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Abstract—Multiview video coding is an emerging application
where, in addition to classical temporal prediction, an efficient
disparity prediction should be performed in order to achieve the
best compression performance. A popular coder is the multiview
video coding (MVC) extension of H.264/AVC, which uses a
block-based disparity estimation (just like temporal prediction
in H.264/AVC). In this paper, we propose to improve the MVC
extension by using a dense estimation method that generates a
smooth disparity map with ideally infinite precision. The obtained
disparity is then segmented and efficiently encoded by using a
rate-distortion optimization technique. Experimental results show
that significant gains can be obtained compared to the block-
based disparity estimation technique used in the MVC extension.

I. INTRODUCTION

A multiview video system consists in generating multiple

views by capturing from different viewpoints the same scene

via a set of multiple cameras. A set of slightly different views

can be used to reproduce the scene in three dimensions.

The improvement of 3D technologies raised interest in 3D

television (3DTV) [1] and in free viewpoint video (FVV) [2].

While 3DTV offers depth perception of program entertain-

ments without wearing special additional glasses, FVV allows

the user to freely change his viewpoint position and viewpoint

direction around a 3D reconstructed scene. Other target fields

are expected, like Digital Cinema, IMAX theaters, medicine,

dentistry, air-traffic control, military technologies, computer

games, etc.

In the meantime, the digital TV technology and 3D displays

have largely improved recently, making even more relevant the

problem of multiview applications. Capturing, processing and

coding multiview video are now very active research topics.

In particular, in sight of the huge amount of data concerned,

compression assumes a paramount importance.

A straight method to compress multiview video is to encode

each view independently using the state-of-the-art H.264/AVC

encoder [?]. This approach is denoted, in the literature, as

simulcast coding. However, since all the cameras capture the

same scene through different viewpoints, there is an inter-view

statistical expected dependencies between adjacent cameras,

which is not exploited in the simulcast case.

MMSP’09, October 5-7, 2009, Rio de Janeiro, Brazil.

978-1-4244-4464-9/09/$25.00 c©2009 IEEE.

In order to better deal with inter-view redundancy, the

joint video team (JVT) is developing a multiview extension

of H.264/AVC standard, known as multiview video coding

(MVC) extension [3]. The aim of this extension is to provide

new techniques improving coding efficiency taking advantage

of both temporal and inter-view redundancies, thus leading to

additional coding gain compared to the H.264/AVC simulcast

solution.

On the other hand, adding the inter-view prediction to

the temporal one requires more computational and memory

resource. Nevertheless, it has been shown [4] that most of the

coding gain of MVC comes from the inter-view prediction

of the temporal intra picture, while for the inter pictures

the temporal prediction is the most efficient prediction mode.

As a consequence, limiting the inter-view prediction to the

intra pictures is commonly reputed as a reasonable complex-

ity/efficiency trade-off.

The inter-view correlation between adjacent cameras is

removed via the so-called disparity estimation (DE) and com-

pensation. Two main approaches, block-based and dense, have

been used to estimate the disparity vectors (DV). A survey of

the different techniques proposed in the literature can be found

in [5]. The MVC extension employs a variable block-based

disparity estimation, assuming that within each partition of the

current macroblock the disparity vector is constant. However,

this assumption does not always hold, especially around depth

discontinuities and in textureless regions. Dense pixel-based

approaches attempt to overcome this drawback by assigning

one disparity vector to each pixel. Of course this means that

the disparity map would require a very high bit-rate to be

encoded: for this reason, dense DVs have rarely been consider

for compression. The basic idea of this paper is to reduce the

coding cost of the dense DV map by operating a RD-driven

segmentation on it.

In particular, we propose to improve the disparity prediction

unit in the MVC extension by using the dense DE (DDE)

method described in [6] (because it achieves good results

compared with the state-of-art methods, such as graph cuts

and belief propagation based methods) followed by the seg-

mentation step. Based on a set theoretic framework, this DDE

approach incorporates various convex constraints correspond-

ing to a priori information such as the range of DVs or the

total variation regularization constraint which assures a smooth



disparity field while preserving discontinuities.
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Fig. 1. Disparity prediction: (left) block-based estimation, (right) enhanced
by a dense estimation.

The proposed scheme is summarized in Fig. 1: we replace

the block-based disparity estimation (BDE) stage by a dense

disparity estimation (DDE) one, and then, we apply a rate-

distortion segmentation to the generated disparity map. This

is performed by optimizing a Lagrangian cost function which

takes into account the accuracy and the coding cost of the

disparity map.

The remainder of this paper is organized as follows. Sec-

tion II provides details about the DDE method. In Section III,

we address the problem of the RD-optimized segmentation

and encoding of the disparity field. Finally, in Section IV,

we give experimental results confirming the effectiveness of

the proposed method, while Section V draws conclusions and

outlines future work.

II. DENSE DISPARITY ESTIMATION

A. Problem statement

Let I(n,t) and I(n−1,t) be two frames taken respectively

by the n-th and (n − 1)-th cameras at time t. We assume

that cameras are rectified, so that the disparity vectors are

restricted to the horizontal component, that will be denoted

by d. DDE methods attempt to determine, for each pixel in

the current frame I(n,t), the best corresponding pixel in the

reference frame I(n−1,t). Generally, the estimation is obtained

by minimizing a given cost functional, formulated in terms of

the sum of squared differences:

d̂ = arg min
d∈Ω

∑

(x,y)∈D

[I(n,t)(x, y) − I(n−1,t)(x + d, y)]2 (1)

where D is the picture support and Ω is the range of candidate

disparity values. Generally, an initial estimate d̄ of d is

available, for example using a dense correlation-based method.

Assuming that the magnitude difference of both fields is

relatively small, the warped reference frame is approximated

around d̄ by a Taylor expansion:

I(n−1,t)(x + d, y) ≃

I(n−1,t)(x + d̄, y) + ∇I(n−1,t)
x (x + d̄, y)(d − d̄) (2)

where ∇I
(n−1,t)
x (x + d̄, y) is the horizontal gradient of the

warped reference frame. Note that in (2), we have not made

explicit that d and d̄ are functions of s = (x, y) for notation

concision. Using the linearization (2), the criterion J̃ in (1)

can be approximated by the quadratic convex functional J in

d:

J(d) =
∑

s∈D

[r(s) − L(s) d(s)]2 (3)

where

L(s) = ∇I
(n−1,t)
x (x + d̄(s), y)

r(s) = I(n,t)(s) − I(n−1,t)(x + d̄(s), y) + d̄(s) L(s)

The minimization of this quadratic functional is an ill-posed

problem as the components of L may locally vanish. Thus,

to convert this problem to a well-posed one, we incorporate

additional constraints reflecting the prior knowledge about the

disparity field. In this work, we address the problem through

a set theoretic framework [6]. Firstly, each constraint is rep-

resented by a closed convex set Sm with m ∈ {1, . . . ,M},

in a Hilbert space H. The intersection S of all the M sets

Sm constitutes the family of possible solutions. Therefore, the

constrained problem amounts to find the solution in S which

minimizes the functional J :

Find d̂ ∈ S =
M
⋂

m=1

Sm such that J(d̂) = min
d∈S

J(d). (4)

The constraint sets are modeled as level sets:

∀m ∈ {1, . . . ,M}, Sm = {d ∈ H | fm(d) ≤ δm} (5)

where fm : H → R is a continuous convex function for all

m ∈ {1, . . . ,M} and (δm)1≤m≤M are real-valued parameters

such that S =
⋂M

m=1 Sm 6= ∅.

Hence, it is required to define the convex sets Sm to proceed

to the DDE algorithm within the set theoretic framework. At

this level, it is important to emphasize the great flexibility in

incorporating any set of arbitrary convex constraints. In what

follows, we will focus on M = 2 constraints. The first one

consists of restricting the variation of the disparity d within

a specified range [dmin, dmax]. It can be expressed by the

following constraint set S1:

S1 = {d ∈ H | dmin ≤ d ≤ dmax} (6)

Most importantly, a constraint can be incorporated in order

to strengthen the smoothness of the disparity field in the

homogeneous areas while preserving edges. Indeed, neighbor-

ing pixels belonging to the same object should have similar

disparities. This can be achieved by considering the total

variation tv(d) which can be defined as the sum over D of



the norm of the spatial gradient of d [7]. The total variation

of the discrete disparity image d = [di,j ] is given by:

tv(d) =

W−2
∑

i=0

H−2
∑

j=0

√

|di+1,j − di,j |2 + |di,j+1 − di,j |2

+

W−2
∑

i=0

√

|di+1,H−1 − di,H−1|

+

H−2
∑

j=0

√

|dW−1,j+1 − dW−1,j |

where W × H is the support of the disparity image. Hence,

a total variation based regularization constraint amounts to

impose an upper bound τ on the tv of the image, leading

to the following constraint set:

S2 = {d ∈ H | tv(d) ≤ τ} (7)

It is worth pointing out that the positive constant τ can

be estimated for example through a learning procedure on

image databases [8]. However, in our case we choose the value

maximizing the quality of the disparity compensated picture,

as shown in next section.

Finally, the disparity estimation problem is formulated by

minimizing the quadratic objective function J in Eq. 3 under

the mentioned constraint sets. To solve this problem, we used

the efficient constrained quadratic minimization technique

developed in [9], which is adapted to problems with quadratic

convex objective functions. For the sake of brevity, we will

not describe the algorithm here: for more details, the reader is

referred to [9], [6]. In order for this algorithm to converge, the

objective function J must be strictly convex. We introduce an

additional term in order to assure this condition:

J(d) =
∑

s∈D

[r(s) − L(s) d(s)]2 + α
∑

s∈D

[d(s) − d̄(s)]2 (8)

where d̄ is an initial estimate and α is a positive real number:

when it is large, we favor the regularization term and tend to

have a final solution close to the initialization; on the contrary,

when α is small, the data attachment term becomes dominant,

and the solution can diverge from the initialization.

B. Influence of the parameters

In practice, the optimal value of the parameters [dmin, dmax],
τ and α may not be known exactly and it is, therefore,

important to evaluate their impact in terms of coding rate and

PSNR of the compensated picture. The choice of the range

[dmin, dmax] can be accurately found by matching certain

points of interest selected manually in the two stereo frames.

The upper bound τ , used to enforce the smoothness of the

estimated disparity map, may be estimated from a scale value

of the total variation of the initial disparity map d̄, as shown

in Fig. 2. A low scale value results in smoothing more the

disparity map, and so, reducing the number of bit required for

the transmission.

Table I and Table II show the impact of the parameters τ and

α on the coding rate of the disparity map and on the quality of

(a) Initial disparity map d̄ (b) τ = 0.15 · tv(d̄)

(c) τ = 0.10 · tv(d̄) (d) τ = 0.05 · tv(d̄)

Fig. 2. Example of dense disparity maps at different values of the upper
bound τ parameter (from “Book arrival” sequence, frame 36).

TABLE I
EXAMPLE OF THE INFLUENCE OF THE PARAMETER τ ON THE BITRATE

AND THE PSNR OF THE DENSE DISPARITY COMPENSATED PICTURE (FROM

“BOOK ARRIVAL” SEQUENCE, FRAME 36).

bitrate (H.264/AVC intra, QP=0) PSNR
τ = 50000 0.6416 bpp 37.13 dB
τ = 40000 0.5222 bpp 37.23 dB
τ = 30000 0.4036 bpp 37.24 dB
τ = 20000 0.3051 bpp 36.48 dB
τ = 10000 0.2878 bpp 33.44 dB

TABLE II
EXAMPLE OF THE INFLUENCE OF THE PARAMETER α ON THE BITRATE

AND THE PSNR OF THE DENSE DISPARITY COMPENSATED PICTURE (FROM

“BOOK ARRIVAL” SEQUENCE, FRAME 36).

bitrate (H.264/AVC intra, QP=0) PSNR
α = 0.1 0.4667 bpp 35.79 dB
α = 6 0.4036 bpp 37.24 dB
α = 10 0.3943 bpp 37.20 dB
α = 50 0.3905 bpp 36.50 dB
α = 100 0.3837 bpp 35.78 dB

the disparity compensated picture, evaluated as PSNR between

the original view and the disparity-compensated estimation.

First, an arbitrary fixed value of α is used to determine the

parameter τ . Then, the optimal value of α is determined. The

value of both parameters is selected according on the highest

PSNR value of the disparity compensated picture. Note that,

in Table I and Table II, the bitrate of the dense disparity map

has been computed using the dense disparity map as a picture

with H.264/AVC in intra mode at a QP value of 0.

III. RATE-DISTORTION-BASED SEGMENTATION

The purpose of the segmentation is to obtain, from the

dense map produced by the algorithm described in the previous

section, another map, which will be compatible with the rep-



resentation of motion vectors in H.264/AVC. This means that

we have to segment the disparity map using the macroblock

(MB), block and subblock shapes defined in the standard.

A. Block-based representation

As defined in the norm of H.264/AVC, the vector field can

be described using a single vector per macroblock (16×16

pixels). However the MB can be partitioned in 16×8, 8×16

or 8×8 blocks, which can have a different vector each. Finally,

block can be split into 8×4, 4×8 and 4×4 subblocks, which

in turns can have a single vector.

B. Partition-based segmentation

As mentioned earlier, the dense disparity estimation method

generates a map with real valued disparity vectors. A first ap-

proximation consists in truncating the precision with a quarter-

pixel accuracy as in H.264/AVC standard. The disparity in the

current MB is then represented by 256 quarter-pel vectors.

Then, for any partition we have to choose a single vector

from those of the dense representation. For example we have

to choose one vector for the 16×16 partition, 2 for each of

the 16×8 and 8×16 partitions and so on. In particular for any

partition we consider the set of dense vectors that falls within

it. Among them, we select 6 candidates: the average vector,

the median (in the sense of the norm) vector, and the four

vector whose norm is closest to the median one.

C. Rate-distortion optimization

Let the quantization parameter QP be given. The distortion

measure is the sum of squared intensity differences (SSD),

and R the number of bits to be transmitted for the predictive

disparity vector error. For the pth partition B
p
k of the kth

macroblock Bk, the best approximated disparity vector d̂ is

computed by minimizing the following:

d̂ = arg min
d∈Ω

Jd(Bp
k |QP) (9)

with Jd(Bp
k |QP) = SSD(Bp

k ,d|QP) + λ · R(Bp
k ,d|QP)

The main relevance of the segmentation of the dense dispar-

ity map which finally ends in a block-based representation is to

make good use of the smoothness of the dense disparity map.

Indeed, despite the segmentation process reduces the quality

of the solution provided by the dense disparity estimation

algorithm, the resulting map, followed by a RD segmentation

still can be consider as a good quality/bitrate trade-off repre-

sentation over a direct block-based estimation. Furthermore,

unlike H.264/AVC in which the disparity estimation is causal

and local, our proposed disparity estimation has a global

approach which favors the regularization of the disparity field.

As a consequence, more MB will be coded in the SKIP

mode, which is particularly efficient when the vector field is

regular, since it consists in sending no side information nor

residual: the vector is computed as the median of neighbors,

and the block is copied from the compensated position of the

original frame. The proposed method takes advantage from

the augmented effectiveness of the SKIP mode which will be

selected quite often, resulting in a remarkable rate reduction

(see next section).

IV. EXPERIMENTAL RESULTS

In this section, we provide some simulation results to

evaluate the rate-distortion performance of the proposed struc-

ture. The experiments were run on three rectified multiview

video sequences : “Book arrival”, “Door flowers” and “Out-

door” [10]. For all the video sequences, we use four views with

a spatial resolution reduced to 512×384. We use the software

JMVM 8.0 [11].

(a) Original reference frame (b) Original current frame

(c) Block-based H.264/AVC DV at
QP22

(d) DDE+segmented DV at QP22

(e) Block-based H.264/AVC DV at
QP42

(f) DDE+segmented DV at QP42

Fig. 3. Example of block-based disparity vectors (from “Book arrival”
sequence, frame 36).

As seen in Section II-B, the parameters [dmin, dmax], τ

and α have to be chosen, and we have determined them

heuristically. However they can be adjusted for each different

sequence, by specifying their value in the Sequence Parameter

Set (SPS). The increase in bitrate related to this side informa-

tion is very small, such that we neglect this contribution when

reporting experimental data about the coding rate.

Within the H.264/AVC framework, the rate-distortion es-

timation of the disparity vector generates different disparity

fields at different QP values (Fig. 3). Disparity fields are

usually smooth at low bit-rate which favors the selection of

the SKIP mode. At high bit-rate, the distortion is privileged

against the cost of the predictive disparity error which reduces



(a) H.264/AVC SKIP map at QP22 (b) DDE+segmented SKIP map at
QP22

(c) H.264/AVC SKIP map at QP42 (d) DDE+segmented SKIP map at
QP42

Fig. 4. Example of SKIP map correspondig to the disparity vectors field
in Fig. 3. In black there are the SKIP macroblocks and in white the inter-
macroblocks.

the number of SKIP macroblocks. We present a comparison

in Fig. 4 at two QP points: 22 and 42. We can see in black

the SKIP macroblocks. Our method has the benefit to generate

a smooth block-based representation of the disparity vectors

field at high bit-rate, which reduces the predictive disparity er-

ror, and subsequently uses more SKIP macroblocks. Especially

at high bit-rate, when our method is used, the number of SKIP

macroblocks increases, with a beneficial effect on the required

coding rate. For example at QP=22 on the multiview video

sequence “Book arrival” (Fig. 4), with the proposed method

58% of MB are coded in the SKIP mode, with respect to a

mere 16% for the original encoder. At QP=42, we obtained a

percentage of 78% against 71%.

Fig. 5 shows the results in terms of rate-distortion perfor-

mance. Comparing the dense disparity estimation to the block-

based reference H.264/AVC estimation clearly indicates the

benefits of a dense estimation followed by a segmentation

optimized for rate-distortion efficiency, especially for the “Out-

door” sequence, where a coding gain of 1.5 dB is achieved.

The curve consists of 5 QP points which are 22, 27, 32, 37,

42.

In addition, to measure the relative gain we used the

Bjontegaard metric [12]. The results are shown in Table III

for low bitrate and high bitrate corresponding respectively

to the four QP points 27, 32, 37, 42 and 22, 27, 32, 37.

We can see that our method works especially well on the

sequence “Outdoor” (in which the disparity range is small,

[dmin, dmax] = [0, 8]).

V. CONCLUSION

In this paper, we have presented the benefits of using a dense

disparity estimation followed by a block-based segmentation
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Fig. 5. Rate-distortion coding results.



TABLE III
CALCULATION OF AVERAGE PSNR DIFFERENCES AND THE BITRATE

SAVING.

bitrate saving PSNR gain
low high low high

Book arrival -1.49 % -2.86 % 0.04 dB 0.10 dB
Door flowers -12.83 % -10.86 % 0.58 dB 0.52 dB
Outdoor -60.03 % -45.58 % 1.93 dB 1.59 dB

and coding of the disparity field in multiview video coding.

As expected, a dense disparity estimation produces a smooth

disparity field with an ideally infinite precision. This field is

then presented with a quarter pixel precision and segmented

based on an RD-optimized fashion. The smooth property of

the estimated disparity vectors field allows a reduction of the

bit-rate cost of the disparity vectors with a small reduction of

the quality of the reconstructed picture.

Future work will focus on the RD selection of the disparity

estimation parameters, and on the introduction of a new coding

mode using the DDE and inspired to the inter-view DIRECT

mode.
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