On the Capacity Achieving Covariance Matrix for Rician MIMO
Channels: An Asymptotic Approach

J. Dumont, W. Hachem, S. Lasaulce, Ph. Loubaton and J. Najim
28 aolt 2009

Abstract

In this contribution, the capacity-achieving input coeaée matrices for coherent block-
fading correlated MIMO Rician channels are determined. dntast with the Rayleigh and
uncorrelated Rician cases, no closed-form expressionshireigenvectors of the optimum
input covariance matrix are available. Classically, bdta eigenvectors and eigenvalues are
computed numerically and the corresponding optimizatigor@hms remain computationally

very demanding.

In the asymptotic regime where the number of transmit an@ivecantennas converge
to infinity at the same rate, new results related to the acgucd the approximation of the
average mutual information are provided. Based on the acguof this approximation, an
attractive optimization algorithm is proposed and analyskhis algorithm is shown to yield
an effective way to compute the capacity achieving matrixtiie average mutual information
and numerical simulation results show that, even for a matderumber of transmit and receive
antennas, the new approach provides the same results &t miiagimization approaches of

the average mutual information.
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I. INTRODUCTION

Since the seminal work of Telatar [38], the advantage of ictemisg multiple antennas at the
transmitter and the receiver in terms of capacity, for Geusand fast Rayleigh fading single-
user channels, is well understood. In that paper, the figbimaeyit chosen for characterizing
the performance of a coherértommunication over a fading Multiple Input Multiple Output
(MIMO) channel is the Ergodic Mutual Information (EMI). Assing the knowledge of the
channel statistics at the transmitter, an important issu® imaximize the EMI with respect
to the channel input distribution. Without loss of optiniglithe search for the optimal input
distribution can be restricted to circularly Gaussian itgpT’he problem then amounts to finding
the optimum covariance matrix.

This optimization problem has been addressed extensivethe case of certain Rayleigh
channels. In the context of the so-called Kronecker motbhs been shown by various authors
(see e.g. [16] for a review) that the eigenvectors of thenogltiinput covariance matrix must
coincide with the eigenvectors of the transmit correlatioatrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problenthvban be solved by using standard
optimization algorithms. Note that [39] extended this ieso more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied finisypbint of view. Let us mention
the work [20] devoted to the case of uncorrelated Rician okt where the authors proved
that the eigenvectors of the optimal input covariance madre the right-singular vectors of
the line of sight component of the channel. As in the Rayleighe, the eigenvalues can then
be evaluated by standard routines. The case of correlat@drRthannels is more complicated
as the eigenvectors of the optimum matrix have no closed fexpressions. Moreover, the
exact expression of the EMI being complicated (see e.g.),[2%8]th the eigenvalues and the
eigenvectors have to be evaluated numerically. In [41] rddydnterior-point method is proposed
and implemented to directly evaluate the EMI as an expectaiihe corresponding algorithms
are however computationally very demanding as they heaeily on intensive Monte-Carlo
simulations.

In this paper, we address the optimization of the input davae of Rician channels with
a two-sided (Kronecker) correlation. As the exact expmssf the EMI is very complicated,
we propose to optimize the approximation of the EMI, firstgemted in [35], valid when the

number of transmit and receive antennas converge to infatitthe same rate. This will turn

Instantaneous channel state information is assumed aet®iver but not necessarily at the transmitter.



out to be a simpler problem. The results of the present dartidn have been presented in part
in the short conference paper [13].

The asymptotic approximation of the mutual information haen obtained by various authors
in the case of MIMO Rayleigh channels, and has shown to be geiifeible even for a moderate
number of antennas, see [10], [40], [29]. The case of Riclamnels has been considered more
recently. Using the replica method, [30] obtained the adgtipexpression of the ergodic mutual
information together with the variance of the mutual infation in the case of uncorrelated
Rician channels. These results were generalized to theexioat general bicorrelated Rician
channels in [35], [37]. Using large random matrix technigjugn asymptotic approximation of
the EMI is provided in [18] in the case of a Rician channel veh@ndom entries are independent
random variables with non-separable variance profile. éf ¥ariance profile is separable, this
channel is equivalent (up to unitary invariance) to a bielated Rician channels, and one can
recover the expression of the EMI given in [35], [37]. Fiyathe contribution [36] generalizes
the results of [35], [37] to the case of a Rician channel witkiference and proposes to optimize
the approximation of the EMI in order to obtain a capacityiacing covariance matrix in the
context of a Rician channel with interference. The optimi@aalgorithm of the large system
approximant of the EMI proposed in [36] is however differénam the algorithm studied here.

In this paper, we consider the closed-form asymptotic aygpration for the mutual informa-
tion as it appeared in [35], [37] and [18] and present newltestoncerning its accuracy. We
prove in particular that the relative error decreases attrat wheret represents the number of
transmit antennas. Such an analysis is new in the contextRitian channel with two-sided
correlation.

We then address the optimization of the large system apmpation w.r.t. the input covariance
matrix and propose a simple iterative maximization aldponitwhich, in some sense, can be
seen as a generalization to the Rician case of [43] devotdfietdRayleigh context : Each
iteration will be devoted to solve a system of two nonlineguaions as well as a standard
waterfilling problem. Among the convergence results thatavide : It is proved that the
asymptotic equivalent of the average mutual informatiolcaacave with respect to the input
covariance matrix. This garantees good convergence giepéir any, and also a good speed of
convergence. It is also proved that the algorithm convel@sards the optimum input covariance
matrix as long as it convergésConcavity and convergence issues are not addressed i3]

[36]. Finally, we also prove that the matrix which optimizé® large system approximation

2Note however that we have been unable to prove formally itvegence.



asymptotically achieves the capacity. This result, whiak hot been previously established for
any approximation results, has an important practical eaag it asserts that the optimization
algorithm yields a procedure that asymptotically achiewesrue capacity. Finally, simulation
results confirm the relevance of our approach.

The paper is organized as follows. Section Il is devoted & ftesentation of the channel
model and the underlying assumptions. The asymptotic appegion of the ergodic mutual
information is given in section lll. In section IV, the striconcavity of the asymptotic
approximation as a function of the covariance matrix of thpui signal is established; it
is also proved that the resulting optimal argument asyngally achieves the true capacity.
The maximization problem of the EMI approximation is stutie section V. Numerical results

are provided in section VI.

II. PROBLEM STATEMENT

A. General Notations

In this paper, the notations x, M stand for scalars, vectors and matrices, respectively. As
usual, ||x|| represents the Euclidian norm of vectorand || M| stands for the spectral norm
of matrix M. The superscript.)” and(.)" represent respectively the transpose and transpose
conjugate. The trace dM is denoted byTr(M). The mathematical expectation operator is
denoted byE(-) and the symbolst and & denote respectively the real and imaginary parts
of a given complex number. If is a possibly complex-valued random variab\éyr(z) =
E|z|2 — |[E(x)|* represents the variance of

All along this papery andt stand for the number of transmit and receive antennas. iGerta
quantities will be studied in the asymptotic regime— oo, r — oo In such a way that
; — ¢ € (0,00). In order to simplify the notationg,— oo should be understood from now on
ast — oo, r — o0 and; — ¢ € (0,00). A matrix M; whose size depends dnis said to be
uniformly bounded ifsup, | M| < oco.

Several variables used throughout this paper depend oaugsgarameters, e.g. the number
of antennas, the noise level, the covariance matrix of thesmitter, etc. In order to simplify

the notations, we may not always mention all these depeimekenc

B. Channel model

We consider a wireless MIMO link with transmit and- receive antennas. In our analysis, the

channel matrix can possibly vary from symbol vector (or sptime codeword) to symbol vector.



The channel matrix is assumed to be perfectly known at theivec whereas the transmitter

has only access to the statistics of the channel. The ratsigmal can be written as
y(7) = H(7)x(7) +2(7) 1)

wherex(7) is thet x 1 vector of transmitted symbols at time H(7) is ther x ¢ channel
matrix (stationary and ergodic process) ad) is a complex white Gaussian noise distributed
as N(0,0%1,.). For the sake of simplicity, we omit the time indexfrom our notations. The
channel input is subject to a power constret[ht[E(xxH)] < t. Matrix H has the following

structure :
K 1
H= A+ v, 2
K+1 K +1 @)

where matrixA is deterministic,V is a random matrix and constait > 0 is the so-called
Rician factor which expresses the relative strength of tinectland scattered components of

the received signal. MatriA satisfies%Tr(AAH) = 1 while V is given by

1
V= %c}fwc;/2 : 3)

whereW = (W;;) is ar x t matrix whose entries are independent and identically itisted
(i.i.d.) complex circular Gaussian random variabts(0,1), i.e. W;; = RW;; +iSW;; where
RW;; andIW;; are independent centered real Gaussian random variallevaviance;. The
matricesCr > 0 and Ci > 0 account for the transmit and receive antenna correlatitecisf
respectively and satisfy Tr(Cr) = 1 and 1Tr(Cp) = 1. This correlation structure is often

referred to as a separable or Kronecker correlation model.

C. Maximum ergodic mutual information

We denote byC the cone of nonnegative Hermitianx ¢ matrices and by, the subset of
: 1
all matricesQ of € for which ZTr(Q) = 1. Let Q be an element 0o€; and denote by (Q)

the ergodic mutual information (EMI) defined by :

1
I(Q)=En [105; det (L« + —QHQHHH . 4)
(o
Maximizing the EMI with respect to the input covariance mat® = E(xx/) leads to the
channel Shannon capacity féast fading MIMO channels i.e. when the channel vary from
symbol to symbol. This capacity is achieved by averaging eb@nnel variations over time.
We will denote byC'r the maximum value of the EMI over the s@t :

Cp = sup 1(Q). (5)
Qety



The optimal input covariance matrix thus coincides withdngument of the above maximization
problem. Note that : Q — I(Q) is a strictly concave function on the convex $it which
guarantees the existence of a unique maxim@m(see [27]). WherCr =1, Cr = 1, [20]
shows that the eigenvectors of the optimal input covariamedrix coincide with the right-
singular vectors ofA. By adapting the proof of [20], one can easily check that th&ult also
holds whenCr = I, andCyr and AA share a common eigenvector basis. Apart from these
two simple cases, it seems difficult to find a closed-form egpion for the eigenvectors of
the optimal covariance matrix. Therefore the evaluationCef requires the use of numerical
techniques (see e.qg. [41]) which are very demanding sireertly on computationally-intensive
Monte-Carlo simulations. This problem can be circumventethe following way : The EMI
I(Q) can be approximated by a simple expression denotef{ @y (see section Ill) ag — oo,

this expression is in turn optimized with respect@o(see section V).

D. Summary of the main results.

The main contributions of this paper can be summarized dswsl:

1) The approximation (Q) of I(Q) ast — oo presented in [35], [37] can be written as

1(Q) = log det [I; + G(0r(Q), 07(Q))Q] +i(dr(Q), o7(Q)) (6)

wheredr(Q) anddr(Q) are two positive terms defined as the solutions of a system of
2 equations (see Eg. (28)). FunctioBsand: are given in closed form and depend on
(6r(Q),67(Q)), K, A, Cr, Cr, and on the noise varianee’.

We prove that the error terni(Q) — 1(Q) is of orderO(t~1). As I(Q) is known to
increase linearly witht, the relative errorlQ-1(Q) g order O(t=2). This supports

Q)
the fact that/(Q) is an accurate approximation éfQ), and that it is relevant to study

I(Q) in order to obtain some insight ol Q).

2) We prove that the functio® — I(Q) is strictly concave on;. As a consequence,
the maximum ofI over G, is reached for a unique matriQ,. We also show that
1(Q,) — I(Q,) = O(t~!) where we recall thaQ, is the capacity achieving covariance
matrix. Otherwise stated, the computation@f (see below) allows one to (asymptotically)
achieve the capacity(Q.).

3) We study the structure dj, and establish tha®, is solution of the standard waterfilling

problem :

max log det (I4+ G(0R«,07+)Q) ,

Qe



wheredr.. = dr(Q,), é7+ = 6r(Q,) and

G (SR, 074) = ORe oy LB gm0 g 71A
R,x, OT _K—|-1 T 02K+1 r K+1 R .

This result provides insights on the structure of the apimnexing capacity achieving
covariance matrix, but cannot be used to evalu@te since the parameterd . and
51 depend on the optimum matriQ,. We therefore propose an attractive iterative
maximization algorithm of/(Q) where each iteration consists in solving a standard

waterfilling problem and & x 2 system characterizing the parametéig, o7 ).

I11. ASYMPTOTIC BEHAVIOR OF THE ERGODIC MUTUAL INFORMATION

In this section, the input covariance mat¥ € C; is fixed and the purpose is to evaluate
the asymptotic behaviour of the ergodic mutual informatid®) ast — oo (recall thatt — oo
meanst — oo, r — oo andt/r — ¢ € (0, 00)).

As we shall see, it is possible to study the accuracy of apmration I(Q) of 1(Q). The
starting point of our approach is partly based on the rexfl{48] devoted to the study of the

asymptotic behaviour of the eigenvalue distribution of imaEX " whereX is given by

»>=B+Y, @)

matrix B being a deterministicc x ¢ matrix, andY being ar x ¢t zero mean (possibly
complex circular Gaussian) random matrix with independgrities whose variances are given
by E|Y;;|*> = "—:J Notice in particular that the variablgd;;; 1 <i <r, 1 <j <t) are not
necessarily identically distributed. We shall refer to thiangular array(a?j; 1<i<r 1<

j <t) as the variance profile df ; we shall say that it is separabledfj = dldj whered; > 0
forit<i<r andczj >0 for 1 < j < t. Due to the unitary invariance of the EMI of Gaussian
channels, the study af(Q) will turn out to be equivalent to the study of the EMI of model
(7) in the complex circular Gaussian case with a separalslanae profile. We however stress
that the mathematical technics used in the present papepletsty differ from the tools used

in [18] (see Remark 2 below).

A. Introduction of the virtual channeﬂIQé

The purpose of this section is to establish a link betweensthmlified model (7) :3 =

B+ Y whereY = %Déxﬁé, X being a matrix with i.i.d@N(0,1) entries,D and D

being diagonal matrices, and the Rician model (2) undersiiyation. As we shall see, the key



point is the unitary invariance of the EMI of Gaussian chdasnegether with a well-chosen
eigenvalue/eigenvector decomposition.
Proposition 1: Let X be ar x ¢ matrix whose individual entries are i.i.@N(0,1) random

variables. The two ergodic mutual informations

HQH )

o2

) b3) nl
I(Q) =Elogdet { I+ and  J(o%) =Elogdet { I+ —
o

are equal provided that :

— ChannelX is given by = B +Y with Y = %D%Xﬁé

— The following eigenvalue/eigenvector decompositionks liaue :

Cr_ _uypu? and ¥ _gpor )
VE 11 K+l

whereU andU are the eigenvectors matrices whileandD are the eigenvalues diagonal
matrices.

— MatricesA andB are related via the identity :

K 1~
B=,/——U”AQ:U.
rrio AU ©)
Proof: We introduce the virtual channHQ% :
1 K 1 1 1'W 1 1.1
HQ> =/ ——AQ> + C,—0(Q2CrQ>2)> 10
R e R Y e S VA 4o

where © is the deterministic unitary x ¢ matrix defined by® = C%Q%(Q%CTQQ*%.
The virtual channeHQ% has thus a structure similar H, with (A, Cr, Cr, W) respectively
repIaceo(AQ%, Crg, Q%CTQé,W(a). Consider now the decomposition (8). It is then clear that
the ergodic mutual information of chanrH]Qé coincides with the EMI of = UFHQ!/2U.
Matrix 3 can be written a® = B +Y whereB is given by (9) andY = %D%Xf)é with

X = UPWOU. As matrix W has i.i.d. GN(0,1) entries, so has matriX = U'wWeU
due to the unitary invariance (note that the entriesYofare independent sind® and D are

diagonal). Proposition 1 is proved. [ |

B. Study of the EMI of the equivalent model (7).

We first introduce the resolvent and the Stieltjes transfassociated witlEX (Section IlI-
B.1) ; we then introduce auxiliary quantities (SectionBl2) and their main properties, together

with the approximation of the EMI.



1) The resolvent, the Stieltjes transforrenote byS(c2) and S(¢2) the resolvents of

matricesE X and XX defined by :
S(e?) = [Z2H +02L] ", §(%) = [BFE + 0% . (11)
These resolvents satisfy the obvious, but useful property :
S(o?) < = S(e?) < = . (12)

Recall that the Stieltjes transform of a nonnegative megsis defined by[ “A(L_AZ). The quantity
s(o?) = 1Tr(S(0?)) coincides with the Stieltjes transform of the eigenvalustriiution of

matrix X3 evaluated at point = —c¢2. In fact, denote by(\i)i1<i<, its eigenvalues , then :
I~ 1 v(d\)
2 = — _— = _—
8(0)_r;)\i+02 /R+)\+02’

wherev represents the empirical distribution of the eigenvaldeX®& ", that is the probability
distribution %2;16& where 0, represents the Dirac distribution at point The Stieltjes
transform s(0?) is important as the characterization of the asymptotic biela of the
eigenvalue distribution o2X# is equivalent to the study of(¢%) whent — oo for each
o2, This observation is the starting point of the approache®ldped by Pastur [28], Girko
[14], Bai and Silverstein [1], etc.

2) Important auxiliary quantities and asymptotic approation of the EMI: We gather in
this section many results of [18] that will be of help in theygel.

Assumption 1:Let (B;) be a family of » x t deterministic matrices such that :
supy; 35— | Bij|* < 00, sup,; S0y | Bijl* < o0 .

Theorem 1:Consider theX = B +Y, whereY = %Déx f)é, D andD represent the
diagonal matriced = diagd;, 1 < i < r) andD = diag(d;, 1 < j < t) respectively, and
whereX is a matrix whose entries are i.i.d. complex centered wittewae one. The following

facts hold true :

(i) (Existence and uniqueness of auxiliary quantjtiesr o2 fixed, consider the system of

equations :

g
g

%Tr D (02(IT + D)+ B(IL, + ﬁﬁ)_lBH) o

1 (13)

%Tr D (UQ(It +Dp)+BH(L, + DB)—IB)

Then, among the solutions of system (13), there is a uniqugpleoof strictly positive

solutions (5(c2), (c2)). Denote by T(c2) and T(c2) the following matrix-valued
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functions :

T(o?) = [02(1 + B(0?)D) + B + 5(02)15)—11311} ) a
T(o?) = [0+ 3(e?)D) + BA(I+f(o2D)'B|
MatricesT(02) and T (c?) satisfy
T(0?) < % T(0?) < % : (15)

(i) (Representation of the auxiliary quantit)éhe solutions3(o?) andB(JQ) of system (13)

are given by :
Bo?) = TTDT(?) ,  f(o?) = T TDT(?) | (16)

and can be written as

_ fip(dA) 50 o fip(dA)
sty = [ RS e | (17)

where u;, and ji, are nonnegative scalar measures with respective total %r[&s{@) and
%T&«(f)). Similarly, there exist probability measurgsand i such that

Lo [ L o [ A
ZTI‘T(U)_/RJr)\‘i‘UQ’ tTrT(U)—/FH)\_i_UZ. (18)

(i) (Asymptotic approximation of the EMAssume that Assumption 1 holds and that
sup ||ID|| < dmax < 00 and sup Hf)H < dmax < 00 .
t t

For every deterministic matricdel andM satisfyingsup, |M|| < oo andsup, | M|| < oo,

the following limits hold true almost surely :

{hmtﬂm o [(é(UQ)_T(UQ))w - (19)
limy oo 1Tr [(8(02)—T(02))M] ~ 0

Denote by.J(0?) = Elogdet (I, + o~ 2E%") the EMI associated with matri. Then
J(o?) writes

J(o?) =rE /:O (1 - 1TrS(w)) dw . (20)

2 w T

Define by.J(c?) the quantity :

. © /11
J(o%)=r ——-TrT(w) | dw . (21)
o2 w r
ThenJ(0?) can be expressed as :

J(0?) = log det [IT + B(c®)D + %B(It + B(JQ)ﬁ)_IBH}

+ log det [It + 5(02)13} — 2B(02)3(0?) , (22)
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or equivalently :
J(0?) = logdet |I, + 3(c?)D + %BH(IT + 5(02)D)‘1B]
+ log det [IT n B(UQ)D} — 2B(0D)B(0?) . (23)
Moreover, the following convergence holds true :

J(0?) = J(0*) 4+ o(t) as t— oo . (24)

Proof of (i) is provided in Appendix | (note that in [18], the existencedamiqueness of
solutions to the system (13) is proved in a certain class afyéis functions depending on?
but this does not imply the existence of a unique solu(iﬁn@) wheno? is fixed). The rest of
the statements of Theorem 1 have been established in [18]their proof is omitted here.

Remark 1:As shown in [18], the results in Theorem 1 do not require anyussSan
assumption fox. Notice that (19) implies in some sense that the entrieS(ef) andS(c?)
have the same behaviour as the entries of the deterministida@sT (o) and T(c%) (which
can be evaluated by solving the system (13)). In particuksing (19) forM = 1, it follows that
the Stieltjes transforns(o2) of the eigenvalue distribution aEX behaves likel TrT (02),
which is itself the Stieltjes transform of a probability nse@e . (see for instance [18]).

In order to evaluate the precision of the asymptotic appnation./, we shall improve (24)
and get the speed(o?) = J(0?) + O(t~!) in the next theorem. This result completes those in
[18] and in Theorem 1-(iii) but heavily relies on the Gausssé&ructure of3. We first introduce
very mild extra assumptions :

Assumption 2:Let (B;) be a family ofr x ¢ deterministic matrices such that

sup || B|| < bmax < +00 .
~ t
Assumption 3:.Let D andD be respectively: x » andt x t diagonal matrices such that
sup |D|| < dmax < 00 and  sup ||D|| < dpax < 00 .
t t

Assume moreover that

o1 R

Htlf ;TrD >0 and IItlszl“D >0.
Theorem 2:Consider the simplified model as in Theorem B2: = B + Y, withY =
%D%X D:. Assume moreover that Assumptions 2 and 3 hold true. Thenevery deter-
ministic matricesM and M satisfyingsup, | M|| < oo andsup, ||M|| < oo, the following facts

hold true :

Var (%Tr [S(UQ)M]> ~0 <t12> and Var GTr [S(UQ)MD 0 (%2) (25)
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Moreover,

T [(E(S(0%) = T(@*)M] = O(t7?) (26)
Ly [(E(S((ﬂ)) ~TE))M| = 0(t7?)
and
J(O’Q) _ j(O_Z) + O (tfl) ) (27)

The proof is given in Appendix Il. We provide here some comtaen

Remark 2: The proof of Theorem 2 takes full advantage of the Gaussiaictsire of matrix
3 and relies on two simple ingredients : An integration by pddrmula that provides an
expression for the expectation of certain functionals ofi§ss&an vectors, widely used in Random
Matrix Theory [26], [31] and Poincaré-Nash inequality thatunds the variance of functionals
of Gaussian vectots

Remark 3 (Gaussian vs non-Gaussiaixuations (25) also hold in the non Gaussian case
and can be established by using the so-called REFORM (RagolWORmula Martingale)
method introduced by Girko ([14]).

Equations (26) and (27) are specific to the complex Gaussiactsre of the channel matrix
3. In particular, in the non Gaussian case, or in the real Ganssase, one would get(c?) =
J(o?) + O(1). These two facts are in accordance with [2] in which a weaksult ((1)) is
proved in the simpler case whei@ = 0, and the predictions of the replica method in [29]
(resp. [30]) in the case whe = 0 (resp. in the case whe® = I, andD = I,.).

Remark 4 (Standard deviation and biagjg. (25) implies that the standard deviation of
1Tr [(S(0?) — T(0?))M] and 1 Tr [(S(O’Q) — T(aQ))M] are of orderO(¢+~!) terms. However,
their mathematical expectations (which correspond to the)lxonverge much faster towards
as (26) shows (the order 3(t2)).

Remark 5:Both J(0?) and.J(¢?) increase linearly witht. Equation (27) thus implies that the
relative error%‘gjf‘ﬁ) is of orderO(t~2). This remarkable convergence rate strongly supports
the observed fact that approximations of the EMI remainal@é even for small numbers of
antennas (see also the numerical results in section VIke Mt similar observations have been

done in other contexts where random matrices are used, geEBE.[29], [35], [37].

C. Study of the EMI(Q).

We now apply the previous results to the study of the EMI ofrctfeH. We first state the

corresponding result.

3Although well-known, its application to random matricesfagrly recent ([7], [32] and also [17]).
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Theorem 3:For Q € ©;, consider the system of equations

; (28)
or = fr(or.or,Q)

where fr(dr, o7, Q) and fr(ogr, dr, Q) are given by :

{6R = fr(0r.07.Q)

fr(OR, 07, Q) = —TI"{CR[ (L + K(ST 1 CR)
71 _
+ 2 AQl ( ) Qia”] 1} . (9)

Jr(0r,67,Q) = %Tr{Q%CTQ% o

K1)

+KL+1Q%AH <1T+ K‘sT CR> 1AQ%}_1} . (30)
Then the system of equations (28) has a unique strictly igessblution (6z(Q), 07(Q)).
Furthermore, assume thaip, || Q|| < oo, sup;, ||A|| < oo, sup, ||Cr|| < oo, andsup, ||Cr|| <

oo. Assume also thainf; A\, (Cr) > 0 whereA,,in (Cr) represents the smallest eigenvalue of

Cr. Then, ast — oo,
rQ-1@+o(+) (31)

where the asymptotic approximatidiQ) is given by

2K+1 K+1

or(Q)
K+1

-1
I(Q) = log det(It—i—(S (Q)Q CrQ: + — K Q: AH< +5T(Q) CR> AQ%)

2
CR) "7 5k(Q)6r(Q) . (32)

1 I -
—i—ogdet(,«—i- K+

or equivalently by

Q) |, 1

L L B A ( 4 0r (f)

I(Q):logdet< K+1 2 K+1

1 71 1
5) QgAH>

5R(Q) or(Q). (33)

+ log det (It + (Q)Q1/2 TQ1/2> K )

Proof: We rely on the virtual channel introduced in Section llI-Adaan the eigenva-
lue/eigenvector decomposition performed there.
Matrices B, D, D as introduced in Proposition 1 are clearly uniformly bousdeshile
inf; ;TrD = inf; }TrCr = 1 due to the model specifications arulf, %TrQ%CTQ% >
inf; Amin(Cr)1TrQ > 0 as 1TrQ = 1. Therefore, matrice®, D and D clearly satisfy the

assumptions of Theorems 1 and 2.
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We first apply the results of Theorem 1-(i) to matix (and use the same notations). Using

the unitary invariance of the trace of a matrix, it is strafghward to check that :

- -1 _1-
E@ﬂbgzz-?rDQﬁO+D o >+Bo+ﬁ = > Eﬂ |

K+1 vK+1 vVK+1
i -1
fr(Or,or,Q) 15[ 2 < = Or > o ( or >1
——— = = -Tr|D I+D +BY (I+D B
K+1 t 7 VE +1 VE +1
Therefore, (6, 67) is solution of (28) if and only if( —2z 0r_) s solution of (13). As the

VE+1 VK+1
system (13) admits a unique strictly positive pair of s@o$, say(5, 5), the system (28) satisfies

the same property and the corresponding [éir, o7) is related to(3, 3) by the relations :

T
=TT TR (34)

In order to justify (32) and (33), we note thdto?) coincides with the EMII(Q). Moreover,
the unitary invariance of the determinant of a matrix togethith (34) imply thatl(Q) defined
by (32) and (33) coincide with the approximatigngiven by (22) and (23). This proves (31)
as well. |

In the following, we denote b{l'z(c?) and Tr(o?) the following matrix-valued functions :

1 1 1 1 -1
Ta(0?) = [o*(I+ 325:Cn) + £ AQH I+ 32,Q5CrQ) Qi A | )
1 1 1 1 71
Tr(o?) = [02(1+ 2QiCrQl) + £ QIAT(I+ [f_{ICR)—lAQE]
They are related to matricég and T defined by (14) by the relations :
Tgr(0c?) = UT(c?HUH
r(07) - ~(0 )~ (36)
Tr(c?) = UT(c?)UHN

and their entries represent deterministic approximatiafs (HQH” + +2I,)~! and
(QzHTHQ: + ¢2I,) L.

As ITrTp = ITiT and 1Ty Ty = 1TvT, the quantities TrT and 1 Tr'Tr are the Stieltjies
transforms of probability measuresand /i introduced in Theorem 1-(ii). As matricddQH"
andxx (resp.Q%HHHQ% and ©7X) have the same eigenvalues, one can notice that the
eigenvalue distribution cHQH (resp.Q:H”HQ?) behaves likeu (resp. ).

We finally mention thatz(c2) andér(o?) are given by

1 1 1
Sr(c?) = ETrCRTR(JQ) and  &p(0?) = zT1~Q5(3TQ1/2TT(02) , (37)
and that the following representations hold true :
2 pr(dA) 5 / pr(dN)
= = — 38
Or(7”) /R+ Ntz and or(e) me Ato2 (38)

where i and pur are positive measures dit satisfying ug(R*) = 1TrCr and ur(RT) =

1
%TrQl/QCTQl/Q.
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IV. STRICT CONCAVITY OF I(Q) AND APPROXIMATION OF THE CAPACITY I(Q,)
A. Strict concavity of (Q)
The strict concavity off (Q) is an important issue for optimization purposes (see Sedtjo
The main result of the section is the following :

Theorem 4:The functionQ — I(Q) is strictly concave or€;.

As we shall see, the concavity éfcan be established quite easily by relying on the concavity

of the EMI I(Q) = E log det (I + H%?H) The strict concavity is more demanding.
In the sequel, we shall rely on the following straightfordidout useful result :
Proposition 2: Let f : ¢; — R be a real function. Therf is strictly concave if and only if

for every matricedQ, Q2 (Q1 # Q2) of €4, the functiong(\) defined on|0, 1] by

P(A) = f(AQ1+ (1 -1)Q2)

is strictly concave.

Recall that/(Q) = Elogdet (I + HQHH) is concave ort; (see for instance [27]).

o2

1) Using another auxiliary channel to establish the contawf I(Q): Denote by® the

Kronecker product of matrices. We introduce the followingtrices :
Ap=1,8Cg Ar=L,8Cpr, A=1,0A, Q=1,2Q.

Matrix Ag is of sizerm x rm, matricesAr andQ are of sizetm x tm, and A is of size
rm x tm. Let us now introduce :
1 . 1 .
— A+ Vv,
vmt K+1 vK+1

where W is arm x tm matrix whose entries are i.i.dN (0, 1)-distributed random variables.

\Y AY*WAY? and H=

Denote by7,,(Q) the EMI associated with channHl :

TOTH
I,(Q) = Elog det <I + HQH > .

o2

Applying Theorem 3 to the channdl, we conclude thatl,,(Q) admits an asymptotic
approximationI,,(Q) defined by the system (29)-(30) and formula (32), where onié wi

substitute the quantities related to chanHeby those related to channHl, i.e. :
temt, reomr, A—A Q~Q, Cr—Ar CroAr.

Due to the block-diagonal nature of matricAs Q, Ar and Ay, the system associated with
channeH is exactly the same as the one associated with chdfinkloreover, a straightforward

computation yields :
In(Q=I1Q), Vm>1.

1
m
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It remains to apply the convergence result (31) to conclhae t

lim —1,,(Q) = 1(Q) .

m—0o0 1M
SinceQ — 1,,(Q) = I,,(I,, ® Q) is concave, is concave as a pointwise limit of concave
functions.
2) Uniform strict concavity of the EMI of the auxiliary chagin Strict concavity off (Q):
In order to establish the strict concavity 6fQ), we shall rely on the following lemma :
Lemma 1:Let ¢ : [0,1] — R be a real function such that there exists a fanfily, ),,>1 of

real functions satisfying :

(i) The functionse,, are twice differentiable and there exists< 0 such that
Ym>1, VAe|[0,1], or(N)<Kk<O0. (39)

(i) Forevery\ € [0,1], ¢(A) —— B(N).

m—00

Then¢ is a strictly concave real function.

Proof of Lemma 1 is straightforward and is therefore omitted

Let Qq, Q2 in C;; denote byQ = AQ; + (1 — N)Q2, Q1 = [, ® Q1, Q2 = [,, ® Qq,
Q = I,, ® Q. Let H be the matrix associated with the auxiliary channel and tiehy :
HQﬂH>

o2

1
dm(A) = —Elogdet (I +
m

We have already proved thait,, () — (N 2 I(AQ1 + (1 — A)Qz2). In order to fulfill
assumptions of Lemma 1, it is sufficient to prove that therstex < 0 such that for every
A €0,1],

limsup ¢, (A\) <k <0 . (40)

m—0o0

The proof of (40) is omitted, but available upon request @se the extended version [44]).

B. Approximation of the capacity(Q.)

Sincel is strictly concave over the compact $gt it admits a unique argmax we shall denote
by Q,, i.e.:
1(Q.) = max I(Q) .

Qely
As we shall see in Section V, matr®, can be obtained by a rather simple algorithm. Provided
thatsup, [|Q,|| is bounded, Eqg. (31) in Theorem 3 yield$Q,) — I(Q,) — 0 ast — oo. It
remains to check that(Q.) — 1(Q,) goes asymptotically to zero to be able to approximate

the capacity. This is the purpose of the next proposition.



17

Proposition 3: Assume thatsup, |A|| < oo, sup, |[Cr|| < oo, sup,||Cr| < oo,
inf; Amin(Cr) > 0, andinf; Apmin(Cr) > 0. Let Q, and Q. be the maximizers ove€; of
I and I respectively. Then the following facts hold true :

(i) sup, Q.| < oo.
(i) sup, Q.| < o.
(i) 1(Q.) =1(Q.) +0t™).
Proof: The proof of items (i) and (ii) is postponed to Appendix llletLus prove (iii). As

>0 >0

= 0™ =0t
by (ii) and Th. 3 Eq. (31) by (i) and Th. 3 Eq. (31)

where the two terms of the lefthand side are nonnegative altigetfact thaQ, andQ, are the
maximizers ofl andI respectively. As a direct consequence of (41), we WA @, ) —1(Q,) =

O(t~!) and the proof is completed. [ |

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that ma®ix asymptotically achieves the capacity.
The purpose of this section is to propose an efficient way okimizing the asymptotic
approximation/ (Q) without using complicated numerical optimization algmits. In fact, we

will show that our problem boils down to simple waterfillinggarithms.

A. Properties of the maximum &fQ).

In this section, we shall establish some@f’s properties. We first introduce a few notations.

Let V(k, Rk, Q) be the function defined by :

K 1 1
:CrQ% 4 —
K11 e TEETD K+1
3 C)_tJQFLFL

K+1 K+1°

~ —1
V(r, 7, Q) = log det (It + Q:AY <IT o CR> AQ%>

(42)

+ log det (I,« +

or equivalently by

V(k, Rk, Q) = log det <Ir + LCR +

K+1 o2(K +1)

—1
1 K 1 1 1
AQ: (L + ——Q:CrQ2 Q:=A"
Q (t K+1 T > >

tolkk

Kl (43)

K
+ log det (It + K—HQI/QCTQ1/2> —
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Note that if (0z(Q),dr(Q)) is the solution of system (28), then :

1(Q) = V(3r(Q),47(Q). Q) .

Denote by(dg «, or..) the solution(§x(Q,),ér(Q,)) of (28) associated witlQ,. The aim of

the section is to prove tha®, is the solution of the following standard waterfilling prebi :

I_(Q*) - ‘%’lea‘e}i V(5R7*7 5T,*7 Q) .

Denote byG(k, k) thet x ¢ matrix given by :

K K K -1
Gk i) = Cr+ —A" (1,+——C A 44
A S T ey < TR R> (44)
Then,V(k, &, Q) also writes
- ~ K to? ki
V(k, R, Q) =logdet (I+ QG(k, %)) + logdet (I,« + K——|—1CR> KTl (45)

which readily implies the differentiability ofx, <, Q) — V(k,k,Q) and the strict concavity
of Q — V(k,k,Q) (x and & being frozen).

In the sequel, we will denote by F'(z) the derivative of the differentiable functiof' at
point x and by (VF(x),y) the value of this derivative at point. The following proposition
captures the main features needed in the sequel.

Proposition 4: Let F': €; — R be a concave and differentiable function. Then :

(i) (necessary conditignf F attains its maximum foQ, € Cy, then :

(ii) (sufficient condition Assume that there exisfy, € C; such that :

Then F admits its maximum aQ, (i.e. Q, is an argmax ofF' over C;).
These results are standard (see for instance [5, Chapteth2fefore the proof is omitted.
In the following proposition, we gather various propertietated tol.
Proposition 5: Consider the functionz(Q), 7(Q) andI(Q) from €; to R. The following
properties hold true :
(i) Functionséz(Q),é7(Q) andI(Q) are differentiable (and in particular continuous) over
C.
(i) Let Q € €. The following property :

VP € G, (VIQ),P-Q)<0
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holds true if and only ifQ = Q,.

(i) Denote bydg . anddr . the quantitiesiz(Q,) anddr(Q,). Matrix Q, is the solution of

the standard waterfilling problem : Maximize ové&y € C; the functionV (dg «, o7+, Q)

or equivalently the functiotog det(I + QG(0r «, 07.4)).

Proof: (i) is straightforward and its proof is therefore omittecetlus establish (ii). Recall
that 7(Q) is strictly concave by Theorem 4 (and therefore its maximsnattained at at most
one point). On the other hand(Q) is continuous by (i) ove€; which is compact. Therefore,
the maximum off (Q) is uniquely attained at a poif,. Item (i) follows then from Proposition
4.

Proof of item (iii) is based on the following identity, to beoped below :

<V‘T(Q*)7 Q - 6*> = <VQV (5R,*,5T,*,Q*) 7Q - 6*> ’ (48)

where Vq denote the derivative oV (x, %, Q) with respect toV’s third component, i.e.
VqQV(k,k, Q) =VI'(Q)withT : Q — V(x, R, Q). Assume that (48) holds true. Then item (ii)
implies that(Vg V' (6r% 074, Q,) ., Q—Q,) <0 foreveryQ € C1. ASQ — V (6, 07%, Q)

is strictly concave o€y, Q, is the argmax o¥ (0r «, 07, -) by Proposition 4 and we are done.

It remains to prove (48). Consid€) andP in C;, and use the identity

(VI(P),Q — P) = (VqV(r(P),0r(P),P),Q — P))

N (g_Z) (0r(P),dr(P),P) (Vop(P),Q — P)

i <g‘2> (0r(P),07(P),P) (Vér(P),Q — P) .

We now compute the partial derivatives Bf and obtain :

ov 2 s

o —Kt(jr 1 (k — fr(k, %,Q)) 49
ov to? 5 ’ (49)
% = _K—|—1(H_fR(H’H’Q))

where fr and fr are defined by (29) and (30). The first relation follows fron2)(4and the
second relation from (43). A&r(Q),d7(Q)) is the solution of system (28), equations (49)
imply that :

ov ov

Letting P = Q, and taking into account (50) yields :

<VI_(6*)7 Q - 6*> = <VQV(5R(Q*)75T(Q*)7Q*)7 Q - Q*> 5

and (iii) is established. [ |
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Remark 6: The quantitiesir . anddr . depend on matrixQ,. Therefore, Proposition 5 does
not provide by itself any optimization algorithm. Howevdr,gives valuable insights on the
structure ofQ,. Consider first the cas€r = I andCy = 1. Then,G(0g«, 67+) is a linear
combination ofl and matrixA’ A. The eigenvectors d), thus coincide with the right singular
vectors of matrixA, a result consistent with the work [20] devoted to the maxation of the
EMI I(Q). If Cr =T andCr # I, G(dr.«, d7,+) Can be interpreted as a linear combination of
matricesCr and A A. Therefore, if the transmit antennas are correlated, thersiectors of
the optimum matrixQ, coincide with the eigenvectors of some weighted sur@gfand A A.
This result provides a simple explanation of the impact afalated transmit antennas on the
structure of the optimal input covariance matrix. The inmtpafccorrelated receive antennas on

Q. is however less intuitive because matAX? A has to be replaced witA # (I+67..Cr) 1 A.

B. The optimization algorithm.

We are now in position to introduce our maximization algamitof /. It is mainly motivated
by the simple observation that for each fixée %), the maximization w.r.tQ of function
V(k,k,Q) defined by (45) can be achieved by a standard waterfilling qutoe, which, of
course, does not need the use of numerical techniques. Oathiee hand, forQ fixed, the
equations (28) have unique solutions that, in practice,lmobtained using a standard fixed-
point algorithm. Our algorithm thus consists in adaptingapaetersQ and dr, ér separately
by the following iterative scheme :

— Initialization : Qo = I, (dr,1,97,1) are defined as the unique solutions of system (28) in

which Q = Qo =I. Then, defineQ; as the maximum of functio® — V (dg 1,071, Q)
on Gy, which is obtained through a standard waterfilling procedur

— lterationk : assumeQy_1, (0rx—1,07%—1) available. Then(érx, o5 ) is defined as the

unique solution of (28) in whicl®@ = Q_1. Then, defind;, as the maximum of function
Q — V(0rk: 01k, Q) On Cj.
One can notice that this algorithm is the generalizationh&f procedure used by [43] for

optimizing the input covariance matrix for correlated Ragh MIMO channels.

We now study the convergence properties of this algorithmal, state a result which implies
that, if the algorithm converges, then it converges to thigusm argmaxQ,, of I.

Proposition 6: Assume that the two sequend@s: ;.)r>0 and (d7x)r>o Vverify

hm 5R,k - (5R,k—1 — 0, hm 5T,k - 5T,k—1 — O (51)
k—o00 k—o0
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Then, the sequend®);)x>o converges toward the maximu@, of 7 on C;.

Proof: First note that the sequen(8;,) belongs to the compact sét. Therefore, in order
to show that the sequence converges, it is sufficient to ksttabhat the limits of all convergent
subsequences coincide. We thus consider a convergentgaigrsre extracted fromiQy)x>o,
say (Qq k) )k>0, Where for eachk, ¢ (k) is an integer, and denote I@f its limit. If we prove
that

<VIQY),Q-QY><0 (52)

for eachQ € €y, Proposition 5-(ii) will imply thatQﬁf’ coincides with the argmaQ, of I
over C;. This will prove that the limit of every convergent subseqce converges towardy,,
which in turn will show that the whole sequen(®;);>o converges taQ,.

In order to prove (52), consider the iteratian(k) of the algorithm. The matrixQ,, )
maximizes the functiorQ — V(dg yk), o7,0(x), Q). As this function is strictly concave and

differentiable, Proposition 4 implies that

< VQV(6Rruwk) OTwk) Qur))s Q — Quay > <0 (53)

for every Q € C; (recall thatVq represents the derivative 6f(x, &, Q) with respect tol’s
third component). We now consider the pair of solutidfg (x)+1, 7, (k)+1) Of the system
(28) associated with matri€ )

Due to the continuity ofér(Q) and ir(Q), the convergence of the subsequer@g
implies the convergence of the subsequerégs; )41, 7,4 (x)+1) towards a Iimit(éﬁ*, 6%*).
The pair (6}, ,, 57.,) is the solution of system (28) associated waf i.e. 6}, , = dz(QY) and
6%* = 67(QY); in particular

ov OV(
Ok Ok

(see for instance (50)). Using the same computation as iprbef of Proposition 5, we obtain

(0%, 05, QY) = —— (0%, 0%,.QY) =0

(VIQY).Q-QY) = (VV (3;..67..Q) Q- Q) (54)

for every Q € C;. Now condition (51) implies that the subsequenég ), o7,y (x)) also

converges towarojéﬁ*,éw ). As a consequence,

Jim (VV (809 7,00 Quiin): Q = Quany) = (VV (0, 07,, QY). Q — QY) -

Inequality (53) thus implies thatv'V (5}, ,, 0% ,, QY), Q — Q¥) < 0 and relation (54) allows
us to conclude the proof. [ |
Remark 7:1f the algorithm is convergent, i.e. if sequen&®y).>o converges towards a matrix

P.., Proposition 6 implies thaP, = Q,. In fact, functionsQ — Jz(Q) andQ — 67(Q) are
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continuous by Proposition 5. A8z, = 0r(Qp—1) anddry, = 07(Qp—1), the convergence of
(Q) thus implies the convergence ¢fr ;) and (67), and (51) is fulfilled. Proposition 6
immediately yieldsP, = Q,.

Remark 8: Although we have not been able to prove the convergence oélti@ithm, we
believe that it can be used in practice because its possnleonvergence can be easily checked
by evaluatingdr , — 0r 1 andér, — o7 ,—1 for eachk. If one of the above sequences does
not converge towards8, Remark 7 implies that the algorithm does not converge. i thse,

a simple solution consists in modifying the initializatipoint as many times as necessary. We
however notice that all the numerical experiments we havelgoted indicate that the algorithm

converges if initialized aQy = 1;.

VI. NUMERICAL EXPERIMENTS

In this section, we compare the proposed algorithm with Vid &aulraj’s algorithm as
presented in [41], and based on the maximizatiord (@).

Recall that Vu-Paulraj’s algorithm is based on a Newton me@tand a barrier interior point
method. Moreover, the average mutual informations and ftimsi and second derivatives are
evaluated by Monte-Carlo simulations. In fig. 2, we have eatdCr = maxqce, 1(Q)
versus the SNR for = ¢ = 4. Matrix H coincides with the example considered in [41]. The
solid line corresponds to the results provided by the VulRgs algorithm; the number of
trials used to evaluate the mutual informations and its &rsd second derivatives is equal to
30.000, and the maximum number of iterations of the algorithm in][#&lfixed to 10. The
dashed line corresponds to the results provided by our ithgor. Each point representgQ,)
at the corresponding SNR, whef®, is the argmax ofl ; the average mutual information
at point Q, is evaluted by Monte-Carlo simulation (30.000 trials ared)s The number of
iterations is also limited to 10. Figure 2 shows that our gsiatic approach provides the
same results than the Vu-Paulraj's algorithm. However, algorithm is computationally much
more efficient as table (1) shows. The table gives the avesageutation time (in sec.) of one
iteration for both algorithms for = ¢t = 2, =t = 4,r = ¢t = 8. We finally notice that the
algorithm proposed in [36] provides on the same channelimatmilar results (compare 2
with fig. 1 of [36]).

In fig. 3, we again compare Vu-Paulraj’s algorithm and ourposal. Matrix A is generated
according to the model

A=—1a(0),...,a(6)] A, (55)

1
Vi
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T = t = r = t = r = t —
Vu-Paulraj 0.75 8.2 138
New algorithm| 1072 3.1072 7.1072

Fig. 1. Average time per iteration in seconds

wherea(d) = (1,¢?,....e~DNT and A is a diagonal matrix whose entries represent the
complex amplitudes of theline of sight (LOS) components. The angles of arrivals aresein
randomly according to a uniform distribution. The transmuitd receive antennas correlations
are exponential with parametér< pr < 1 and0 < pr < 1 respectively. In the experiments,
r =t = 4, while various values opr, pr and of the Rice factoK have been considered. As
in the previous experiment, the maximum number of iteratitor both algorithms is 10, while
the number of trials generated to evaluate the average munfoemations and their derivatives
is equal to 30.000. Our approach again provides the samésdban Vu-Paulraj's algorithm,
except for low SNRs foi’ = 1, pr = 0.5, pr = 0.8 where our method gives better results : at

these points, the Vu-Paulraj's algorithm seems not to haveearged at the 10th iteration.

18 T
Vu-Paulraj
16} *  New Algorithm

Capacity (bps/Hz)

0 I I I

-5 0 5 10 15
SNR (dB)

Fig. 2. Comparison with the Vu-Paulraj algorithm |
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20 :
—&— K=0.1, p=0.98, p=0.99 2
—A—K=0.1,p=0.8, =05
—%—K=1,p,=0.8, p=0.5

18

Capacity (bps/Hz)

SNR (dB)
Fig. 3. Comparison with the Vu-Paulraj algorithm I

VII. CONCLUSIONS

In this paper, the accuracy of the large system approximatd the ergodic mutual
information for Rician MIMO channels with transmit and re@antenna correlation is studied.
It is shown that the relative error of the approximation i@(at%) term. The approximation of
the EMI is exploited to derive an efficient optimization aligom providing an approximation
of the optimum covariance matrix and of the capacity of tharactel. The relative errors of

these approximations are al§¥( ) terms.

APPENDIX |

PROOF OF THE EXISTENCE AND UNIQUENESS OF THE SYSTE(3).

We consider functiong

—~

k, k) and g(x, &) defined by

1 - -1
ST D <02(IT + D&) + B(L + Dn)_lBH)

(56)

11_ [= . 1T
g, 7) = = Tr |D (UQ(L +Dr) + BA(I, + DR)*1B>

We have to establish that (56) has a pair of strictly posifietitions, and that this particular
pair is unique (i.e. there is no other strictly positive psatisfying (56)). For this, weonstruct
a strictly positive pair satisfying the equation. This slsctlve existence. The unigueness is an

easy consequence of the construction above, and is therefoitted.
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In order to construct the pair of strictly positive solutignve first remark that for each > 0
fixed, functionk — g(k,R) is clearly strictly decreasing, converges towaxdif x — 0 and
converges td) if k — oo. Therefore, there exists a unique> 0 satisfyingg(x,k) = 1. As
this solution depends oa, it is denotedh (%) in the following. We claim that

— (i) Functionk — h(k) is strictly decreasing fof > 0,

— (ii) Functions — &h(k) is strictly increasing forz > 0.

In fact, considerzy, > k1 > 0. It is easily checked that for each> 0, g(k,%1) > g(k, R2).
Hence, the solutior(%;) and h(&2) of the equationg(k, 1) = 1 and g(k,k2) = 1 satisfy
h(k1) > h(k2). This establishes (i). To prove (i), we use the obviousti@hag(h(~1),~1) —
g(h(Rz2), k2) = 0. We denote by(U;);— » the matrices

—1
U, = o (h(&;)I + £;h(7;)D) + B (h( ) + D) B
R
It is clear thatg(h(k;), ki) = %TrDU;l. We expresgy(h(&1),R1) — g(h(R2), ko) as
N R 1 _ _
9(h(Rr), k1) — g(h(R2), Rz) = S TrD(Uy )
and use the identity
Ul-uyt=ut (U, -U) Ut (57)
Using the form of matrice$U;);—; 2, we eventually obtain that
9(h(E1), 1) — g(h(R2), R2) = u(h(R2) — h(k1)) + v(Reh(R2) — R1h(F1))
wherew andv are the strictly positive terms defined by
1 - -
u= DU (021 + B(I+ h(fa)D) (I + h(ﬁl)D)‘lBH) U,
and
1
U:ZﬁDUfDUf.

As u(h(/%g) — h(fil)) + ’U(figh(fig) — /211h(/~£1)) = 0, (h(%g) — h(fil)) <0 |mpI|es that
Roh(Re) — R1h(R1) > 0. Hence,kh(F) is a strictly increasing function as expected.

From this, it follows that functiors — g(h(k), %) is strictly decreasing fok > 0. This
function converges teo if # — 0 and to0 if K — oc. Moreover, it is easily seen that function
h is continuous. Therefore, functioh — g(h(k), %) is itself continuous, so that the equation

W.rt. & :
g(hR), k) =1
has a unique strictly positive solutigh Denote byg the strictly positive term3 = h(3). It is

clear thatg(3,5) = §(3,5) = 1 or equivalently that3 = f(3,3) and 8 = f(8, 3). We have
therefore shown thats, 3) is a strictly positive pair solution of (13).
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APPENDIX I

PROOF OFTHEOREM 2

This section is organized as follows. We first recall in swutisea II-A some useful

mathematical tools. In subsection 1I-B, we establish (2%)lI-C, we prove (26) and (27).

We shall use the following notations.dfis a random variable, the zero mean random variable
u—E(u) is denoted byoz. If 2 =2+ iy is a complex number, the differential operat(gsand
2 are defined respectively b%l(a% - ia%) and1 (a% + ia%)- Finally, if 3,B,Y are given

matrices, we denote respectively By, b, y; their columns.

A. Mathematical tools.

1) The Poincaré-Nash inequalitysee e.qg. [8], [22]). Lek = [z1,...,z]" be a complex
Gaussian random vector whose law is givenbx] = 0, E[xx’] = 0, and E[xx*] = E.
Let® = ®(xy,...,20,71,...,20) be aC' complex function polynomially bounded together

with its partial derivatives. Then the following inequgliholds true :
Var(®(x)) < E [vzep(x)T = vz@(x)} +E [(vg@(x))H = vg@(x)] ,

whereV,® = [0®/0z1,...,0®/0zy)T andV:® = [0®/071,...,09/0z)T .
Let'Y be ther x ¢ matrix Y = -DzXD?, whereX has i.i.d.€N(0,1) entries and consider

Vit
the stackedt x 1 vectorx = [Yi1,...,Y4]?. In this case, Poincaré-Nash inequality writes :
r t 2 2
1 ~ 00(Y) 00(Y)
(00 <3323 R +'8yi’j (58)

2) The differentiation formula for functions of Gaussiamdam vectorsWith x and® given
as above, we have the following

M
E[z,®(x)] = Y _ [E],, E [aq’—(x)} . (59)

0T,
m=1
This formula relies on an integration by parts, and is thdsrred to as the Integration by
parts formula for Gaussian vectors. It is widely used in Matlatical Physics ([15]) and has

been used in Random Matrix Theory in [26] and [31].

If x coincides with thert x 1 vectorx = [Y11,...,Y.]T, relation (59) becomes
E[V,,8(Y)] = 2%p {8‘1’_”)] . (60)
t @qu
Replacing matrixXY by matrix Y also provides
= dydy [0®(Y)
E [Y,®(Y)] = —E [ v, | (61)
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3) Some useful differentiation formula3he following partial derivative (S“) and BS“
for eachp,q € {1,...,r}andl <i <r 1 < j <t will be of use in the sequel. Stralghtforward

computations vyield :

0S5, _ H
= (G, (62)
85}"1 J—

B. Proof of (25)

We just prove that the variance gfTr(MS) is a O(t~%) term. For this, we note that the
random variable} Tr(MS) can be interpreted as a functidnY) of the entries of matrixy,
and use the Poincaré-Nash inequality (58)ptdY'). Function®(Y) is equal to

1
YU::-ZZE:A4¢prg.
P:q

Therefore, the partial derivative ofo(Y) with respect toY;; i
13,0 My, 532 which, by (62), coincides with

8B(Y)
8Y'LJ

9D (Y)
aY;;

! 1
=D MypSpi(£)'S)y = — (&SMS), .
p7q

As d; < dyay andd. ;i < dmax, it is clear that

- |02(Y
> S ade| 5

i=1 j=1

2

2 T t
< sl S 3 E ' St
ij

i=1 j=1

It is easily seen that

—E (¢f'sms*MPsel)

As S| < % andsup, |M|| < oo, £F'SMS2M7S¢!T is less than sup, | M]|? €]/, Mo-

reover,E||€;]|? coincides with||b;||> +1d; 37, d;, WhICh is itself Iess that2,, + dimaxdmax 5
99 ( Y)

is aO(t~?2) term. This proves that

<)

It can be shown similarly that=' Y7, Z L did; E‘

a uniformly bounded term. Thereforg,:_, E‘

—ZdeE‘% )"

i=1 j=1

= O (t~?) . The conclusion

follows from Poincaré-Nash inequality (58).
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C. Proof of (26) and (27).

As we shall see, proofs of (26) and (27) are demanding. We ifitetduce the following

notations : Define scalar parameteis?), a(o?), a(o?) as

n(o?) = §Tr(DS(0?))
a(o?) = E[1Tr(DS(c?))] (63)
&(0?) = E[%Tr(]ﬁ)é((ﬂ))}

and matriceR(c?), R(c?) as
~1

~\ —1
R(0?) = [ (I+aD) +B<I—|—aD) BH}
N . (64)
R(0?) = [ (I n aD) + B (I1+aD)" B]
We note that, as(0?) > 0 anda(o?) > 0, then
oy _ Ir NP
0<R(0) < =, 0<R(07) < = (65)
g g

It is difficult to study directly the tern} TtM(E(S) — T). In some sense, matriR can be seen
as an intermediate quantity betweB(S) andT. Thus the proof consists into two steps : 1) for
each uniformly bounded matriv, we first prove that TrM(E(S) — R) and 1 TrM(R — T)
converge to0 ast — oo; 2) we then refine the previous result and establish in faat th
ITrM(E(S) — R) and 2 TrM(R — T) are O(t~2) terms. This, of course, imply (26). Eq. (27)

eventually follows from Eq. (26), the integral represeioiat

T0h) - I0*) = [T (E(S() - TWw)) dw. (66)
which follows from (20) and (21), as well as a dominated cogeace argument that is omitted.
1) First step : Convergence dfIrM(E(S) — R) and 2 TrM(R — T) to zero: The first step

consists in showing the following Proposition.
Proposition 7: For each deterministic x r matrix M, uniformly bounded (for the spectral

norm) ast — oo, we have :

. 1
Jim —Tr [M(E(S) — R)] = 0 (67)
. 1
Jim —Tr [M(R) = T)] = 0 (68)

Proof: We first prove (67). For this, we state the following usefuhiraa.
Lemma 2:Let P, P; andP; be deterministic- x ¢, ¢ x t, t x r matrices respectively, uniformly

bounded with respect to the spectral normtas oco. Consider the following functions oY .

/

2(Y) = %Tr [SPE], w(Y)= %Tr [SEP 2P|, ¥(Y)= %Tr [SEP, Y7 P, .
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Then, the following estimates hold true :

1 1 / 1
Var(®) = O <t_2) , Var(¥)=0 <t_2) , Var(¥)=0 (t_2> .
The proof, based on the Poincaré-Nash inequality (58), igtedn

In order to use the Integration by parts formula (60), noticat

0?S(0?) +8(c*)xxH =1, (69)
Taking the mathematical expectation, we have for gache {1,...,7} :
U2E(Spq) +E [(SEEH)pq] =d(p—2q) . (70)

A convenient use of the Integration by parts formula allowexpressE [(SEEH)M] in terms

of the entries ofE(S). To see this, note that

T

E [(SEx),,] ZZE SpiYiiSi)

7j=11=1

For eachi, E(S,;%;;3,;) can be written as
E(Spizijz—qj) = E(5pi)Bij BqJ +E (SPZY;IJ) By +E (SPZYZJ EqJ) :

Using (60) with function®(Y) = S,,;3,; and (61) with®(Y) = S,;, and summing over index

1 yields :

E [(Sﬁj)pm] = @E(Spq) - CZJ'E [U(SEj)pm] - @E [SpqEJHSbJ'] +E [(Sbj)p] B—qa
(71)

Eg. (25) forM = D implies thatVar(n) = O(t~2), or equivalently thatE(%Q) =0(t?). We

now complete proof of (67). We take Eq. (71) as a starting tpaind writen asn = E(n)+% =

o+ % Therefore,

E [ (S€)p Tg] = aE [(S€,), Tug] +E [7(S€,) T -

Plugging this relation into (71), and solving W.fR.[(S¢;), X, j] Yields

1 d,d; 1 _
E[(S¢.),2,.] = =——LL_E(S —E[(Sb.),| B,;
(S60T0s] = 1 B + 1 Bl By

——— K ‘Sb.| — —E S€.), >, | .

tl—l—adj [SpqE] J] 1+ ad; [77( E])p QJ]

Writing §; = b;+y;, and summing ovef provides the following expression E‘[(SZZH)pq] :
1 - -
E[SZE),,] = d;Tr [D(I + aD)—l} E(S,,)
+E [(SB(I + aﬁ)—lBH) ] —d,E [SpqlTr (SBf)(I + aﬁ)_lBH>]
Pq t

—d,E [Spq%Tr (SBﬁ(I + ozf))_lYHﬂ ~E [?, (SEf)(I + af))—le)M] . (72)



30

The resolvent identity (69) thus implies that
2 dq B ) —1
6(p—q) = o”E(Sp)+ LTr [DI+aD) | E(S)
~ 1 - -
E [(SB(I +aD)~'B") ] —d,E [qu—ﬁ (sBD( + aD)_lBH)]
pq 13
1 ~ ~ o - -
—d,E [SquTr (SBD(I n aD)_lYH)} _E [n (szD(I + aD)_12H> ] . (73)
Y2
In order to simplify the notations, we defing and p, by
_ 1 B N\ — 1l H _ 1 B N — 1w H
p = I (SBD(I+ aD)"'B ) and py = STr (SBD(I +aD)lY ) :
Fori = 1,2, we write E(S,,p;) as
B(Sup) = E(Sp) E(p) + 5 (S0 )
Thus, (73) can be written as

Sp—a) = oE(S) +dy 1 Tr [DI+0D) | E(S,,)

+ (E(S)B(I + af))*lBH) —d, E(Spq)%Tr (E(S)Bf)(l + a]ﬁ)*lBH)

— dyE(Syy)E ETr (SBf)(I + af))_lYH)] —d,E (qu p1> d,E (qu p2>
R [% (szf)(uaﬁ)—lsz)p’q] . (74)

We now establish the following lemma.

Lemma 3:
Epy = E1T<SBﬁI D)Ly H
p2 = il I+aD)™'Y
= —a %Tr (E(S)Bf)Q(I + af))’QBH) ~E (77 pg) , (75)
where ps is defined by
ps = %Tr (SBf)Q(I + af))—22H) .
Proof: We expressE(p,) as
E(py) = t Yot reg E(v)'Sby)
dj r VAR
% 23:1 1+ad, Zi:l E ((Sbj)iY;j)
and evaluaté ((Sb;);Y;;) using formula (61) for®(Y) = (Sb,);. This gives

8SZI€
E ((Sb;);Yy;) = dd ZE(aY”>Bkj.

(76)

By (62),

. (gffzj) = —E (S;i(bj'S)k) —E (Su(y; S)) -
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Therefore,

E (yj'Sb;) = —d;E (nbj'Sb;) — d;E (ny;'Sb;) .
Writing againn = E(n) +1 = a+1, we get that
E(y¥Sb;) = —adE(blSb;) - ad;E (y/'Sb;) -
~d,E (77b2Sb; ) — d;E (77y/'Sb;) .

Solving this equation w.r.tE (nybj) yields

E (v,'Shj) = — j_‘cficsz (bSb;) — HdgdjE (irbf'sb; ) - HdgdjE (iry]'sb;) (78)
or equivalently
B (y)/Sb;) = — "L E (bl/sh,) - —“—E (n)'sb; ) - (79)
1+ ad; 1+ ad;
Eq. (75) immediately follows from (76), (79), and the rebatiE () p3) = E(1) p3). [ |

Plugging (75) into (74) yields
5(p—q) + qu
= E(Spq) [02 +d, (%Trf)(l +aD)"' —E(py) + a%TrE(S)Bf)Q(I + aﬁ)QBHﬂ
+ [E(S)B(I + af))*lBH} (80)
Ppq

where A is ther x r» matrix defined by

Ay, =E {;} (s=D +aD) '=7) ] +d,E (Spq(p"1 + ;33)) — dE(Sp) E (71 53)

pq

for eachp, ¢ or equivalently by
A=E [% (szf)(l + af))_IEHﬂ +E ((51 + p2) S) D-E (% 5’3) E(S)D .
Using the relatiomD(I + aD)~' =1 — (I+ aD)~!, we obtain that
a%Tr (E(S)Bf)2(1 + af))—2BH)
- %Tr (E(S)BE(I + af))—lBH) - %Tr (E(S)BE(I + aﬁ)—2BH)
— E(py) - %T&“ (E(S)BD( +0D)?B) . (81)
Therefore, the term

1 = ~ 1 ~ =
;TrD(I +aD) ' —E(py) + a T (E(S)BDQ(I + aD)’QBH)
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is equal to
"BD(1 + aD) ! - L1 (E(8)BD( + aD)2B)
= %Tr [f)(I + Oéf))_l (I _ BHE(S)B(I + af))_1)]

which, in turn, coincides withr? 7, where7 is defined by

Ho?) = %Tr [f) (*@+ oéf)))_1 (1- B E(S(:) B+ af))l)} 82)

Eq. (80) is thus equivalent to
(E(S) [02(1+%D) +B(1+a15)—1BHD —1+A (83)
or equivalently to
(E [s (02(1 +aD) + B(I+ aﬁ)—lBH)D —1+0%a—7ES)D+A
or to
E(S) =R+ 0%(@ — 7)E(S)DR + AR. . (84)

We now verify that if M is a deterministic, uniformly bounded matrix for the spatinorm
ast — oo, thent 'TrARM = O (¢t~2) . For this, we write1 TTARM as 1 TTARM =
T +T5 — T3 where

T, = E [7‘3 Ly (SE]ﬁ(I—%aﬁ)*lEHRM)] ,

T, = E <<p°1 L)l Tr<§DRM>) |

Ty = E (%;3’3) LTy (E(S)DRM) .
We denote byp, the term

1 _ .
py=Tr (SED(I + aD)*leRM)

and notice thatly = E(1 ps). Eq. (25) implies thaﬁE(ff) and E [% Tr <§DRM)>}2 are
O(t~2) terms. Moreover, matriR is uniformly bounded for the spectral norm as-+ oo (see
(65). Lemma 2 immediately shows that for eachk= 1,2,3, E(S,»Q) is a O(t~2) term. The
Cauchy-Schwarz inequality eventually provid?ﬁARM =0(t7?).

In order to establish (67), it remains to show thiat- 7 — 0. For this, we remark that

exchanging the roles of matric& and ©¥ leads to the following relation
E(S) =R+ 0%(a — 7)E(SDR) + AR (85)
wheret(c?) is defined by

(0?) = %Tr D (o1 +aD)) ™ (1- BE(S(0%) B (1+aD) )] (86)
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and whereA, the analogue of, satisfies

1 -~ 1
ZTr(AM) = O (F?) (87)

for every matrixM uniformly bounded for the spectral norm.

Equations (84) and (85) allow to evaluateand7. More precisely, writingy = %Tr(DE(S))
and using the expression (85) BfS), we obtain that

G- %Tr(f)f{) +o%(a— T)%Tr(f)E(S)f)f{) + %Tr(f)Af{) . (88)
Similarly, replacingE(S) by (84) into the expression (82) &f we get that
F o= 17y [D [ (02(I+ aD)~1(I - BYRB(I + aﬁ)—l}
—(a—F)iT [15(1 +aD)"'BYE(S)DRB(I + ozf))_l} (89)
—lmy [D(a (I+aD)"'BY ARB(I + aﬁ)—l} .

Using standard algebra, it is easy to check that the first tefrthe righthandside of (89)
coincides withi Tr(DR). Substracting (89) from (88), we get that

(a—7)ug+ (& —T)og =€ (90)
where
G0 = P21 (f)E(S)ﬁR)
i = 11Ty [ (I+ aD) 'BYE(S)DRB(I + af))*l} (91)
¢ = JT(DAR)+ ITr [D(0*(I +aD)'BYARB(I +aD)"}| .

Using the properties oA and A, we get that = 0(t~2).

Similar calculations allow to evaluate and 7, and to obtain
(= T)ug + (& — T)vg = € (92)
where
w = 1-1Tv [D(I +aD) 'BE(S)DRB/ (I + dD)‘l} ©3)
vg = 0?1 Tr(DE(S)DR)

and wheree = O(t=2). (92, 90) can be written as

ug Yo o —T _ € . (94)
Uy Vg oa—T €

If the determinantugvy — ugvy Of the 2 x 2 matrix governing the system is nonzero—- 7 and
& — T are given by :

2706 - Uog - - UOg — fLoE
oO—T7T—= —————— o —T = = o 9 (95)

Uovo — UOUO’ Upvp — UEVo
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As matricesR andE(S) are less thank I, and matriceR andE(S) are less thank1,, it is
easy to check thaty, vo, @i, 7 are uniformly bounded. As andé are O(t~?2) terms, (a — 7)
and (& — 7) will converge to0 as long as the invers@uty — iigvg) ! of the determinant is
uniformly bounded. For the moment, we show this propertydérdarge enough. For this, we
study the behaviour of coefficients, i, vy, 79 for large enough values of?. It is easy to
check that :

1 r 7 2
uop > 1— P - dmaxdmaxbmax )

~ 1 2
U9 > 1-— = dmaxdmaxbmax 5
- 72 (96)
ug < e
d2
vo < T

As % — ¢, it is clear that there exists3 and an integet, for which ug > 1/2, 5 > 1/2, 4 <
1/4,v9 < 1/4for t > tg ando? > 0. Thereforeuty — gy > 1 for t >ty ando? > of. Eq.
(95) thus implies that it-* > o3, thena — 7 anda — 7 are of the same order of magnitude as
e = O(t2), and therefore converge to 0 when- co. It remains to prove that this convergence
still holds for 0 < o2 < o32. For this, we shall rely on Montel's theorem (see e.g. [6]}pal
frequently used in the context of large random matricess Ibased on the observation that,
considered as functions of parametér o (0?) — 7(c?) anda(o?) — 7(o?) can be extended to
holomorphic functions ot — R~ by replacings? by a complex numbet. Moreover, it can be
shown that these holomorphic functions are uniformly bachdn each compact subs&t of
C—R7, in the sense thatip, sup,c i |a(z) —7(2)| < oo andsup, sup,cx |a(z) —7(2)] < oo.
Using Montel’s theorem, it can thus be shown that(#?) —7(0?) anda(o?) —7(0?) converge
towards zero for each? > o3, then for eachy € C—R™, a(z) —7(2) anda(z) —7(z) converge
as well towards 0. This in particular implies thato?) — 7(0?) anda(o?) — 7(0?) converge
towards O for eacls? > 0. For more details, the reader may e.qg. refer to [18]. This pletes
the proof of (67).

We note that Montel's theorem does not guarantee ¢hatT anda — 7 are still O(t~?)

terms foro? < 3. This is one of the purpose of the proof of Step 2 below.

In order to finish the proof of Proposition 7, it remains to ckehat (68) holds. We first
observe thaR—T = R (T~! — R™!) T. Using the expressions &~ andT !, multiplying
by M, and taking the trace yields :

%Tr MR-T)] = (B-a) JQ%Tr(MRDT) -

(a— ) %Tr [MRB(I + D) DI+ D) IBIT| . (97)
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As the termsZ-Tr(MRDT) and :Tr [MRB(I + #D) 'D(I + ﬁf))*lBHT] are uniformly

bounded, it is sufficient to establish that — ) and (& — 3) converge toward$. For this, we

note that (67) implies that
1 / - 1 -~ o
o« = STIDR)+¢, & = ST (DR) +é, (98)

wheree” andé’ converge towards 0. We expregs— 3) = ;TrD(R—T) +e¢. UsingR — T =

R (T~!' —R™!) T, multiplying by D from both sides, and taking the trace yields

(a— ) (1 - %Tr [DRB(I +6D)'D(I + BD)lBHTD +(a—-p) aQ%Tr(DRDT) =c.
(99)
Similarly, we obtain that

(a— ) UQ%Tr(f)f{ﬁT) +(a-p) (1 - %Tr [bf{BH(I + 3D)"'D@ + BD)lDTD s

Equations (99) and (100) can be interpreted as a linear gster.t. (« — 3) and (& — f3).
Using the same approach as in the proof of (67), we prove(that 3) and (& — B) converge
towards 0. This establishes (68) and completes the proofagdsition (7). [ |
2) Second step 1 TTM(E(S) — R) and 2TrM(R — T) are O(¢t~2) terms: This section is
devoted to the proof of the following proposition.
Proposition 8: For each deterministic x » matrix M, uniformly bounded (for the spectral

norm) ast — oo, we have :

%Tr M (E(S) — R)] = O(+2) (101)

%Tr M (R) - T)] = O(t2) (102)
Proof: We first establish (101). For this, we prove that the invert¢he determinant
uplo — tgug Of linear system (94) is uniformly bounded for each > 0. In order to state the

corresponding result, we defirte, v, a,v) by

w = 1- 1 T(DTBH(I+3D)"'D( + fD) 'BT)

i = 1-1Ty(DTB(+ D) 'DI+ D) 'BYT) (103)
v = 0?1 Tr(DTDT)

i = o2 Ty (DTDT)

The expressions of(u,v,u,v) nearly coincide with the expressions of coefficients
(ug, vo, U, Vo), the only difference being that, in the definition(ef, v, 4, v), matrices E(S), R)

are both replaced by matri¥, matrices E(S),R) are both replaced by matri¥ and scalars
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(o, @) are replaced by scalafs, 3). (67) and (68) immediately imply thdt, vy, @, 7)) can

be written as
Uy =u+ €y, TVo=0+€y, Vo=0+€, Uy=1U+Ey, (104)

wheree,, €,, €,, €, converge to0 whent — oo. The behaviour ofut — v is provided in the
following Lemma, whose proof is given in paragraph II-C.3.
Lemma 4: Coefficients(u, v, u,v) satisfy : (i)u = o, (i) 0 < v < 1 andinf;u > 0, (iii)
0<uv—uv <1 andsuptm < 00.
(104) and Lemma 4 immediately imply that it existssuch thatd < ugtg — ugvg < 1 for each
t >ty and
1

SUp ————— < 00 . (105)
t>t, WOV — UV

This eventually showst — 7 anda — 7 are of the same order of magnitude thaandeé, i.e.
are O(t~2) terms.

In order to prove (102), we first remark that, by (10d)andé defined by (98) are(t~2)
terms. It is thus sufficient to establish that the inversehef determinant of the linear system
associated to equations (99) and (100) is uniformly bounBgd(68) implies that the behaviour
of this determinant is equivalent to the study«af — wwv. Eq. (102) thus follows from Lemma
4. This completes the proof of Proposition 8.

[

3) Proof of Lemma 4.:In order to establish item (i), we notice that a direct apgtiien of

the matrix inversion Lemma vyields :
TBH(1+ (D)™ = (I1+3D)"'BAT . (106)

The equalityu = © immediately follows from (106).
The proofs of (ii) and (iii) are based on the observation thatction o> — o¢23(c?) is
increasing while function? — ((02) is decreasing. This claim is a consequence of Eq. (17)

that we recall below :

o [ A s [ dmOY)
Blo?) = /R B(o?) /R

+)\—|—0'2’ +)\+0'2’

wherey,(RT) = 1Tr(D) andji,(R*) = 1Tr(D). Note that3 is decreasing becaus® —

1
t A o2

is decreasing and?3(o?) is increasing because’® +— #22 is increasing. Denote by the

differentiation operator w.r.t2. Then,(¢24)" > 0 andj3" < 0 for eachs?. We now differentiate
relations (16) w.r.to2. After some algebra, we obtain :
o (02B) + 0% f = 1Ty(DTB(I+AD)"'(I+4D)'BAT)

) R o (107)
L (0?8) +uf = —1TrTDT
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As 3 < 0, the first equation of (107) implies that(c23)" > 0. As (623)" > 0, this yields
v > 0. As v < 1 clearly holds, the first part of (ii) is proved.

We now prove thainf; o > 0. The first equation of (107) yields :

~ 1
(a28) (109)
In the following, we show thainf, @ zﬁ)/ > 0, inf, |§'| > 0 and thatinf, v > 0.
By representation (17),
5 ditp(N) 2 21y / Adpp(N)
-0 = ————— and = —
As (H 7y < < L for A >0, (6?8) < LHu(RT) = $TrD. Therefore, the ter% is

lowerbounded byr? ( TrD)~!. As 1”[&«D < Fdmax, We haveinf; i 0.

)
We now establish thainf, |3| > 0. We first use Jensen’s inequality : As measure

(%Trf))_l dfip(N) is a probability distribution :

[t (o) anor] = [t (1m0)

In other words|§'| = [, psmyzdiin(A) satisfies

1 1 2 -
12 135 | 7] = s

As mentioned above(;”[&“D)*1 is lower-bounded by(d,,..)~!. Therefore, it remains to

establish thainf, 32 > 0, or equivalently thainf, 5 > 0. For this, we assume thatf, 3,(02) =

0 (we indicate thaf? depends both oa? andt). Therefore, there exists an increasing sequence
of integers ()0 for which limy_. B, (02) = 0 i.e. limp_o [p+ 15 d”(t’“)()\) =0,
Whereﬂff’“) is the positive measure associated V\@h( 2). As D is uniformly bounded, the
sequencé/]ét )k>0 is tight. One can therefore extract fro(m(t" Jk>0 @ subsequenqelgt;))lzo

that converges weakly to a certain measifewhich of course satisfies

Lﬁdﬁ;(mzo.

This implies that; = 0, and thusg; (R™) = 0, while the convergence qtaét;))lzo gives
s (RY) = lim {0 (R) = im tﬂD >0
by assumption (3). Therefore, the assumptiofy 3,(¢2) = 0 leads to a contradiction. Thus,
inf, 3;(¢%) > 0 andinf, |3'| > 0 is proved.
We finally establish that is lower-bounded, i.e. thaif; %TrDTDT > 0. For any Hermitian

positive matrixM, ,

Tr(M2) > [%Tr(M)] .
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We use this inequality foM = T/2DT'/2. This leads to
1 1 1 S 2
;ﬂDTDT:;ﬂWF>[?H@D}:[#MDTﬂ =3

Therefore,inf; %TrDTDT > inf, 3. Using the same approach as above, we can prove that

inf; 32 > 0. Proof of (ii) is completed.

In order to establish (iii), we use the first equation of (16¥xpresgc?3)’ in terms of 3,

and plug this relation into the second equation of (107)sTives :

(u-

The righthand side of (109) is negative as wellZ&sThereforeu — %fw > 0. As v is positive,

SR

m) G = —%Tr’i‘f)’i‘ - %%Tr(DTB(I 4+ D) I+ D) 'BAT).  (109)

g

u® — ww is also positive. Moreover, et ¢ are strictly less than 1. A§ andv are both strictly

positive,uv — v is strictly less than 1. To complete the proof of (iii), we icetthat by (109),

1 s
ut — v~ I TDT

6| clearly satisfies)5’| < L 1TrD and is thus upper bounded k@c‘;—x (ii) implies that
sup; 2 < +oo. It remains to verify thainf, 1 TrTDT > 0. Denote byz = 1 TrTDT.
t t
1< 5
r=2) di)y Tl
i=1  j=1

s . . d~i . t -~
In order to use Jensen’s inequality, we consigdgr= 5D and notice tha% Y ki=1lx

can be written as )

t t
R A ~
xr = ZTI'D z Zl Rj (Zl ‘E,j|2)1/2
1= Jj=

By Jensen’s inequality

2 2
t t t t
1 - 1 N ~
LA (ol FOVE IS B Sy S OE
i=1 j=1 i=1  j=1
Moreover,
1. e - PR
S RS IT z[;waTz,z - |(fm0) ﬂ]
i=1 j=1 i=1
Finally,

| 1 -\"'.
x:zﬂTDT><?ﬂD> G2 .

Sinceinf; 32 > 0, we haveinf, 1 TYTDT > 0 and the proof of (iii) is completed.
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APPENDIXIII

END OF PROOF OFPROPOSITION3

Proof of Proposition 3 relies on properties @, established in Proposition 5—(iii). Denote

by
A = max <Sup A, sup || Cr|, sup ||cR||> <oo and a = min (ntlf Amin(Cr), int /\min(CR)> ~0.
t t t

Proof of (i): Recall that by Proposition 5—(iii)Q, maximizeslog det(I+ QG (g «, o1.x))-

This implies that the eigenvalugs;(Q,)) are the solutions of the waterfilling equation
_ 1
)‘Q* :maX<’Y——7O>7 ]-Sjéta
Q) Ai(G)

wherey is tuned in such a way that ; A; (Q,) = t. Itis clear from this equation thdQ, || < .
If v < Anin(G) 7! then || Q. ]| < Amin(G) 7L If v > A\pin(G) 7! theny > )\-(G)—1 and we
havet = 3, ;(Q,) Z’Yt—ZM - Hencey = 1+, A( <1+ 5 ( 7- In both

cases, we have

— 1
Q. <1+ (@) (110)
It remains to prove
VQeCy, infAnin (G(9R(Q),07(Q))) > 0 (111)

and we are done. To this end, we first show théf iz (Q) > 0 for all Q € ;. From Equations
(35) and (37), we have :

5r(Q) = CRTR(0”)

1
> )\min(CR)ZtrTR(UQ)
2

K+1

-1
1/2 1/20,.QL/2 1/2 A H
+K+1AQ < K+1Q CrQ ) QA >]

@A C lt 1 e KAAH o 112
= mln( R) Zrar"’_K_i_lT R+K—+1Q ( )

where (a) follows from Jensen’s Inequality an@) is due to the facts that(I; + YY)~} < 1

> )\min(CR) [%tl‘ <U2Ir + (STCR

-1

andtr(XY) < ||X|[tr(Y) whenY is a nonnegative matrix. We now find an upper bound for
dr. From (36) and (15), we havgT'r(c?)|| < 1/02. Using (37) we then have

1 1 A
7 < ITr]36:C1Q < |Tr]|Crll;6Q < 5

(recall that%trQ = 1). Getting back to (112), we easily obtain

1 9 o? K % r [ 5 A A’K t
Ztr (021, 57Cp + ——AQA i < t,r),
tr<0 +K TR T AR > t<J+K+1 +K+1—C° Vi), Lo



40

where Cy is a certain constant term. Hence we haygQ) > aCo_l. By inspecting the

expression (44) ofz(dg, o), we then obtain

aC 7t
Amin(G) 2 K+1

a200_1
K+1

)\min(CT) > = Cl >0

and (111) is proven. It remains to plug this estimate intodjldnd (i) is proved.

Proof of (ii): We begin by restricting the maximization ¢fQ) to the setC{ = {Q
Q = diag(qi,...,q) > 0,tr(Q) = t} of the diagonal matrices withif;, and show thaQ? =
arg maxqees 1(Q) satisfiessup, Q|| < oo where the bound is a function 6¢f, A, 02, ¢, K)
only. The setC is clearly convex and the solutid®! is given by the Lagrange Karush-Kuhn-

Tucker (KKT) conditions
I(Q) _ 0

b = 5 BQI=1-0 (113)

where J(Q) = logdet (I,«—I—%HQHH) and the Lagrange multipliers and the 3; are

associated with the power constraint and with the posjtigcibnstraints respectively. More
specifically,n is the unique real positive number for Whi(ﬁz.:1 q; = t, and theg; satisfy
Bj=01if ¢ >0ands; > 0if ¢g; = 0. We have
97(Q)
0q;
whereh; the j' column of H. By consequenceE [09(Q)/dq;] < &E [|[h;[?]. As h; is a

= g2

1 1 !
= Eth <IT + EHQHH> h;

Gaussian vector, the righthand side of this inequality fingel and therefore, by the Dominated

Convergence Theorem, we can exchafgéq; with E in Equation (113) and write

oIQ) _ 1,
@qj o2

1 -1
h!! (I,Ar;HQHH) hj] . (114)

Let us denote byH; ther x (t — 1) matrix that remains after extractirig; from H. Similarly,
we denote byQ; the (¢t — 1) x (¢t — 1) diagonal matrix that remains after deleting row and
columnj from Q. Writing R, = (Ir + %HijHJH) _1, we have by the Matrix Inversion
Lemma ([21, 80.7.4))

1 -1 qi
I, + —HQHY =R, — J R,h.hiR; .
< +2HQ ) 7 o2+ qhlRyhy T

By plugging this expression into the righthand side of Emumat(114), the Lagrange-KKT

conditions become

X.
E|l_ % |, 3 115
|:02+QJXj:| "= b (115)

where X; = hi'R;h;. A consequence of this last equation is that< 1/7 for everyj. Indeed,
assume thag; > 1/n for somej. Theno? + ¢;X; > X;/n henceE [%} < n, therefore

B; > 0 (115), which implies that; = 0, a contradiction. As a result, in order to prove that
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sup; [|QY|| < oo, it will be enough to prove thatup, 1/n7 < co. To this end, we shall prove

that there exists a consta@t> 0 such that

max P(X; <C)——0. (116)

J=1,...,t t—00

Indeed, let us admit (116) temporarily. We have

X C X; C X
E . - = E|5—t—1x,5¢| — +E L1,
|:02+Qij:| 02+qjC 02+Qij x>0 02+qjC 02+Qij X;s0
C C
—P(X; >C) — 5——
0% +¢;C (% ) 0% +¢;C
wheree; = Qf; =P(X; < C), and the inequality is due to the fact that the functjqn) =

m is increasing. As

max |5j|<g max P(X; <C) ——10
j=

1’ s U ] 1,0y t t—o00

by (116), we have

X C
liminfmin<E[ 5 J }— 5 >>0.
t j o+ qj X o +q,;C

Getting back to the Lagrange KKT condition (115) we therefoave fort large enoughy—3; >

C/2 .
70,02 for everyj =1,...,t. By consequence,
1 1 202
= <
n— ﬁg

for larget. Summing over and taklng into account the power constraE; g; = t, we obtain

+qj

t 202t ; 1 202
E<T+t’ |.e.5<7+1and

d 202
Sup Q%I < < 1 (117)

which is the desired result. To prove (116), we make use of MMStimation theory. Recall

thatH = |/ Z£5A + =2 (31/2W01/2 Denoting bya; andz; the j'" columns of the

—
matricesA and WCT/ respectlvely, we have

We decomposez; as z; = u; + ujL where u; is the conditional expectatiom; =
E(z||z1,...,2j-1,Zj4+1,...,2%], in other words,u; is the MMSE estimate of; drawn from

1/2

the other columns oWC,:~. Put

1 H_ 1/2 K 1 1 1
Sj 2(\/—ﬁf01%/Rj< 1% \/—\/—CR/UJ))

o lH 1/2 12, l
CpR,;Cp . 118
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K all o+

1 1 2 K 1 1 1 2
S; . (119)

v

Let us study the asymptotic behaviour of. First, we note that due to the fact that

1/2

the joint distribution of the elements oWC,/ "~ is the Gaussian distributionujL and

vj = [2{,...,2]_,2],,,...,2]|" are independent. By consequence, and (R;,u;) are
independent. Let us derive the expression of the covarianae&ix R, = E[ujiujH].
From the well known formulas for MMSE estimation ([33]), wav'e R, = E[zjsz] -

-1
E[zjvJH] (E[vjvf]) Elv;z; 1. To obtain R,, we note that the covariance matrix of the

vectorz = [z],...,2]]" is E[zz"] = CL @ I, (just check thaff [[WCIT/Q]Z«]- [WClT/Q]kl} —
§(i — k)[Cr];;). Let us denote by;, ¢; andCr; the scalaé; = [Cr];;, the j* vector column
of Cr without elementz;, and the(t — 1) x (¢t — 1) matrix that remains after extracting row
and columnj from Cp respectively. With these notations we haRg = (éj — éfciljéj) L.
Recalling tha‘rujL and(R;, u;) are independent, one may see that the first term of the rigtitha
side of (118) is negligible while the second is closepto= %%tr(R Cr). More
rigorously, using this independence in addition Ao= max(||A||, [|[Cr|,||Cr||) < oo and
|IR;|| <1, we can prove with the help of [1, Lemma 2.7] or by direct c&dtion that there
exists a constant’; such that

@
t

E [(Sj - pj)ﬂ < (120)

In order to prove (116), we will prove that thg are bounded away from zero in some sense.
First, we have

- - (a) q1—1 (b) T
G — HCT]CJ - [CTl]jj 2 HCT1|| t= Amin(C7) > a

(for (a) see [21, 80.7.3] and fofb), use the fact thalfX|x;| < || X]| for any elementk,![) of

a matrix X). By consequence,

a)\mm(CR) 1 H -
GminiR) 2y <1T+§HijHj

Pi = TK+1 1
(@) a/\min(CR) 1 1 H -1
S ﬁ(%“(“ﬁﬂj‘wﬂ))
2 24 -
a T
> A 1/2 12| —wj ) =
> K+1< = (141 + lcrl e 2| 2wl ) Fu(@)

where(a) is Jensen Inequality and) is due totr(XY) < || X||tr(Y) whenY is a nonnegative

matrix. As lim; ||%WH =1+ y/1/c with probability one ([1]), and furthermore;(Q) = ¢,
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we have with probability one

a? A? 2\ !
liminf min p; > (cl +—= (2 + 071/2) ) =C5 . (121)
t o

J=1,...,t - K+1
Choose the constadt in the lefthand side of (116) as = C5/4. From (119) we have

maxP (X; <C) < maxP(S; <CO)
j J

= maxP(S; < C,[S; —pj| = C) + maxP (S; < C,[5; — p;| < C)
J J
< maxP(|Sj - pj| = C) + maxP (p; <2C)
J J
1
< FamaxE [(Sj - Pj)ﬂ +maxP (p; < 2C)
® 1 .
< &= m;er [(Sj - pj)ﬂ +P <mjmpj < 20)
9 o1

where (a) is Tchebychev’s Inequality) is due tomax; P(E;) < P(U;€;), and(c) is due to
(120) and to (121).

We have proven (116) and hence ti@f = arg maxqees 1(Q) satisfiessup, |Q¢|| < oc.

In order to prove thaQ. = argmaxqce, 1(Q) satisfiessup, ||Q.|| < oo, we begin by noticing
that

1
max 1(Q) = Mo max E [log det (Ir + ;HUAUH HY ) ] (122)

wherell; is the group of unitary x t matrices. For a given matrikl € U;, the inner maximiza-

tion in (122) is equivalent to the problem of maximizing thetoal information ove€{ when
. . . . . K 1 1 ~1/2xx7" 1~

the channel matrix is replaced withH' = HU = /=7 A’ + 75 7Cr W (Cp)/2,

Here, matrixC, is defined byC,, = UZCrU, A" = AU, W = WO where® is the

unitary matrix® = ClT/QUC’T_I/Q. As U € U, we clearly have|A’|| = ||A||, |Cx|l = [|Cr|,

and ||C'T‘1|| = ||C;'||. By consequence, the boundsand A, and hence the constadt in
the left hand member of (116) (which depends only (@nA, o2, ¢, K)) remain unchanged
when we replacel with H'. By consequence, for evedJ € U; the matrix A,(U) that
maximizesE [log det (I, + ZHUAUHHY)]| satisfies||A.(U)| < 202/C + 1 (see (117))

which is independent oUl. Hence||Q.|| < 202/C + 1 which terminates the proof of (ii).
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