
1 R−1

b
g1)2

σ2gH
1 R−2

b
g1

πs(f̃H1 R−1

b̃
f̃1)2

σ2 f̃H1 R−2

b̃
f̃1

INRi
2πI‖Re{gH

1 Gi}‖2
σ2‖g1‖2

2πI‖Re{gH
1 R−1

b
Gi}‖2

σ2gH
1 R−2

b
g1

πI‖f̃H1 R−1

b̃
F̃i‖2

σ2 f̃H1 R−2

b̃
f̃1

uHi
Re{gH

1 Gi}
‖Re{gH

1 Gi}‖
Re{gH

1 R−1

b
Gi}

‖Re{gH
1 R−1

b
Gi}‖

f̃H1 R−1

b̃
F̃i

‖f̃H1 R−1

b̃
F̃i‖

where

• ei = [ei,1, ei,2]
T refers to the signal of interfereri,

• Q(u) is the Gaussian tail functionQ(u) = (
∫ +∞
u e−v

2/2dv)/
√
2π,

• kl = 2(2L− 1)/(2L)2P+1

• SNR is the Signal to Noise Ratio at the output of the considered receiver,

• INRi is the Interference to Noise Ratio induced by interfereri at the output of the considered

receiver,

• ui is the unitary vector induced by interfereri at the output of the considered receiver.

The SNR, the INRi and theui are defined in Table 3.2, where we denotedRe{v} the vector whose

components are the real part of the components of vectorv. Note that, thanks to the orthogonality of

the Alamouti code, there is no interference produced by symbola2n. Equation (3.110) extends the SER

expression
(
Q(

√
SNR+

√
INR) +Q(

√
SNR−

√
INR)

)
/2 of the SISO case with BPSK constel-

lation derived in [54].

c) SER illustration

We consider a4-ASK (L = 2) Alamouti radio communication link perturbed byP = 1 synchronous

4-ASK Alamouti interference. The channel vectors,hi, i = 1, . . . , 4 of the sources are assumed to

be constant over a burst duration but are random vectors from a burst to another and correspond to

independent realizations of a zero mean vectorial complex and circular Gaussian law whose covariance

matrix is I. The sources are such thatµ1 = µ2 andµ3 = µ4 are constant for each burst and such that

πI/σ
2 = πs/σ

2+10dB. For a given receiver the SER has been computed for each burst and then averaged

over106 bursts. Under these assumptions, Fig. 3.12(a) and 3.12(b) show the variations of these average
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SERs at the output of the CONV, the P-WL-MMSE, the F-WL-MMSE and the estimated AF-WL-MMSE

(EAF-WL-MMSE) receivers as a function of the SNRπs/σ2, for N = 1 and2 respectively. The EAF-

WL-MMSE(M) receiver corresponds to the approximated F-WL-MMSE receiver estimated fromM

couples of training symbols inserted in each burst, as described in section 3.3.5, which is assumed to

also contain2 × 56 information symbols. We added the SERs computed directly from (3.110), which

are perfectly in line with the average SERs. On these figures we also displayed as a reference curve the

average SER at the output of the CONV receiver without any interference. Moreover, for Figure 3.12(b),

we added the SERs of the P-WL-MMSE, F-WL-MMSE and E-AF-WL-MMSEreceivers in the presence

of one internal and one external circular non-coherent interference whose power per antenna is equal to

πE = 20πs.

As expected from the SINR comparison, we can see that the F-WL-MMSE receiver performs better

than the other receivers in terms of SER. ForN = 1 (Fig. 3.12(a)), the P-WL-MMSE receiver does not

handle the interference while the F-WL-MMSE performs SAIC, as stated in (3.59). ForN = 2 (Fig.

3.12(b)), both receivers handle the internal interference, but the F-WL-MMSE requires a lowerπs/σ2

than the P-WL-MMSE for a given SER; e.g. the F-WL-MMSE has a3 dB gain over the P-WL-MMSE

at a SER of10−2. Moreover, forN = 2 receiving antennas, the F-WL-MMSE receiver can handle

one external interference together with one internal interference, whereas the P-WL-MMSE cannot, as

predicted by (3.59). Note also the quick convergence of the EAF-WL-MMSE. These figures highlight

the F-WL-MMSE capability to perform SAIC of one internal interference and its robustness to both

internal and external interferences.

3.6 Conclusion

In this chapter, a WL MMSE receiver, called the F-WL-MMSE receiver,completely new for IC purposes

in the context of radio communications using the Alamouti scheme, has been introduced, analyzed and

compared to the available receivers of the literature for the demodulation of an Alamouti signal using

real-valued constellations, such as ASK constellations, in the presence ofboth synchronous intra-network

and external interferences. This WL MMSE receiver is a breakthrough with respect to the receivers of the

literature since it jointly exploits both the real-valued nature of the sources symbols and the ST structure

of the Alamouti scheme. As a consequence, it has been shown to outperform the existing receivers

of the literature, to be easy to implement, to converge quickly and to implement the MLreceiver in

the presence of synchronous intra-network interferences. In particular, this receiver has been shown

to be able to separate up to2N synchronous Alamouti users fromN receiving antennas, displaying

its capability to perform SAIC of one synchronous Alamouti intra-network interference forN = 1,

thanks to a phase discrimination exploitation between the useful signal and interference. This Alamouti
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Figure 3.12: Theoretical and simulated SERs

SAIC/MAIC concept extends, for users with two transmit antennas using the Alamouti scheme, the

SAIC/MAIC concept already available for single carrier users and SISO/SIMO links presented in [54].

A geometrical interpretation of this new SAIC/MAIC Alamouti concept has been given, highlighting the

simple behavior of the receiver. Performance, in terms of output SINR and SER, of the F-WL-MMSE

receiver in the presence of internal interferences have been computed analytically and compared with
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those of the receivers of the literature. These computations have shown the great interest of the F-WL-

MMSE receiver, for bothN = 1 (SAIC Alamouti concept) andN > 1 (MAIC Alamouti concept). In

particular, this new receiver allows to mitigate both intra-network and external interferences forN > 1.

An adaptive implementation of the F-WL-MMSE receiver from training symbols has also been proposed.

Thanks to its properties and low complexity, the F-WL-MMSE receiver opens up new prospects for

interference management in radio communication networks using the Alamouti scheme. Indeed, this

receiver may be used for many applications, such as 4G communication networks, for both downlink

and uplink, providing SAIC capability for handsets with one receiving antenna but also MAIC capability

for handsets with more than one antenna and for base stations, or such asmilitary ad hoc networks, as

they require simple and robust systems (here ensured by the SAIC/MAIC capability and the open-loop

system) enhancing the range (here provided by the diversity through theAlamouti scheme).
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3.A. DEVELOPING CONDITIONC1 : f̃H1 R−1

b̃
f̃2 = 0

Appendices

3.A Developing conditionC1 : f̃H1 R−1
b̃
f̃2 = 0

In this part, we show that conditionC1, defined by (3.45), is verified for all channel vectorsµ1h1 and

µ2h2 if and only if conditionC2, defined by (3.54) is verified. We recall the blockwise expression (3.20)

of R−1

b̃
:

R−1

b̃
=

[
A D

D∗ A∗

]
, (3.111)

with AH = A andDT = D. We can write matricesA andD under the following form:

A =

[
A1 A12

AH
12 A2

]
; D =

[
D1 D12

DT
12 D2

]
, (3.112)

where theN ×N complex matricesA1,A2,A12,D1,D2 andD12 are such thatAH
1 = A1, AH

2 = A2,

DT
1 = D1 andDT

2 = D2. We then deduce from (3.111) and (3.112) that

f̃H1 R
b̃
(n)−1f̃2 =2Re

[
fH1 Af2

]
+ 2Re

[
fT1 D

∗f2
]

=2
πa
πs

{
µ1µ2Re

[
hH1 (A1 −A2)h2 + hH1 (D1 −D2)h

∗
2

]

− µ21Re
[
hH1 (A12h1 +D12h

∗
1)
]
+ µ22Re

[
hH2 (AH

12h2 +DT
12h

∗
2)
] }
. (3.113)

It is straightforward to show from (3.113) that quantityf̃H1 R−1

b̃
(n)f̃2 is equal to zero whateverµ1h1 and

µ2h2 if and only if the four following equalities hold:

A1 −A2 = 0, (3.114)

D1 −D2 = 0, (3.115)

µ21Re
[
hH1 (A12h1 +D12h

∗
1)
]
= 0 ∀µ1h1, (3.116)

µ22Re
[
hH2 (AH

12h2 +DT
12h

∗
2)
]
= 0 ∀µ2h2. (3.117)

By considering vectorsµ1h1 of the formµ1h1 = γek + ζel, (1 ≤ k, l ≤ N), whereek is theN × 1

vector whosekth component is1 while the others are zero, and by choosing successively particular

couples(γ, ζ) such that(γ, ζ) ∈ {(1, 0), (j, 0), (−j, 0), (1, 1), (j, j), (−j,−j), (1, j)}, we find that if

(3.117) is verified, then necessarilyA12 = −AH
12 andD12 = −DT

12. Conversely ifA12 = −AH
12 and

D12 = −DT
12, it is easy to verify that (3.117) is verified. Consequently ConditionC1 is verified for all
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channel vectorsµ1h1 andµ2h2 if and only if





A1 = A2;

D1 = D2;

AH
12 = −A12;

DT
12 = −D12.

It is straightforward to check that this condition is equivalent to conditionC2 (3.54).

In the case of a total noise composed of an arbitrary number of synchronous intra-network interfer-

ences plus a SO circular, temporally and spatially white background noise, we can check using (3.8),

(3.9), (3.10), (3.11), (3.12) and (3.13) thatR1 = R2, RH
12 = −R12, C1 = C2 andCT

12 = −C12.

ConditionC2 (3.54) is verified and thus conditionC1 (3.45) is also verified.

3.B Deriving a condition for the ML/P-WL-MMSE equivalence

In this section we derive a necessary and sufficient condition for the P-WL-MMSE receiver to correspond

to the ML receiver.

As mentioned in 3.3.2, the partially WL MMSE filterwpwl only exploits the information contained

in matricesR1, R2 andC12 but not the one inC1, C2 andR12. A necessary condition for the ML/P-

WL-MMSE equivalence is therefore

C1 = C2 = R12 = 0. (3.118)

This condition is equivalent to

D1 = D2 = A12 = 0. (3.119)

whereD1, D2 andA12 are defined in (3.112). Under this condition, matricesR
b̃

andR−1

b̃
can then be

written as:

R
b̃
=




R1 0 0 C12

0 R2 CT
12 0

0 C∗
12 R∗

1 0

CH
12 0 0 R∗

2



; R−1

b̃
=




A1 0 0 D12

0 A2 DT
12 0

0 D∗
12 A∗

1 0

DH
12 0 0 A∗

2



. (3.120)

We now complete the previous necessary condition (3.118) to make it sufficient. In order to have the

equivalence between the ML and the P-WL-MMSE receivers, their outputs before the ML decision need
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3.C. DEVELOPING CONDITIONgH1 R−1
b

g2 = 0

to be proportional. We first derivezml from (3.49) and (3.120), assuming (3.118) is verified:

zml = (R−1

b̃
f̃1)

H x̃

= 2Re

{
fH1

[
A1 0

0 A2

]
x+ fT1

[
0 D∗

12

DH
12 0

]
x

}

= 2Re

{
gH1

[
A1 D12

DH
12 A∗

2

]
x

}
. (3.121)

Besides, writingR−1

b̃
R

b̃
= I with (3.120) leads to

[
A1 D12

DH
12 A∗

2

][
R1 C12

CH
12 R∗

2

]
= I,

where we recognizeRb expression (3.17). We derived this way the inverse ofRb, which in fact corre-

sponds to the matrix in (3.121). Hence,

zml = 2Re
{
(R−1

b
g1)

Hx
}

(3.122)

As for the output of the P-WL-MMSE receiver, it can be written using (3.27) and (3.28) under the

following form:

zpwl = Re
{√

πsπa(R
−1
x g1)

Hx
}
. (3.123)

Therefore, in order to havezml andzpwl proportional, vectorsR−1
x g1 andR−1

b
g1 need to be collinear.

Applying the matrix inversion Lemma toRx = πsGGH +Rb = πsg1g
H
1 + πsg2g

H
2 +Rb, we obtain

R−1
x g1 =

1

1 + πsgH1
(
Rb + πsg2gH2

)−1
g1

[
R−1

b
g1 −

πsg
H
2 R−1

b
g1

1 + πsgH2 R−1
b

g2
R−1

b
g2

]
. (3.124)

We deduce from (3.124) thatgH1 R−1
b

g2 have to be equal to0 to have vectorsR−1
x g1 andR−1

b
g1

collinear. We have thus obtained the following necessary condition for the ML/P-WL-MMSE receivers

equivalence:

C3 :

{
gH1 R−1

b
g2 = 0,

C1 = C2 = R12 = 0.
(3.125)

It is straightforward to check that conditionC3 is moreover sufficient.

3.C Developing conditiongH1 R
−1
b
g2 = 0

In this section, we show that the conditiongH1 R−1
b

g2 = 0 is verified for all channel vectorsµ1h1 and

µ2h2, if and only ifR1 = R2 andCT
12 = −C12. We can show thatR−1

b
has the same block structure of
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Rb, that is

R−1
b

=

[
A1 D12

DH
12 A∗

2

]
,

where theN ×N complex matricesA1 andA2 are such thatAH
1 = A1 andAH

2 = A2. Note that these

matrices do not correspond to those of Appendices 3.A and 3.B in general.We then obtain

gH1 R−1
b

g2 =
πa
πs

[
µ1µ2h

H
1 (A1 −A2)h2 − µ21h

H
1 D12h

∗
1 + µ22h

T
2 D

H
12h2

]
(3.126)

We first assume thatgH1 R−1
b

g2 = 0 for all channel vectorsµ1h1 andµ2h2. In particular, considering

(µ2h2, µ1h1) = (0, ek) and(µ2h2, µ1h1) = (0, ek+el) with k 6= l, we find thatgH1 R−1
b

g2 = 0 implies

DT
12 = −D12.

Then, (3.126) becomes

gH1 R−1
b

g2 =
πa
πs
µ1µ2h

H
1 (A1 −A2)h2.

We now consider(µ2h2, µ1h1) = (ek, el), (1 ≤ k, l ≤ N), which yieldsA1 = A2.

Conversely ifA1 = A2 andD12 = −DT
12, it is straightforward to verify that (3.126) is verified.

ConsequentlygH1 R−1
b

g2 = 0 for all channel vectorsµ1h1 andµ2h2, if and only if A1 = A2 and

DT
12 = −D12. One can check by blockwise inversion that this is equivalent to

{
R1 = R2,

CT
12 = −C12.

In the case of a total noise composed of an arbitrary number of synchronous intra-network interferences

plus a SO circular, temporally and spatially white background noise, we havethusgH1 R−1
b

g2 = 0.

Indeed, we can check using (3.8), (3.9) and (3.13) that we then haveR1 = R2, andCT
12 = −C12. We

recall that, from (3.124), this implies that vectorsR−1
x g1 andR−1

b
g1 are then collinear.

We can now conclude: conditionC3, defined by (3.55), is therefore equivalent to conditionC4

defined by

C4 :





R1 = R2,

C1 = C2 = R12 = 0,

CT
12 = −C12.

(3.127)

3.D Deriving a condition for the ML/L-MMSE equivalence

In this section we derive a necessary and sufficient condition for the Linear MMSE receiver to correspond

to the ML receiver.
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3.E. DEVELOPING CONDITIONfH1 R−1
b f2 = 0

As mentioned in 3.3.2, the Linear MMSE filterwmmse only exploits the information contained in

matricesR1, R2 andR12 but not the one inC1, C2 andC12. Hence, a necessary condition for the

ML/P-WL-MMSE equivalence is that

C1 = C2 = C12 = 0, (3.128)

is verified, i.e. thatb(n) is SO circular. This condition is equivalent toD = 0, whereD is defined in

(3.22).

We now complete the previous necessary condition (3.128) to make it sufficient. In order to have the

equivalence between the ML and the Linear MMSE receivers, their outputs before the ML decision need

to be proportional. We first derivezml from (3.49) and (3.19), assuming (3.128) is verified:

zml = (R−1

b̃
f̃1)

H x̃

= 2Re
{
fH1 R−1

b x
}
. (3.129)

zml = 2Re
{
(R−1

b
g1)

Hx
}

(3.130)

As for the output of the Linear MMSE receiver, it can be written using (3.32) under the following form:

zl = Re
{√

πsπa(R
−1
x f1)

Hx
}
. (3.131)

Therefore, in order to havezml andzpwl proportional, vectorsR−1
x f1 andR−1

b f1 need to be collinear.

Applying the matrix inversion Lemma toRx = πsFF
H +Rb = πsf1f

H
1 + πsf2f

H
2 +Rb, we obtain

R−1
x f1 =

1

1 + πsfH1 (Rb + πsf2fH2 )−1f1

[
R−1

b f1 −
πsf

H
2 R−1

b f1

1 + πsfH2 R−1
b f2

R−1
b f2

]
(3.132)

We deduce from (3.132) thatfH1 R−1
b f2 has to be equal to0 in order to have vectorsR−1

x f1 andR−1
b f1

collinear. We have thus obtained the following necessary condition for the ML/Linear MMSE receivers

equivalence:

C5 :

{
fH1 R−1

b f2 = 0,

C1 = C2 = C12 = 0.
(3.133)

It is straightforward to check that conditionC5 is moreover sufficient.

3.E Developing conditionfH1 R−1
b f2 = 0

In this section, we show that we cannot havefH1 R−1
b f2 = 0 for all channel vectorsµ1h1 andµ2h2.
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The structure ofR−1
b matrix is given by

R−1
b =

[
A1 A12

AH
12 A2

]
,

where theN ×N complex matricesA1 andA2 are such thatAH
1 = A1 andAH

2 = A2. Note that these

matrices do not correspond in general to those of Appendices 3.A, 3.B, 3.C, 3.D. We can now derive

fH1 R−1
b f2.

fH1 R−1
b f2 =

πa
πs

[
µ1µ2

[
hH1 A1h2 − hH2 A2h1

]
− µ21h

H
1 A12h1 + µ22h

H
2 AH

12h2

]
(3.134)

We assume thatfH1 R−1
b f2 = 0 for any channel vectorsµ1h1 andµ2h2. In particular, considering first

the case ofµ2h2 = 0 and then the case ofµ1h1 = 0, we obtain that

−µ21hH1 A12h1 = µ22h
H
2 AH

12h2 = 0 ∀ µ1h1, µ2h2.

HenceA12 = 0. This result simplifies the expression offH1 R−1
b f2 given in (3.134), which can then be

written as

fH1 R−1
b f2 =

πa
πs
µ1µ2

[
hH1 A1h2 − hH2 A2h1

]
. (3.135)

We now consider the special casesµ2h2 = µ1h1 andµ2h2 = jµ1h1 in (3.135). They generate the

following equality

µ1h
H
1 (A1 −A2)h1 = µ1h

H
1 (A1 +A2)h1 = 0 ∀ µ1h1,

which implies thatA1 = A2 = 0. As we also showed thatA12 = 0, we eventually have thatR−1
b = 0.

Nonetheless we cannot haveR−1
b = 0 for finite entries ofRb. It would happen, e.g., for a Gaussian

circular noise of infinite variance. Restricting ourselves to the study of finitepower signals and noise, we

can conclude that the ML receiver and the L-MMSE receiver never correspond.

3.F Interferences contribution at the F-WL-MMSE output

In this appendix we analyze the impact of the interferences in the outputzfwl of the F-WL-MMSE

receiver forP = Pint = 1. We then derive the contributions ofa2n, e2n−1 ande2n in yfwl = wH
fwlx.

We recall that the output of the F-WL-MMSE receiver is given byzfwl = 2Re{yfwl} (3.37).
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3.F. INTERFERENCES CONTRIBUTION AT THE F-WL-MMSE OUTPUT

3.F.1 Contribution of the interfering signal a2n

We derive the contribution ofa2n in y1, which corresponds towH
fwlf2.

wH
fwlf2 =

k

σ2

(
fH1 f2 −

2εI
1 + 2εI

(f̃H3 f̃1)(f
H
3 f2) + (f̃H4 f̃1)(f

H
4 f2)

‖f̃3‖2

)

=
k

σ2

(
fH1 f2 −

2εI
1 + 2εI

(f̃H3 f̃1)(f
H
3 f2)− (f̃H3 f̃2)(f

H
3 f1)

‖f̃3‖2

)
,

asf̃H4 f̃1 = −f̃H3 f̃2 andfH4 f2 = fH3 f1. Eventually, as̃fH3 f̃1 = fH3 f1+(fH3 f1)
∗ andf̃H3 f̃2 = fH3 f1+(fH3 f1)

∗,

wH
fwlf2 = i · k

σ2
Im

{
2πaµ1µ2

πs
hH1 h2 −

2εI
1 + 2εI

(fH3 f1)
∗fH3 f2

‖f3‖2
}
.

The interference induced bya2n has a phase of±π/2 due to the orthogonality of the Alamouti code; its

contribution inzfwl is therefore canceled by the real part operation.

3.F.2 Contribution of the interfering signal through e2n−1 and e2n

We now calculate the contribution induced by the interfering Alamouti user. The interfering symbol

e2n−1 is carried bywH
fwlf3 in y1 and

wH
fwlf3 =

k

σ2

(
fH1 f3 −

2εI
1 + 2εI

(f̃H3 f̃1)(f
H
3 f3) + (f̃H4 f̃1)(f

H
4 f3)

‖f̃3‖2

)

=
k

σ2

(
fH1 f3 −

2εI
1 + 2εI

(
Re{fH3 f1}+

Re{fH4 f1} · i Im{2πaµ3µ4
πI

hH4 h3}
‖f3‖2

))

=
k

σ2

(
Re{fH1 f3}
1 + 2εI

+ i

(
Im{fH1 f3} −

4πaµ3µ4
σ2(1 + 2εI)

Re{fH4 f1}Im{hH4 h3}
))

.

We similarly obtain the contribution ofe2n in y1.

wH
fwlf4 =

k

σ2

(
Re{fH1 f4}
1 + 2εI

+ i

(
Im{fH1 f4} −

4πaµ3µ4
σ2(1 + 2εI)

Re{fH3 f1}Im{hH3 h4}
))

.
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Conclusion

THIS thesis aimed to study the frequency selective channels for single-carriertransmitters on two lev-

els: mutual information and diversity. We concentrated on the optimization of theinput covariance

matrix w.r.t. the ergodic mutual information in a first part before studying the diversity for fixed target

rate and MMSE receivers in a second part. We completed in a third part these results by studying a way

to achieve optimal diversity: the use of orthogonal STBC such as the Alamouti code, which was analyzed

in multiuser context with a new kind of MMSE receiver at the receiver.

Capacity optimization

In chapter 1 we have confirmed the validity of the asymptotic approximation of theergodic mutual

information derived by Moustakas and Simon thanks to a rigorous proof. We have also shown that

the approximation error was aO (1/t) term, wheret is the number of transmit antennas. Besides, we

established that the approximation is a strictly concave function of the input covariance matrix and that

the average mutual information evaluated at the argmax of the approximation is equal to the capacity

of the channel up to aO (1/t) term. This latter result justified our indirect maximization approach

which consists in optimizing the approximation instead of the ergodic mutual information. To that end

we proposed an algorithm based on an iterative waterfilling scheme and we studied its convergence to

some extent. We also illustrated our results by numerical simulations which showed the relevance of

our algorithm: the new approach provides the same results as the direct approach – i.e., maximizing the

ergodic mutual information – even for a small number of transmit and receiveantennas.

Following these results, it would be interesting to conduct a similar approach for optimizing the

mutual information of a MIMO system using a MMSE receiver at reception. Indeed, our approach

assume an optimal receiver at reception, that is, a ML receiver, whosecomplexity compared to the

MMSE receivers is in practice dissuasive. In fact we easily derived alarge system approximation of the
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ergodic mutual information, which can be written as

Immse(Q) = −
t∑

j=1

log



(
It +KH

(
L∑

l=1

δl(Q)C̃(l)

)
K

)−1


jj

,

whereK is the precoder, i.e.,Ks(n) is sent at the transmitter, wheres(n) components are i.i.d. with unit

variance, hence, the input covariance isQ = KKH . Nevertheless its optimization is different from the

previous case; we showed that the optimization is equivalent to optimizing the following term:

log

∣∣∣∣∣It +Q

(
L∑

l=1

δl(Q)C̃(l)

)∣∣∣∣∣ .

Unfortunately the iterative waterfilling algorithm is not relevant anymore forthe optimization of this

term, even though in all conducted simulationsQ∗ which maximizesI(Q) was a local maximum for

Immse(Q). A Newton algorithm, coupled with a barrier interior-point method, could then however be

used. Once the optimalQopt matrix is obtained, the optimal precoding matrixKopt is easily recovered:

Kopt = Q
1/2
optUopt, whereUopt is the eigenvectors unitary matrix of

Q
1/2
opt

(
L∑

l=1

δl(Qopt)C
(l)

)
Q

1/2
opt = Uopt∆UH

opt.

Hence,Kopt is the matrix such thatKH
opt

(∑L
l=1 δl(Qopt)C

(l)
)
Kopt is diagonal andQopt = KoptK

H
opt.

Nonetheless, we did not consider this approach since the Newton algorithmwith barrier method is less

attractive in terms of implementation.

MMSE Diversity Analysis

In chapter 2 we evaluated the maximal diversity of a MIMO system using a MMSE receiver. To that

end we used the Diversity-Multiplexing Trade-off approach with a multiplexing gain of0, i.e. for finite

(w.r.t. the SNR) target ratesR. For frequency selective fading channels with cyclic prefix, we rigorously

proved the surprising behavior observed by Hedayat et al. for finite ratesR: in this case, the MMSE

receiver causes the MIMO system to take several diversity values depending on the fixed target rate value,

achieving in particular the full diversityMNL, which is the diversity of the ML receiver, for sufficiently

low rates –M being the number of transmitting antennas,N the number of receiving antennas andL the

number of independent taps.

The result stated for frequency selective fading channels with cyclic prefix could probably be im-

proved. Indeed we assumed in the frequency selective case that the transmission data block lengthK
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is large enough:K > M2(L − 1). But most of all, the diversity has not been derived for ratesR ver-

ifying − log
(
m−1
M + L−1

K (M − (m − 1))
)
< R

M < log M
m−1 for a givenm ∈ {1, . . . ,M}. Actually

the derived bounds are not tight in this case. This corresponds to the step fromm(LN −M + m) to

(m + 1)(LN −M + (m + 1)), m ∈ {1, . . . ,M − 1}, of the diversity function. It would therefore be

interesting to analyze how the diversity behaves in this rate range.

The SAIC/MAIC Alamouti concept

In chapter 3 we focused on the diversity implied by the use of the Alamouti orthogonal STBC. We in-

troduced in the multiuser context, with users using real-valued modulations, theF-WL-MMSE receiver,

which makes the most of the degrees of freedom available in the channel. Weshowed indeed that this

receiver is robust to internal and external interferences; in particular it is able to separate2N users of the

network fromN receiving antennas, hence its SAIC capability. In this sense, it extends the SAIC/MAIC

concept to the MISO/MIMO cases. Besides, we proved that in the case ofinternal interferences the F-

WL-MMSE receiver is optimal in the ML sense. Furthermore we derived its SINR and SER and showed

that this receiver outperforms the receivers of the literature in terms of SINR and SER, highlighting its

optimality. We also provided a geometrical interpretation of the SAIC/MAIC Alamouti concept which

underlines its simple behavior. Lastly, an easy adaptive implementation of the F-WL-MMSE has been

proposed, which converges quickly in practice. Thanks to these results, the F-WL-MMSE receiver of-

fers new prospects for interference management in 4G communication networks and military ad hoc

networks.

The analysis was however limited to the case of flat fading channels (or, equivalently, of frequency

selective channels with an OFDM waveform). An interesting research topic, which was unfortunately not

tackled in this thesis, would be to extend these results to frequency selectivechannels with single carrier

waveforms, then using STBCs in the frequency domain. It would also be interesting to analyze the more

common case of complex constellations, considering circular constellations but also non-circular con-

stellations, whose relevance has recently been pointed out to some extent by [99]. This study is currently

ongoing. Another worthwhile research point which is underway is the case of asynchronous interfer-

ences. Indeed, we assumed in this thesis that the internal interferences are synchronous, which rarely

occurs in practice. It would be interesting to analyze how the asynchronism impacts the performance of

the MMSE Alamouti receivers and to find a way to prevent the asynchronism consequences.
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