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0 Background : Marchenko-Pastur and additive spatial spiked models
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Marchenko-Pastur distribution

Vin, Vi2 ... Vin
Vor Vo ... Vo
yo| e
Vmir Vm2 ... Vwwn

(Vi)i<i<m,i<j<n i.i.d. complex Gaussian random variables CN(0,02).
V1,V2,...,vy columns of V, E(v,v}) = o2l

Empirical covariance matrix:

VV* Z vovt
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Marchenko-Pastur distribution

Empirical distribution of the eigenvalues of Y-

[} )\1’[\/ > )\2,,\/ > ... > >\M,N eigenvalues of %

@ Empirical eigenvalue distribution: [iy = % Z,"il (A — 5\i,N)

Asymptotic behaviour of fipy «+— Behaviour of the histograms of the
eigenvalues (Aj n)i=1,..m

Well known case: M fixed, N increases i.e. dy = % small
o WZ ~ E(v,vi) = 0l by the law of large numbers
N — nVn) — M DBy g u

° ,aN N——+o0 5(0_2)

If N >> M, the eigenvalues of V—,‘\f are concentrated around o2
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[[lustration
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Marchenko-Pastur distribution

M,N same order of magnitude, dy = % — d

fin - 6(c?) because || Y¥- — o2Iy|| - 0

Marchenko-Pastur distribution MP(02,d) : if d <1

1
dpg2 g(A) = m\/()\Jr = AD)A = A7) - andA
where A\ = 02(1 + V/d)?

Theorem (Marchenko-Pastur, 1967)
When M, N — +oo ,dy = X — d, it holds that

AN = Hg g2, a5

Result still true in the non Gaussian case
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[[lustration

Histogram of the eigenvalues of % M = 256, dy = % ==,0°=1
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Stieltjes transform

Definition

Let 12 a measure (e.g a probability distribution) defined on R, its Stieltjes

transform is defined as

m,(z) = /R+ id,u()\), z e C\R*

Remark

® Qun(z) = (V—,\\f - Zlm) - resolvent of %
o mp,(2) coincides with 4 Tr Qu n(2)

Asymptotic regime: dy = ¥ — d

It can be shown that limy_, oo mp, (2) = my, ,(2) a:s, z € C\R™.
Thus it implies that

fn > g, 2.5
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Important properties

e The eigenvalues of V—,‘\f* concentrate in the neighbourhood of

[0°(1 — Vd)?, 0(1 + Vd)*] = [\, 7]

Denote Qun(z) = (V" —zln) ", Qun(z) = (%Y — zln) ™

e Uniformly, for each z in a compact subset of C — [A™, )\+], for each
sequences of unit M—dimensional vectors (ay), (by) and each sequences
of N-dimensional vectors (ay), (by), we have that

aj‘V(QV’N(z) — md,UZ(Z)IM)bN —0a.s
ay(Qu.n(z) — My q2(2)In)by — Oa.s

a’,*\,(vaN(z)VN)BN —0a.s

To be used in 16, 22, 26
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The additive spatial spiked model

Observations: M—dimensional vectors, N snapshots
oy,=Apns,+v,, n=1,...N
° Yy = (yla "'7yN)
o Yy =ApSy +Vp

(Va)i)i<iemicien '~ CN(0,02)

o
@ Ay a M x K matrix, Sy a K x N matrix, both deterministic
o Rank(An) =K

Asymptotic regime: N — oo, dy = % — d, and K is fixed.

Y = Matrix with Gaussian iid elements + fixed rank perturbation.

J

: : : YNY:
Behaviour of eigenvalues and eigenvectors of #
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Notations

Spectral factorizations:

ALN
ANSNSHAN _
N = |wno Uk . upy o Uk N
AK,N
where A\ y > -+ > A n-
AL *
* )
YNYN I PN A A~ A
T = 1,N up.n uin o upmn
AM,N

where 3\1’/\[ > 2 3\/\//7/\/.
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Impact of the signal component on the eigenvalues and
eigenvectors of Y”—,\T“’

If M is fixed and N—>+oo,dN:%zO
o Vit = E(G) = An>h A + o
) ;\\k,N o )\k,N‘|‘0'2 and ﬁk,N >~ U N ifl1<k<K

OS\&NZO’z if k> K

In our asymptotic regime: M, N — +ocody = % —d

YoYs
N IS

@ The asymptotic distribution of M — K smallest eigenvalues of
the Marchenko-Pastur

@ Depending on the ratios ()%#)k:l,,,,,;(, at most K eigenvalues of

YuYs
NN N may escape from the support of the Marchenko Pastur and

have a deterministic behaviour (more complicated than A4 y + o)

v
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[[lustration

Histogram of the eigenvalues of YNJ’T’, dy = % =1/3, N =192, K =2, \; = 6.25, \p = 4,

g?=1
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Main result on the eigenvalues and eigenvectors

Theorem : Benaych-Georges and Nadakuditi, 2011
@ Assume that A\ y — A for k =1,... K.

o Let K, the number of ()\) greater than o2v/d.
Then for k=1,..., K,

{ a.s. _ ()\k+0'2)(>\k+0'2d)
N— oo Pk = Ak

and for K +1 < k< K

> 0(1 + Vd)?

Aken === 0*(1 + Vd)?
N— o0

e Finally, for all deterministic sequences of unit vectors (ay), (by), for
k=1,.. K.

X2 —o*d

a*Nﬁk,Nﬁ:,NbN = m

ayu nui by + o(1), a.s

Ak, > 02v/d " Signal Subspace Separation Condition”
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Important remarks

It does not necessitate Vy i.i.d entries, the fundamental conditions are that

e The eigenvalues of V’V concentrate in the neighbourhood of

[0°(1 — Vd)* 0 (1+\f)2]—[>\ ;AT

e Uniformly, for each z in a compact subset of C — [\~, \"], for each
sequences of unit M—dimensional vectors (ay), (by) and each sequences

of N-dimensional vectors (ay), (by), we have that
a,*\,(Qv,N(z) — md’oz(z)ll\//)b/\/ —0a.s
57{1(QV7N(Z) — rﬁdya2(2)|N)BN —0a.s

aTV(Qv,N(z)VN)EN —0a.s

Forze C—R*

YiY? 1 ANSNSHAR =1
Qn(z) = ( A;V Y- zIM) , Fn(z) = (—z(l + szfldyoz(z)) + N)>

14 02dmy ,2(z

aZ,(QN(z) = FN(Z))bN —0a.s

10

4
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@ Spatial-temporal information plus noise spiked models
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The observed signal

Observations: M—dimensional vectors, N snapshots

Yo =302 Wpsnp + Vo = [(2)]ss + v,
(sn)nez scalar deterministic sequence
h(z) = ZE;& h,z7P unknown SIMO transfer function

(Vn)nez temporally and spatially white complex Gaussian noise with
variance o2,

Associated spatial model with P sources
oy, =As,+v,
o A=(hp_1,...,ho)
@ s, = (Sn—(P—1)75n—(P—1)+17 - 75n)T
e Y=AS+V

@ S is a Hankel matrix, not taken into account
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The extended observed signal

(¥k,n)nez scalar signal received on sensor k.

For L an integer, define for each n L-dimensional vector yff,), by:

y§<Lr)1 = (Vk,n> Yiont1s - - - ,yk,,,+L_1)T and ML—dimensional vector yS,L) by:
(L)
yl,n
yng) = :
(L)
yM,n

Define ML x N matrix Y by:

v = (5, y)
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vaL) is a block-Hankel matrix
Y%') is given by:
L
Y
° YSVL) = :
L
Vi

Where for each k, Yff,)\, is the L x N Hankel matrix

Y1  Yk2 o .- Yk,N
Yk2  Yk3 -+ YkN+1
(L _
Yk,N =] Yk3 Yk,N+2
Yk, L Ykil+1 -+ Yk N+L-1
v
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Expression of Y;VL)

o Vit~ HOS v
@ where Hgf) isa L x (P+ L—1) Toeplitz matrix and sng) is a
(P + L—1) x N Hankel matrix
H{Y
oY= : |sy+v=HOS +v{)
HL
M

° YSVL) block-Hankel Information plus Noise random matrix

° Rank(H(L)S%')) <P+L-1

Eigenvalues / eigenvectors of the empirical spatio-temporal covariance
i Y(L)Y(L)*
matrix —t-gt— 7
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: : : Vv
Asymptotic behaviour of the eigenvalues of ~2-t—

Asymptotic regime

ML

e M— +oo, N— +o0, cy =7 — ¢

@ L may converge towards oo but in such a way that ﬁ —0

Theorem [Loubaton, 2014]

(L)yy(L)*
g : T v
@ The empirical eigenvalue distribution of ~“~-u¥— has almost surely the

same asymptotic behaviour than MP(c?, ¢)
o If moreover L = O(N®) with a < 2/3, nearly equivalent to 47 — 0,
then:

all the non zero eigenvalues of

[0*(1— Ve)*, (1 + Ve)?]

Moreover, we have proved that if z € C\[0%(1 — /c)?,0%(1 + /c)?], the bilinear
0)

(D (D% 2 (D)=
forms of matrices Qu,n(z) = (WA~ — zlw) ! and Quon(z) = (g — z1y)
behave as if the entries of V;V) were i.i.d.

DyO= .
lie in a neighbourhood of

v

v

10
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[[lustration

Histogram of the eigenvalues of

(L) (L)
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Asymptotic behaviour of the largest eigenvalues and
associated eigenvectors of 7

Additive spatio-temporal spiked models asymptotic regime
@ M — +oo, N — 400, dy = ¥ — d
o L and P do not scale with M and N

The rank P+ L — 1 of signal matrix H(L)SE\,L) does not scale with M and NJ

Y(L) H(L)s(L) +V( )
V(L)V(L)*

satisfies the properties that allow to use Benaych-Nadakuditi
result.

Assumption

L)g(L)
()\E( l)\l)k 1,..,P+L—1 hon zero eigenvalues of H(L)AH(L)* converge

towards )\(IL) > /\gL) > )\SDLJ)FL_l when N — +o0.

v
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Notations

Spectral factorizations:

(L) *
H(L)S(L)S(L)*H(L)* )‘l,N Uy
N =N = |(uin Upi 1N " :
N (L) *
Apii—in] LUP+L-1n
where )‘(1L/)v > > )\S,LJ)rL_LN.
$(L) A~k
y Dy (L AL uin
%: iy -0 O . :

S\S\ZZ,N l,'\r;;/IL,N
where S\(IL,)V >0 > S\(L
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. vidviD* .
Results on eigenvalues of ~*-g¥— and bilinear forms of Qy y(z) and

Qv n(2) allow to prove
Theorem
Let K; the number of )\S(L) greater than o2\/dL
@ Fork=1,... K
50, 2o, 0 - PR OO oy

N—oo )\(L)
while for k = K; + 1, ... P+L—1
J _as N
AN o o?(1 + VdL)?
@ For k=1,...,K;, for all deterministic sequences of ML—dimensional

unit vectors ap;, by

(AQJ)Q-a4dL

MO (A + 02l

* A A~k
aNUk’NUkJ\IbN =

) a‘,‘\,uk,Nu;NbN aF 0(1)

10
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Application to the analysis of subspace DoA estimation
using spatial smoothing schemes

The original model

° yn = [aM(sol) (‘PK)]sn +Vn, = Aps, + Vv,
° aM(¢) (1 emS ez(M—l)d))T

o Yy = A/\//SN + Vy

Results known when N 0 and ¥ N > C> 0

Context

@ Source localization using subspace method when M, N large, but
N<<M

@ Spatial smoothing can be used in this context

Gia-Thuy Pham (LIGM) Large random matrices February 28, 2017

27 /53



Spatial smoothing

L < M : artificially create NL snapshots of dimension M — L + 1.

y1,n y2,n .o coo ijn
YZ,n y3’n oo 500 yL+1,n
(L) _ . : : _
-
YM—L+1,n YM—L+2n -+ «-- YM.n

v = (%0, 34P)

Properties of YSVL)

o YV = AW(Sy @1,) + V)

o A)(Sy @ 1;) is a rank K deterministic (M — L 4+ 1) x NL matrix

o Range(A(Y)) = spfay_r41(pk), k=1,...,K}

V.

Gia-Thuy Pham (LIGM) Large random matrices February 28, 2017

28 / 53



Application to the analysis of subspace DoA estimation
using spatial smoothing schemes

The asymptotic regime

o M— 400, N=0O(MP), 1/3<B<1, L=0(M),0<a<2/3

_ M-+l M
®ev="pNr =nL e

Remark

The structure of VSVL)* :

* * *
Vin Von VM—L+1,n
* * * L
V2,n V3,n vM—L+2,n Vf )
L)* : : L)% 5
; : (L)«
. . VN
* * *
vL,n vL+1,n vM,n
v
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Application to the analysis of subspace DoA estimation
using spatial smoothing schemes

Properti . vidv
perties of the eigenvalues of —rA—
_ (LDy/ (D ) vO*y (L)
@ Non zero eigenvalues of —*z7"— = non zero eigenvalues of —t5 -~
(Dxyy(L)

@ Properties of the eigenvalues of —g "~ already evaluated before

o Just exchange N<—= M —L+1and M < N

Possible to use Benaych-Georges/Nadakuditi results J

Assumption

A)(SySk @1 )AL*
NL

The K non zero eigenvalues (Mg n)k=1,. .k of matrix
converge towards \; > ... > Ak > 02\/e

Results

G-MUSIC subspace method can be used and analysed from the statistical

point of view in the high dimensional context
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Subspace separation condition

Comparison smoothed / unsmoothed when L does not converge +o0.

SwS,
N

° — D, D diagonal

e unsmoothed: A\ (A},AyD) > o \/ i

o smoothed: Ak (Aj,_Aw—LD) > /M =52, [ M

Discussion
o If L<< M, Ak (ATVI—LAM*LD) ~ \k (A%/;/[AMD)
@ Clear improvement of the subspace separation condition if L << M

@ If L increases too much, the diminution of the number of antennas
due to the spatial smoothing becomes dominant.
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[llustration |.

T
2M

N =20,M =160,0; = 0,0, =
10” T T T

107 L L L L L L L
18 20 22 24 26 28 30 32 34

SNR

Empirical MSE of the improved subspace estimate of 61 for L =2,4,8,16
w.r.t. SNR.
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[[lustration II.

N =20, M = 160,68, = 0,6, = &
.

;
—f— =16
— | =32
L=64
=@ =1=96
== L=128

— CRB

I
18 20 22 24 26 28 30
SNR

32 34

Empirical MSE of the improved subspace estimate of 6y for

L =16,32,64,128 w.r.t. SNR.
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Application to the loading factor estimation of trained
spatio-temporal Wiener filters

Context
® Yo =100 hpsn_p+ v, = [h(2)]s, + Vs , [n(z)] unknown
e Training sequence (s,)p=1,. n available at the receiver side
o Estimate g(t), ML-dimensional vector minimizing E|s,, — g(’-)*yf,l‘)|2

@ Regularized least-squares estimate:
YOy - nt
L Yy N L)
gE\) < +)‘|> (%Zn 1Y£1 )s )

@ Regularization necessary when ML > N, performance improved when

ML -
v is not small enough

@ Choose A when M and N large and of the same order of magnitude

@ Mestre-Lagunas IEEE SP 2006, h(z) = hy known (no training
sequence), temporally white but spatially correlated noise +
interference with unknown covariance matrix, L =1

v
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The SINR provided by filter g{"

(L)

g, is used to reconstruct s,, for n > N

The signal to information plus noise ratio (SINR) mesures the performance
of the reconstruction

|A(L)*h(’—)|2

H(L) H(Lz’*gg\L) + UQHQE\L)HZ

SINR(g{") =

h(PL) column P of matrix H(L), H(_L,,)3 matrix obtained from H(L) by deleting
column P.

SINR(Q&L)) is a random variable because Q&L) depends on the noise
corrupting the signal (yn)n=1,.. n received during the transmission of the

training sequence.
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Main results

&5(L)*p(L)
SINR(g{") = & "hp
A (L) q(L L)x A (L ~(L
g HOHE D 1+ 02)g0)2

Main results: When M and N converge towards +oo at the same
rate, and that P and L are fixed

° SINR(gg\L)) converges a.s. towards a deterministic term ¢, ()
depending on A and on o2, H(1).

o While H(1) is unknown at the receiver side, possible to estimate
consistently ¢; () for each A > 0 by ¢;(\) from (yn)n=1,..n

@ Aopt is estimated as the argmax of the consistent estimator
A= or(A).
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Discussion

s(L)s(L)*
Assume =Mgh— =1p | 1

Assume dyL = % < 1 and A = 0. Denote by v the SINR provided

by the true Wiener filter:
L)* (HOHWL* 4 2 )*1 h(L)

V= .
1- hﬁ,“ (HOHWD* 4 521)~ h(PL)

Then, the limit SINR ¢, (0) provided by g( )is given by

(1—dnl)y
¢(0) =7 ——" "
v+ dn
SINR loss equal to (1 — dyL) 75
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Some insights on the deterministic behaviour of the SINR

Expression of g(;)

(L) (L)* -1 N
A0 _ [ Yn' YN (L) #
)= (B o) (G2 0s)

y Dy (D* ! 1 *
(QN(_)‘)= <%+)‘I yUny = (_(517“':SN)> )

(1) Y(L)

g)\ _Q( )\/}uN
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Some insights on the deterministic behaviour of the SINR

|A(L)*h(’-) |2
(L) H(L)*A(L) +

SINR(g{") =
gD e

Evaluate the behaviour of

o |ay g(L)|2 for each deterministic ML—dimensional vector ay.

L
o &2 J

Equivalently
v

° ayQu(—A)fybw

(L) .
° aNYf Qun(— )\)2—b (% Z_/\(zQ(z))) by
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[[lustration

M =40, N = 200,dy = % = % P =5, (hp)p=o0,...4 random directional

vectors

SNR=8

it

SLEHLALN
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[[lustration

M =40, N =200, P =5, L =5, (hp)p=0,. 4 random directional vectors

RMMSE of different diagonal loading methods

RMMSE

Proposed
NaiveEstimate|
Ledoit-Wolf q
—— M1
—m2
M3 7
02 -
01f -
— T T T
1 2 5 6 7 8 9 10

Figure: RRMSE (Root Relative Mean Square Error) of different diagonal loading

methods versus L
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© General spatial-temporal information plus noise models
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General spatial-temporal information plus noise models

Y(L) H(L)s(L) —I—V( )

Extend the results to the case P, L — +o0

The general model
o Y = Ay + V)

@ Ay deterministic, supy < 400, not necessary structured,

Rank(Apn) not necessary finite.

Asymptotic regime

N — +o0, cN:%—)c,where0<c<+oo,L:O(Na),a<%.

)y (L)*

—1 . —1
Behaviour of Qu(z) = (YSVL ;5" —zIML) and Qu(z) = ( Yo vy —zIN)

N
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Deterministic equivalent matrices

Theorem

The resolvents Qu(z) = (YnYy — Im) ™ and Qu(z) = (Y4 YN — In) 7t

have the same behaviour than the deterministic matrices Ty(z), Ty(2)
defined as

-1

Tn(z) = [— ( v+ 0%l @ Ti L(TN(Z))) + Ay (lN + 02CN77\(1A1)(T/7V—(Z))) =il A’;V]
Ta(z) = [— ( N+ 2en T (TR z))) + Ay (|ML + oy ® T L(TN(Z))) -1 AN] -1
For z € C\R+,

o L Tr[(Qn(z)—Tn(2))Bn] = 0, L Tr [(Qn(z) — Tw(2))Bn] — 0, 2.5
o Ifa <3, 3k 0, Qu(z) ~ Ta(@)| = 0, [Qn(2) - Ta(2)] = 0, 2.5
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Application to the initial model

o If Ay = HOS(
® Rank(Any)=P+L—-1=0(N%)

Signal assumption

@ supy ||H(L)H < +00 <= suppp, |h(e®™)||? < +o0

® (sp)nez a real i.i.d sequence
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Application to the initial model

Theorem
For z € C\R™, it holds that

Tn(z) — Fn(2)| =0

ITn(z) — Fn(2)|| — 0
where
HO L= -1
14 o02cm, 2 (z))
SV HO* (O Sy

VN VN
1+ 02, 2(2)

Fn(z) = (—2(1 + 0% g2 (2)) e +
Fuv(z) = | —z(1 + Uzcmc’c,z (2))In +

As a consequence,

IQn(z) — Fn(2)|| — 0, as
1Qn(z) — Fn(2)]| = 0, a.s
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Application to the loading factor estimation of trained
spatio-temporal Wiener filters

A(L)*y (L
|gf\)hsp)‘2

SINR(@E\L)): Dyvea(L) s (L)% A(L L
g HOHE D + 028712

Asymptotic regime
M,N — +oo, cy =M — ¢, P L=0O(N¥), 0<a<3i, £ 0.

Evaluate the behaviour of

* i 2
() ]a QN(_)\)ﬁbN|

(L) N (L)
° a’,"VY\’/"N Qu(—MH) H(_L;QN(—/\)%bN

R
@ ay VN QN(_>\) WbN = ay &

(20 ) b

Same results as the case where P, L are fixed
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o COnClusiOn
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Conclusion

Spatial-temporal spiked models

. . . (L)yp(L)*
@ Behaviour of the largest eigenvalues and eigenvectors of —-p—

@ Application to detection of a wideband signal

@ Loading factor estimation for trained regularized spatio-temporal
Wiener filtering

@ Analysis of spatial smoothing schemes in narrow band array processing

General spatial-temporal information plus noise models

) Y(L)Y(L)*
@ Behaviour of resolvent and co-resolvent of S

@ Loading factor estimation for trained regularized spatio-temporal
Wiener filtering
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Perspectives

@ Convergence rate of normalized trace, bilinear forms and spectral
norms of the resolvents towards deterministic equivalents.

@ Improvement of the convergence conditions for the SINR (ﬁ — 0,
L —0
wz = 0)

@ Second order of the detection test.
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