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Abstract—Many research efforts have been devoted to the
improvement of stereo image coding techniques for storage
or transmission. In this paper, we are mainly interested in
lossy-to-lossless coding schemes for stereo images allowing pro-
gressive reconstruction. The most commonly used approaches for
stereo compression are based on disparity compensation tech-
niques. The basic principle involved in this technique first consists
of estimating the disparity map. Then, one image is considered
as a reference and the other is predicted in order to generate a
residual image. In this paper, we propose a novel approach, based
on vector lifting schemes (VLS), which offers the advantage of
generating two compact multiresolution representations of the left
and the right views. We present two versions of this new scheme.
A theoretical analysis of the performance of the considered VLS
is also conducted. Experimental results indicate a significant
improvement using the proposed structures compared with con-
ventional methods.

Index Terms—Disparity, image compression, lifting schemes,
lossless coding, progressive reconstruction, stereoscopic images,
vector lifting schemes, wavelets.

I. INTRODUCTION

HE principle of stereoscopic imaging systems consists of

generating two images by recording two slightly different
view angles of the same scene. By presenting the appropriate
image of a stereo pair to the left/right eye, the viewer perceives
the scene in 3-D. The recent advances in acquisition and dis-
play technologies have allowed the widespread use of stereovi-
sion in various application fields such as entertainment, medical
surgical environments, tele-presence in videoconferences [1],
computer vision, and remote sensing [2]. For instance, today’s
advances in satellite remote sensing technology provide the ca-
pability to collect Stereo Image (SI) pairs for several applica-
tions, such as cartography and urban planning. Satellite stereo
images (such as those generated by IKONOS and SPOTS sen-
sors) are especially helpful to generate a digital elevation model
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which is a 3-D representation of the topography of a given area
[3]. The increasing interest in SIs has led to the constitution
of image databases that require huge amounts of storage ca-
pacity. For example, the SPOTS sensor covers areas of 60 Km
x 60 Km at a resolution of 2.5 m and a single view requires
more than 500 Megabytes. In addition to these stereo sensors, it
is worth mentioning the multiangle imaging spectroradiometer
(MISR), which uses nine cameras to generate multiview data
sets [4] at a data rate of 3.3 Mbps. Hence, the use of compres-
sion techniques is mandatory for image storage as well as for
image transmission. To the best of our knowledge, the ongoing
activity on stereoscopic still image coding is mainly carried out
independently of any standardization activity [5]. Consequently,
different approaches have been reported concerning still image
coding. The most simple ones consists of separately coding each
view by using existing still image coders. However, the resulting
data rates may remain too high for some practical stereoscopic
systems. As the two images have similar content, they are highly
correlated. Therefore, more efficient coding schemes have been
designed to exploit the cross-view redundancies [6], [7]. This
is usually achieved by first estimating the disparity field be-
tween the SI pair [8]. Then, one image is considered as a refer-
ence (say the left one) and the other image (target) is predicted
by disparity-compensating the reference one. A prediction error
image, called residual image, is thus generated. Finally, the dis-
parity field, the reference image and the residual one are en-
coded [7], [9]. This approach is known as disparity compensa-
tion due to its similarity with motion compensation techniques
which are popular for video coding [10]. The goal of this paper
is to design a novel joint coding approach enabling a gradual
and finally exact decoding of the stereo pairs. Our main con-
tribution is that the proposed coding scheme does not generate
any residual image, but directly two compact multiresolution
representations of the left and right images by exploiting the
cross-view redundancies via the available disparity field. Fur-
thermore, the proposed scheme is intrinsically flexible, as it al-
lows the designer to optimize the number of prediction filter taps
as well as the other parameters of the multiscale operators. In
this way, we build a joint coding scheme which is adapted to
the content of the stereo pair. Another advantage of the pro-
posed method is that it guarantees a perfect reconstruction of
the stereo images.

The remainder of this paper is organized as follows. Section II
gives an overview of SI coding schemes based on disparity es-
timation and compensation techniques. In Section III, we pro-
pose a novel coding structure of which two examples are given.
In Section IV, we conduct a theoretical analysis of the proposed
schemes in terms of prediction efficiency. Section V describes
how embedded binary streams can be produced to encode the
resulting multiscale representations. Finally, in Section VI, ex-
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perimental results are given and some conclusions are drawn in
Section VII.

II. STEREO IMAGE CODING

Generally, the reported stereo image coding methods rely on
Disparity Estimation techniques (DE) followed by Disparity
Compensation (DC) as discussed below. As mentioned earlier,
DE is a key issue for exploiting the cross-view redundancies.
This problem has been extensively studied in computer vision
and surveys of the different DE techniques proposed in the
literature can be found in [2], [11], and [12]. Two main ap-
proaches, pixel-based or block-based, can be used to estimate
the disparity map. In what follows, we use a fixed size block
matching DE, which consists of first partitioning the right
image I") into nonoverlapping blocks of size b, x b,. For
each block, the objective is to find the most “similar” block
within a given search area S in the left image I("). The disparity
vector v = (v,,v,) for a current block in 7(") minimizes a
dissimilarity criterion D

min
('Um sVy ) €S

1O (my + vy, my + vy)) M

D (I(T)(mm, my)

A
(”xvvy)(mmmy) = arg

where (m., m,) are the spatial coordinates associated with the
top leftmost pixel in the block. Very often, the Sum of Square
Differences (SSD) or the Sum of Absolute Differences (SAD)
is the selected criterion. It should be noted that in the ideal par-
allel-axis geometry, the displacement between the two views is
restricted to the horizontal direction (v, = 0) and it takes posi-
tive values (v, > 0). However, in practice, the matching point of
any current point of I(") is not always rigorously on the epipolar
line because of the sensor noise, the discretization errors and the
deviation from the pinhole camera model. As a consequence,
a strip along the epipolar line is considered and all the points
falling within this strip are considered as potential matching
candidates to be paired with the current point. It is worth men-
tioning that several works aimed at improving this block-based
DE, e.g., by using overlapped block DE with adaptive windows
[13], [14]. Once the disparity vectors are generated, a disparity
compensation can be performed: the target image I(") is pre-
dicted from I along the disparity vectors. Then, the Disparity
Compensated Difference (DCD) I(®) is computed as follows:

I (mg, my) 2T (mg,my) — IO (my + v2,my +v,) (2)

where the dependence on (m,,m,) of v, and v, has been
dropped for notation simplicity. Generally, the disparity vectors
are losslessly encoded using DPCM followed by arithmetic
encoding, whereas the reference and the residual images can
be coded in different transform domains. Some works apply
a discrete cosine transform [9], [15]. However, more recent
works have preferred the wavelet transform, in order to meet
the scalability requirement. In [16], an efficient exploitation
of the zerotree algorithm [17] is performed to shorten the
embedded bitstreams of the wavelet coefficients of both the
reference image and the DCD. In [18], both the estimation
and the disparity compensation take place in the wavelet do-
main, the coding of the wavelet coefficients being performed
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through a Subspace Projection Technique (SPT). Furthermore,
we should note also that Annex I of Part II of the JPEG2000
standard is dedicated to multicomponent image coding [19].
A decorrelation of the spectral components may be performed
prior to the wavelet transform. In our case, each view of the
stereoscopic image can be seen as a single component. Unlike
the conventional methods, we propose a joint coding scheme
that directly generates a pair of multiresolution representations
of the left and the right images derived from a judicious lifting
decomposition which will be described in the next section.

III. PROPOSED VECTOR LIFTING SCHEMES

A. Motivations

A novel approach that is based on a joint multiscale decom-
position of () and I(") is developed in this section. It consists
of coding the reference image I in intra mode (purely spatial),
whereas the other image is coded by exploiting cross-image re-
dundancies via the available disparity map. The decomposition
strategy is inspired from Vector Lifting Schemes (VLS) [20] and
it has been briefly presented as a preliminary work in [21]. The
main advantage of the proposed approach is that it does not ex-
plicitly generate a residual image, but two multiresolution rep-
resentations of 1) and I("). Two versions of the VLS will be
described in the following.

B. VLS Decompositions

The wavelet coefficients of an image are usually obtained by
a dyadic filter bank structure [22]. If an exact reconstruction is
required, lifting schemes are often employed, since they allow
to generate integer-valued versions of the wavelet coefficients
whatever the underlying decomposition operators are [23], [24].
For the sake of simplicity, a separable decomposition is consid-
ered in this paper. Therefore, it is enough to address the decom-
position in one dimension. The corresponding analysis structure
is shown in Fig. 2. More precisely, at each resolution level j,
the even and odd samples of the approximation (scaling) coef-
ficients I](-l)(mgg7 2mny), I;.T)(mz, 2mny), Ijl (mg,2my +1) and
IJ(.T)(maC7 2m,, + 1) of 1) and I(") respectively are the input
coefficients of the lifting scheme. Furthermore, we denote by
v; = (vs,,v,;) " the available disparity vectors which are ob-
tained by sampling and dividing by 27 the initial (full resolu-
tion) disparity vectors v = (v, v,)", since the dimensions of
the subbands at the jth resolution level correspond to the dimen-
sions of the initial images divided by 27

1 . .
= gv(?mm, 2'my). 3)
It is important to note that (3) may yield noninteger values of
the disparity vectors. Therefore, if the components of v; are
integer-valued, for any given pixel (m,, m,) in the right image
corresponds a pixel in the disparity-compensated left image
I](-l)(mz + vz j (Mg, my), My + vy j(My, my)). Otherwise, the
corresponding disparity-compensated intensity results from the
usual bilinear interpolation. The objective of the vector lifting
scheme is to simultaneously exploit the dependence existing
between [ ](l) and I¢" by producing 2 kinds of outputs: the

detail coefficients d jlil, ‘%21 and the approximation ones fjﬂzl,

Vi (mT my)
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1 ](:_)1 for both images. Similar lifting structures operating along

the image columns allow us to generate the approximation
coefficients I (21 and [ (:_)1, as well as the associated detail
coefficients in the horizontal, vertical and diagonal directions
at the resolution level (j + 1).! A wide range of nonlinear
operators can be applied to reduce the intra and interimage
redundancies. However, for tractability purposes, we will only
use combinations of shift operators, linear filters and rounding
operations. For the reference image /(9| the detail coefficients
can be interpreted as intraimage prediction errors at resolution
(7 + 1) and expressed as

.
00, (g my) = IO (g 2y + 1) — KP]@)) IEDJ “)

( )

where P(l) 2 k)k ep!) is the prediction weighting vector,

I(.l) = (I (. ) (i, 2m,, — 2k)>ke79"> is the reference vector con-

taining the even samples used in the prediction step, ’P( ) is the

support of the predictor of T J( )(mm, 2m, + 1) and |.] is the in-
teger-part operator. Then, at the update step, the approximation
coefficients are computed as follows:
-
Jil 1 1 ~(
T (m.my) = 19 (. 2my) + {(U;») al glJ )
where U(.l) = (u% 2 is the update weighting vector,
l l
dg-q)rl = (@ll(mwmy )
containing the details coefficients used in the update step, and
Z/l](l) is the support of the update operator. The reversibility
of the basic lifting scheme is ensured since the prediction
in (4) only makes use of even indexed samples. The main
difference between a vector lifting scheme and a basic one
is that for the image I("), the prediction of the odd sample
I](-T)(mxﬂmy + 1) involves even samples from the same
image and also neighbors of the matching sample taken from
the reference image. For the sake of simplicity, the notation
10 (my + vy j(mg,my),my + v, ;(my,m,) — k) which
corresponds to the compensated image on the neighbors
of a given matching sample (m.,m,), will be replaced by
I ](-c) (mg,my, k). Thus, the detail signal 53?_21 will be expressed
as
d\”)

j+1(m1'7 my)

— k)) ey s the reference vector

= 11 (m, 2m, + 1)
_{(pgﬂ) 1<’“)+(P(”>) I§-°)J 6)

r r s r,l
where Pg.) = (pg,z)kep (n (resp. P( D= (p;k)
is the prediction Welghtlng vector of the
tard (- _ (r)
(resp. interimages), I, = (I;/(my,2m, —

)keP ()
1ntra1mage
2k)) kP! (r)
is the reference vector containing the even samples
e _ (7 :
LY = (I;7(mg,2my + 1 k))keP”> is the vector con-
taining the nelghbors of the matching sample ass001ated with
the pixel I ]( )(mx 2my + 1) to be predicted, and ’P (resp
As we apply a separable decomposition, we denote by I the approximation

coefficients after the first mono-dimensional processing at the 70 level, and by
I, the final approximation subband.
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PJ(T’I)) is the spatial support of the intiaimage (resp. interim-
ages) predictor. The update step for I ](:)1 can be performed
similarly to (5). The decomposition is iterated on the columns
m, of the resulting subbands, leading to 2 x 4 sub-images
for the left and right images at each resolution level j and the
decomposition is again repeated on the approximation sub-im-
ages over .J resolution levels. It is worth pointing out that the
disparity based vector lifting scheme is perfectly reversible
and that it maps integers to integers. However, an appropriate
choice of the involved prediction and update operators remains
necessary in order to generate compact representations of
(I, 1), To illustrate the ability of the considered vector
lifting structure to produce a sparse representation, we provide
a simple example (denoted by VLS-I) of the considered lifting
structure. The image () is first decomposed following the
well-known integer-to-integer 5/3 scheme employed for the
lossless mode of JPEG 2000 [23]. According to our notations,
the spatial supports for the prediction and update operators
are: P = {=1,0}, U; O = {0,1} and their related weights

are: pfll = ) = 172, ) = u) = 1/4. The hybrid
is then expressed via

intra/inter prediction step related to I("

the following spatial supports: P; ) = {-1,0}, P; ™D = {o}.
In other words, the prediction mask contains the same spatial
prediction indices as those used in the 5/3 scheme and the
co-located position in the left image. As the detail coefficients
can be viewed as prediction errors, the prediction coefficients
P;le and p( ) can be optimized at each resolution level by
solving the well-known Yule-Walker equations. Concerning
the update step, it is possible to generalize the optimization
procedure described in [25], [26] in order to adapt the under-
lying operators to the statistical properties of the input image.
A straightforward alternative solution that we preferred in our
experiments consisted of choosing the same update operator
at all resolution levels, the update employed for I(") being the
same as the two-tap filter employed for 7(!) in (5).

C. Improved VLS

One of the potential drawbacks of the previous VLS-I struc-
ture is that it generates an update leakage effect, in the sense
that the information coming from the left view, which is used
for the prediction of the right one, is also used, through the up-
date operator, to compute the approximation coefficients of the
right view. An alternative solution is given by the predict-up-
date-predict (P-U-P) lifting structure shown in Fig. 3. The im-
proved decomposition is described as follows:

.
d\7), (g, my) Iﬁ)(m$72my+l)—{(P§)> 1](.>J ©)
~ T o

I}Ql(mx,my)zzjﬁ>(mx,2my)+{(ug ) d§.+>1J ®)
0

_7+1(m1'7my)
r,l i c
{TIQIJF(PJ(. Ol ¢ >J ©)

where notations similar to those used in Section III-B are used
and q; = (q;,x)reo, is the second intraimage predictor associ-

ated to the reference vector I;Zr)l = ](?1(mm, my —k))reo, -

d;ﬁ(m:r»my)
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It is worth noting that a prediction and an update as in (7) and
(8) (with the same weights) are applied to @, In addition, at
the last resolution level j = J, instead of directly coding the
approximation [ (T), we predict it from the approximation sub-
band at the last level of the disparity-compensated image and
only code the residual subband e(f) given by

.
) = 19 mrm,) = | (PF0) 10| o)

(rl) _ (r,0)
PJ - (pJ,k )keP(Jr,l)

1 = (159 (ma,my 1)

and

keP(mD

Let the coefficients ¢; ; and p T,;l (resp p(r'l)) be optimized so

as to minimize the variance of d( i1 (resp. ey )) at each reso-
Iution level j < .J (resp. at the coarsest resolution level .J).
An interesting property of the proposed decomposition is the
following: in the ideal situation corresponding to I() = (),
the multiresolution representation of (") reduces to zero under
some constraints that we are going to define in the following.
Indeed, in the ideal case when I() = I(")  the disparity vectors
are zero: (vg, vy) = (0,0). Therefore, (9) becomes

d(")

j+1(mz my)

y =(r r,l T l
= & e - {qﬁﬁ»zl + () )

=17 (my, 2my + 1) = | Y P (i, 2m, —2k)

keP”

Z q]k +1 m;umy_k)

keQ;

DI

(r.)
keP!

DT (g, 2my +1 - k) (11)

It is worth pointing out that the coefficients g; and py;cl)

are optimized, at each decomposition level, by solving the
Yule-Walker equations, the rounding operator being omitted.

Thus, the detail coefficients J;Ql(mr,my) can be viewed

as the errors involved in the prediction of &(Ql(mx,my)

by the signal t(m,,m,) = Zkegj 4. kI](+)1(mz my —
W4 epeo i I (ma 2my 1 = k). Tn this way,
we can ensure that the detail coefficients of the right image

d§?1(mz my) are zero if the prediction signal t(m,,my) is a

linear combination of (at least) the same samples as those used
by the reference signal ' > +1 (m., my) to be predicted. This can
be guaranteed provided that the support of the hybrid predictor
’P](-T’l) satisfies the two following conditions.
(i) The first term I J(-T)(mz, 2m, + 1) in the expression of
dj_?l(mx, my) in (7) can be found in the expression of
the prediction signal ¢(m.,m,) if 0 € P](T’l).
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(i1) The second term in the expression of JE -121(mz m,) in-

volves the samples (I(~ )( 2k))ke73 (). These

samples can be found in the express1on of the predlctlon
signal t(m,,my) if {2k + 1,k € 73(1 }C 77

When the conditions (i) and (ii) are satisfied and I j(l) =1 ](»T),

the decomposition of I j(»r) first provides a detail subband

d;?l(mz,m y) Wwhich is equal to zero and an approx-

imation subband 1V’ +)1 :

](:_)l(mx my) = I;ﬁl(mz,my). Then, while processing

the image along the columns, the decomposition of IJ(:-)1
generates in the same way a detail subband which is equal

to zero and an approximation subband I ;:_)1 which is equal

l r
to that of 11, I;Ql(mr,my)

decomposition of d\" ;-+1 provides two null detail subbands since

3(r)
dj1

tion representation of [ J(T) based on the new scheme allows
us to generate an approximation subband which is identical to
that of [ ](»l) and three detail subbands equal to zero. Since at

each resolution level the approximation subbands of I J(T) and
7O (O
J

Mg, 21y —

which is equal to that of I;

I](ﬁl(m.r, m,, ). Finally, the

(mg,my) = 0. Consequently, the resulting multiresolu-

are equal, the residual sub-image ¢’ in (10) becomes null

if 0 € PST b, Therefore, the P-U-P decomposition satisfies
the property of cancelling the values of the wavelet coeffi-
cients of the multiresolution representation of I(") provided
that {0} U {2k + 1,k € PJ(T)} C ”P](T’l), when j < J, and
0 e ’P?’l). This is a desirable property of the considered de-
composition in order to get a consistent joint representation of
I and I() . In contrast, this property does not hold for VLS-I.
Finally, as a supporting example, we design a scheme, which
will be denoted in the following by VLS-II, by adding a predic-
tion stage to the conventional 5/3 lifting structure. This amounts
tochooseP( = {-1,0}, Z/lr) ={0,1}, andp( )] —p% =
1/2,u jTS = §T1) = 1/4, while the last prediction stage is per-
formed by settmg Q; ={-1,0},and P(T’l) ={-3,...,3} for
— 1} and P(T D = = {0}. The coefficients g¢;  and
pg A D are determmed by solving the Yule-Walker equations (still
omitting the rounding operations) and i 1mp0s1n% again the sym-
metry properties: q;,_1 = ¢;,0 and p i = & (which allows
us to obtain linear phase filters often c0n51dered as desirable for
image coding [27]).

IV. THEORETICAL ANALYSIS

In this section, we perform a theoretical analysis of the perfor-
mances of VLS-I and VLS-II in terms of prediction efficiency,
which is directly related to the coding efficiency [28], [29]. First,
we give the explicit expressions of the optimal prediction co-
efficients as well as the variance of detail signals for the two
schemes. Then, we confirm that the prediction error variance of
VLS-II is smaller than the one of VLS-I.

A. Notations

In the following, we will develop our analysis in the case of
1-D signals, since we have considered a separable scheme. More
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precisely, let (m.., m,) be a given pixel, we consider the pair of

1-D signals defined for all n € Z by

i () = IJ(-T)(mgc7 n)

Ij(»l) (Mg + vy (Mg, 2my, + 1)
n+ Uy,j(mm 2my + 1)).

(12)

~
—~
=
—~
3
~
I

We assume that, at a given resolution level j, these signals sat-
isfy the following symmetric linear statistical model:

{ 1 (n) = ajaj(n) + Bibj(n)
i (n) = Bja;(n) + a;b;(n)

where (e, 3;) € R? such that of + 7 = 1, and a; and b; are
two stationary random processes which are mutually indepen-
dent. For the sake of simplicity, we assume that they are zero-
mean (which is always verified for wavelets coefficients) and
they have the same autocorrelation function R; with R;(0) > 0.
Then, it is easy to show that

13)

E[il il (n = k)] =E [ )il (n — 1)]

(14)

E[il ()il (n = k)| =5, R; (k) (15)

where s 2 sin(26;) and 6; 2 arg(a; + ;) (with 22 = —1).
At this point, it is worth not1c1n§ that the spatial similarities be-
tween the samples of 7 i (r) (or i ) are related to the autocorrela-
tion function R;. The factor 0 controls the cross-redundancies

() @

between the samples of 7, and 7,

B. Minimum Prediction Error Variance of VLS-1

By considering the support and the weights of the prediction
operator involved in VLS-I (still omitting the rounding opera-

tors), the detail signal %Ql(n) is expressed as follows:

ds)

() =i @+ 1) =B (187 (20) + 17 (20 + 2))

pgrol) gl)(2n +1).

(16)

Thus, c?;:zl(n) can be viewed as the error in the predic-

tion of igr)(2n + 1) by the multivariate reference signal

ij(n) 2 (i 2n) + i 20 + 2),( i%l)(2n +1)7

diction weight vector p; = (p%, Pio ))T satisfies the normal
equations

. The pre-

E [ij(m)i;(n) " p; = E[i{” (20 + Dis(m)] . (17

Hence, the optimal weights can be deduced as follows:

{pyg = 71,;(0,)R; (0)R;(1) (s3 = 1)
P = 415(8;)s; (2R;(1)% — Rj(0)2 — R;(0)R;(2))
(18)
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A -
where 71(6;) 2 (2521,(1)? — 1;(0)2 — R;(0)R;(2))7".
Consequently, the minimum value &1 ; of the prediction error
variance achieved by VLS-I is

e1i(Ry0) =E [ (2n + 1)?] - p

=71.5(6;) cos® (29]-)Rj( )
X (2B;(1)? = B;(0)* = R;(0)R;(2)) .

TE[i 20+ 1)i,(m)]
(19)

C. Minimum Prediction Error Variance of VLS-II

Considering now VLS-II (still omitting the rounding opera-
tors), the detail signal d('7:|21( ) is given by

d7) (n) =il (2n+1)— (()(Zn)+L()(2n+2))
— g0 (i (n >+L§’:21<n+1>)

_Zp(rw( (2n+1— k)-}-z(l)(?n—l-l—i-k))

paiy 2n+ 1)

(20)
where, as shown by (8), the signal z( ) 1(n) can be expressed as
W) =i 2n) 4 5 (A7 (0 1) + ()
(31';”(271) +i{ 20+ 1) + i (20 - 1))
- % (4" n
Therefore, it can be checked that
djs1(n) = rj(n) -

_Zp(u) ( 0 2n—|—1—k)+b(l)(2n+l+k>) (22)

o~ =

—2)+i{(2n+ 2)) . @1

P i 2n + 1)

aj0uj(n) — i

where
ri(n) 2il(2n + 1) - % (L;T)(2’I’L) +i7(2n + 2)) (23)
u;(n) 2 %iy)@n +1)+ g (L(T)(27’L) + ig-r)(2n + 2))
+ i (87 n—1)+i"2n+3)
_ % (iy)(zn ~2)+il(2n + 4)) (24)
From (22), d§ le( ) can be viewed as the error in the prediction

of r;(n) by the reference samples grouped into the vector & (n)
given by

£i(n) £ (u;(n), il 20+ 1)1 (2n) +i 20 + 2)

i(2n - 1)+ (2n + 3)
.
it (2n — 2) + i (2n + 4)) (25)
The vector p; = (gjo, pgrol)7p§ql) p§r21)7 pgrz,,l)) is found

by minimizing the variance of dt +)1( ). Consequently, the
following set of normal equations I‘] p; = c; must be solved
where I'; = E[t;(n)f;(n)"] and ¢; = E[r;(n)r;(n)]. Once
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the auto-correlation matrix I'; and the cross-correlation vector
c; are determined, the optimal weights are obtained as follows:

qj,0= — 472, (R;(0)—4R;(1)+4R;(3) - R;(4))  (26)
pVy) =72,55; (40R;(0)+48 R; (1) +31R;(2)+20R;(3)
—8R;(4)—4R;(5)+R;(6)) @7)
P = = 72,57 (33R;(0)+ 76 R; (1) +31R;(2) —8R, (3)
~R;(4)-4R;(5)+R;(6) /2 (28)
) =y sy (Rj(0)—4R; (1) +4R;(3) - R;(4))  (29)
U3 = = qo.js; (R;(0) —4R;(1)+4R;(3) — R;(4)) /2 (30)

where V2,5 = (38R](0) + 56Rj(1) + 31R]'(2) +
12R;(3)—6R;(4) — 4R;(5) + R;(6))~". Finally, the minimal
value of the variance €5 ; of the prediction error generated by
VLS-II is
€2,j(R;,0;) =E

[r?(n)] — p; E[rj(n)E;(n)]

L)

x (113R;(0)2 — 240R;(1)% + 31R;(2)?
—16R;(3)*> — Rj(4)® — 4R;(1)R;(6)
+281;(0)R;(3 )— 16R; ( JR;(4)

+ 131R;(0)R;(2) — 4R;(2)R;(5)

+3R;(0)R;(6) — 16R; ( JR;(3)

+16R;(1)R;j(4) — 68R;(1)R;(2)

+16R;(1)R;(5) + 12R;(2) R;(3)
R;(2)R;(6) + 8R;(3)1;(4)

+24R (0)R;(1) — 6R;(2)R;(4)

—12R;(0)R;(5)). (€29)

D. Discussion

It should be noticed that the expressions of €1 ; and €5 ; are
not restricted to a particular form of the autocorrelation func-
tion IZ;, and so they are valid for any second-order stationary
process. Furthermore, it is interesting to note that, unlike €1 j,
€3, 18 separable in I2; and f;. In order to emphasize the ad-
vantages of VLS-I and VLS-II, we will consider a simple multi-
variate random process model driven by two autoregressive pro-
cesses of order 1, a;(n) and b;(n) in (13). In this particular case,
the autocorrelation function is given by

VE€Z, Rj(k)=op)! (32)
where p; € [—1, 1] is the correlation factor. Therefore, the vari-
ances €1 ; and €5 ; of the prediction errors reduce to

e1,j(R;,0;) = 02.f"y1 (05 cos?(26) (pf - 1) (33)
1
e2,3(R;0;) = 507725 cos”(26;)(1 = p;)
(3,0]- — 16p% +4p> + 24p; + 113) (34
where 71 ;(6;) = (253 p7 — pJ — 1) tand 7 = (p3 — 5p] —

p3 4+ 13p% + 18p; + 38)
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Furthermore, we can check that the variance of the intra pre-
diction error generated by the 5/3 transform as indicated by (23)
is given by

1

S py)(1 -

Efrj(n)?] = Pi)- (35)
Fig. 4(a) shows the variations of E[r;(n)?], 1 ; and e5 ; with
respect to p; for a given value of 6;. Thus, by taking into ac-
count the spatial redundancies (controlled by p;), the variance
e1,; is smaller than E[r;(n)?]. Lower values of the prediction
error variance e ; are further achieved by the VLS-II transform
for any value of p;. We are also interested in comparing the vari-
ations of these three prediction errors with respect to §; for a
given value of p;, as depicted by Fig. 4(b). It can be noted that
VLS-II gives also the best results by exploiting the interimage
redundancies (controlled by ;). This study has clearly shown
the benefit that can be drawn from the use of VLS-II compared
to VLS-I. This is explained by the proposed P-U-P structure in
which the cross-view redundancies are exploited in the addi-
tional prediction step in order to avoid injecting the information
coming from the reference image in the approximation of the

target image.
V. EMBEDDED CODING OF STEREO IMAGES

A. Coding Techniques

After applying a VLS to a stereo image pair, the generated
coefficients must be encoded. However, the coding scheme
should enable quality scalability for progressive reconstruction
purposes. This is basically achieved by sending the coefficients
in decreasing order of their importance. In other words, the most
significant ones are first encoded at areduced accuracy. So, a first
approximation image is produced, which is further gradually
refined by decoding the least significant coefficients. To this end,
several scalable codecs have been developed [17], [30]-[32]. The
main advantage of these embedded codecs is that the encoder
can terminate the encoding at any point, thereby allowing a target
bitrate to be exactly met. Similarly, the decoder can also stop
decoding at any point resulting in the image that would have been
produced at the rate corresponding to the truncated bitstream.
In our experiments, we have employed the JPEG2000 codec,
which yields excellent performance in terms of compression
efficiency and quality scalability.

B. Transmission Cost of the Prediction Coefficients

The prediction coefficients involved in the proposed VLS de-
compositions have to be transmitted to the decoder in order to
proceed to the inverse transform with perfect reconstruction of
the stereo pairs. The prediction weights correspond to an amount
of 0, = 3LJ floating point coefficients, where L is the number
of prediction weights in the VLS and J represents the number
of resolution levels (the factor 3 stems from the fact that one
horizontal prediction and two vertical predictions, one in the
low-pass horizontal subband and the other in the high-pass hori-
zontal subband, are performed). These weights are stored on 32
bits, inducing a negligible increase of the overall bitrate. More
precisely, for a stereo pair of size N, x N,,, the transmission cost
of the prediction coefficients will increase the bitrate achieved
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Fig. 1. Original SI pair “spot5”:
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Fig. 2. Principle of the VLS-I decomposition.

by VLS-I and VLS-II, by 0,/2N,N, bits per pixel. For ex-
ample, when N, = N, = 512 and J = 2, the gain will be
decreased by 0.0007 bpp (resp. 0.0018 bpp) in the case of VLS-I
(resp. VLS-II) which is a very small fraction of the whole data
bitrate.

VI. EXPERIMENTAL RESULTS

Simulations have been carried out on 6 image pairs of size 512
x 512 which have been extracted from a SPOTS scene. The full
scene, which corresponds to an urban zone, is shown in Fig. 1
and the six image pairs are represented in white squares. We
have also used four pairs of natural stereo images (“fruit,” “pent-
agon,” “shrub,” and “birch”) downloaded from http://vasc.ri.
cmu.edu/idb/html/stereo/index.html and http://vasc.ri.cmu.edu/

idb/html/jisct/. It should be noted that some stereo images have

significant illumination variations between the views. For this
reason, DC is performed by applying to the original SI the re-
versible remapping technique based on sorting permutations in-
troduced in [33]. This preprocessing step is often used to im-
prove the coding efficiency of pairs of images [34]. The dis-
parity map is computed using a block-matching technique with
a 8 x 8 block size and a search area that depends on the ac-
quisition of the stereo pair (450 pixels in the horizontal direc-
tion and £2 in the vertical direction for SPOTS stereo images,
and +30 pixels in the horizontal direction and +4 in the ver-
tical direction for natural stereo images). The SSD is the chosen
matching criterion. The resulting disparity vectors are losslessly
encoded using a median prediction and DPCM with arithmetic
encoding. In order to show the benefit of the joint coding by
VLS, we compare VLS-I and VLS-II decompositions carried
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Fig. 3. Principle of the VLS-II decomposition.

out over J = 2 resolution levels with some representative SI
wavelet-based coding methods.

The first one is the baseline coder which consists of coding
the left image ) and the DC-residual I(®) with a 5/3
transform [16]. In the following, this method will be des-
ignated by scheme B.

The second one is the subspace projection technique in
the wavelet domain (SPT-WT) proposed by Jiang et al.
[18]. This method consists of applying the DE and DC
steps in the wavelet domain. More precisely, the method
starts by applying the 5/3 transform to the original SI

pair. We denote by {a}”, (dy 0))1<J,<J,0 e {1,2,3}}
-0 e

(resp. {a  (d; )1< ;0 € {1,2,3}}) the re-
sulting approximation and detail subbands for the right
(resp. left) image. A block-based DE is performed
between the corresponding subbands (as),a(Jl)) and
(d"*),d{"*)). Then, a DC of each block of the image
subbands is carried out, leading to the predicted subbands
(@, dgr ) o € {1,2,3}}. Finally, the computation of
the DCD is obtained by projecting each block of the

approximation subband of the target image ay) onto

the subspace S = spanf{al’, d(r O) 0 € {1,2 3}}
yielding the projection a( ) = aoa —|— EO e

where (aq, a1, a9, a3) are computed by a least squares
approach. In our experiments, and in order to ensure a
lossless reconstruction, we have encoded a rounded ver-
sion of d(-r) Consequently, the approximation subband

of the re51dual image is defined by a( ©) = a<r La J
whereas the other detail subbands are smlply computed
as: dj(»e’") = dy’a) - azy’o)o € {1,2,3}.

We have also tested a version of JPEG2000 (Annex I of Part
II) dedicated to multicomponent images. It consists first of
a decorrelation of the SI pair. Note that this decorrelation
step must use a reversible transform in order to exactly
recover the original SI pair. As a result, a pair (I, 1(°)) is
produced by using a variation of the Haar transform [35]
[see (36), shown at the bottom of the page], where S is
the set of connected pixels in the left image. Then, the 5/3
transform is separately applied to 7(*) and I. This method
will be designated in the following by scheme C.

The compression measure is given by the final bitrates of
the multiresolution representations. Let us denote by R(*),
RO, R™) and R, respectively, the bitrate of the dis-

1) (my,my) = 1) (my,my ) —
I(mm+vx My + vy) =
I(mz,my) —I()(mz,my)

I(l)(maC + Vg, My + V)
L( 0 mz+vm,my+vy)+l(r)(mx,my)) /ZJ,

if (my + vy, my +vy) €S (36)
if (m17my> g‘s
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(b)

Fig. 4. Prediction efficiency: E[r2(n)] (dotted line), &1 ;(R;, 6;) (dashed line), €2 ;(R;, ;) (solid line). (a) Variations w.r.t p; when o; = 1 and 6; = 7 /6.
(b) Variations w.r.t 8; when ¢; = 1 and p; = 0.9.

TABLE I 38
PERFORMANCE OF SI WAVELET-BASED LOSSLESS CODECS IN TERMS OF
AVERAGE BITRATE (IN bpp) USING JPEG2000
Image scheme B | SPT-WT | scheme C | VLS-I | VLS-II PR
spot>-1 | 3.63 3.59 358 349 [335 a
spot5-2 | 3.85 3.80 3.78 3.67 |3.53 et
spot3-3 | 427 421 424 403 | 393 Z
spots-4 | 4.22 418 421 405 |3.92 o
spot>-5 | 3.91 387 3.89 380 | 3.73 o independen] |
spot>-6 | 3.89 3.84 381 373 | 3.63 31 —%— scheme C
fruit 4.05 3.9 397 378 | 3.72 —»—scheme B
shrub | 3.73 3.69 3.69 381 |3.63 30, e
birch 432 449 447 444 | 437 09| , , ) ) ) - -
pentagon | 5.37 532 5.20 5.12 5.04 02 025 03 035 04 045 05 055 06
[Average [ 4.14 4.09 4.08 399 [388 Bitrate (bpp)

parity vectors v and of the images / (l), 1 (”), and 7(®), For
the methods based on the coding of the residual image, we
have computed the following average bitrate:

RO £ R 4+ Rpk)
av — 2
while the average bitrate for the proposed decompositions
is given by

(37)

RO £ R 4+ RO)

av —
2

(38)

It can be noticed that the average coding cost R(*) of the
losslessly encoded disparity vectors is around 0.07 bpp.
Table I provides the final bitrates obtained in a lossless
context by applying the JPEG2000 codec used only as an
entropy codec on the produced subbands. Our simulations
indicate that VLS-I results in an average gain of about
0.1 bpp over conventional methods. If we now compare the
performance of VLS-II to those provided by VLS-I, our ex-
periments show that VLS-II leads to a further improvement
of about 0.1 bpp.

We have also tested the performance of our methods when
applied as a lossy codec. In this case, the improved VLS
are also compared in terms of peak-signal-to-noise ratio
(PSNR) given by

2552

PSNR = 10log;,,
(MSEm—kMSE“U/2

(39)

Fig. 5. PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the
SI pair “shrub”.

35

341

—+— Independent

291 —%— scheme C
—*— scheme B
28 —— VLS|
3 —— VLSl
27 i > i . . :
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Bitrate (bpp)

Fig. 6. PSNR (in dB) versus the bitrate (bpp) after JPEG2000 encoding for the
SI pair “spot5-6”.

where MSE(") and MSE(") respectively correspond to the
mean squared error of the left and right images recon-
structed at the rates R() and R("). We also used the SSIM
quality metrics, which is based on models of visual percep-
tions, to evaluate the reconstruction quality of each com-
pression method [36]. We are first interested in studying
the evolution of the PSNR versus the bitrates achieved by
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(b): PSNR=26.16 dB, SSIM=0.67

Fig. 7. Reconstructed target image (™) of the “pentagon” pair at 0.2 bpp:
(a) scheme B; (b) VLS-II.

VLS-I, VLS-II, the conventional schemes B and C, and the
independent SI coder. In order to decode the SI pair, two
alternatives can be envisaged. The most basic one consists
of firstly decoding exactly the reference image. Then, the
target image is decoded by using the original left image
and the disparity vectors. However, in order to minimize
the latency at the decoder side and to achieve the transmis-
sion of both images for a given bandwidth, we choose to
simultaneously decode the SI pair. In other words, the de-
coding of the target image I(") at a specified bitrate R(") is
achieved by using the decoded left image T(l) at a bitrate
RO without waiting for the final decoding of the reference
image.

More precisely, for the coding scheme B, the reconstructed
target image T(T) is obtained by using the reconstructed left
image T(Z) and the residual image 7(8), decoded respec-
tively at R®) and R(®)

T(T)(mx,my) = T(E)(mx,my)+7(l)(mx+vm,my+vy). (40)

Then, by comparing the original images 7)) and 7(") with

the reconstructed ones 1~ and T(T), we can evaluate the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 11, NOVEMBER 2009

(2): PSNR=30.03 dB, SSIM=0.80

(b): PSNR=31.48 dB, SSIM=0.83

Fig. 8. Reconstructed target image I(") of the “spot5-5” pair at 0.13 bpp:
(a) scheme B; (b) VLS-IIL.

quality of reconstruction of the SI pair at the average bitrate
defined by (37).

Concerning the proposed methods, the reference image is
decoded at different bitrates in the same way as in the pre-
viously mentioned methods. Then, the right image is de-
coded at some bitrate R(") by using the reference image
decoded at a bitrate R(Y). Thus, we still evaluate the quality
of reconstruction of the SI pair at the average bitrate given
by (38). Figs. 5 and 6 show the scalability in quality with
this reconstruction procedure by displaying the variations
of the PSNR versus the bitrate for the SIs pair “shrub” and
“spot5-6”, using JPEG2000 as an entropy codec. These
plots show that schemes B and C (based on the coding of
the residual image) outperform the independent decompo-
sition scheme, especially at low bitrates. VLS-I performs
more poorly than these schemes at low bitrates but be-
yond some bitrate it is more performant. Finally, VLS-II
outperforms all the schemes and improves the PSNR by
at least 0.4 dB at high bitrate and the difference becomes
much more important at low bitrates. Figs. 7 and 8 display
a zoom applied on the reconstructed target image of the SI
pairs “pentagon” and “spot5-5” for scheme B and VLS-IL
We notice that the coding of the residual image leads to
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Bitrate=0.15 bpp, PSNR=29.04 dB, SSIM=0.76

Bitrate=0.2 bpp, PSNR=29.7 dB, SSIM=0.77

Bitrate=0.2 bpp, PSNR=31.45 dB, SSIM=0.83

Fig. 9. Reconstructed target image I(™) of the “shrub” pair at different bitrates: left column: VLS-I; right column VLS-I.

TABLE II
EXECUTION TIME OF THE PROPOSED METHODS (IN SECONDS)
Image independent scheme scheme B VLS-I VLS-II
encoding | decoding || encoding | decoding || encoding | decoding || encoding | decoding
spot5-6 0.57 0.15 0.83 0.49 2.29 1.20 2.44 1.46
fruit 0.55 0.15 0.84 0.50 2.31 1.25 2.58 1.48

blocking artifacts at low bitrates. This problem is signifi-
cantly reduced by resorting to VLS decompositions. Fig. 9
illustrates the reconstructed right image of the “shrub” pair
at the decoder side corresponding to a progressive recon-
struction. The quality of these images is compared both in
terms of PSNR and SSIM. The difference in PSNR (resp.
SSIM) between VLS-I and VLS-II ranges from 1.5 dB to
2 dB (resp. 0.05 to 0.1).

Finally, we propose to compare the different schemes in
terms of execution time. Table II presents the encoding and
decoding time of a Matlab implementation of the tested
methods, at 0.2 bpp, for two stereo images of size 512 x
512. Simulations are carried out by using an Intel Core 2
(3 GHz) computer. We can note that the proposed methods
VLS-I and VLS-II require respectively an additional av-
erage time of about 1.1 and 1.3 s compared to the residual

image coding based method (scheme B). However, this dif-
ference in execution time is compensated by the good com-
pression performance of the proposed VLS.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a new technique for lossy-to-
lossless compression of stereo image pairs. In order to take ad-
vantage of the correlations between the two images, we have
proposed two schemes based on the vector lifting concept. Un-
like conventional methods which generate a residual image to
encode the stereo pair, the proposed schemes use a joint mul-
tiscale decomposition directly applied to the left and the right
views. They exploit the intra and interimage redundancies by
using the estimated disparity map between the two views. Fur-
thermore, the proposed decompositions guarantee the perfect re-
construction of the original stereo images. It is worth pointing
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out that these decompositions are also adapted to the content of
the images. A theoretical analysis in terms of prediction error
variance was conducted in order to show the benefits of the un-
derlying VLS structure. Experimental results, carried out on a
set of remote sensing and natural stereoscopic images, have in-
dicated the good performance of the VLS over the conventional
approaches in terms of bitrate and quality of reconstruction. In
future work, we plan to improve the proposed decomposition
by better taking into account the effect of occlusions. Also, an
extension of the proposed scheme to multiview/video coding is
currently envisaged.
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