J Theor Probab @ CrossMark
DOI 10.1007/s10959-015-0614-z

On the Almost Sure Location of the Singular Values
of Certain Gaussian Block-Hankel Large Random
Matrices

Philippe Loubaton'

Received: 19 May 2014 / Revised: 11 December 2014
© Springer Science+Business Media New York 2015

Abstract This paper studies the almost sure location of the eigenvalues of matrices
WyW%, where Wy = (W%)T, e, WE\,M)T)T is a ML x N block-line matrix whose
block-lines (W%”))mzlw m are independent identically distributed L x N Hankel
matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if
M — 400 and % — c4(cx € (0, 00)), then the empirical eigenvalue distribution
of Wy W7, converges almost surely towards the Marcenko—Pastur distribution. More
importantly, it is established using the Haagerup—Schultz—Thorbjornsen ideas that if
L = O(N%) with o < 2/3, then, almost surely, for N large enough, the eigenvalues
of Wy W7, are located in the neighbourhood of the Marcenko—Pastur distribution. It
is conjectured that the condition & < 2/3 is optimal.

Keywords Singular value limit distribution of random complex Gaussian large
block-Hankel matrices - Almost sure location of the singular values - Marcenko—Pastur

distribution - Poincaré—Nash inequality - Integration by parts formula

Mathematics Subject Classification (2010) 60B20 - 15B52

This work was supported by Project ANR-12-MONU-0003 DIONISOS.

B Philippe Loubaton
loubaton @univ-mlv.fr

1 Laboratoire d’Informatique Gaspard Monge, UMR CNRS 8049, Université Paris-Est, 5 Bd.
Descartes, Cité Descartes, Champs sur Marne, 77454 Marne la Vallée Cedex 2, France

Published online: 12 May 2015 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-015-0614-z&domain=pdf

J Theor Probab

1 Introduction
1.1 The Addressed Problem and the Results

In this paper, we consider independent identically distributed zero-mean complex-
valued Gaussian random variables (W, n)m=1..... M.n=1..... N+L—1 Such thatIE|wm’”|2 =

% and I['E(w2 ) = 0, where M, N, L are integers. We define the L x N matrices

m,n
(Wx"))mzlw um as the Hankel matrices whose entries are given by
(W) =wmisjor 1Si<L1<j<N (LD

LJ

and Wy represents the ML x N matrix

Wy = (1.2)

In this paper, we establish that:

— the eigenvalue distribution of ML x ML matrix Wy W7, converges towards the
Marcenko—Pastur distribution when M — +o00 and when ML and N both converge
towards +oo in such a way that cy = A% satisfies cy — ¢y, where 0 < ¢, < +00

— more importantly thatif L = O(N?%) with« < 2/3, then, almost surely, for N large
enough, the eigenvalues Wy W7, are located in the neighbourhood of the support

of the Marcenko—Pastur distribution.

1.2 Motivation

This work is mainly motivated by detection/estimation problems of certain multivariate
time series. Consider a M-variate time series (y,),e7 given by

P—1

Yn = Z ApSp—p +Vyp =Xy +Vp (1.3)
p=0

where (s,,),,c7 represents a deterministic non-observable scalar signal, (ap) p—o,... P—1
are deterministic unknown M -dimensional vectors and (v,),c7 represent i.i.d. zero-
mean complex Gaussian M-variate random vectors such that E(v,v)) = 21y and
E(v, v,{ ) = Ofor each n. The first term of the right-hand side of (1.3), which we denote
by x,, represents a “useful” non-observable signal on which various kinds of informa-
tion have to be inferred from the observation of N consecutive samples (¥,)n=1,...N-
Useful information on (x,) may include:

— Presence versus absence of (x,), which is equivalent to a detection problem,
— Estimation of vectors (a,) p—o,...P—1.
— Estimation of sequence (s,) from the observations.
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The reader may refer, e.g. to [1,25,30,31] for more information. A number of existing
detection/estimation schemes are based on the eigenvalues and eigenvectors of matrix

YL]\){ L where Y L is the block-Hankel ML x (N — L + 1) matrix defined by
yr y2 ... ... YN-L+1
Y, = Y2 ¥z - - YN-L+2
y.L Yi4l oo oo YN

and where L is an integer usually chosen greater than P. We notice that matrix
Y, is the sum of deterministic matrix X; and random matrix V; both defined as
Y. The behaviour of the above-mentioned detection/estimation schemes is easy to
analyse when ML is fixed and N — +o0 because, in this asymptotic regime, it holds
that

N N +0’21ML) H — 0

* *
H Y Y] 3 (XLXL
where ||A || represents the spectral norm of matrix A. However, this asymptotic regime
may be unrealistic because ML and N appear sometimes to be of the same order of mag-
nitude. It is therefore of crucial interest to evaluate the behaviour of the eigenvalues of
. YLY: .
matrix —=-L when ML and N converge to +00 at the same rate. Matrix Y, = X7 +V
can be interpreted as an Information plus Noise model (see [13]), but in which the
noise and the information components are block-Hankel matrices. We believe that in

. . YLY; .. .
order to understand the behaviour of the eigenvalues of LN L it is first quite useful to

. . . . . VLVE
evaluate the eigenvalue distribution of the noise contribution, i.e. LN L and to check

whether its eigenvalues tend to be located in a compact interval. Hopefully, the behav-
iour of the greatest eigenvalues of YLA}{ L may be obtained by adapting the approach of
[71, at least if the rank of the “Information” component Xy, is small enough w.r.t. ML.

It is clear that if we replace N by N 4+ L — 1 in the definition of matrix V,

. . . . . VLV
matrix Wy is obtained from j—]% by row permutations. Therefore, matrices LN L and

Wy W, have the same eigenvalues. The problem we study in the paper is thus equiv-
alent to the characterization of the eigenvalue distribution of the noise part of model
Y.

1.3 On the Literature

Matrix Wy can be interpreted as a block-line matrix with i.i.d. L x N blocks
(W) m=1...,m-Suchrandom block matrices have been studied in the past, e.g. by Girko
([15], Chapter 16) as well as in [ 14] in the Gaussian case. Using these results, it is easy
to check that the eigenvalue distribution of Wy W7, converges towards the Marcenko—
Pastur distribution when L is fixed. However, the case L. — +00 and the almost sure
location of the eigenvalues of Wy W7, around the support of the Marcenko—Pastur
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distribution cannot be addressed using the results of [15] and [14]. We note that the
L x N blocks (W"),,=1....m are Hankel matrices. We therefore also mention the works
[21] and [6] that are equivalent to the study of the eigenvalue distribution of symmetric
ML x ML block matrices, each block being a Toeplitz or a Hankel L x L matrix built
fromi.i.d. (possibly non-Gaussian) entries. When L — +oo while M remains fixed, it
has been shown using the moments method that the eigenvalue distribution of the above
matrices converges towards a non-bounded limit distribution. This behaviour general-
izes the results of [9] obtained when M = 1. When M and L both converge on +00, itis
shown in [6] that the eigenvalue distribution converges towards the semicircle law. We,
however, note that the almost sure location of the eigenvalues in the neighbourhood of
the support of the semicircle law is not addressed in [6]. The behaviour of the singu-
lar value distribution of random block-Hankel matrix (1.2) was addressed in [5] when
M = 1and ﬁ — ¢4 butwhenthe wy , for N < n < N+L are forced to 0. The random
variables w; , are also non-Gaussian and are possibly dependent in [5]. It is shown
using the moments method that the singular value distribution converges towards a
non-bounded limit distribution. The case of block-Hankel matrices where both M and
L converge towards oo considered in this paper thus appears simpler because we show
that the eigenvalue distribution of Wy W3, converges towards the Marcenko—Pastur
distribution. This behaviour is not surprising in view of the convergence towards the
semicircle law proved in [6] when both the number and the size of the blocks converge
to co. As mentioned above, the main result of the present paper concerns the almost
sure location of the eigenvalues of W W7, around the support of the Marcenko—Pastur
distribution under the extra assumption that L = O (N%) with & < 2/3. This kind of
result is known for a long time for L = 1 in more general conditions (correlated non-
Gaussian entries, see, e.g. [4] and the references therein). Haagerup and Thorbjornsen
introduced in [17] an efficient approach to addressing these issues in the context of
random matrices built on non-commutative polynomials of complex Gaussian matri-
ces. The approach of [17] has been generalized to the real Gaussian case in [29] and
used in [11,12,22] to address certain nonzero-mean random matrix models. We also
mention that the results of [17] have been recently generalized in [24] to polynomials
of complex Gaussian random matrices and deterministic matrices.

To our best knowledge, the existing literature does not allow to prove that the eigen-
values of W W7, are located in the neighbourhood of the bulk of the Marcenko—Pastur
distribution. We finally notice that the proof of our main result would have been quite
standard if L was assumed fixed, and rather easy if it was assumed that L — 400 and
% — 0, a condition very close from L = O(N%) for « < 1/2. However, the case
1/2 < o < 2/3 needs much more efforts. As explained below, we feel that 2/3 is the
optimal limit.

1.4 Overview of the Paper

We first state the main result of this paper.

Theorem 1.1 When M — +o0o0 and ML and N converge towards oo in such a way that
cN = /% converges towards c, € (0, 4+00), the eigenvalue distribution of WNW*N
converges weakly almost surely towards the Marcenko—Pastur distribution with para-
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2

meters o<, cy. If, moreover,

L = O(N%) (1.4)

where a < 2/3, then, for each € > 0, almost surely for N large enough, all the
eigenvalues ofWNW*;\, are located in the interval [o2(1 —ﬁ*)z —€, 02(1+ﬁ*)2+6]
ifco < L Ifcy > 1, almost surely for N large enough, 0 is eigenvalue of Wy W7,
with multiplicity ML — N, and the N nonzero eigenvalues of WyW7, are located in
the interval [0>(1 — /c,)* — €, 02(1 + /c,)* + €]

In order to prove the almost sure location of the eigenvalues of Wy W?%,, we follow
the approach of [17] and [29]. We denote by 7y (z) the Stieltjes transform associated
with the Marcenko—Pastur distribution Ko ey with parameters o2, cy,ie. the unique
Stieltjes transform solution of the equation

tn(z) = — (1.5)
-+ 1+02enty(2)
or equivalently of the system
in(2) - (1.6)
)= —F—F—— .

N z(1+0%n(2)

~ -1

In(z) = (1.7)

2 (1+0%entn(2))

where 7y (z) coincides with the Stieltjes transform of Koey,1jey = CNHg2 ey + (1 —

cnN )80 where ¢ represents the Dirac distribution at point 0. We denote by Sj(\(,)) the

interval
S}(\(’)) _ [02 (1 _ JEN)Z,GZ (1 + \/EN)Z] (1.8)

and by Sy the support of 1,2 ., . Itis well known that Sy is given by

Sy =38V ifey <1 (1.9)
Sy =8P U0} ifey > 1 (1.10)

Theorem 1.1 appears to be a consequence of the following identity:

B —Tr (Wa Wi — 2Ti) ) | = onc —L(A ) LMA())
[ML r( NWy —zIug )i|— NZ)—MN sy (z) + N NG
.11

where §y (z) coincides with the Stieltjes transform of a distribution whose support is
included in S/(\? and where 7y (z) is a function holomorphic in C* satisfying

IFn (@) = Pi(lz]) P2 (1/Im(z)) (1.12)
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forz e F 1(\,2) where F 15,2) is a subset of C* defined by

2
FY = [z eCt, ];—NQl(IZI)Qz(l/Im(Z)) < 1] (1.13)

where Pj, P>, Q1, Q> are polynomials independent of the dimensions L, M, N with

. . . . 2
positive coefficients. We note that (1.4) is nearly equivalent to ﬁ — Oor # -0

(in the sense that if « > 2/3, then Af[—jzv does not converge towards 0) and that F 1(\,2)
appears arbitrary close from C* when N increases. The present paper is essentially
devoted to the proof of (1.11) under the assumption (1.4). For this, we study in the
various sections the behaviour of the resolvent Qy (z) of matrix Wy W7, defined by

Q) = (Wy W4 — z2Iy) ! (1.14)

when z € CT. We use Gaussian tools (integration by parts formula and Poincaré—Nash
inequality) as in [27] and [28] for that purpose.

In Sect. 2, we present some properties of certain useful operators which map matri-
ces A into band Toeplitz matrices whose elements depend on the sum of the elements
of A on each diagonal. Using Poincaré—Nash inequality, we evaluate in Sect. 3 the vari-
ance of certain functional of Qu (z) (normalized trace, quadratic forms, and quadratic
forms of the L x L matrix Q N (z) obtained as the mean of the ML x L diagonal
blocks of Qu(z)). In Sect.4, we use the integration by parts formula in order to

express E (Quy(z2)) as
E@Qn () =Iy @Ry (2) + An(2)
where Ry (z) is a certain holomorphic CX*’ valued function depending on a Toeplitz-

ified version of E (Qu (z)), and where Ay (z) is an error term. The goal of Sect.5 is
to control functionals of the error term Ay (z). We prove that for each z € CT,

1 L
‘ETr(AN(Z)) = oy Frdzh P (1/Im(z)) (1.15)

for some polynomiAals P1 and P, independent of L, M, N and that if A ~ (2) represents
the L x L matrix Ay (z) = % Z%:l A" (2), then it holds that

R L3/2
b} Ay @ b < = Pr(12]) P (1/Im(2)) (1.16)

for deterministic unit norm L-dimensional vectors by and b,. In Sect. 6, we prove that

E [MLLTr (QN(Z)):| —iN(@) —> 0 (1.17)
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for each z € C*, a property which implies that the eigenvalue distribution of Wy W7,
converges towards the Marcenko—Pastur distribution. We note that (1.17) holds as
soon as M — +o00. At this stage, however, the convergence rate of the left-hand side
of (1.17) is not precise. Under the condition % — 0 (which implies that quadratic

forms of A ~ (z) converge towards 0, see (1.16)), we prove in Sect. 8 that

1 _ L
E[ﬁTr((wNW; ) 1)} — i@ =A@ (L18)

where 7y (z) is holomorphic in C* and satisfies
[Fn (@) = Pi(|z]) P2(1/Imz)

for each z € FI(V3/2), where Fﬁ/z) is defined as Fji,z) (see (1.13)), but when Af[—lz\, is

replaced by % In order to establish (1.18), it is proved in Sect.7 that the spectral
norm of a Toeplitzified version of matrix Ry (z) — ty(2) I is upperbounded by a
term such as % P1(Jz]) P> (1/Im(z)). (1.18) and Lemma 5.5.5 of [2] would allow to
establish quite easily the almost sure location of the eigenvalues of Wy W7, under the
hypothesis % — 0. However, this condition is very restrictive, and, at least intuitively,
somewhat similar to L fixed. In Sect. 9, we establish that under condition (1.4), which
is very close from the condition AI;,—;V — 0, or % — 0, function 7y (z) can be written

asry(z) = Sn(2) + %ﬂv (z), where §y (z) and 7 (z) verify the conditions of (1.11).
We first prove that

1 L L
E [ETT Qrv@ -1y ® RN(Z)):| = YN (SN(Z) + m”/\/(z)) (1.19)

where sy (z) and ry (z) satisfy the same properties than sy (z) and 7y (z). For this, we
compute explicitely sy (z) and verify that it coincides with the Stieltjes transform of a
distribution whose support is included into S,(\?). The most technical part of the paper
is to establish that

1 L
E [ATLTr Qrv@) -Iy® RN(Z))] - mSN(Z) (1.20)

converges towards 0 at rate (A%\,)z For this, the condition Afl—lz\, — 0 appears to be fun-
damental because it allows, among others, to control the behaviour of the solutions of
L-dimensional linear systems obtained by inverting the sum of a diagonal matrix with
a matrix with O (A%V) entries. Using the results of Sect. 7 concerning the spectral norm
of a Toeplitzified version of Ry (z) —tx (z) I, we obtain easily (1.11) from (1.19). The-
orem 1.1 is finally established in Sect. 10. For this, we follow [17,29] and [2] (Lemma
5-5-5). We consider a smooth approximation ¢ of ]1[02(1—@)2—5,52(1-4-\/&)24-5](&') that

vanishes on S,(\s)) for each N large enough and establish that almost surely,
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i 15/2 I \3/2
Tr (¢ (WyWy)) = NO (W)+ [ML—N]; =0 ((W) )+ [ML— N4+

(1.21)
(1.4) implies that % — 0 and that the right-hand side of (1.21) converges towards
[ML — N]4 almost surely. This, in turn, establishes that the number of nonzero eigen-
values of Wy W7, that are located outside [ o1 — ﬁ)z —e, 021 + \/c_*)z + €]
converges towards zero almost surely and is thus equal to O for N large enough as
expected. We have not proved that this property does not hold if L = O(N?%) with
a > 2/3. We, however, mention that the hypothesis « < 2/3 is used at various crucial
independent steps:

. . . 2
— it is used extensively to establish that (1.20) converges towards O at rate ( MN)
— it is nearly equivalent to the condition AL/IN — Oor M2 — 0 which implies

— that the set F ]E, ) defined by (1.13)) is arbitrarily close from C™, a property that
appears necessary to generalize Lemma 5-5-5 of [2]
— that the right-hand side of (1.21) converges towards [ML — N]

We therefore suspect that the almost sure location of the eigenvalues of Wy W3,
cannot be established using the approach of [17] and [29] if « > 2/3. It would
be interesting to study the potential of combinatorial methods in order to be fully
convinced that the almost sure location of the eigenvalues of Wy W7, does not hold if
o > 2/3. We finally mention that we have performed numerical simulations to check
whether it is reasonable to conjecture that the almost sure location property of the
eigenvalues of Wy W3, holds if and only if « < 2/3. For this, we have generated
10.000 independent realizations of the largest eigenvalue A; y of Wy Wy, for o
1,N =214 cy = ML/N = 1/2 and for the following values of (M, L) that seem
to be in accordance with the asymptotic regime considered in this paper: (M, L) =
(28,2%), (M, L) = (27,2%), (M, L) = (2°,27), (M, L) = (25, 2%), corresponding to
ratios L equal, respectlvely, to 271,278 275 'and 1/4. As condition « < 2/3 is
nearly equlvalent to W — 0, the first 3 values of (M, L) are in accordance with the
asymptotic regime L = O (N*) with @ < 2/3 while it is of course not the case for the
last configuration. The almost sure location property of course implies that the largest
eigenvalue converges towards (1 + @2. In order to check this property, we have
evaluated the empirical mean Xl, n of the 10.000 realizations of A1 x and compared
A with (1 + /T/2)* ~2.91.

The values of A y in terms of M2 are presented in Table 1. It is seen that the
dlfference between Al yand (14+./1/2 )2 ~~ 2.91 increases significantly with the ratio
M2’ thus suggesting that A1 y does not converge almost surely towards (1 + \/a)z
when W does not converge towards 0.

Table 1 Empirical mean of the
largest eigenvalue versus L/M? L/M? Pt 2-8 2-5 1/4

LN 291 2.92 2.94 3
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1.5 General Notations and Definitions

Assumptions on L, M, N

Assumption 1.1 — All along the paper, we assume that L, M, N satisfy M —
400, N — 400 in such a way that cy = A%L — ¢4, Where 0 < ¢y < +o00.
In order to short the notations, N — —+o00 should be understood as the above
asymptotic regime.
— In Sects.7 and 8, L, M, N also satisfy % — 0 or equivalently # — 0.
— In Sects.9 and 10, the extra condition L = O(N%) with @ < 2/3 holds.

In the following, we will often drop the index N and will denote Wy, tx, Qu, - . .
by W, ¢, Q, ... in order to short the notations. The N columns of matrix W are denoted
(Wj)j=1,.Nn.Forl <l <L, 1<m<M,andl < j <N, W:"] represents the entry
@i+ (m— 1)L, j) of matrix W.

C®(R) (resp.C;°(R), C2°(R)) denotes the space of all real-valued smooth functions
(resp. bounded smooth functions, smooth functions with compact support) defined on
R.

If A is a ML x ML matrix, we denote by A;rll}i,zrnz the entry (i; + (m; — 1)L, i> +

(my—1)L) of matrix A, while A™1-"2 represents the L x L matrix (A7) <, i) <L

i1.2
We also denote by A the L x L matrix defined by
| M
A m,m
A= m Z] A (1.22)
m=

Foreachl <i < Land1 < m < M, f!" represents the vector of the canonical basis
of CML whose nonzero component is located at index i + (m — 1)L.If1 < j < N, e 3
is the j"-vector of the canonical basis of CV.

If A and B are 2 matrices, A ® B represents the Kronecker product of A and B,
i.e. the block matrix whose block (i, j) is A; ;j B.||A|| represents the spectral norm of
matrix A.

If x € R, [x], represents max(x, 0).C* denotes the set of complex numbers with
strictly positive imaginary parts. The conjuguate of a complex number z is denoted
Z* or Z depending on the context. Unless otherwise stated, z represents an element
of CT. If A is a square matrix, Re(A) and Im(A) represent the Hermitian matrices
Re(A) = A+TA* and Im(A) = AE—IA*, respectively.

If (An)n>1 (resp. (by)n>1) is a sequence of matrices (resp. vectors) whose dimen-
sions increase with N, (Ay)y>1 (resp. (by)n>1) is said to be uniformly bounded if
supy=1 lAN| < +00 (resp. supy~ [by || < +00).

If x is a complex-valued random variable, the variance of x, denoted by Var(x), is
defined by

Var(x) = E (Ix[2) = [E)
The zero-mean random variable x — [E(x) is denoted x°.
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Nice constants and nice polynomials A nice constant is a positive constant inde-
pendent of the dimensions L, M, N and complex variable z. A nice polynomial is a
polynomial whose degree is independent from L, M, N and whose coefficients are
nice constants. In the following, P; and P, will represent generic nice polynomials
whose values may change from one line to another, and C(z) is a generic term of the
form C(z) = Pi(|z]) P2(1/Imz).

Properties of matrix Q(z). We recall that Q(z) verifies the so-called resolvent
identity

| 1
Q) = —% +-QEWW* (1.23)
and that it holds that
QQ () = M- (1.24)
~ (Imgz)? ’
and that |
Q@) < m@ (1.25)

for z € C*. We also mention that
Im(Q(z)) > 0, Im(zQ(z)) > 0, ifz € C* (1.26)

Gaussian tools We present the versions of the integration by parts formula (see Eq.
(2.1.42) p. 40 in [28] for the real case and Eq. (17) in [19] for the present complex
case) and of the Poincaré—Nash (see Proposition 2.1.6 in [28] for the real case and Eq.
(18) in [19] for the complex case) that we use in this paper.

Proposition 1.1 (Integration by parts formula) Let & = [&, ..., k)T be a complex
Gaussian random vector such that E[E] = 0, E[EET] = 0 and E[§§*] = 2. If
I: &) — TE§)isaC complex function polynomially bounded together with its
derivatives, then

K
ar (&)
E[&,T(¢)] = Z Szme[ _8 ] (1.27)
m=1 85’”
Proposition 1.2 (Poincaré-Nash inequality) Let & = [, ..., Ek]T be a complex

Gaussian random vector such that E[&] = 0, E[EET] = 0 and E[§§*] = 2. If
I : (&) +— L&, &) isaC' complex function polynomially bounded together with its

derivatives, then, noting VeI’ = [%, e, %]T and Vgl‘ = [%, e, %]T,
1 K

Var(F(§)) < E [vEr(g)T 2 vgr(g)] +E [vgr(s)* 7] vgr(g)] (1.28)

The above two propositions are used below in the case where & coincides with
the LM N-dimensional vector vec(Wy). In the following, the particular structure
Wlm = Witj—1 of Wy is encoded by the correlation structure of the entries of Wy :

2
ma

12 o . . . .
B (Wi Wi, ) = 28— = 2= jdmy =ma)  (1.29)
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A useful property of the Stieltjes transform tn(z) of the Marcenko—Pastur 152 .
The following lemma is more or less known. A proof is provided in the Appendix
of [23] for the reader’s convenience.

Lemma 1.1 Ir holds that
otenlztn(@in(@)1F < 1 (1.30)

for each z € C*. Moreover, for each N and for each z € CV, it holds that

(Imz)*

(n? + 1z|»)? (131

1 —otenlztn (@)in ()|

for some nice constants C and 0. Finally, for each N, it holds that

(1 - o4chzt(z)f(z)|2)_l <Cmax|1, . (1.32)

(dist (Z, SI(\?)))Z

for some nice constant C and for each z € C — 81(\(7))'

2 Preliminaries

In this section, we introduce certain Toeplitzification operators and establish some
useful related properties.

Definition 2.1 - IfAisa K x K Toeplitz matrix, we denote by (A (k))i— x—)
the sequence such that Ay ; = A(k — ).

— Foranyinteger K, Jg isthe K x K “shift” matrix defined by (Jx); j = 6(j—i = 1).
In order to short the notations, matrix J;§ is denoted J 1, although Jx is of course
not invertible.

— For any PK x PK block matrix A with K x K blocks (AP1"P2)|<(p py)<P, WE
define (I(P)(A)(k))k:_(K_l) k—1 as the sequence

K—-1

,,,,,

.....

1
TP @A) k) = T [adr & %) ] S Z AL
i—j=k p=1
L
- PK ZZAII:ﬁ,u Li<ktu<k 2.1)
p=lu=1

— Forany PK x PK block matrix A and for 2 integers R and Q such that R > Q
and Q0 < K, matrix T(P) (A) represents the R x R Toeplitz matrix given by

0-1
= > PR Iy 2.2)
g=—(0-1)
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In other words, for (i, j) € {1, 2, ..., R}, it holds that

(7eoW), =7V AG ~ ) Lijizo- 23)

When P = 1, sequence (r(])(A)(k))k__(K 1,...k—1 and matrix ’T( )Q(A) are
denoted (7 (A)(k))k=—k—1)...., —1 and matrix 7z o(A) in order to s1mp11fy the
notations. We note that if A is a PK x PK block matrix, then sequence
(«P )(A)(k))k_,(K 1 coincides with sequence

.....

( ( )(k))k=7(1<71),,,,,1<71 where we recall that A = % Z;I;:l APP; matrix
Ti")(A) is equal to Tg o (A).
The reader may check that the following straightforward identities hold:

— If Ais a R x R Toeplitz matrix, for any R x R matrix B, it holds that

1 R—1
< Tr(AB) =k_% 1)A( k)T (B) (k) = —Tr (AT z(B))  (2.4)

— If A and B are both R x R matrices, and if Q < R, then

0-1
1 1
2T (TroWB) = > t(A)(—9) TB)() = Tr (ATk o(B)) (25)
q=—(0-1)

— IfAisa PK x PK matrix, if Bisa R x R matrix, andif R > Q and Q < K, then
it holds that

0-1
=T (BT0@) = 3 t®® 1P @)k
k=—(Q—1)

1
= ﬁTI‘ ((IM ® TK’Q(B)) A) (2.6)

— IfCisa PK x PK matrix, Bisa K x K matrix and D, E R x R matrices with
K < R, then it holds that

1 1
= Tr [BTK p (DT(P ) (C)E)] = 5= Tr [C (Ip ® Ty k[ETk.x B)D])] (2.7)

We now establish useful properties of matrix 75’ (F) (A)

Proposition 2.1 If A isa PK x PK matrix, then, for each integer R > K, it holds
that

P
1
|7 @] = sup Jaxor (5 AP Jacw)| <Al @8
vel0,1] P
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where ak (v) represents the K -dimensional vector defined by

1 . . T
ag(v) = —— (1,e2””, ...,62’”(K_1)”) (2.9

VK

IfAisa K x K matrix and if R < K, then it holds that

|Tr.rA)] < sup lax (V)*Aag ()] < Al (2.10)
vel0,1]

Proof We firstestablish (2.8). As R > K, matrix T,gig (A) is a submatrix of the infinite
band Toeplitz matrix with (i, j) elements ¥ YA — H1 li—j|<k—1. The norm of this

matrix is known to be equal to the Lo, norm of the corresponding symbol (see [8],
Eq. (1-14), p. 10). Therefore, it holds that

K—-1
”71512 Al < sup Z T(P)(A)(k)efhnkv
vel0, 11 |, “F_1)

We now verify the following useful identity:

K-1 P

> D@ ke = ag (v)* %ZAW’) ag (v) 2.11)

k=—(K—1) p=1

Using the definition (2.1) of ") (A) (k). the term > ) 7P (A) (k)e =27k can
also be written as

K—1 | Ko P
P —2irk . —2imkv vk
z 7:( )(A)(k)e iKY E Z Tr F ZA(I’ p) e—2im VJK

k=—(K—1) k=—(K—1) p=1
or equivalently as
Tr i ZP: A@:P) i Kif e~ 2imkv yk
P p=1 K k=—(K—1) :
It is easily seen that
K—1

Z e—ziﬂkl)J% — a[((l))a]((\))*
k=—(K—1)

1
K

from which (2.11) and (2.8) follow immediately.
In order to justify (2.10), we remark that R < K implies that 7 g (A) is a submatrix
of Tk k (A) whose norm is bounded by sup, |ax (v)*A akg (v)| by (2.8). O
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We also prove that the operators 7 preserve the positivity of matrices.

Proposition 2.2 I[f A isa PK x PK positive definite matrix, then, for each integer
R > K, it holds that R
TA) >0 (2.12)

If Ais a K x K positive definite matrix and if R < K, then it holds that
TR’R(A) >0 (213)

Proof We first prove (2.12). (2.11) implies that

K—1
> P@yke =0
k=—(K—1)

for each v.(t(P)(A)(k))k:_(K_l) ,,,,, K —1, thus coinciding the Fourier coefficients of a
positive function. Elementary results related the trigonometric moment problem (see,
e.g.[18], 1.11 (a)) imply that for each R > K, matrix T,g),g (A) is positive definite. We
finally justify (2.13). As R < K, matrix 7g_g(A) is a submatrix of 7x g (A) which is
positive definite by (2.12). O

We finally give the following useful result proved in the “Appendix”.
Proposition 2.3 IfA isa K x K matrix and if R > K, then it holds that

Tr.k A) (Tr.k (A) < Tr x (AA") 2.14)
IfAisa K x K matrix and if R < K, then

Tr r(A) (Tr r(A))" < Tr rR(AAY) (2.15)

3 Poincaré-Nash Variance Evaluations

In this section, we take benefit of the Poincaré—Nash inequality to evaluate the variance
of certain important terms. In particular, we prove the following useful result.

Proposition 3.1 Let A be a deterministic ML x ML matrix for which supy |A|l < «,
and consider 2 ML-dimensional deterministic vectors ay, ay such that supy ||la;|| <
Kk fori = 1,2 as well as 2 L-dimensional deterministic vectors by, by such that
supy |Ibi|| < « fori =1, 2. Then, for each z € C*, it holds that

1 , 1
Var (ETr (AQ(Z))) <C@«k N 3.1
Var (a}Q(2)az) < C(2) K4% (3.2)
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1< L
Var(b*|: > Q)™ ’”] )<C(z)/< TN 3.3)

m=1

where C(z) can be written as C(z) = P1(|z]) P> (%) for some nice polynomials

Py and Py. Moreover, if G is a N x N deterministic matrix verifying supy |G| < «,
the following evaluations hold:

1 . 1

Var (M—LTr (AQ(z)WGW )) <C)w* TN (3.4)
* * 6 L

Var (a7 QEWGW*a2) = C(2) k3 (3.5)

1 M m,m L
ar( [ Z? (Q)WGW¥) j|b2)§C(z)K6m (3.6)

where C(z) can be written as above.

Proof Wefirstestablish (3.1) and denote by & the random variable § = ﬁTr (AQ(2)).
As the various entries of 2 different blocks W', W2 are independent, the Poincaré—
Nash inequality can be written as

Varg < > E{(awai ) (Wh Wi ) avsé } (3.7)

m,i1,i2,j1J2 i1,]1 in.
*
9§ — &
+ Z E [8Wn1 (Wln;l ]IWiz,jz) (awm ) :| (38)
m.i1.02. 1.2 i1 in, 2

In the following, we just evaluate the right-hand side of (3.7), denoted by S, because
the behaviour of the term defined by (3.8) can be established similarly. It is easy to
check that

aQ mN\T
—— = —QWe; (")’ Q
BWm e &)

so that

06 1 emnT

i1,J1 2,]2

which can also be written —Aﬁ(fi’”)TQAQWe ;. We recall that E (W'” W, ) =

”—;8(1' 1 —i2 = jo — j1) (see (1.29)). Therefore, B is equal to the mathematical expec-
tation of the term
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1 o? o
MLEN > 80— ji = i1 — ir)el WQTA* Q' (E)" QAQWe;,

m,i1,iz, ji,j2
We put u = i| — i and remark that Zm,il—i2=u fl."f(fi”;)T = Iy ® J7". We thus obtain
that
1 o2 =
- T * Wk A K Yk *U )
B= AN > | Z el W'Q'A*Q*(Iyy ® J}*)QAQWe;,
u=—(L—=1) p—ji=u

Using that zjz—jlzu ejze]Tl = J¥, we get that

1 o? el
B=1r v Bl 2 5T (QAQWIFWIQATQ (y @ J})
u=—(L—-1)

If B is a ML x N matrix, the Schwartz inequality as well as the inequality (xy)'/? <
1/2(x 4 y) leads to

< L ypy e

T B *MB*I *U
r( JN (M®JL)_2ML

‘ ML

+—Tr (B*(Iy ® J;"J})B)

2ML

It is clear that matrices J3/J}, and J7“J7 are less than Iy and I, respectively. There-

fore,

1 KU * kU *
‘ETr (BIYB*(y ®J7")| < - -Tr (BB) 3.9)

Using (3.9) for B = QAQW for each u leads to

o? 1
< —FE|[—Tr (QAQWW*Q*A*Q*
P=un [MLr(QQ 0 Q)]

The resolvent identity (1.23) can also be written as QWW?* = I + zQ. This implies

that the greatest eigenvalue of QWW*Q* coincides with the greatest eigenvalue of
(I + zQ)Q* which is itself less than || Q|| + |z||| Q. As |Q|| < —, we obtain that

Imz°

sy~ | 1]
QWW*Q* < — 1+ — ) L (3.10)

Imz Imz

Therefore, it holds that
1 |z 1 1

<—(14+—) —E|—Tr (QAA*Q* 3.11
ﬂ_Imz(+Imz)MN [MLr(Q Q)} G-11)
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We eventually obtain that

The conclusion follows from the observation that

1 i Iz} _ 1 1 |
(Imz)> ( + E) = [(Imz)3 + (Imz)4:| (Il +1)

In order to prove (3.2) and (3.3), we remark that

a¥Qap; = ML LTr (Qazaj)
1 2 ML 24

| < !
b} [ﬁ > (Q(z))’”’m:| by = L - Tr (QLy @ bob}))

m=1

(3.2) and (3.3) follow immediately from this and inequality (3.11) used in the case
A = aa] and A = Iy ® byb], respectively. O

We finally provide a sketch of proof of (3.4) and omit the proof of (3.6) and
(3.5) which can be obtained as above. We still denote by & the random variable
& = ﬁTr (Q(z)WGW™) and only evaluate the behaviour of the right-hand side
B of (3.7). After easy calculations using tricks similar to those used in the course of
the proof of (3.1), we obtain that

202 1 * K A K KYRTK VK
B < WIE [En (QWGW*AQWW*Q*A*WG*W*Q )} (3.12)
4 Zo’zE 1 T (G*W*Q*A*AQWG) (3.13)
MN | ML '

The term defined by (3.13) is easy to handle because Q*A*AQ < ﬁ 1. Therefore,

(3.13) is less than % ﬁ\, E [MLLTr (WGG*W*)] which is itself lower bounded

by v % because E (35, Tr(WW*)) = o2, To evaluate the right-hand side of
(3.12), we use (3.10) twice and obtain immediately that is less than %}\74

4 Expression of Matrix [E(Q) Obtained Using the Integration by Parts
Formula

In this section, we use the integration by parts formula in order to express [E (Q(z)) as
a term which will appear to be close from ¢ (z)I;, where we recall that ¢ (z) represents
the Stieltjes transform of the Marcenko-Pastur distribution 2 .. . For this, we have
first to introduce useful matrix-valued functions of the complex variable z and to study
their properties.
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Lemma 4.1 For each z € Ct, matrix Iy + o CNT(M)

denote by H(z) its inverse, i.e.

(E(Q(2))) is invertible. We

-1
H) = [Iy + o *ev T EQ@))] (“.1)

Then, function z — H(z) is holomorphic in C* and verifies

2
HOHG)" < (%) Iy 42)

Moreover, for each z € Ct, matrix —z 1+ o? 1.1 (H(2)) is invertible. We denote by
R(z) its inverse, i.e.

-1
R() = [—ZIL n oZTL,L(H@»] 4.3)

Then, function 7 — R(z) is holomorphic in CT, and it exists a positive matrix-valued
measure Jug carried by RY, satisfying ugr (RY) = 1, and for which

d A
R(2) =/ L()
R+ A—2
Finally, it holds that
1 2
R()R(2)* < (—) I (4.4)
Imz

Proof The proof is sketched in the “Appendix”. O

In order to be able to perform the integration by parts formula, we use the identity
(1.23) which implies that

i1,i2

1 1 mip,m
E[Qr] = —=8(1 = )8 (m —my) + -E [@wwH] @S

We express (QWW*)"1""2 a5

11,02

N

N
mlmz
(QWW*)"-" = 2 Qw;w%) (Qw));"' W;
i1,i2 J ilin 25 J

= ]:1

where we recall that (w;);—1 . n represent the columns of W. In order to be able

mip,mz
to evaluate E |:(Qw jw}*.) :|, it is necessary to express E [(kaw;’f) ] =

i1,02

my,my
i1,i2

m
E [(ka);’lll (W}k) 2i| for each pair (k, j). For this, we use the identity
i

= owoty ()] = 2 = o win)

i3,m3
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and use the integration by parts formula

miy,m
0 (Qulls ngz J)

E () WIn W) = Zuwwwm =
i/,j/

It is easy to check that

o (Qmwiy))

= Q'"8(my = m3)8(i = i2)8(j = j)
oW,

i,i3

m J—
M3,M3“zm2
— (QWJJ)‘ Q./ . i2,j
1

(1.1) implies that E (Wg3kW?3j/) = %6(1'3 —i = j/ — k). Therefore, we obtain that

E (le m3W:1:3kW12 ]) 23(i3 —iy=j—k)s(my =m3)E (le"’m)

e 11,13
‘*Zmﬂﬂ*mww)MKﬁf]
i
and that

m 2
im0 = 5 st =g ot~ ()

i3,m3

S i = ve(ow)” ()]

l3m3l j

Weputi =i " — i3 in the above sum and get that

mi +)2 o’ my,my
E 1 (Qwr);, (Wj)l.z =VE (Qil,{z_(k_j)) Li<i,—k—j)=<L
L—1
— o’y D Liski=n E| Qwey)]) (W}k-)i VL 2. 2onm
i=—(L—1) 2 i —iy=i M3

or, using the definition (2.1),

2
my o
E I:(ka)yfl (ij)i2 j| = WE (Q?:}{sz(kfj)) Ti<ip—te—jy<t
2 S (M) / mj * "2
— oty Y hiseisnE |7 Q0) @wed! (w5). (46)
2

i=—(L—1)
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Setting u = k — i, the second term of the right-hand side of the above equation can
also be written as

N
— o2cnE [Z e M (Q)k — )11y <k—uzr—1 QW)™ (w;f);]

u=1

or, using the observation that ™) (Q)(k — Wl _(L—y<k—u<ri—-1 = (TA(,A? (Q))k
’ U
(see Eq. (2.3)), as

1

@wit (wi) "\ |
@yt (w;),

— o2y E ekT Tj\(,{‘/l{)(Q)

(me;’f; (w).

We express matrix Q as Q = E(Q) + Q° and define the following N x N matrices
A{”l;mZ Bmlst 'Y‘mlva
iz 2 iy 0 T

my,my _ m )2
(A,.l,,.2 )k’j_E[(QWk),-l (wj)iz}

mip,m mi,m
(Bi]}i2 Z)k = E [Qil’liz_z(k_j)]llﬁzf(k*j)sL]

Qw;!
Qwo);)'!

v ot e | | (o e o)
Qwn);!

We notice that matrix

(Qwi );j
QO (i e o)
Qwy);/'
can also be written as
WITQT

(fl.’j”) (f{f)T (W1 ... W)

T
wh QT
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or as
wrQ” (g (f;;“)TW
Therefore,
Y = o2y E [le’@(QO) wrQ” (f;’l”) (fZ'Z)TW} (4.7)
ml my .

It is useful to notice that matrix B; is a band Toeplitz matrix whose (k, [) element
is zero if |k — I| > L. Itis clear that Eq. (4.6) is equivalent to

2

11,02 N i, 12 i, 12

Lemma 4.1 implies that matrix [IN + ochT (M) (]E(Q(z)))] is invertible for each
z € CT, and we recall that its inverse is denoted H(z). We obtain that

A2 H B2 4 Y™ 4.8)

11,02 11,02 1,02

The term E (QWW*)"*.""2 coincides with Tr (Am1 mz) so that

i1,i2 i1,i2
11,02 1,12 11,02

E (QWW*)"" = ;Tr (H B ’”2) T Tr (H Y ’”2) (4.9)

As matrix B, is Toeplitz, it holds that (see Eq. 2.4)

N-1

1

NTr(HB:’I“lzmz): Z r(H)(u)IE(Q;T"i’Zm_‘_ZM) Ti<iytu<L
u=—(N-1)

which also coincides with
L—1

T HB:"™) = H)WE (Q7: )1,

—Tr (HB];") = > tMWE Q") Li<iytu=L
u=—(L—1)

because 11<j,4u<z = 01if [u| > L. Setting v = i + u, this term can be written as
| L
ST (H B:’]”lz’”z) ->E (Q;?I’},;'"Z) T(H) (v — in)

v=1
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or, using definition (2.3), as

1

NTr ( Bj'fllzmz) ZE ( Zuvmz) (Te.L (D),
= (IE(Q’"‘ "I L)),

Equation (4.9) eventually leads to

E[(QWW*)"""] = 02E(Q™ ") Ty, L (H) + Y (H)™"™ (4.10)

where, for each N x N matrix F, Y (F) represents the ML x ML matrix defined by

Y(F)"" = Ty (F Y '”2) @.11)

11,12 11,12

(4.7) implies that matrix Y (F) can be written as
T
Y(F) = —o2cyE |:QW (715{‘? (QO)) FTW*:| (4.12)

By (1.23), it holds that (QWW*)" ™2 = §(m| = my) I, + zQ™ "2, Therefore, we
deduce from (4.10) that

EQ""™) (=2l + 0 TL L () = Lo(mi = my) — YE™"™  (413)

By Lemma 4.1, —zI; + UZTL,L (H(z)) is invertible for z € C* and we recall that its
inverse is denoted by R. We thus obtain that

EQ =Iy®R+ A 4.14)
where A is the ML x ML matrix defined by
A=-YH) (Iy ®R) (4.15)

The above evaluations also allow to obtain a similar expression of matrix E(QWGW*)
where G is a N x N matrix. For this, we express E [(QWGW*)m1 mz] as

i1,i2
E[@WewH | = Z Gi /B [@wo)] w7 ]
(k,j)=1

or equivalently as

[(QWGW* ym. ’"2] Tr (GTA”“ ’"2)

i1,i2 i1,i2
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Therefore, using (4.8), it holds that

E [(QWGW*)mI’m] = %2 Tr (GTHBml’mz) + Tr (GTHTWI””Z)

i,z i1,i2 i1.i2
Replacing matrix H by matrix G H in the above calculations, we obtain that
E[QWGW*] = 0’E(Q) (IM ® TL,L(GTH)) + Y(GTH)
Using (4.14), we eventually get that

E(QWGW*) =07 (Ly ® RT, (G"H))+0°A (Ly @ 7L (G"H))+ Y(G'H)
(4.16)

5 Controls of the Error Term A

In this section, we evaluate the behaviour of various terms depending on A, i.e.
normalized traces AﬁTrAA, quadratic forms aj Aay, and quadratic forms of matrix

A= & > M A™™ Using rough estimates based on the results of Sect.3 and the
Schwartz inequality, we establish that the normalized traces are O( ﬁv) and that two

other terms are O (,/ % ﬁ) and O(%), respectively. We first establish the following
proposition.

Proposition 5.1 Let A be a ML x ML matrix satisfying supy ||A|| < k. Then, it holds
that

1 L
—TrAA| <k — .1
'ML r _KMNC(z) (5.1

where C(z) can be written as C(z) = P1(|z]) P> ((Imz)’l)for some nice polynomials
Py and P;.

Proof As matrix R verifies |R|| < (Imz)~ ', it is sufficient to establish (5.1) when A

is replaced by Y (H). In order to simplify the notations, matrix Y (H) is denoted by Y
in this section. We denote by y the term y = MLLTrTA which is given by

1 1 my,my g my,mi
V= M Z ZZTil,iz Aiz,il

mi,m2 i1,i2

Using the expression (4.12) of matrix Y, we obtain that y can be written as
g | L M ) 5T w
y=—0’E| L Tr (737 @)) H'W*aQwW
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Using Eq.(2.6) and the identity t™ ((Q°)T) (—u) = ™ (Q°) (u), we get that
L-1 {
2 o u *
y=-2cnE| > t™Q)w) e (QWJNHTW A) (5.2)

u=—(L—-1)

(3.1,3.4) imply that & |t (Q®)(—u)|” and Var (7 Tr (QWJ%, H” WA)) are upper-

bounded by terms of the form % and Kz%f\,), respectively. The Cauchy—Schwartz
inequality thus implies immediately (5.1). O

We now evaluate the behaviour of quadratic forms of matrix A and of matrix A.

Proposition 5.2 Let a; and ay 2 ML-dimensional vectors such that supy ||a;|| < «
fori = 1,2. Then, it holds that

ajAay < «2 C(z),/££ (5.3)
= M N

foreachz € CT, where C(z) is as in Proposition 5.1. Letb;, i = 1, 2 be 2 deterministic
L-dimensional vectors such that supy ||b; || < k. Then, it holds that

* 1 u m,m
bi{ o, 2 A" )b

m=1

3/2
<2 C(z)L— (5.4)
= MN

Proof As above, it is sufficient to establish the proposition when A is replaced by Y.
We first establish (5.3). We remark that ajYa, = ML Zl%Tr('raza’l"). Using Eq. (5.2)
in the case A = aaj, we obtain that

L—-1
afYay=—0’E| D ™ (Q°)w)aiQWIyH W*a,

u=—(L—1)

(3.5, 3.1) and the Schwartz inequality lead immediately to

] o] < ® COL —— /= =2 C(2) [LL
a VMNV N MN

We now establish (5.4). We remark that

M
1 1

m=1
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Using Eq. (5.2) in the case A = Iy ® bob?, we obtain immediately that
| M
* ’
b’ (M Zl D ’") by
m=

L—1 M
1
= > E{ﬂ’”)(Q")(u)bl*(ﬁ Z(QWJ%HTW*)““)M] (5.5)

u=—(L—1) m=1

(5.4) thus appears as a direct consequence of (3.1), 3.6) and the Schwartz inequality.

O
We finally mention a useful corollary of (5.4).
Corollary 5.1 It holds that
13/2
|77 €@ - an o Rr)| = coT (5.6)

for each z € CT where C(z) can be written as C(z) = P1(|z]) P» ((Imz)*l)for some
nice polynomials Py and P;.

Taking into account Proposition 2.1, (5.6) follows immediately from (5.4) by consid-
ering the unit norm vector b = ay, (v).

6 Convergence Towards the Marcenko—Pastur Distribution

In the following, we establish that

MLLTr (EQ() — 1(2)Iyr) — 0 (6.1)

for each z € C*. (3.1) does not imply in general that A%Tr (Q(z2) —E(Q(z))) con-
verges towards 0 almost surely (this would be the case if M was of the same order
of magnitude than N“ for some « > 0). However, the reader may check using the

. . . . . o 2,
Poincaré—Nash inequality that the variance of [ﬁTr(Q (z))] is a O(W) term.
As

4

1 2
= + Var [—Tr(Qc’(Z))]

1 . 2
E [ETr(Q (z))] WL

E A%Tr(Qc’(z))

(3.1) implies that the fourth-order moment of A%Tr (Q°(z)) is alsoa O( ) term

1
(MN)?
and that ﬁTr (Q(z) — E(Q(z))) converges towards 0 almost surely. Consequently,
(6.1) allows us to prove that the eigenvalue value distribution of WW* has almost surely

the same behaviour than the Marcenko—Pastur distribution 1,2 . v AS N = cy, this
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of course establishes the almost sure convergence of the eigenvalue distribution of
Wy W;‘V towards the Marcenko—Pastur 4,2, "

In the following, we thus prove (6.1). (4.14) and Proposition 5.1 imply that for each
uniformly bounded L x L matrix A, then it holds that

1 L
—Tr[(E . | R I A] = — 2
VL r[(E(Q@) — Iy ®R(() Ay @A) =0 (MN) (6.2)
for each z € CT. We now establish that

1
ETr [y @R(z) — t()Iyr) Ay @ A)] — 0

or equivalently that

%Tr [(R(@) — 1(2)11) Al — 0 63)

for each z € CT. For this, we first mention that straightforward computations lead to
R—1I=—c'cyzt(2)i(z) RTL (HTA‘,f‘{) [E(Q) — tIML]) (6.4)
Therefore,
TTER — 1)A] = —oex 2()7() 1 TAART, . (HTP (E(Q) — )

Directapplicationof (2.7)tothecase P =M, K =L, R=L,C=EQ)—tIyz,B =
AR, and D = H implies that

1
ZTH(R =~ I)A)
- 1
= —oen 21 (@) 7= Tr [(BQ) — ) (I ® T2 1. (T, L (ARH)|
In the following, we denote by G(A) the L x L matrix defined by
G(A) =T;,1 (Tv,L (AR)H) (6.5)

Writing that E(Q) — Iy, = E(Q) — Iy ® R + Iy ® R — 17, we obtain that

1 ~ 1
7 IR - )A] = —o'ey 2t ()i (2) uL T [((E(Q) — Iy ®R) Iy ® G(A))]

—oten 21 (2)1(2) %Tr [(R — 1)G(A)] (6.6)
We now prove that
s 1Tr((R 11 )B)‘ 0( L ) (6.7)
up |(— — = —_— .
anEl L t MN
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when z belongs to a certain domain. For this, we first remark that (2.8) implies that
IGA) < [H|IR]||A]. By Lemma 4.1, it holds that |H|||R| < (Imlf‘))z Conse-
quently, we obtain that

IGMA)I < 4 Im@)? Al (6.8)

(Im(z)
This implies that for each L x L matrix A such that ||A|| < 1, then it holds that

Tr[(E(Q —Iy ®R) Iy ® G(A))]'

2
(Im(Z)) \|B\|<1

Iz

1
L T IEQ — Ly ®R)) B]

i sup

1
Tr[(R — A)GA)]| < ———
‘ T [( ) G( )]‘ ~ (Im(2))? B=<1

1
TR~ tIL)B]‘

Proposition 5.1 implies that

1 L
LT [(EQ) — Iy ® R))B]‘ =0 (—)

sup

IBj<1 MN

This and Eq. (6.6) eventually imply that

sup ! —Tr (R —tI;)B)

IBl=<1

=2 (i)

1
TR~ tIL)B)’

|z|
sup

) PR
+o7en |21(2)1(2)] (Im(z2))? |j=1

It also holds that |zt(2)f(z)] < (Imlle))z' Therefore, if z belongs to the domain

4. IzJ? 1 ;
NN GmyF < 3, We obtain that

1 L
—Tr[(R=¢tI;)B]| =0 | — 6.9
||lsalﬁ21 7 T [( L) ]’ (MN) (6.9)

This establishes (6.3) for each uniformly bounded L x L matrix A whenever
z is well chosen. Moreover, for these values of z, %Tr ((R—=1tIDA), and thus
ﬁTr (EQ(z) — t(z) Ipp)A) are O(#V) terms. A standard application of Montel’s
theorem implies that (6.3) holds on C™. This, in turn, establishes (6.1).

Remark 6.1 We have proved that for each uniformly bounded L x L matrix A, then
it holds that

1
AZTI [(EQ(z) —t(D)Im) Ay @ A)] = 0
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for each z € C™. It is easy to verify that matrix I; ® A can be replaced by any
uniformly bounded ML x ML matrix B. In effect, Proposition 5.1 implies that it is
sufficient to establish that

1
M—LTr [y ® R(z) —1(2)Iyr) B] = 0

The above term can also be written as

1 -
o [(R(z) — 1) 11) (M > B"””)}

m=1

and converges towards 0 because matrix % Znﬁle B is uniformly bounded.

7 Convergence of the Spectral Norm of 7y ; (R(z) — t(z)In)

From now on, we assume that L, M, N satisfy the following extra assumption:

Assumption 7.1 % — 0 or equivalently, % — 0.

The goal of this section is to prove Theorem 7.1 which will be used extensively in the
following.

Theorem 7.1 Under assumption 7.1, it exists 2 nice polynomials Py and P> for which

17n. L R(z) — t(2)IN)] < S[%pu lar(n)* R(z) — t(D)I)aL (v)]
vell,
L3? 1
= o PP (Im(z)) (7.1)

foreach z € CT.

Proof First step The first step consists in showing that

sup |a;(»)* (R(z) — t(2)I)aL(v)| — 0O (7.2)
vel0,1]

for each z € CT, which implies that || 7y ;. (R — tI1) || — 0 for each z € CT (see
(2.8)). We first establish that (7.2) holds for certain values of z and extend the property

to C* using Montel’s theorem. We take (6.4) as a starting point and write E(Q —# Iys)
as

EQ—-tIyr) =EQ) —Iyy @R+ Iy ® R—t1Iyz)

(6.4) can thus be rewritten as

R—11, = —o*cyzt (@) i@ RTL . (H T3] [EQ) - Ru))
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—otenzt(2) T(2)RTp,, (H Ty [R —11.]) (7.3)

Therefore, for each deterministic uniformly bounded L-dimensional vector b, then it
holds that

b* (R —tDb = —zt(2)i(2)o*cyb*RTL L (H TV EQ) — 1y ® R]) b
(7.4)
—21(2)i(2)o enb*RT, L (H Ty 1 [R —¢1]) b (7.5)

Proposition 2.1 implies that

172, (Tn.L [R— 1 H) | < |H|| [Ty, [R— 1]
< [H]l sup J]a,(v)* R — D) a.(v)|

and that

172 (B 74" [EQ — Ly @ RI) | < [H 7'} [EQ — Ly @RI

< IH] sup |a (v)* Aa, (v)|

v
where we recall that A = E(Q)—I);®R and that A = % z,ﬁle A We denote by
ap (1)* AaL(v)’.
We remark that § = O (%) (see (5.4)). We choose b = ay (u) in (7.4), evaluate the

modulus of the left-hand side of (7.4), and take the supremum over p. This immediately
leads to

and & the terms B = sup, |ay(v)* (R — D) az(v)| and § = su
Py Py

B < 12t ()T (@) |o en IRIH[S + |21 (2)(2) o ey IR||[H|| B (7.6)
Moreover, (see Lemma (4.1)), it holds that

|z|?

|2t (2)7(2)|o*en IR H] < “4CNW

(7.6) implies that if z satisfies

4 |z 1

o CNW = 5 (7.7)

then 8§ = O (%) and therefore converges towards 0. We now extend this property

on C* using Montel’s theorem. For this, we consider an integer sequence K (N)

for which % — 0 and denote for each N and 0 < k < K(N) by v,EN) the
element of [0, 1] defined by v,iN) = ﬁ We denote by ¢ (k, N) the one-to-one

correspondence between the set of integer couples (k, N), k < K(N) and the set of
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integers N defined by ¢(0,0) = 0,¢(k + 1, N) = ¢(k, N) + 1 fork < K(N) and
¢(O0, N +1) =¢(K(N), N)+ 1. Each integer n can therefore be written in a unique
way asn = ¢ (k, N) for a certain couple (k, N),0 < k < K(N). We define a sequence
of analytic functions (g, (z)),cN defined on CT by

so0m@ =2 (") R - 1@ 1 ar (") (7.8)

If z satisfies (7.7), the sequence g, (z) converges towards 0. Moreover, (g,(2)),eN 18
a normal family of C*. Consider a subsequence extracted from (g,),c7 converging
uniformly on compact subsets of C* towards an analytic function g,. As g.(z) = 0
if z satisfies (7.7), function g, is zero. This shows that all convergent subsequences
extracted from (g,),en converges towards 0, so that the whole sequence (g;),eN
converges towards 0. This immediately implies that

lim sup  [gok,M) ()| =0 (7.9)
N—+o0 0<k<K(N)

for each z € CT. For each v € [0, 1], it exists an index k, 0 < k < K(N) such that

v — v,EN)| < #(N) It is easily checked that
L(N)
HaL(v) - aL(u,iN))H —0 (L(N)|v _ v,ﬁN)|) —0 (W)) = o(1)
and that

000" R — 1@ 1 arw) —az (") R - 1@ 1 a (1)) = 0

for each z € C*. We deduce from (7.9) that (7.2) holds for each z € C* as expected.
Second step The most difficult part of the proof consists in evaluating the rate of
convergence of sup, |ar (v)*(R(z) — t(z)Iy)aL(v)|.
By (2.11), the quadratic form az (v)*(R(z) — #(z)Iy)ar (v) can also be written as

L—-1

aL(v)* R) —t(x)Iy)aL(v) = Z TR — tI)(1)e 27l
I=—(L-1)

where we recall that (R — tI)(l) = 1Tr (R —¢DJ,). In order to study more
thoroughly sup,, |az (v)*(R(z) — t(z)In)ar (v)],itis thus possible to evaluate the coef-
ficients (t(R — tI)(!));=—(1—1),...,L.—1. In the following, for a L x L matrix X, we
denote by 7 (X) the 2L — 1-dimensional vector defined by

T(X) = @X)(—(L = 1),..., T (X)L — 1)

(7.3) can be associated with a linear equation whose unknown is vector (R — ¢ I).
Writing Ty, [R — 1] as 37/ ) (R — t (), multiplying (7.3) from both
sides by J]i, and taking the normalized trace, we obtain that
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tR=—tD) =12 +DYPtR -+ (7.10)

where D© is the (2L — 1) x (2L — 1) matrix whose entries D"}, (k,[) € {—(L —
1), ..., L — 1)} are defined by

D) = ~o*eyzi() i) Tr[RT. 1 (HIF) 3]
and where matrix I' represents the first term of the right-hand side of (7.3), i.e.
I=—c'cyz1@ @R (AT [EQ ~ Ty ®RI)  (7.1D)
Equation (7.10) should be inverted, and the effect of the inversion on vector = (I")
should be analysed in order to evaluate the behaviour of || 7x, 1 (R(z) —#(z)Iy)||. The

invertibility of matrix I — D© and the control of its inverse are, however, non-trivial
and need some efforts.

In the following, we denote by @© the operator defined on CL*L by
2O (X) = —o*cnzt(2)i(z) RT, L (H Ty, [X]) (7.12)
for each L x L matrix X. Eq. (7.3) can thus be written as
R—tI;=T+®OR-11;)
We also remark that matrix I' is given by
r=o© (E(Q) - R) (7.13)
Moreover, it is clear that vector T (¢(O) (X)) can be written as

T («p ©) (X)) =D £(X) (7.14)

In order to study the properties of operator @?) and of matrix D?, we introduce the
operator @ and the corresponding (2L — 1) x (2L — 1) matrix D defined, respectively,
by

&(X) =o*cyRT L (H Zy,. [X]H*) R (7.15)

and
1
Des = oy Tr [RTL.. (HIFHY) RO ] (7.16)

for (k,l) e {—(L —1),..., L —1)}. Matrix D of course satisfies

7 (®(X)) = Dr(X) (7.17)
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Before establishing the relationships between (@, D©) and (&, D), we prove the
following proposition.

Proposition 7.1 - If X is positive definite, then matrix ® (X) is also positive definite.
Moreover, if X1 > X, then @ (X)) > @(X3).
— It exists 2 nice polynomials Py and P> and an integer N\ such that the spectral
radius p(D) of matrix D verifies p(D) < 1 for N > Ny and for each z € Ey,
where Ey is the subset of C defined by

3/2

L
Ey = [z eCT, 2y Preh Pa1/ime) < 11 (7.18)

— for N > Ni, matrix I — D is invertible for z € Ey. If we denote by f =
(f==1y, -5 fo, -, fol)T, the (2L — 1)-dimensional vector defined by

f=0-D) 't =d-D) ley (7.19)

where ey = (Q, ...,0,1,0, ...,O)T, then, for each v € [0,1], the term
IL:__I(L_I) £, e =271V is real and positive, and

L—-1

2 252
wp S getin <o (mP i)

< (7.20)
velo.11,_ 7" ) (Imz)*

for some nice constants C and 1.

Proof The first item follows immediately from the basic properties of operators
7. The starting point of the proof of item 2 consists in writing matrix E(Q) =
ﬁ ZYA,:IZI E(Q™™) as E(Q) = R + A, and in expressing the imaginary part of E(Q)

as Im (E(Q)) — Im (E(A)) + Im(R). Writing Im(R) as

*

Im(R) =

1
: =—.R(R**—R*1)R*
2i 21

and expressing R™! in terms of H, and using the same tricks for H, we eventually
obtain that

Im (IE(Q)) =Im (E(A)) +ImzRR*+ocy R7, 1 [H Tv 1 (Im (]E(Q))) H*] R*
(7.21)
In order to simplify the notations, we denote by X and Y the matrices Im (E(Q)) and

Im (E(A)) + Imz RR*, respectively. (7.21) implies that for each z € C*, then the
positive definite matrix X satisfies

X=Y+oX) (7.22)
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Iterating this relation, we obtain that for each n > 1

X=Y+> oY)+ 0" (X) (7.23)
k=1

The general idea of the proof is to recognize that matrix 7y 1 (Y) is positive definite if
z belongs to a set Ey defined by (7.18). This implies that for z € Ey, then (Pk(Y) >0
foreach k > 1. Therefore, (7.23) and @1 (X) > 0 imply that for each n, the positive
definite matrix >°7_, ®¥(Y) satisfies

Z oF(Y)<X-Y (7.24)
k=1

so that the series Z,j:f % (Y) appears to be convergent for z € Ey. As shown below,
this implies that p(D) < 1. We begin to prove that 7y 1 (Y) is positive definite on a
set Ey. O

Lemma 7.1 It exists 2 nice polynomials P| and P, a nice constant 1 and an integer
N such that
(Imz)?

32(nf + |z1%)?
for N > Ny and z € En where Ey is defined by (7.18).

In,L(Y) > (7.25)

Proof We show that it exist a nice constant ;1 > 0 and 2 nice polynomials P; and P>
such that for each v € [0, 1],

(Imz)? L3/2
16(n7 +121)?  MN

ay(vV)*Yar(v) > Pi(]z]) P>(1/Imz) (7.26)

For this, we first note that
az (V)*RR*a,(v) > |a,(v)*Ra, (0| > (a, () Tm(R)a, (v))’

As R(z) is the Stieltjes transform of a positive matrix-valued measure pg (see Lemma
4.1), it holds that

aL (V)" dpgr(M) aL(v)
A —z|?

a; (v)* Im(R)ay (v) = Imz /
R+
We claim that it exists 77 > 0 and an integer Ny such that

1
a, ()" pg ([0, mD) aL(v) > 3 (7.27)

foreachv € [0, 1]and foreach N > Nj.Ineffect,ascy — cx, it exists a nice constant
n1 for which M2 ey (10, m1]) > % for each N. We consider the sequence of analytic

@ Springer



J Theor Probab

functions (g, (2)),cn defined by (7.8). If n = ¢ (k, N), g, () is the Stieltjes transform
of measure u, defined by u, = ap (I)IEN))* IR Aar (v,EN)) — o2 ¢y - Therefore, (7.9)
implies that sequence (i,),eN converges weakly towards 0. As the Marcenko—Pastur
distribution is absolutely continuous, this leads to

. N\* ™\ _ _
Nl_l)I}"loo()gksguII()(N) )aL (vk ) g ([0, m]) ar (vk ) M2 ey ([0, mD] =0

This implies the existence of N(; € N such that

* 5
sup ar (v™) e (0.mp az (vV) > 2
0<k<K(N) 8

foreach N > N(/). As mentioned above, for each v € [0, 1], it exists an index k, 0 <

k < K(N) such that |v — v™)| < 21<1(N>' As

HaL(v) _a (U,EN)) H —0 (L(N)lv - v,EN)|) = o(1)
it is easy to check that

ar () g (0, mD ar ) — ar (") g (0, D ar () > 0

which implies the existence of an integer No > N(; for which

1
sup ar(v)* ug ([0, n1]) ap(v) > =
vel0,1] 2

for each N > Ny, as expected.
It is clear that

Map(w)*dug(d)ap(v)
A —z)?

a, (v)* Im(R)a, (v) > Imz /
0

As |h —z|> <202 + 215 < 2% + 1zI?) if & € [0, m1], it holds that

Imz

a, () ImR)a,(v) > —5——-
4(n} + 1z1»)
and that

(Imz)?

a,(v)*RR*a,(v) > —————
16(n? + |z]2)2
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for each v € [0, 1]. (5.4) implies that for each v,

ar v mAar )| < £2 pienes (—— (7.28)
- MN Imz

for some nice polynomials Py and P,, which, in turn, leads to (7.26). If we denote

3
by Ey the subset of C* defined by % P1(|z|)Pz(ﬁ) < %16(212“1%, then Y =
. p

Im(A) + Imz RR* verifies

(Imz)?

_— 7.29)
32(n3 + |z])? (

inf az(v)*Yar(v) >
vel0,1]

foreachz € Ey. As

L—1

a(*Ya )= > t(Y)De "

I=—(L—1)

we obtain that

L—1

inf Z T(Y)(De 2™ >

(Imz)3
32(n} + |z]2)?

for z € Ey. If we denote a(z) = (ImZ)32)2, this implies that (z(Y)({/)

327 +1zl

—ad(l =0)) IL;_l( L-1) coincide with Fourier coefficients of a positive function. There-
fore, matrix 7y 1,(Y) — ol is positive definite (see [18], 1.11 (a)), which implies that
(7.25) holds. Lemma 7.1 follows from the observation that the set E can be written
as (7.18) for some other pair of nice polynomials Py, P;. O

We now complete the proof of item 2 of Proposition (7.1). We establish that for N
fixed and large enough and z € Ey, then for each L-dimensional vector b, D"b — 0
when n — +o00, a property equivalent to p(D) < 1. We emphasize that in the
forthcoming analysis, N and, therefore, L are assumed to be fixed parameters. As
matrix 7y 1,(Y) > a(z)Iy > Oonthe set Ey for N large enough, (7.24) is valid there.
This implies that the positive definite matrix-valued series Zj;xf @"(Y) is convergent,
in the sense that for each unit norm L-dimensional vector u, then Z:ﬁ? P (Y)u <
+o00. Using the polarization identity, we obtain that the series Z:{;Xl’ uj®" (Y)uy is
convergent for each pair of unit norm vectors (uy, up). This implies that each entry of
@"(Y) converges towards O when n — +o00 and that the same property holds true for
each component of vector 7 (@"(Y)). This vector of course coincides with D"z (Y).
We have thus shown that D" 7(Y) — 0 when n — +00. We now establish that this
property holds, not only for vector 7 (Y), but also for each (2L — 1)-dimensional vector.
We consider any positive hermitian L x L matrix Z such that 7y 1 (Y) — 7y 1 (Z) > 0.
Then, it is clear that for each n > 1,0 < @"(Z) < ®"(Y) and that the series
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2311 @"(Z) is convergent. As above, this implies that D" 7 (Z) — 0 whenn — +o0.

If now Z is any positive hermitian matrix, it holds that 0 < 7y f, (%Z) <7Ty..(Y)
because Ty 7. (Z) < | Tw...(Z)|1 < ||Z|| L. This implies that D" (% r(Z)) -0,
or equivalently that D" t(Z) — 0 for each positive hermitian matrix Z. This property
holds in particular for positive rank one matrices hh*, and thus for linear combination
(with complex coefficients) of such matrices, and in particular for hermitian (non-
necessarily positive) matrices. We now consider any L x L matrix B. It can be written
as B = Re(B) +i Im(B), i.e. as a linear combination of hermitian matrices. Therefore,
it holds that D"7(B) — 0 for any L x L matrix. The conclusion follows from the
obvious observation that any (2L — 1)-dimensional vector b can be writtenasb = 7(B)
for some L x L matrix B. This completes the proof of item 2 of Proposition (7.1).

We finally establish item 3. We assume that z € E and that N is large enough. We
first remark that as 7y 1,(Y) > «(z)Iy, then, for each n > 1, it holds that " (Y) >
a(z) @™ (I). We also note that @ (I) > 0 for each n which implies that

a ()" @"(Y)aL(v) = a(z)a,(v)* @"(Ha,(v) >0

for each v. We also remark that this inequality also holds for n = 0 (see (7.29)). We
recall that for each L x L matrix B, then

L-1

a,(v)*Bay(v) = Z T(B)(D)e 27 (7.30)
I=—(L—1)

Using this identity for B = @"(Y) and B = @”(I) and using that T(I) = ey, we
obtain that

L—1 L—1

Z (DnT(Y)) (1)6721'7111) 2 a(Z) Z (Dneo) (l)efb'nlv > 0

I=—(L-1) I=—(L—-1)
As (I-D)~! =3 D", we finally obtain that

L—1

L—1

. 1 .

O < Z fleleﬂlv S - Z ((I _ D)*lr(Y)) (l)eleﬂlv
I=—(L—1) (z) I=—(L—1)

The conclusion follows from the observation that 7(X) = 7(Y) + D 7(X) and that
7(X) = (I — D)~ ! 7(Y). Therefore,

L—1

> ((1 — D)_lr(Y)) (1)e~2imlv

I=—(L—1)

coincides with ay (v)* Xay (v), a term which is upperbounded by ﬁ on C™.
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We now make the appropriate connections between (@9, D) and (@, D) and
establish the following Proposition.

Proposition 7.2 If N is large enough and if z belongs to the set En defined by (7.18),
matrix I — DO js invertible, and for each matrix L x L matrix X, it holds that

L—1

sup [ S ((I—D(O))_lr(X)) ()e=2imlv

velo] |- 570 )

L—-1
Ty (X 1 ‘
< I N,L( ) _ + Z fle_zlﬂlv (7.31)
2 1— 0'4CN|ZI(Z)I(Z)|2 I=—(L—1)

Proof We first establish by induction that

(2©)" ) (29)" X)) <170 X (ctenlr@i@F)" @@ (732

for each n > 1. We first verify that (7.32) holds for n = 1. Using Proposition (2.3),
we obtain that

To.0 (HTy, . (X)) [T, (HTy, . X)]" < 71,0 (HTZy, LX) Ty, (X)*H*)
Remarking that Ty 1 (X) 7y, 1.(X)* < | Ty L (X) |21, we get that
To. (HTy . (X)) T2, (HZy . X)]* < 17w, 0 XO11? 71, (HH*)

This and the identity ®(I) = o*cyR7z ; (HH*)R* imply immediately (7.32) for
n = 1. We assume that (7.32) holds until integer n — 1. By Proposition 2.3, we get

that
(e”)" 0 ((¢)"c0)

< ‘U4CNZI(Z)I~(Z)‘2 R7..1 |:HTN,L ((‘P(O))n_l (X))

x (TN,L ((<z><°>)"_1 (X))) H} S (1:33)

Using again Proposition (2.3), we obtain that

o) (1 )
<Tws ((cb“”)"_1 X) [(rb“’))"_1 (X)} )
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(7.32) for integer n — 1 yields to

(+) 0 (o) @)
= T O @ en)™! |21 (2)7(@) 'Ry, (H"~ (DH") R*

(7.32) for integer n directly follows from @”(I) = o*cy R7n.1 (th"_l (I)H*) R*.
O

We now prove that if z € Ey defined by (7.18) and if N is large enough, then,
for each (2L — 1)-dimensional vector x, it holds that (D®)" x — 0, a condition
which is equivalent to p(D®) < 1. For this, we observe that each vector X can
be written as x = t(X) for some L x L matrix X. The entries of Toeplitz matrix

1.1 <(¢(0) )n (X)) are the components of vector (D(O))” 7(X). Therefore, condition
(D(O))" x — 0 is equivalent to || 77 (((1)(0))" (X)) | = 0. We now prove that

(@)
sup lap(v)" (@ X)yar(v)| > 0
vel0,1]

a condition which implies |77 1 ((45(0))” (X)) I = 0 by Proposition 2.1 and thus
that ,o(D(O)) < 1. It is clear that

a0 ()" a0 = a0 (20)" ) ((20)" X)) a0y (734

Inequality (7.32) implies that

a )’ (2©)" 0 ((29)" %) arw

- n
< ITv X2 (oen 12t @F@P) ar () @ MaL () (7.35)
By (1.31), it exists 2 nice constants C and 1 > 0 such that

(n* + |z1%)?

4 ~ 2 _
oten [ @I@ = 1= C=rs

(7.36)

for N large enough. Moreover, it has been shown before that each entry of matrix
@" (I) converges towards 0, which implies that sup,c(o 1; aL(v)*@"(Da.(v) — 0
(we recall that L is assumed fixed in the present analysis). Therefore,

sup az (v)* (:p(O))" (X) ((¢(°>)" (X))* a,(v) — 0

vel0,1]
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which implies that |77, ((dﬁ(o))n (X)) | and (D©@)" 7(X) converge towards 0. We
have thus established that p(D©) < 1 and that matrix I — D© is invertible
We finally establish Eq.(7.31). Using (I — D@)~! = 3% (D©)" and

L-1

> (0O r0) @e ™ =a w7 (00) XaL o)
I=—(L-1)

we first remark that

L—1

1 ) +o00
D ((1_D<°>) t(X)) e <3 la* (2©) 0a, )
I=—(L—1) n=0
Inequalities (7.34, 7.35) imply that

a7 (20)" XaL )| = >

l=—(L—1)

((D“”)" T(X)) (1) e =27y

is less than [|Zy,. (X)| (o*cy |2t (2)7(2)[?) "2 (ap (v)*®"(Dar (v)) /2. Using the
inequality |ab| < %, we obtain that

2L ()" a, )|
< w [(o%en 121 I@P)" +a,0) @ DaL )]

Summing over n eventually leads to (7.32).

We are now in position to establish the main result of this section, which, eventually,
implies (7.1).

Proposition 7.3 It exists 2 nice polynomials P and P, for which

32

L~ 1
Sup] laL(1)* RG:) — 1) 1) ap(v)| < — ~ Przh P (I @ )) (7.37)

for N large enough and for each 7 € CT

Proof Werecall thata; (vV)* (R(z) — t(z) I) ar (v) coincides with ZIL—_I(L TR

tI)(H)e= %7V (see (2.11)) and recall that by Eq. (7.3), vector 7(R — 7I) satisfies the
equation

tR—D) =7T)+DP¢R —1I)

@ Springer



J Theor Probab

where matrix I' is defined by (7.11). Proposition 7.1 and Proposition 7.2 used in the
case X = I' as well as (7.36) imply that for N large and z € Ey, it holds that

L—1 '
Z (R — (e 2™ < C

I=—(L—1)

(1212 + 1)’

Im() I Zn, (D)l (7.38)

for some nice constant C and for o = max(n, n1). It is clear that

||TN,L(F>||5P1<|z|>P2( )HT(M)(E(Q) Rip| (739

Im(z)

Corollary 5.1 thus implies that (7.37) holds for N large enough and z € E. It remains
to establish that (7 37) also holds on the complementary E, of E . For this, we remark

that on ES,, 1< Py (2] P, (Im]w) A SUp, cjo. 1 () (R(2) — £(2) 1) ar (v)]

+
< Im( 5 on C™, we obtain that

R | LoLe !
* _ < —
v:{%{fﬂ laL ()" R(2) —1(x) 1) aL(v)| < Im(z) MN Pi(lz]) P2 (I @ ))

for z € E§,. This, in turn, shows that (7.37) holds for N large enough and for each
zeCt. O

Remark 7.1 We note that this property also implies that any quadratic form of R —¢1
converges towards 0 at rate A;]/\; Using the polarization identity, it is sufficient to prove
thatb* (R —tI)bisa 0( TN ) term for each uniformly bounded deterministic vector

b. We consider Egs. (7.4, 7.5) and note that the right-hand side of (7.4) and (7.5) are
bounded, up to constant terms depending on z (and not on the dimensions L, M, N)

by 1757 [E(Q) — Ry/11| and [| Ty, (R — ¢ T) ||, respectively.

8 Proof of (1.18)

The purpose of this section is to establish the identity (1.18). For this, we have
essentially to control the term %Tr (R —tI). More precisely, we prove the follow-
ing proposition.

Proposition 8.1 It exists nice polynomials Py and P> such that

sup lTr [((R—1tIp)A]

L
— Pi(2) Pr(1/1 8.1
up, = 3 P1@ P2(1/Imz) (CRY

foreach z € Fj(\,3/2) where FZE,B/z) is a subset of C* defined by
3/ L3/2
Fy? = [z €T s 01()02(1/Im2) < 1] (8.2)
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for some nice polynomials Q1 and Q».
Proof Inthe following, we denote by 8(A) the term %Tr [(R — tI1)A]. We write (6.6)
as
1 -
zTr [(R —I)A] = —o*cnzt (2)i(2) 3 Tr [(E(Q) — Iy ® R) (Iyy ® G(A))]
—otenz1(2)i(2) £Tr (R — DTz 1 [(Tw, L (AR)) H])
(8.3)

We denote by €(A) the first term of the right-hand side of (8.3). (6.8) and Proposition
5.1 imply that supja|<i le(A] < A%\,Pl (|z]) P2(1/Imz) for some nice polynomials P;
and P». In order to evaluate the contribution of the second term of the right-hand side
of (8.3), we remark that matrices R(z) and H(z) should be “close” from #(z)I; and
—z1(z) Iy, respectively. It is thus appropriate to rewrite (8.3) as

LT (R = 1DA) = —21 ()i )o%en ——Tr[(BQ — Ty ® R) Iy @ G(A)]
L ML
- 1
+ (2t (2)(z)) 0%y L Tr [R—1DT; 1 (Tn,L(A))]
- 1
+ (2 (@)t (2o en TTr (R =D Ty [AR = 1D]) ]
—2(t(2) i (z)o ey %Tr [R—tD T (Tn(AH+zi(2) D) )]
- 1 -
— 2t ()i () en T [R—D T (Tvr [AR = DI H A2 D)] 84

We denote by o1(A), aa(A), az(A), and a4 (A) the second, third, fourth, and fifth
terms of the right-hand side of the above equation, respectively. O

We first study the term o (A). We first recall that for each z € C* and N large
enough, it holds that

) (Imz)*
04CN|Zt(Z)t(Z)|2 <1-C W

where C and 7 are nice constants (see Eq. (1.31)). Moreover, for each A, [|A| < 1, it
is clear that

< sup [BB)| 17, (Tn.L(A) | < sup [B(B)]

1
TR =T (Ty . (W)]
IBlI<1 IBI=1

because || 7.1 (TN,L(A)) | < IA|l <1 (see Proposition 2.1). This shows that

sup a1 (A)] < (l—cﬂ) sup |B(Al
A<l ! - M+ 12112 ) jap=1
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We now evaluate the behaviour of a,(A). We first use (2.7) to obtain that
- 1
0 (A) = (i)t (2)o ey ZTr[AR—1DT . (Ty LR —1D)]

We remark that for each matrix A, |A| < 1, it holds that

1
T [R—1DT; 1 (Tn.LR—1D) A]| < HIS%LMIPI B®B) ATy, R — 1D

(7.1) implies that

L3/2
sup |a2(A)| < sup B(A) —— Pi(|z]) P»(1/Imz)
INES! INES! MN

for each z € C*. The terms «3(A) and a4(A) can be handled similarly by writing
H + zi(z)I as

H+ 27()1 = 0 cyzi(z) HT)') (BQ) — Ty ® R) + 0%cyzi(z) HTy,L (R — 1 1)

In particular, it can be shown that for i = 3, 4 and N large enough, it holds that

32

(A A)— P Py(1/1
uzﬂgl i (A)| < Hztﬁglﬂ( ) VN 1(|z]) P»(1/Imz)

Therefore, it holds that

sup [B(A)| = sup [e(A)]
lAl<1 lAl<1

(Imz)* 1,3/2
- ||il|751ﬁ(A) [(1 -C i+ |z|2)2) T UN Pl(|Z|)P2(1/Imz):|

We define the set F' [(\,3/ ) as

13/2 (Imz)*
(3/2) + —_—
FO/ = C", — Pi(lz]) P2(1/Imz) < C/2

which can also be written as

3/2) L2
Fy'o = IZE((:+7WQ1(|Z|)Q2(1/IIHZ)§ 1]
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(3/2)

for some nice polynomials Q1 and Q5. Then, it is clear that for each z € Fy;'™, then

it holds that

(n* + 1z»)? L
A 2/C ———— A —P Pry(1/1
”Z‘J&'ﬁ( ) <2/ G ”Aliglld )| = 5 PrlzD Pa(1/Imz)

for some nice polynomials P; and P,. This completes the proof of Proposition 8.1.
We conclude this section by the corollary:

Corollary 8.1 The mathematical expectation of the Stieltjes transform MLLTr(Q(z))
of the empirical eigenvalue distribution of WW* can be written for z € CT as

E [MiLTr (Q(z))} = 1@ + Q) 8.5)
where 7 (z) is holomorphic in CT and satisfies
1
IF@| = PilzD P> (—Im(z)) (8.6)

for each z € F'® defined by (8.2).
Proof In order to establish (8.5), we have to prove that

1 L
< Pi(zD P> (m) VN

forz € F]E,3/2). E(Q(z)) — t(z)I can be written as

A%Tr (EQ@)) — 1(z)

EQ(2) — 1)y = A@) + Iy @ R(2) — 1(2) Inz

Therefore, Proposition 5.1 implies that we have just to verify that

1
= Pi(|zD P> (I @ ))

, a consequence of Proposition 8.1. O

L
| Tr(R — 1)

forz € F}g/z)

9 Expansion of 37 ’Ii' (EQnN () — tn(z)

Notations and definitions used in section 9. In order to simplify the exposition of the
results presented in this section, we define the following simplified notations:
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— Let (Bn)n>1 be asequence depending on N. A term ¢ (z) depending on N defined
for z € C* will be said to be a O(By) term if it exists 2 nice polynomials P; and
P> such that

lpn (2)| < Bw P1(|z]) P2(1/Imz)

for N large enough and for each z belonging to a set defined as F' 1(\,2), but possibly
with other nice polynomials.

— Cn(z,uy, ..., u;) will represent a generic term depending on N, z and on indices
u, ... ux € {(=(L=1),..., L—1},andsatisfyingsup,, . |Cn((z,u1, ..., ug)l
= O(1) in the sense of the above definition of operator O(.). Very often, we will not
mention the dependency of Cy(z, uy, ..., ux) w.r.t. N and z and use the notation
C(uy, ..., uy).

— By areal distribution, we mean a real-valued continuous (in an appropriate sense)
linear form D defined on the space C2°(RR) of all real-valued compactly supported
smooth functions defined on R. Such a distribution can of course be extended
to complex-valued smooth functions defined on R by setting (D, ¢1 + i¢o) =
(D, ¢1) +1i(D, ¢2) for ¢1, ¢ € CZ°(R). We also recall that a compactly supported
distribution D can be extended to a continuous linear form to the space C;°(R) of
all bounded smooth functions. In particular, (D, 1) represents (D, ¢) where ¢ is
any function of C°(RR) that is equal to 1 on the support of D.

From now on, we assume that L satisfies the condition

2
L = O(NY), where o < 3 9.1)
which implies that
L? . L
— =0, ie.——0 9.2)
MN M?

The goal of this section is to establish the following theorem.

Theorem 9.1 Under (9.1), A%‘Tr (EQn(2))) — tn(2) can be expanded as

1 L (. L3/2
ATLTr EQNE@)) — ty@) = AN (SN(Z) + VN FN(Z)) 9.3)

where Sy (z) coincides with the Stieltjes transform of a distribution Dy whose support
is included into S/(\(,)) = [02(1 — Jen)?, 02(1 + Jen)?] and which verifies (Dy, 1),
and where [ry(2)| < Py (|z|)Pz(ﬁZ) when z belongs to a set FIE,Z) defined by

L2

2) +

Fy =1z€CT, mQNIZI)Qz(l/ImZ) = 1} 9.4
for some nice polynomials Q1 and Q5.
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As shown below in Sect. 10, (9.3) provides the desired almost sure location of the
eigenvalues of WNW;;,. In order to establish (9.3), we express A%Tr EQnN () —
tn(z) as

1 1 1
AZTr EQNER)) — itnv() = ATLTrAN(z) + ZTr Ry () — tn() D)

and study the 2 terms separately. We first establish that if (9.1) holds, then

LAy = £ Ly 95
L N(@) = MNSN(Z)+ (MN) rN(2) 9.5)

where sy (z) is the Stieltjes transform of a distribution whose support is included in
S](\?), and where

lrn ()] = P1(|z]) P2(1/Imz)

for some nice polynomials Py and P, and forz € F 1(\,2 ). Using Theorem 7.1, (9.3) will
follow easily from (9.5).

The proof of (9.5) is quite demanding. It needs to establish a number of intermediate
results that are presented in Sect. 9.2 and used in Sect.9.3.

9.1 Useful Results Concerning the Stieltjes Transforms of Compactly
Supported Distributions

Before establishing (9.5), we need to recall some results concerning the Stieltjes trans-
form of compactly supported real distributions and to establish that the so-called
Hellfer—Sjostrand formula, valid for probability measures, can be generalized to com-
pactly supported distributions.

The following useful result was used in [29], Theorem 5.4, and Lemma 5.6 (see
also Theorem 4.3 in [11]).

Lemma 9.1 If D is a real distribution with compact support Supp(D), its Stieltjes
transform s(2) is defined for each z € C — Supp(D) by

1

s(z) = (D, g

).

Then, s is analytic on C — Supp(D) and verifies the following properties:

= (@)s(z) = 0if [z] = +o0
— It exists a compact KC C R containing Supp(D) such that
- (b)s(z*) = (s(2)* foreachz €e C— I
— (c) It exists an integer ng and a constant C such that for each z € C — K,

1
Is(z)| < C Max (W, 1) 9.6)
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— If ¢ is an element of CZ°(R), then the following inversion formula holds

1

— lim /¢>(A) Im(s(A 4+ iy))dr = (D, ¢) 9.7
T y—>0t

— Iflim;| = 400 125 (2)| = 0, then it holds that

(D, 1) =0 (9.8)

Conversely, if IKC is a compact subset of R, and if s(z) is a function analytic on C — K
satisfying (a), (b), (c), then s(z) is the Stieltjes transform of a compactly supported
real distribution D such that Supp(D) C K. In this case, Supp(D) is the set of singular
points of s(z).

Remark 9.1 — We note that (9.6) of course implies that

1 1
Is(z)| < C Max (W, 1) <C (1 + m) 9.9

foreach z € C — R.

— We have chosen to present Lemma 9.1 as it is stated in [29]. However, we mention
that (b) and (c) hold for each compact subset /C of R containing Supp(D). ng does
not depend on the compact K and is related to the order of D. However, the constant
C does depend on /.

We now provide a useful example of such functions s(z).

Lemma 9.2 If p > 1, then function sy (z) defined by

1

(1—ay o*en(zin () in(2))?)"

sy (2) = (tn ()P (zin (2))?

forlan| < 1 coincides with the Stieltjes transform of a real bounded distribution Dy
whose support is included in Sy for each integer ¢ > 0 and n > 0. Moreover, Dy
satisfies (9.8) as soon as p > 2.

Proof 1t is clear that sy (z*) = (sy(2))* and that sy (z) — 0 if |z] — +o0 because
p > 1 and that zf(z) — —1. We use Lemma 1.1 to manage the term

1

(1—ay o*en(zin () in())?)"

and use that |ty (2)] < for z € C — Sy. We also remark that

1
dist(z,Sn)

~ Z
2N (2) = N /SN r—z ditg2 oy (A) = (1 —cn)
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or equivalently that
i (2) / ay ) -1
= C — —
2UN(Z N 5y —2 Ho2 ey

Therefore,

I+ ———— ey
lztn(2)] = C ( + dist(z,SN)) =C max( " dist(z, SN))

for each z € C — Sy. Moreover, it holds that zs(z) — 0 if |z] — 00 as soon as
p=>2. O

We now briefly justify that the Hellfer—Sjostrand formula can be generalized to
compactly supported distributions. In order to introduce this formula, used in the
context of large random matrices in [2,3] and [26], we have to define some notations.
x is a function of C2°(IR) with support [—1, 1], which is equal to 1 in a neighbourhood
of 0. If ¢(x) € CX(R), we denote by ¢, the function of Ccx (R2, C) defined for
z=x+iyby

Fr(2) = qu(”()(” X

Function 3¢, is the “derivative”

A () Li A (2)
dx

AP (2) = oy

and is given by

3 = o+ (0 O ©9.10)
in the neighbourhood of 0 in which x (y) = 1. If s(z) is the Stieltjes transform of a
probability measure u, s(z) verifies |s(z)| < ﬁ on C*. Therefore, (9.10) implies
that if k > 1, then function 8¢, (z) s(z) is well defined near the real axis. The Hellfer—
Sjostrand allows us to reconstruct f ¢(A)du(r) as:

1 —_
/¢(?») dp@) = —Re (/<c+ 3¢k(Z)S(Z)dxdy) .11

The following Lemma extends formula (9.11) to real compactly supported distribu-
tions.

Lemma 9.3 We consider a compactly supported distribution D and s(z) is Stieltjes
transform. Then, if k is greater than the index ng defined by (9.9), then ¢ (z) s(z) is
well defined near the real axis, and

(D, ¢) = ! Re (/ 3y (2) 5(2) dxdy) 9.12)
by Cc+
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Sketch of proof. 1tis clear that 8$k (z) s(z) is well defined near the real axis. Therefore,
the integral at the right-hand side of (9.12) exists. By linearity, it is sufficient to establish

(9.12) if D coincides with a derivative of a Dirac distribution D = § i‘g ) forp <ng—1,
ie.s(z) = W. Using the integration by parts formula and the analyticity of s(z)
on CT, we obtain that

! Re (/ 3 (2) 5(2) dxdy) = lim 1 Re (—i/ Op(x +i€)s(x + ie)dx)
T C+ e~>07 R

(D, ¢) is of course equal to
(D, ¢) = (=D (835, ¢

As the Hellfer—Sjostrand formula is valid for measure §,,, and that the Stieltjes trans-
form of §;,, is ﬁ, it holds that

1 — 1
() 1 o . . -
(92, ) _elgﬂ)rr Re( z/R(qﬁ(P))k (x +ie€) A — (x +ie) dx)

It is clear that (¢(P))k (x +ie) = %Ek (x + i€). Therefore, the integration by parts
leads to

S 1 _ 1
» ) = (—1)P SO
/R (¢ ! )k e s i =D /R(b"(ﬁle) Go—Cetienrt &

from which (9.12) follows immediately. O

9.2 Some Useful Evaluations
Equations (4.15) and (5.2) imply that ﬁTr (A(z)) is given by

L—1
1 °
i“ A@)=o’cy > E (I(M)(Q")(ll)ﬁTr (QWrH' W 1y @ R)) )
hi=—(L-1)

In order to establish (9.5), it is necessary to evaluate the right-hand side of the above
equation up to O( ﬁv)z terms using the integration by parts formula. If we denote by
k@ (11, 1) the term defined by k@ (1, 1) = E (™) (Q°) (1))t ™) (Q°) (1)), then we
establish in the following that
1 L—1
A =@en)? 3 kDb

l1.Lh=—(L-1)

xE [iTr (QWJ%HTW* (IM ® ngTL,L(H];‘VllH)R))]
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L-1

—©%en)? D kP b

I, h=—(L-1)
< 5| L Tr (QWIH Sy B W1y © R)
VL vH Iy
4 L—-1

1 , :
Vin 2 E[E“ (Q(IM ®J)Qy ® J})QWI H W*

+ MLN
Iy, i=—(L—1)

x (ly ® 0*RTy, L (HIY'H)R) |

otey L—1 1 ; | e
iy lg(; E [m“ (QUu © 3)QUy ® JHQWI BT I H W' 1y @ R)}
L—1)
+(OZCN)2 Z ]EI:.[(M)(QO)(ZI),[(M)(QO)(IZ)
l1,Lb=—(L-1)

x ﬁTr (QWJ%HTW* (IM ® aZRTL,L(HJ*N"H)R))O]

L-1
GCIEDY E[r<M>(Q")(ll)rW)(Q")(zz)iTr(QWJ%HTJé‘VHTW*aM®R>)]
Iy, b=—(L-1)

(9.13)

We evaluate in closed form the third and the fourth term of the right-hand side of (9.13)
up to O(A%V)z, prove that k @ (uy, ur) = A%\,C(Z, u)s(uy+ur =0) + O(W), and
establish that the 2 last terms of (9.13) are O(ﬁv)z. In Paragraph 9.2.1, we calculate
useful quantities similar to the third and the fourth term of the right-hand side of (9.13),

and in Paragraph 9.2.2, we evaluate Pas (uy, uz).

9.2.1 Evaluation of the Third and Fourth Terms of the Right-Hand Side of (9.13)

We first state 2 technical Lemmas.

Lemma 9.4 We consider uniformly bounded ML x ML matrices (C*)s=1,.. , and A,
and a uniformly bounded N x N matrix G. Then, for each p > 2, it holds that

1 r s\ ° b 1
1 r S * ° P 1
E [En ((IT_,QC")WGW*A) ] _0o (W) ©.15)

Proof We just provide a sketch of proof. We first establish (9.14) and (9.15) by induc-
tion for even integers p = 2¢q. For ¢ = 1, we use the Poincaré—Nash inequality, and
for g > 1, we take benefit of the identity
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Elx|% = |]E(x")|2 + Var(x?)

and of the Poincaré—Nash inequality. We obtain (9.14) and (9.15) for odd integers
using the Schwartz inequality. O

We now evaluate the expectation of normalized traces of matrices suchas IT,_; QC*.
Proposition 9.1 is used in the sequel in the case » = 2 and r = 3.

Proposition 9.1 For each ML x ML deterministic uniformly bounded matrices
(C%)s=1....r+1 and A, it holds that

1 r+l1 s _ 1 r X} r+1
E (—Tr (m+iec )) (MTr [(n‘_ch )Ly ® R)C )])
+(’)( )—l—cr CNZ Z |: ( QCS)Q(IM®JiL))i|
s=1i=—(L-1)
1 §— N i * r
x E [ATLTr (=} QcHQWI, BT WLy & R)C “)] (9.16)
and that
1 3 *
E [ETr ((I_,QCHHQWGW A)}
Y [I‘I’ QC*(Iy ® 0”RT; (GTH))A] +o(L
A VY77 M Lb MN

r L-1
2 1 , s ;
+o%ey SZ;Z-:%:DE [En (1m_QcHQay @ JL))}
< [ﬁTf(nf;fQCS)QWJ’}VHTW*(IM ® ozRTL,L(GTH))A]

ey Y [—Tr((n Q@)(Q(IM@J"L))]

s=1i=—(L—1)
WE| LT ((HX’IQC‘Y)QWJi HTGW*A) 9.17)
ML =1 N

The proof of this result is similar to the proof of (4.14) and (4.16), but is of
course more tedious. To establish (9.16) and (9.17), it is sufficient to evaluate matrix

E [HE:lQZS,}Zs QWGW*:| using the integration by parts formula for each multi-

indices (l/l, R l;) and (n/l, R n/,). A proof is provided in [23].
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We now use Proposition 9.1 to study the behaviour of certain useful terms. For this,
it is first necessary to give the following lemma. If A is a matrix, |||A]||s is defined
as

[l|A[lloo = sup > 1A
i .
J

Lemma 9.5 We consider the 2L — 1) x (2L — 1) diagonal matrix D(z) =
Diag(d(—(L — 1),z2),...,d(0),...,d(L — 1,z) where for each | € Z,d(,z) is
defined as

d(l,2) = oen (21 F@)* (1 = 1I/L)+ (1 = 1l/N)+ (9.18)

We consider a 2L — 1) x (2L — 1) deterministic matrix Y whose entries
(k1) —(L—1)<k,i<L—1 depend on z, L, M, N and satisfy

L 1
€kl < mPl(|Z|)Pz (m) (9.19)

for some nice polynomials Py and P, for each z € CT. Then, for each z belonging to
a set En defined by

2
Ey={zeCT, L_Q1(|Z|)Q2 ! <1 (9.20)
MN Im(z)

for some nice polynomials Q1, Q2, matrix (1 — (D + Y)) is invertible and for each
L, M, N, and for each 7 € Ey, it holds that

2 4 (2122
sup 10— 4+ ) [floo < ¢

L.M.N (Im(z))* ©21)

Jfor some nice constants n and C.
Proof 1t is well known (see, e.g. [20], Corollary 6.1.6 p. 390) that
p(D+T) < |[D+ Y[loo

Therefore, we obtain that

i 12 1
PO+ ) < olenlzt@ i@ + o Pizh P (Im(z))

As oten|zt(@ i@ <1 -C (;Izriﬁi)lgjz for some nice constants C and n (see Eq.
1.31)), we get that

C (Im(z)*
PO+ <= e
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if z satisfies

Am@)* _ L? b ( )> ¢ _(m@)*
@+ 122 mN T Im@)) T 2 7 £ )2

a condition that can be written as z € Ey for well chosen nice polynomials Q1, Q».
We note that a similar result holds for p(|D| + | Y|) where for any matrix A, |A] is the
matrix defined by (JAl); j = |A|; ;. This implies that for z € E, matricesI - D — Y
and I — |D| — |Y| are invertible and that I — D — YY)~ = :;’B(D + Y)" and
I- D= YD~ L= j;’f)(IDI +1Y])". We note that foreach &, [, | (D + Y)"); ;| <
((D] + D™ ;- Therefore,

‘((I -b- T)_l)k,z

-1
< (a=mwi-p) 9.22)

We denote by 1 the 2L — 1 dimensional vector with all components equal to 1, and by b
the vectorb = (I — |D| — |Y|) 1.Itisclearthatforeach! € {—(L—1),..., L—1},b;
is equal to

b= 1—oteylzt @ i@ A~ 1/L)A = I/N) = D leril
k

C _(Im(2)*
2 (P +1z)?

which is greater than = if z € En. Therefore, for each [, for z € Ey, it holds

that

_ C (Im(2)* _
1=;<I—|D|—nr|>,,k1 be> 2o 2+|Z|2)ZZ<I—|D| 1T ¢

which implies that

- 2 i +1z)?
I-(D|+ Y ! < =—-
[ @T—= DI+ 10D [lloo C m@)?*
(9.21) follows immediately from (9.22). O

We now introduce w (u1, us, z) defined for —(L — 1) <u; < (L —1)fori =1,2
by

1
oy, uz,2) = o Tr (QUy ®JHQUy ®J7)) (9.23)
and prove the following result.

Proposition 9.2 E(w(u1, uz, z)) can be expressed as
L
E(w(uy,uz,z)) = 8(u; +u2—0)w(u1,z)+0(MN) (9.24)
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for each z € En where Ey is defined by (9.20), and where w(u1, 7) is defined by

(1 = lurl/L) (2)
1 —oen(zt(2) 1(2)2(1 — |url/L)(A — |ui|/N)

oy, z) =
Proof We use (9.16) forr = 1, C! = (Iyy ® J7"), C* = (Iy ® J}?). Using that

1 1 2\) | 1 2
E (ﬁTr (QC (Iy ® R)C )) = o Tr ((IM @ R)C'(Iyy ® R)C ))

~ (i)

we obtain that

1
E(w(uy, u2)) = ZTr (RJ;'RJ?)

L—1

1 i * u .
+olcy '——%:—1)}3 (M—LTr (QWJNHTW (Iy ® RJLZ)) E(w(u1, i)

L
+0 (Wv) (9.25)

For each u fixed, this equation can be interpreted as a linear system whose unknowns
are the (E(w(u1, u2))),,=—(L—1),.....—1- (4.16) implies that

1 T o2 . L
E (M—LTr(QWJ’NH W dy ® RJLI"2 ) = TTrR’TL’L(HJ’;fH)RJﬁ2 + 0 (W\/)

Moreover, we check that up to a O (ﬁv) term, matrices R and H can be replaced
into the right-hand side of the above equation by #(z)I; and —z#(z)I;, respectively.
In other words,

1 - ()2 ‘
. (ML_Tr(QWJlNHTW*(IM ® R ) =@ LT (TLL0P)IY)
oL —sq 2 N2 L)1 N +0 (=
N (m)_ (i —u2) 0% (2t (@) F(2)2(L = lual/L)(1 = |z /N) + (MN)

We write R7; ; (HJYH) RJ}? as

RT; ; (HJ’;} H) RJ = (R— 7T, (HJj‘V" H) RJ"
YT ((H + sz)J*N"H) RJ — 2177 | (J;‘V" (H+ zfl)) RJ“

+ 1) T (JV) R = (DI + 2D T () I
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The terms 7 Tr (R — t D7, ;. (HYyH) RJ}?) and 1 Tr (72 (J3) (R — 1 DJ}?) are
@ (I\%V) by Proposition 8.1. We just study the term %Tr (t TL.L ((H + ZfI)J"I‘\,iH) Rlez)
and omit +Tr (77,1, (J5 (H + zf1)) RJ}?) because it can be handled similarly. We

express H + ztI as

H + 271 = o%cy 2f HT") (E(Q) — 1 1)
= o%cy 2T HT") (B(Q) — Iy ® R) +ocy i HTy, L (R — 1)

Property (2.7) and Proposition 8.1 imply that %Tr (t Tr.L ((H + sz)J*Ni H) RJZZ) isa
@) (A%V) We have thus shown that fori, up € —(L — 1), ..., L — 1, then it holds that

1 . " . . L
o2cn E (ETr(QWJﬁvHTW*(IM ®RJ}’ ) =08 4+u=04d@i,z)+ 0 (M_N)
(9.26)

Similarly, it holds that
lTr (RJIMRJMZ) — t(Z)z lTr (JLHJMZ) + O L
2 L™ 2 LIL MN

=8@ui +uy =0) (t()* (1 = |u1|/L) + O (MLN)

We denote by @(u1) the (2L — 1) dimension vector (w(#1, 42))uy=—(L—1),....L.—1»
and by y (1) the vector such that

YWy = 8y +uz = 0) (t(2))* (1 — u1|/L)
The linear system (9.25) can be written as
E(@w(u)) = D+ Y)E(w(u1)) +y(u1) +€

where the elements of matrix Y and the components of vector € are O (1\%\/) terms.
Matrices D and Y verify the assumptions of Lemma 9.5. Therefore, it holds that

E@@)) = A=D="1)"" Fu) +e)
when z belongs to a set Ey defined as in (9.20). Writing matrix (I — D — ) ! as
A-D-N'=a-D)'+d-D-N 'Y aA-D)!
we obtain that

E@wu)=A-D)' 7u) +A-D-1)"" YT A-D)~! y(u))
+A-D-")le
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(9.21) implies that for each us,

((I “p-71)"! e)uz -0 (1\%\])

Moreover, as vector p (u1) has only 1 nonzero component, it is clear that each com-

ponent of vector Y (I — D)~ Y(u)isa O (1\%\/) term. Hence, (9.21) leads to

-1 1= _ L
(@-p-n"'ra-o V(”l))uz—o(m)

This establishes (9.24). We notice that Lemma 9.5 plays an important role in the above
calculations. The control of ||| (I — (ID| 4+ | X)) ! |||sc allows in particular to show

that E(w(uy, u2)) = O (A%V) if uy + uy # 0, instead of 0(151—12\,) in the absence of

. 2
control on ||| I = (ID| + X)) ™" |||oc. As Lemma 9.5 is a consequence of AfI—N — 0,
this discussion confirms the importance of condition (9.1) and strongly suggests that
it is a necessary condition to obtain positive results. O

Itis also necessary to evaluate E(w (u1, us, us, z)) where w (uy, uz, u3, z) is defined

by

1
w(uy, uy, us, z) = E[

T (QU © J)Qy @ J)QMy & T )} ©.27)

It holds that for z € Ey defined as in (9.20)

Proposition 9.3 E(w(u1, us, us, z)) can be expressed as
_ L
E(w(uy, uz, u3,z)) = 6(uy +uz +uz = 0) w(uy, uz,z) + O (M_N) (9.28)

where w(uy, us, 7) is given by

I (J‘EJZ‘ Jf“‘*”Z)) +00% @@ 7@ (1 = g /L)1 = lua /L)1 = luy +ul/L) 4 A Tr (JL;VI JL,‘VZJ’,‘V”'*””)

(I =d(uy.2) (1 —d(up,2)) (1 —d(uy +up,z)

@)
(9.29)

Proof The proof is somewhat similar to the proof of Proposition 9.2, but it needs
rather tedious calculations. We just provide the main steps and omit the straightforward
details. We use again (9.16), but forr =2, and C* = (Iy ® Jf) fors =1,2,3. We
obtain immediately that

1
E(@ (1, uz,u3) = - [Tr (QUy @ J;)Q(y ® J*RIT))]
L—1

1 .
+ o2y 4_%1) E [M—L (TrQWIH Wy @ RJ}’ )] E((u1, u2, i)
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L—-1
tolen Y ﬁ [ (Q(IM ® J;HQWIH W* 1y ® RJ} )]
i=—(L—1)

L
x E(w(uz,i)) + O (MN) (9.30)

(9.30) can still be interpreted as a linear system whose unknown are the
(E(w(u1, uz, u3)))uze(—(L—1y,...L—1)- The matrix governing the system is the same
matrix D4 Y as in the proof of Proposition 9.2 (but for a different matrix Y). In order
to use the same arguments, it is sufficient to establish that

1
m1E[ r (QUy ®J7HQUy @ JPRIP))| = Cluy, uz. 2)8(uy + uz +uz = 0)

o L 9.31
+ (m) (9.31)

and

L—1
> R [Tr(QU @ HOWIH Wty ® RI)) ] B, i)
i=—(L—1)

L
=C 1) =0 (0] 9.32
(w1, uz,2)8(uy + uz +u3 ) + (MN) (9.32)

To check (9.31), we use (9.16) forr = 1, C! = Iy ® J}', C* = Iyy ® J;>RJ}>. This
leads to

! u 1 u
7z E [T (QUy @ J1HQy ® JPPRIT))| = +Tr (RI'RIFRITY)
L—1

1
toley > Elw@,i)E [ML (Tr(QWJNHTW*(IM ® R2J" RJ”3))]
i=—(L—1)

0 ()

Uptoa O (A,f—N) term, it is possible to replace R(z) by #(z)I into the first term of the
right-hand side of the above equation. This leads to

LI (RIJ'RIPRIT) = (1(2))° —TrJ (0 (L)
L MN

= ((z))? ZTrJ gt s () 4y + uz = 0)

wo (i)
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Similarly, it is easy to check that

1
E [M (Tr(QWJNHTw*(IM ® RJ*RI} )] = C(uz, u3,2)8(i = uz +u3)

v ()

As E(w(uy,i,z)) = o(ur, )8 +u; =0+ O (A%) we get immediately that if
ui + ur + usz # 0, then,

L—-1

Z (e (u, z))E[ (Tr(QWJ’ H' W* (IM®R2J RJ‘“))]

=0(A%v)+ ()
L)2 L2 L

(9(.32))follows from the observation that as L= — 0, then L (i&)° = vk =
o MN)

Finally, (9.32) holds because, using (9.17) for r = 1,C' = Iy ® J;'.G =
J\HT A =1y ® RJ}?, it can be shown that

iE [1r (QUy @ J;HQWI HT Wy & RI))]

L
=C §(i = (0]
(uy,u3,z2)8(i = u; +usz) + (MN)

AsE(wa(i,uz,2)) =8 +uy =0)w(uz, z) + O (ML) ]2\, — 0 implies (9.32). O

The calculation of @w(u1, us, z) is omitted.

We now define and evaluate the following useful terms. If p > 1 and ¢ > 1, for
each integers i, uy, uz, Iy, ..., lp, ki, ..., kg belonging to {—(L —1),..., L —1}, we
define

ﬂp,q(l', ul,ll, . ,lp,kl, e ,kq, u, Z)
as
1 i uy i T P lj oy T %
T (QUu ® J)Q(y ® J{HQWIH T (FyHT) W
x (In ® MJ_, (RT, L (AT} H)RJ}?) ) (9.33)
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We also define B, 0(i, u1, 11, ..., 1p, uz2,2) as

ﬁTr (Q(w@3,) Qv ©3;") QWI,H TI7_, (JH") W* (I @ RI}?) )

(9.34)
and Bo g (@, ur, ki, ..., kg, u2,z) is defined similarly. We finally denote by
B, u1, uy, z) the term Bo o (i, u1, uz, z), i.e.

1 . ‘
Bliur 12, 2) = =T (QUy @ J)QUy ® J;HQWIH' W' Ly @ RJ}))
(9.35)

Proposition 9.4 For p > 0 and g > 0, it holds that
E (ﬂ[,,q(i, up, by, ooy ko kg, un, z))

=8(witur=D L+ D ke | Bpgliurli,... by ki, . kg 2)
j n

L
+ 0 (m) (9.36)

where for each i,uy, 11, ..., 1, ki, ..., kg, function z — Ep,q(i, ur, i, ..o 1y, ki,
..., kg, z) is the Stieltjes transform of a distribution D whose support is included
into Sy and such that (D, 1) = 0. Moreover, if cy > 1, for each i, 1y, function
77— Bl,o(i, l1, 1, 2) is analytic in a neighbourhood of 0, while 0 is pole of multiplicity
1 of functions z — zB(i, l1,z) and 7 — EO,] (i, 11, z) where we denote 30’0(1’, l1,2)
by B, 11, z) in order to simplify the notations. Finally, function s(i, l1, z) defined by

s 11, 2) = =0 By oGl 11, 2) + 07 Bo i (il 1, 2)
+ 0%y (21 i) 20 (1+ 022 @i = /L)1 = [hI/N))

1—1|hl/N = .
x (Tmﬂ(z,ll,z)> (9.37)

is the Stieltjes transform of a distribution D whose support is included in 81(\?) and
verifying (D, 1) = 0.

Proof In order to simplify the notations, we just establish the first part of the propo-

sition when p = g = 0, i.e. for the term B(i, u1, u2, z) = Po.o(i, u1, u2, z). Then, we
check that

E (B, ui,u,z)) =8 +ur=0)BG, ui,z)+ O (1\%\7) (9.38)
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where B(i, u, 7) is given by

5
‘E(l, u, Z) = ZB](L u, Z)

with
o2t (2)* (2 1(2))*(1 — |il/N) + T (¥} Iy ;' T3
1—d(,z) ’
1
Bai, u, )=0 cnt () @H@) @i, w) (= li+ul /N) (1=il /N) - Tr (@ I

BiGi,u,z) =

Bs(i,u,2) = otent(2)?(21(2)3@ 3, w)jiuy<1—1 (1 — Iu1|/L)iTr(J"+’ 1)
Baliiu.2) = 0Cent (@ (@) B@)(1 — |ul/N)(1 - IiI/N)—Tr(J’LJ”J*lJ*”
o0yt (2)* 2 1(2) D@ (i) (1 — |i|/N)*(1 — |ul/N)— Tr(JLJ”J
—o¥t1(2)? (zt(z))sa(u)a(i)(l—IiI/N)NTr (J?VJ J*(’+”)) Lopequtigi e
Bs(i.u, z)=a4cNt(z)3<zf(z)ﬁw(u)iTro*" ") Tr(J“J“ g
+obcyt(x)’ @) BB — lil/N)— ST j58 O Fe)) T(JLJ“ iy

+00cyt () i) BB (1 - IMI/L) T NI I T

The proof is based on (9.17) for r = 2, with C' = Iy @ J; , C> = Iy ® J}', G =
JiH" A =1y ® RJ}2. It holds that

1 .

E(BG,ur.u2) = 7-E [ Tr (Qy © J)Qy & 3}
L—1

x(Iy ® °RT, LHIVHORI)) | + 0%y > Blwl,u, )

j=—-1)
L [Tr (QWJj H'W*(I; ® 62R7;, ; (HJH)RJ" )]

L—1
+oley D E@i )
j=—(L-1)
1 . ,
x < E[Tr (QUly ® J)QWI H WLy @ 0°R7. L HIYHRIP) ) |
L—1
—olen Z E(w(i, ug, j)) EE [Tr (QWvaHTJﬁvHTW*(IM ®RJ‘£2))]
Jj=—(L-1)
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L—-1

—o’ey D B, ))

j==(L=1)

« —1E [T QI @ J)QWILHT S, H W1y @ RJ}) )|

Using (9.16), it is easy to check that

B [1r (Qy © J)QUy ® 1)y @ o”RT, L (HIFHIRIL))]
=61 +ur=0CG,u1,z)+ 0 (1\5]\])
—]E [Tr (QWJJ H W*(Iy ® 02RT; , (HJH)RJ" )]
=68 =uy—i)C(i,up,z)+ O (MLN)
1 J T yi T * u
[T (QWI{HT I H W (L @ RI}))
=68 =uy—i)C(i,up,z)+ O (MLN)
1 J T wr*
- [Tr (Q(IM ® J)QWI H W1y ® 0’RT, L (HIyH)RI} )]
L
=38(j =up)C(@i,uz,z) + O (MN)
|
- E [Tr (Q(IM ® J))QWI, HT J\ HT W* (I); ® RJ" )]
L
—8(j = u2)Cliuz.2) + O (MN)

Proposition 9.2 and Proposition 9.3 immediately imply that E(B(i, u1, u2)) can be
written as (9.38). We omit the proof of the expression of E(i , u, 7). Moreover, Lemma
9.2 implies that function z — B(i, u, z) is the Stieltjes transform of a distribution D
whose support is included in Sy and which verifies (D, 1) = 0. O

We now establish the second part of the proposition and assume that cy > 1. In
this case, 0 is pole of multiplicity 1 of #(z) and 7(z) is analytic at 0. It is easy to check
that foreach j = 1, ..., 5, 0 is pole with multiplicity 1 of function z — zﬁj (i,11,2)
and thus of function z — z B(i, 1, z). As for function z — By 1 (i, 1,11, z), it can be
shown that

Boali. 1, 11,2) = 0 (1 — [1|/N) 1 (2) (z0(2)*B(. 1. 2) (9-39)

from which we deduce immediately that O is pole with multiplicity 1 of Eo, 1G, 1,1, 2).
The analytic expression of El’o(l', 1,11, z) (not provided) allows us to conclude
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immediately that 0 may be pole with multiplicity 1, but it can be checked that the
corresponding residue vanishes. Therefore, function z — El,()(i , 11,11, 2) appears to
be analytic in a neighbourhood of 0 and thus coincides with the Stieltjes transform
of a distribution whose support is included into S](\?) . In order to complete the proof
of the proposition, it remains to check that function z — s(i, /1, z) is analytic in a
neighbourhood of 0. As 0 is pole of Z,E(i ,11,7) and Eo, 1(, 11, 11, ) with multiplicity
1, it is sufficient to verify that

tim 2 [Bo.1 .11, 11,2) + ey (1 () 27

(] — B L= Ihl/N o _
x (140221 @I@0 = /L) |ll|/N))(1_d(llyz)ﬂ<z,ll,z>)}—

This property follows immediately from (9.39).
9.2.2 Evaluation of k@ (11, 1)
The treatment of the terms « ®)(I1, I,) appears to be difficult and also needs a sharp

evaluation for each r of the term of ¥ ") (u;, ..., u,) defined foruy, ..., u, € {—(L —
1),...,L—1} by

KOG, ) =E (M 7 Q) ) (9.40)
Lemma 9.4 and the Holder inequality immediately lead to x ™ (uy, ..., u,) =
O( (MN), ===75), but this evaluation is not optimal and has to be refined, in partlcular if

r = 2. More precisely, the following result holds.

Proposition 9.5 If z belongs to a set E defined as in (9.20), then, for r = 2, it holds

that
k@ (uy uz)—LC(z u)8(uy +ur =0) + 0 L (9.41)
’ MN (MN)? '
More generally, if r > 2, and if (uy, us, ..., u,) are integers such that —(L — 1) <
u < (L—-1)fori =1,...,r forwhichuy+u; # 0 foreachk,l, k # [, then it holds
that
) (u uy) = ! 0 ! (9.42)
M= N \ Ny ‘

The proof of this result is quite intricate. The goal of paragraph 9.2.2 is to establish
Proposition 9.5.

In order to evaluate « ) (u1, ..., u,), we state the following result. It can be proved
by calculating, for each integers (/1, l/l, ni, nll, R l;, n, n/,), matrix

[ Q) s QWGW*]
by the integration by parts formula. This calculation is provided in [23].
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Proposition 9.6 We consider integers (uy,ua, ..., u;), (vi,va,...,v:) such that

—(L—-1)<wuy; <(L-1,—(L—-1)<vi <(L—-1fori=1,...,r. Then,
it holds that

r— o 1 ur
B[, e40Q) ) | = —B [mZ e @) wy) | T (A @ 35)
L—1

toley Y E(MZe @) 7M@) ()

h=—(L-1)
«E| L1 (QWJ’l H' W*(I); ® RJ"“ )
ML N L
L—-1
+oley D E(MZie™@)w) @)
h=—(L-1)

1 * uy °
x [ATLTr (QWIH W1y @ RY} )] )

2 r—1 L—1

G .
+ MLN . Z E [Hz;ﬁs,r ‘C(M)(QO)(M[)] EB(, ug, uy))
s=1i=—(L—-1)
02 r—1 L—1
(M) o . (0)
+ I Z_ > E[nt#,rr (Q°)(uy) Bli, s, uy) ] (9.43)
s=1i=—(L-1)
and that

E[n;zl ™M (Q°) (vy) (A%Tr(QWGW*A)) } =« i, ..., 1) €e(G, A)

L—1
tolex Y E[M_r @)@ @)
h=—(L-1)

1 D 1y T yxr* 2 T
x 2 Tr (QWJNH w (1M®a R7; (G H)) A)
L—1
—oley Y. E[Mr@)w) @)
lr=—(L-1)
1 by T * A K
x o Tr (QWJNH GW*A )]

o2

tow 2 B[l t @)

s<rlil<L-1

1 [ Vg i *
x —=Tr (QUU ®J)QUy I} )QWIYH W (1 ©0”RT, 1 (GH)) A)]
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o2

MLN

> B[l @)w)

s<r|i|<L—-1

1 . .
x == Tr QUL ©J7)QULy ®J?“)QWJINHTGW*A)} (9.44)

where we recall that B(i, us, u,) is defined by (9.33), and where €(G, A) is defined by

€(G.A) =0 cNIE( (QWT(M)(Q )THT (GW*A — W*

x (lu ® R, L(GTH)) A)))

In order to evaluate «(uy, ..., ur—1,u,), we interpret (9.43) as a linear sys-
tem whose unknowns are the (x(u1, ..., u,_1, Ur))u,=—(L—1),..,L—1, the integers
(ug)s=1,....,r—1 being considered as fixed.

Structure of the linear system We now precise the structure of this linear system. We
denote by k" = (kP (uy, ..., ur_1, Ur))u,=—(L—1),....L—1 the corresponding 2L — 1-
dimensional vector. We remark that the second term of the right-hand side of (9.43)
coincides with component u, of the action of vector 1) on the matrix whose entry
(uy, 1) is

1
o2en E [ETr (QWJ?{,HTW*(IM @ RJY )]
This matrix appears to be close from a diagonal matrix because

1
o2y E [ATLTr (QWIH Wy @RI}’ )] = 8(I) +u, = 0)d(uy, 2)

wo (i)

(see (9.26)). We now study the fourth and the fifth term of the right-hand side of (9.43).
We introduce y; ,, and y; ,, defined by

2 r—=1 L-1

Vi = s D0 > BB us ) E [ Mo, Q) @)

s=1i=—(L—1)

and

r—1 L-—1

Yo, = g E [ M 7 Q@) Bl s’ |  945)

s=1i=—(L—1)
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and denote by y; and y, the corresponding 2L — I-dimensional-related vec-
tors. We first evaluate the behaviour of y;. (9.38) and the rough evaluation
E [z, T™ Q) ()] = O(W) based on Lemma 9.4 and the Holder
inequality imply that vector y; can be written as

yi=yitz (9.46)

where all the components of z; are MNO( ) terms, or equivalently

(MN)r/Z

«/I;O(W) = O(WN)(—"H)/Z) and where yl is defined by
0_2 1 r—1  L—1
Y= (722 2 Bluddtus +ur=0) | "™ (u)izen)
s=1i=—(L—1)
9.47)
so that
Yiu =0ifu, #—usforeachs =1,...,r —1 (9.48)

Hence, (9.47,9.48) imply that

1 L 1
Yiu, =0 (W) L etuyemup 1) + i ((Mm<r+1)/z) Ly et—ur,.omur 1)
(9.49)

We note that if » = 3, y,,; = 0 for each u3 because for each s = 1, 2, the term
E [TT15,3 T (Q°) (u,) ] is identically zero. Therefore, for » = 3, it holds that y} = 0.
As for y,, we notice that Lemma 9.4 and the Holder inequality lead to

1
Y2, = O ((MN)(—rw/z) (9.50)

We remark that if r = 2, then y;, = 0 for each u because the term
;2. T (Q°) (uy) disappears and that y, , represents the mathematical expectation
of a zero-mean term.

In order to evaluate the third term of the right-hand side of (9.43), we define x (u,, [1)
by

i(urv Zl)
=E (nz;}r(M’(Q")(us) =M (Q°) (1)) [i“ (QWIH Wy & RJ:'))] ) :
(9.51)
and X (u,) by
L—1
Fu)= D, Fuph) 9.52)

h=—(L-1)
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In order to have a better understanding of x(u,), we expand x(u,,[;) for each [;
using (9.44). We define (vi,...,v,) by vy = ug fors < r — 1 and v, = [, while
G and A represent the matrices G = Jé{,HT and A = Iy ® RJZ’). We denote
by (si(ur,11))i=1,...5 the i-th term of the right-hand side of (9.44) and denote by
(si(ur))i=1,....5 the term

L—-1

siw) = D siur )

lij=—(L-1)

and by s; vector s; = (8; (Uy))u,=—(L—1)

- 1—1. Vector s; plays a particular role
because s1(u,, [1) is equal to

.....

st(ur, 1) = kP, o uy, ll)G(J;l/HT» I®RJ}
L

= K(r)(ul’ ...,Mrfl,ll) 0 (m)

We remark that vector s; coincides with the action of vector k) on matrix
I Uy
€ L I® R ) . We define by x(u,, /1) and x (u,) the terms
( Jy-T®RJ} L)< <L) y x(ur, 1) (ur)
L—1

5
X 1) =D i, 1), x@w) = D x(ue, ) (9.53)

i=2 L=—(L—1)

and vector x represents the 2L — 1-dimensional vector (x(u,))y, =—(L—1),....L—1-
We finally consider the first term of the right-hand side of (9.43) and denote by €
the 2L — 1-dimensional vector whose components (€, )y, =—(1.—1),..., L —1 are given by

,,,,,

1
e, = —E [ng;{ ‘L'(M)(Qo)(us):l T (A ® 7))

We notice that if r = 2, vector € is reduced to 0.
This discussion and (9.26) imply that (9.43) can be written as

kD =D+Y) k" +y +z+y2+e+oieyx (9.54)

where we recall that D represents the diagonal matrix D = Diag(d(—(L —
1),2),...,d((L — 1), z)) and where the entries of matrix Y are defined by

1
2 LT r
Yo ) =02y E [ATLTr (QWJ,‘VH W (I ® RJ" )}

—D,, 1, + o2y eJVHT, Iy @ RIY))

It is clear the each entry of Y is a O (A,f—N) term.
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Overview of the proof of Proposition 9.5 We now present unformally the various
steps of the proof of Proposition 9.5 and concentrate on the proof of Eq. (9.42) in
order to simplify the presentation. The particular case r = 2 is, however, briefly con-
sidered at the end of the overview, but it is of course detailed in the course of the
proof. O

First step: inversion of the linear system (9.54). Lemma 9.5 implies that if z belongs
to a set Ey defined as (9.20), matrix (I — D — Y) is invertible. Therefore, vector k@
can be written as

€0 =A-D=1)" (yiu+ 7 +y2+e+olyx)

Using (9.21) and the properties of the components of vectors z1, y», and €, we obtain
easily that

1 L 1
I—-D—7Y)"! =— y¥ o0 ,
(( ) yl,*)ur 1— d(ur, Z) yl’”r + /MN ((MN)(I’+1)/2>

_ 1
((I -D-7) lyz)m —0 (—(Ml\l)(’+1)/2) :

and that
O ) = i, < D0l 0 (o
1—duy,2)" "]~ MN
1
—}—Cst;p lx ()| + 0((MN)(—r+1)/2)
(9.55)

If multi-index (u1, ..., u,) satisfies uy + u; # 0 for k # [, then yT,u, = 0 (see Eq.
(9.48)). Therefore, in order to establish (9.42), it is necessary to evaluate sup,, [x(«)].
Second step: evaluation of sup,, |x(u)| In order to evaluate sup,, |x ()|, we express

x(up,ly) as x(uy, 1) = Z?:z si(ur,l1) (see Eq. (9.53)) and study each term
si(uy) = le si(uy, 1) fori = 2,3,4,5.54(u,) and ss(u,) can be written as
Dy, . u_)O (ﬁv) Suy = 0) + o ((MN)++”/2) The terms s>(u,) and
s3(ur) have a more complicated structure. We just address s3(u,) because the behav-
iour of s(u,) is similar. s3(u,,[1) can be written as s3(u,, ;) = le s3(up, l1, 1)
where

s3(ur. 11, 1) = =0 2enE [ M2 e (@) w) T (@) () e ™ (@) (1)
x o T (QWJQZ,HTJ’,'VHTw* I®RJ; )}

We define 53 (u,, I1, o) and 25" (u,, Iy, Io) by
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530ur, L, 1) = —0enke "Dy, w1 )

1 ] ! X "y
E [ATLTr (QWJ,@HTJ;,HTW (I® RJ" )} (9.56)

and
7 ur 1y 1) =
— o2y E [ M2t 0(Q) )t (@) 1) 7™ (@) (12)
x A%Tr (QWI:H' Ji ' W a @RI} )] 9.57)
Then, it holds that

53Gur, 11, ) = 53y, 11, b) + 35 (s 1y, 1)

and obtain that s3(u,) = 53(u,) +X§])(ur) where 53 (1, ) and iél) (u,) are defined as the
sum over /1, I, of s3(u,, 11, 1l) and iél) (ur, 1, 17). Similarly, s»(u,) can be expressed
as sp(uy) = s72(uy) + iél)(u,) where 55 (u,) and iél)(u,) are defined in the same way

than 53(u,) and )Eél)(u,). The behaviour of (5 (u,)) j=2,3 is easy to analyse because
it can be shown that

5j(ur) = D Citur e Ve Dy = 1)
I

L
Dy, e, ) O
+ZK (Ml, 7ur 15 L1, 2) (MN)

Il

Therefore, (9.55) implies that

(r) _ *
kYU, ., uy) . d(u,,z)yL”’
_ L
<k Dy, ... u—1)| O (m)

+ C sup E ey, uey, Ly u = 1)
u
I

L
Dy, e L D)0
+Z|K (uls aur 1541, 2)| (MN)

1,1

+supiPw) + 0 ( (9.58)

1
(MN)(r+1)/2)

@ Springer



J Theor Probab

where ¥V (1) is the positive term defined by
- el ~(1
0 = [# |+ 7" w)|

Therefore, if u, +ug #0fors =1,...,r — 1, then yT,u, = 0 and it holds that

_ L
<" VD, ...,u—)] 0 (—)

‘K(r)(u13""u}’) MN

+ C sup E ey, ue, L u = 1)
u
I

L
Dy, w1, )]0 | —
+ D e 1L D)) (MN)

1,1

+supi V) + 0 ( (9.59)

1
(MN)(r-H)/Z)

In order to manage sup, D), we expand i;l)(u, l1,1p) using (9.44) when r is
exchanged by r + 1. In the same way than x (u) defined by (9.52), it holds that

5
~(1) _ (1)
) =>" s
i=1

..........

define ) () for i = 2, 3 by the fact that
) < ~(2)
s;i ) =5 () + X7 (u)

We define #® () as the positive term given by

- ~(2
x(z)(u) = Z ‘x}i (u)‘
(i,/)=(2,3)

The terms )Ej(.i.) (u) can be developed similarly, and pursuing the iterative process, we

are able to define for each ¢ > 3 the positive terms ¥ @) (1) which are the analogues of
W (u) and ¥@ (u). In order to characterize the behaviour of sup, #D (u), we express
~(1)( )

x WY (u) as

p—1
Ow=> ();(Q)(u) _ ~(q+1)(u)) + 5P

g=1
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where the choice of p depends on the context. The term X" (u) is easy to control

. . . . . ~(p) _ L \Pt!
because the Holder inequality leads immediately to x*”’ (u) = (_\/W ) O (=72 0 MN), 7).
Moreover, it is shown that

)z(!I)(u) _)"C‘(qu])(u)
L
< > ’K(’H)(ul, ety li=1,. g+ 1)‘ 0 (Wv)

li,i=1,...,q+1
q+1
+C D> Wy =g+ Lu =D 1)
liyi=1,.,q 41 '
+ > ‘K“*q*l)(ul,...,u,_l,li,i:1,...,q+2)’o(i)
lii=1,...q+2 MN
1
+o (o) oo

This allows us to evaluate ZS ( @ (u) — x(Q+1)(u)) in the course of the proof.
Third step: establzshmg (9 42) (9.59) suggests that the rough evaluation
KOy, .. uy) = 0( ,/2) can be improved when uy + u; # 0 for k # [. The

first term of the right- hand side of (9.59) can also be written as

[y
R 7
~MN ~/MN
Even if we evaluate "~V (uy, ..., ur—;) as O(W) it is clear the first term

. . L
of the right-hand side of (9.59) appears as a —== 0( ==7r). A factor = «/WV is thus

(MM
obtained w.r.t. the rate O(W). One may 1mag1ne that using the information that
ui+uj #0forl <i, j <r—1,i # j, should allow to improve the above rough
evaluation of « _1)(141, ..., ur—1) and thus the evaluation of the first term of the
right-hand side of (9.59). A similar phenomenon is observed for the second and the
third terms of the right-hand side of (9.59). We just consider the second term. If each
termk "tV (uy, ... u,_1, 1y, u—Iy)isroughly evaluated as O(W),taking into
account the sum over [1, the second term of the right hand side of (9.59) is decreased
by a factor \/TV w.r.t. the rough evaluation O( G /2)

In order to formalize the above discussion, it seems reasonable to be able to prove
(9.42) from (9.59) using induction technics. However, this needs some care because

Ik (uy, ..., u)| is controlled by [« =D (uy, ..., u,—1)| and by similar terms of
orders greater than . In order to establish (9.42), it is proved in Proposition 9.10 that
if (uy, ..., u,) satisfy u; +us #0for 1 <t,s <randt # s, then, foreachg > 1,

for each r > 2, it holds that
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L\ 't 1
(r) — I
kU, .., uy) _max((m) ,m) 0((MN)r/2) (9.61)

This leads immediately to (9.42) because, as L = O(N%) with @ < 2/3, it exists

. L r—1l+q _ 1 .
q for which («/TV) =0 (_«/WV) In order to establish (9.61), we first show

in Proposition 9.9 that for each » > 2 and each integer 1 < p < r — 1, if integers
Uty ... upr € {—(L—1),..., L — 1} satisfy

u+u; #0s=1,...,r—1
Up—14+us #0s=1,...,r—2
. . . (9.62)

Up—pt1+us #0s=1,...,r—p

then, it holds that

. L \" 1 1
K (I/tl, ...,I/tr) = max ((m) s m) (0] (W) (963)

Using (9.59) as well as the above evaluation of sup, #(u), we prove Proposition 9.9
by induction on r: we verify that it holds for » = 2, assume that it holds until integer
ro — 1, and establish it is true for integer rg. For this, we prove that for each r > rg
and for each multi-index (u1, ..., u,) satisfying (9.62) for p < ro — 1, then (9.63)
holds. This is established by induction on integer p in Lemma 9.6.

We note that (9.63) used for integer p = r — 1 coincides with (9.61) for g = 0.
(9.61) is established for each integer ¢ by induction on integer ¢. It is first established
by induction on r that (9.61) holds for each r for ¢ = 1. Then, (9.61) is assumed to
hold for each r until integer ¢ — 1, and we prove by induction on r that it holds for
integer ¢. For this, it appears necessary to evaluate

> ‘K(r+1)(u1, e tpo1 =)
I

where uy, ..., u,—1 verify uy + u; # 0 foreach k,/ € 1,2,...,r — 1 (see Lemma
9.7). This expression corresponds to the second term of the right-hand side of (9.59)
foru = 0.

Fourth step: establishing (9.41). Forr = 2, the term O ( 5 ) atthe right-hand

side of (9.58) is replaced by a O(W) term because vector y, whose components
are defined by (9.45) is identically 0. Moreover, the first term at the right-hand side of
(9.58) vanishes. Using (9.42), it is easy to prove that the third term of the right-hand

side of (9.58) is o ( . (9.41) follows in turn from the evaluation

_L
(MN)?

Z ’KG)(M, I, —11)‘ =0 ((M%)

I
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which is proved in Lemma 9.8.

Proof of Proposition 9.5 We now complete the proof of Proposition 9.5. In order to
evaluate k) (uy, ..., u,), we use (9.54) and Lemma 9.5. We write that

€ =A=D =17 (1. +2 +y2+ €+ 0%y x)

We first evaluate each component of the first 3 terms of the right-hand side of the
above equation. Vector (I — D — T)! ¥1.« can also be written as

A-D-1) "y, =A-D) 'y, +A-D -1 'YA-D) 'y,

As vector y; 4 has at most » — 1 nonzero components which are O(W) terms

and that the entries of Y are O (ML—N) terms, the entries of vector Y (I — D)il)’l,* are

£ O(W) (W) terms. (9.21) implies that the entries of (I — D —

T) IT(I —-D)! Y1, are m ((MN)<—’+”/2) terms as well. Therefore, it holds that

1 L 1
I-D—1)"! =yt 0
(« L R TRE R ((MWHW)

Tl)ﬂ) if u, does not belong to

. . L
and that this term is reduced to a —MO( )

{—uy, ..., —ur—1}. (9.21) implies that

. L 1
(@-p-) 1z1)ur= MO((Mm<r+l>/2)

and that

. 1
(a-p-1 lyz)m =0 (—(MI\J)(’+1)/2)

for r > 3, while this term is zero for r = 2 because y» = 0 in this case. If
u, does not belong to {—uy, ..., —u,_1}, the contributions of the above 3 terms

to «(uy, ..., u,) are at most O terms, which corresponds to what

1
(MN)(H—I)/Z
is expected because we recall that the goal of the subsection is to establish that
O, .. ) = O ((MN)(—“)/Z) ifup +u; # 0 for k # [ (see (9.42)). Finally,
(9.21) imphes that

L
((I—D—T)—le) — "Dy, 1)0(MN) (9.64)

Ur

and that
sup ‘ ((I —D-7)" x)‘ < C sup [x ()| (9.65)
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Therefore, it holds that

1 1 L
K(r)(ulan-,ur)—mﬁ,u, < k" Dy, 1)|0(MN)
1

(9.66)

where we recall that y1 = 0 if u, does not belong to {—uy, ..., —u,_1}. We note
that if r = 2, (9.66) can be written as

kP (uy, ur) — ;y* < Csuplx(u)|+ O L (9.67)

’ L—d(uy, )" =7 7, (MN)?
because y» = € = 0. O

In order to establish (9.42), it is necessary to study the behaviour of sup,, |x(u)].
We express x(u,) as x(u,) = le__(L 1 x(uy, [1) and evaluate the 4 terms s; (4, ) =
le__(L 1) Si (ur,y) fori = 2,3,4,5. We just study s;(u,) fori =3 andi =5
because so(u,) (resp. s4(u,)) has essentially the same behaviour than s3(u,) (resp.
s5(uy)). s3(uy, I1) is given by

L—1
3 )= D s3(ur b

Lh=—(L-1)

where
530,11, 1) = —o ey E [ 2™ Q) )t (@) (1) (@) 1)

1 * Uy
xor T (QWJ HT ) HTW* (1@ RYY ))]

We define 53(u,, 1, o) and %" (u,, I1, 1) by

(r+1)(u1

53(up, 11, ) = —o2enk 1,11, 1)

T vl 13T wo+ Uy
E [M—LTr (QWJ H” JLH W*(I ® RJ" )} (9.68)
and

"y, 1, 1) = —o%enE [ M2 70 @) ) 7™ (@)1 T™ Q) 12)

I . )
x o Tr (QWIGHT S H W (Lo R})) } (9.69)
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Then, it holds that
53Gur, Iy, ) = 53Gup, 11, b) + 35 (s 1y, 1)

We also define 53(ur, 1), 53(u,), %5 (uy, 1), and  FP () as 53(ur, )
= > 53, 11, 1) T3 () = X T3, 1), 75 e 1) = 3 8P 11, 1), and
igl)(ur) = le )Eél)(ur, [1). Tt is easy to check that

1 1 I . L
BT (QWJ,@HTJ;VHTW*(I ® RJY ) =C(ur, )8 =ur —11) + O (Wv)

Therefore, s3(u,) is equal to

S30u) = D Clup, KD e Iy — 1)
[

L
CED @y, w1, 1 ) O | —
+ZK Wi, ...,ur—1,01,0) (MN)

1,1

We now evaluate s5(u,). For this, we recall that we denote S o(i, us, [1, u,) the
term

Bro(, ug, i, uy)
= MLLTr (Qy ® 3)Qy ® I HQWIH SR W* (L @ RI"))
We notice that
ss(ur, [1) = s5.1(ur, 11) + 552, 1)
where

1 L1
o2 <

MLN

ss1(ur, ) = —
s=1i=—(L—1)

<E [ (Mt T Q)@ T QD) 1oty us, lu)]

and

2 L—1

> B[t t%0@) ) Brotis 1,1,

i=—(L—1)

sso(up, ) = ~YLN

We first evaluate s5 1 (u,) = Z,] s5.1(ur, I1). We express f1.0(i, us, l1, u,) as
IBI,O(ia ug, 1, uy) = E (lgl,O(i, ugs, 1, ur)) + ,BI,O(i» ug, I, Mr)o
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and notice that s5 | (u,, l1) = 55,1(ur, 1) + 55,1 (ur, 1) where

2 L-1 r—1
- o - .
S5l ) = =3 D D kWi D E (ot us, b, )
i=—(L—1) s=1
and
0_2 r—1 L—-1
ss(up, 1) = “ VLN Z >
s=1i=—(L—1)

XE [ Mo, Q) @) Q) 01) Bro(i. s 1y’ |

1

It is clear that 55’1 (Llr, ll) = O(W

) which implies that

L 1 1
> S5 (ur ) = 0 ( - ) =0 (—r) (9.70)
7 /MN (MN)(r+D/2 (MN)(r+D/2

Proposition 9.4 implies that

_ L
E (IBI,O(is ug, Iy, ur)) = IBI,O(i7 ug, 11)6(ly = u,r +ug)+ 0 (m) (9.71)

Using the rough evaluation x "=V () 5.7, 1) = O(W), we getimmediately
that .
S5.1(ur) = ZES,I(W, )=0 ((MN)(—’“)/Z) (9.72)

I

We finally notice that if r = 2, 55,1 (u,) is reduced to 0.
We define §52(u,, [1) and 552 (1, [1) in the same way and obtain easily that

~ L 1 1
ZSS,Z(Mr, h) = MO ((MN)(r+l)/2) =0 ((MN)(—H-U/Z) (9.73)

I

The behaviour of le Ss5.2(ur, l1) is, however, different from the behaviour of
211 Ejyl(l/tr, l]) if Uy = 0. Indeed,

_ L
E (B1.0G, h, 11, ur)) = By oG, 11, 11)8(ur = 0) + O (1\7\/)
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It is easy to check that the contribution of the O (MLN) terms to Z, 1 S52(ur, 1) is a

o (W) term. Therefore,

§520ur) = D Ssa(u,h)

0y

= .
= E 7 Z BioG, 1, 1) YT Wi, ... ur—1) 8(u, = 0)
h

i=—(L—1)

1
i ((Mm<r+1>/2)

SIS 10 () s =0 +o (i) ©74)
= Ty ewesUp—1 MN Ur = (MN)(F+1)/2 ’

As above, 552 (u,) is reduced to 0 if r = 2.

The reader may check that the terms s, (u,) = s2(u,) + iél) (u,) and s4(u,) have
exactly the same behaviour than s3(«,) and s5(u, ). For the reader’s convenience, we
mention that )Eél) (u,) is defined as

- (1
xél)(ur) = Z)é )(ur, I, 1)
l1.1

where iél)(u,, I1, I2) is the term given by

o2enE [T T @) )™ Q) 1) 7™ Q) (t2)

x T (QWJIK/HTW*(I ® o’RT, L (HYy H)RJ} )} (9.75)

In sum, we have proved the following useful result.
Proposition 9.7 Ifr > 2, for each u,, it holds that

xuy) = D Clur IV g e = 1)
I

L
Dy, w0
+ZK (ul’ 7ur 1561, 2) (MN)

I,

L -
+c D ue) O (W) 8(ur = 0) + &5 (uy)

1
+i )+ 0 ((MN><—+1>/2) (9.76)
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while if r = 2,

L
x(up) = ZC(”L I @y, by, us — 1) + ZKG)(M, l1,1)0 (—)

I8 1,1 MN
(9.77)
(1) (1) L
+)C2 (M2)+)C3 (M2)+0 W (978)
(9.66) thus leads to the Proposition:
Proposition 9.8 Forr > 2, it holds that
Oy = — | 00 o (L
ettn) = gt < T N
+Csup D e g D u = 1)
u
Iy
+Z|fc<’“><u1,...,ur1,ll,lz>|0(ﬁ%v)
I,
+ sup |#5” @)| + sup |7V @) + 0 L (9.79)
L2 P (MN)*+D/2 '
while forr =2,
y*
2 _ Luz <C 3 / —1
K (uy, uz) TR Sl;PIZIZIK (w1, Iy, u — 1)
3 kO 1,010 (=) + sup " @) + sup [£P @) + 0 (s
P MN w u (MN)?
1,62
(9.80)

We now establish Proposition 9.9 introduced into the overview of the proof of Propo-
sition 9.5.

Proposition 9.9 For each r > 2 and for each integer p, 1 < p < r — 1, if integers
Uty ... ur € {—(L—1),..., L — 1} satisfy

u+u; #0s=1,...,r—1
Up—14+us #0s=1,...,r—2

. . . (9.81)
Up_pp1+us #0s=1,...,r—p

then, it holds that

. L\’ 1 1
K (ul,...,u,)zmax ((W\’) ,m) O(W) (982)
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We prove the proposition by induction on r. We first check (9.82) if r = 2. In this
case, the integer p is necessarily equal to 1 and (9.81) reduces to u; + upy # O.
We use (9.80). Using the rough evaluations K(3)(v1, Vo, v3) = O(W) and

sup,, Ix(l)(u)| = O( 2) = (F)ZO(MN) for j = 2,3, we obtain immediately
that (9. 82) holds if r = 2

We now assume that (9.82) holds until integer rp — 1 and prove that it is true for
integer ro. For this, we establish that for each r > ry and for each uy, ..., u,, (9.82)
holds provided (9.81) is true until p < ro — 1. We first verify that (9.82) holds for each
r >rogandfor p = lassoonasu, +us 20s =1,...,r— 1. For this, we use (9.79).
y’f’ur is of course equal to 0. Moreover, as K(”l)(ul, o Up—1) = 0
is clear that

1 .
(W), it

KD, 1)|0(L) L 0( ! )
e MN) ~— JMN \(MN)/?

asexpected. Usingthat/c(’“)(v] yee s Upp1)=0 (W) foreach (vy, ..., Vr41),
we obtain immediately that

L 1
(r+1) —
sup E |k Wy, .. ur—1, L u=0)| = 0( 2)
. JMN \(MNY7

and

S W, io () = Bk o ]
’ "~ MN MN JMN  \(MN)"/2

1,1

Finally, the Holder inequality leads to

~(1) ~(1) L? L ’ —1
sup [0+ sup |57 @] = 0 oy ) =\ Jaw) w2
(9.83)

Next, we consider the case p = 2 for the reader’s convenience. We consider r > rg, and

assume thatu, +us #0s=1,...,r—laswellasu,_1+us #0s=1,...,r—2.
We again use (9.79) and remark that y]“‘ur =0.Asu—1+u; #0s=1,...,r =2,
the use of (9.82) for integer r — 1, multi-index (uy,...,u,—1) and p = 1 (proved
above) implies that k "~V (uy, ..., u,_) = \/%VO(W) and that
K"y, um1) O LYo (- ’ o—1
’ . MN VMN (MN)"/2
We now evaluate 211 Ty, o up—y, 1y, u — 17)]. It is clear that
KDy, u = 1) = kT u =g ue)
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Asu,—14+us #0s =1,...,r — 2, the use of (9.82) for integer r + 1, multi-index
(ly,u—1l1,uy,...,ur—1),and p = 1 leads to

L 1
«/MNO ((MN)(’“)/Z)

K(r+l)(u15 '-'7ui‘—lallau _ll) =

assoon as u,—1 + 11 #0and u,_1 +u —I; # 0, or equivalently if [ # —u,_1 and
l1 # u 4 u,_1. Therefore,

z kD (y U1, l,u—1)| = L 20 !
1y oo Up—1,11, 1)l = \/W (MN)’/Z

h#A(—ur—1,utur—1)

Ifl; = —u,_1orly =u+ u,_1, we use the rough evaluation

(r+1) 1 1
K (Lt],...,u,-fl,l],u—l]): m O (MN)V/Z

Therefore, we obtain that

Z|K(r+1)(u1 cesUp—1, 11, u — 1) = max ( : )2 : 0(;)
h o JMN) ~ JMN (N /2

We now consider > ;. Dy, w1, 1, )| O (f5). We remark  that
KDy, e, 1 ) = kYDA b, g, L upe—1). Therefore, if u,—1 + 11 #
0and u,—1 + I # 0, (9.82) for integer r + 1, multi-index (/1, 2, uy, ..., u,—1), and
p = 1 implies that

KDy, uey b)) =

L 1
«/MNO ((MN)<’+”/2)

Ifl; = —u,_1 orlp = —u,_1, we use again that

K(r+1)(u1 ur—1,101,0h) = : o !
sy Ar—1> ’ m (MN)"/2
sothatfori, j = 1,2,i # j, it holds that
Z |K(r-i-1)(u1 ur—1,1i,1:)|0 i :L_2 ; 0 ;
3 e e ey r—Ististjy MN MN \/]WV (MN)’/z

li=—u;—1,l;
1
=0 _—
((MNW“W)
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We finally obtain that

L
Dy, ue, k)0 | —
lef Wi, ... ur—1, 01, D)| (MN)

1,1

- max((\/%v)“, dzlvz_zv) ¢ ((szlor/z)

Finally, the first evaluation (9.83) of iél) (u,) and i;l) (u,) establishes (9.82) for each
r>roand for p =2 ifu, +us ZO0fors =1,...,r — 1 and u,—; + us # 0 for
s=1,...,r—2.

In order to complete the proof of (9.82) for each r > rg and foreach p <rg—1, we
assume that (9.82) holds for each r > ry and for each p < po where py < ro —2 and
prove that it also holds for p = pg + 1. For this, we establish the following Lemma.

Lemma 9.6 Assume that for each t > ro — 1 and for each integer p, 1 < p < pg <
ro — 2, it holds that

L\’ 1 1
K(t)(vl7 ey U;) = max ((m) y m) 0] (W) (984)

for each multi-index (vy, .. ., v;) satisfying

v+uv #F0s=1,...,t—1
v—1+uvs #FO0s=1,...,t—2
. . . (9.85)

Vi—pt1tus #O0s=1,...,t—p

Then, for each r > ro and for each multi-index (uy, . .., u,) satisfying (9.81) for p =
po+ 1, it holds that k "=V (uy, ..., ur_1)O (MLN) 20 D@y, el u—

WL Xy, KD @ w1, 1, D)0 (55y) » sup, 185 @l for j = 2,3 are

.\ Pot+D I 0 |
max («/TTV) s T ((MN)’/Z) terms.

Using (9.79), (9.82) for p = po + 1 follows immediately from Lemma 9.6. Conse-
quently, (9.82) holds for each r > r¢ until index p < (ro — 1), and in particular for
r =roand p < (rg — 1). This completes the proof of Proposition 9.9.

Proof of Lemma 9.6 We consider a multi-index (u1, ..., u,) satisfying (9.81) for p =
po + 1 and remark that it verifies

Ur—1+us # O0s=1,...,r—2
Uy +us # 0s=1,...,r—3
. . . (9.86)

Up_py+us #0s=1,...,r —po—1

@ Springer



J Theor Probab

Therefore, (9.84) used fort = r — 1, p = pg, and multi-index (vq, ..., v,—1) with
vy = uy leads to

L Po 1 1
(r=1) _
K (1, ..., ur—1) = max ((«/W) «/WV) 0((MN)(r—l)/2)

Therefore,

L
=1 o(—
K Wy, ...,ur—1) (MN)

(k) ) )

. . . L \Potl 1 ( 1 )
which, of course, also coincides with a max ((_\/W) /I (0] T term.

We now study the term

Z‘K<r+])(uls ...,Mrfl,ll,l/i _ll)‘

I

Using (9.84) for t = r + 1 and multi-index /1, u — Iy, uy, ..., u,—1, we obtain that

(r+1) L\ 1 1
K (ul,...,ur_l,ll,u—ll):max m ’\/WV 0] (MN)(V'H)/Z

if Iy is such that u,_; +1; # O and u,—; +u — 11 # 0 for each j =

1, ..., po. The sum of the terms |K(’+1)(u1, ..., ur—1,11,u — [1)| over these values
. L\ 1 1 .
of [; is therefore a L max (( JW) , JWV) o ( GIN D /2) term, or equivalently a
Po
«/1%7\/ ((\/ﬁﬁv) , \/1:7\7) 0 ((Ml\ll)’/z) term, which, of course, is also a
L\ 1
max , O\ ——
(«/MN) VMN ((MN)’/ 2)
term. If /1 is equal to —u,_j, or to u,_j, + u for some jo = 1, ..., po, we use the

rough evaluation

1 1 1
(r+1) — —
ICV (ul,...,ur_l,ll,u—ll)—0((MN)(r+l)/2)—MO ((MN)V/Z)

This discussion implies that

D ey w1
I
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-v(( ) 7m) ()

The evaluation of >, |, KTy, w1, 1) O (ﬁv) is similar and is thus

omitted. |

In order to complete the proof of Lemma 9.6, it remains to prove that

() L \7th 1
sup |X; " (u)| < max (\/TV) VO 0((MN)’/2)

for j = 2, 3. For this, we study in more detail sup, |)Z§.l)(u)| for j =2, 3. We expand

)E(l)(u, [, 12) using (9.44) when r is exchanged by r + 1. In the same way than x (u)
defined by (9.52), it holds that

5
=N _ (M
X; (u) = Zsj,i (u)

i=1

,,,,,,,,,,

define 2521) (u) for i = 2, 3 by the fact that
st =5 + if} (1)
We define P (1) as the positive term
D) = (;g”(u)’ + ’i;l)(u)‘
and, similarly, ¥® () is given by

i) = Z ’ffi)(“)

(i.)=@2.3)

A rough evaluation (based on the Holder inequality and on (9.36)) of the vari-
). After some

1 . 1
ous terms s;,i)(u) for i = 4,5 leads to sﬁ.,i)(u) = \//I“WO ((MM(I,+,>/2
calculations, we obtain that

- L
0 < D e, 11 0)] O (m)
I,

+C D KDy o — 1 = D))
1,1
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L -
+ Z |K(r+2)(’41,~-~,Mr—1,ll,12,l3)|O(W)+x(2)(u)

l1,1,13

L 1
" «/MNO ((M]\])(r+1)/2) (9.87)

The first term of the right-hand side of (9.87) corresponds to the contribution of
(.1)(14) while the second and the third terms are due to s (u) and s _( ) 3(u). The term

JLO ((MN)(VH)/Z) is due to the s( )(u) fori = 4,5. The terms x( )(u) can of course
be also developed, and we obtain sumlarly

- L
P < D0 WP, e 1, 12,13>|0(MN)

L, 03
+C D WV ue b ou =1 — b = 1))

I,0p,13
L -
+ > |K<”3>(u1,...,ur_l,ll,lz,zg,wo(m)+x<3>(u)
I1.12,13,14
= 20 : 9.88
" VMN (MN)(r+D/2 (9.88)

The term (\/jﬂ)zo ((MN)(er)/Z) is due to the terms (sk ko l(u)) fori = 4,5 and
ki1, ky = 2, 3:itis easily seen using the Holder inequality that their order of magnitude
is ﬁ smaller than the order of magnitude of the (s,Eli) )i=as for k = 2,3. More

generally, it holds that

L
@) < CHD g, ueg i =1 Do
X (u)_ B Z |K (M], ,M 17 lvl ’ 5q+ )| MN

lii=1,....,q+1
q+1
+C D> W i =1 g L= D 1)
lii=1,....q+1 1
L
CHED g, i =1 2)| 0
+ 'Z Ik Wi i =1 g +2) 0 S
li i=l1,..., q+2
L \? 1
Z(g+D = -
We remark that the Holder inequality leads to
sup X7 (u) = (—) 0 (—) (9.90)
o JMN (MNyT?
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for each p. We express XV (u) as

po—1
F0) = 3 (R0 - 2D ) + 57 ) (9.91)

q=1

We now prove that for each ¢, then it holds that

i(Q)(u) —)E(qul)(u) < (L)q max ( L )PO'H , 1 0 (;)
~ \WMN VMN VMN (MN)/2

(9.92)
(9.89) implies that ¥4 (1) — 9D (u) is upperbounded by the sum of 4 terms. We
just study the second term, i.e.

q+1
Z i rtatD ul,...,u,_l,li,i:1,...,q+l,u—ZZ,-
i=1

because, as the fourth term ( \/11147\1 )10 ( 0 MN)(I" ) /2), it can be easily checked that the

first and the third term are negligible w.r.t. the right-hand side of inequality (9.92). If

theintegers Iy, ..., lgy1, u— ?:11 l; donotbelong {—u, 1, ..., —ur—py}, (9.84) for
t =r + g + 1 and for multi-index (/1, ..., lg41, u — Z?:ll li,uy,...,u-—1) implies
that

q+1

crtath ul,...,ur_l,l,-,izl,...,q—i—l,u—Zli
i=1

L (po) 1 1

Therefore, the sum over all these integers can be upperbounded by

o (Gin) i) )
(i) i () ) )

hich, of i L) L\ ) o (LY
wihnich, oI course, 1S a (\/T—N) max (\/T—N) . m ((MN)—f/Z) erm as

expected.
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If at least one of the indexes [1,...,[;41,u — Z?:ll l; is equal an integer
(=ur—i)i=1,..., py» We use the rough evaluation
g+1 |
(r+q+1) e _ N
K Uly oo, L i=1,...,9+ 1, u Z]:ll _0(—(MN)(’+4+1)/2)
i

The sum over the corresponding multi-indices is thus a LqO(W)

q
(\/#Tv) (0] (W) This completes the proof of (9.92). Therefore, (9.91) and

(9.90) imply that

) L\ 1
sgpx (1) = max (—_MN) T 0(—(MN)’/2)

as expected. This, in turn, completes the proof of Lemma 9.6.

We now improve the evaluation of Proposition 9.9 when (u1, ..., u,) satisfy u; +
us #0for1 <t,s <r,andt # s, or equivalently if (uy, ..., u,) verify (9.81) for
p =r — 1. More precisely, we prove the following result.

Proposition 9.10 Assume that (uy, ..., u,) satisfyu; +us #O0for1 <t,s <r, and
t # 5. Then, for each g > 1, for each r > 2, it holds that

" L r—1+q 1 1
kY (uy, ..., u;) = max (m) , M) 0] ((MN)’/z) (9.93)

Proof We prove this result by induction on integer g. We first establish (9.93) for
g = 1 by induction on integer r. If r = 2, we have to check that if u; + uy # 0, then
it holds that

L \> 1 1
2 _ I
K (uy, up) = max((m) , \/W) 0] (MN) (9.94)

For this, we use (9.80). We have already mentioned that the Holder inequality leads
to

2
sup )Z(l)(u) — (L) 0 (L)
u v MN MN

We study the term

sup > 1@ @y, 1w — 1))

u ll
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Proposition 9.9 in the case r = 3 and p = 1 implies that

D, lu—1) = L 0( ! )
U VMN ~ \(MN)3/?

as soon as [} # —uy and l; # u + u1. Therefore,

> WO -1l = (L)ZO(L)
o VMN MN

li#(—ut,utur)
Ifly = —uj orly = u + uy, we use the rough evaluation «® (uy, 1, u — 1) =
O(m), and we finally obtain that

L \> 1 1
3) _ _
zll [t (uy, by, u ll)l—maX((m) «/WV) O(MN)

as expected. The term

L
> kP i )0 —
[ ey, 1y, 1) (MN)

1,1

is evaluated similarly. We have thus established (9.94). O

We assume that (9.93) holds for ¢ = 1 until index 9 — 1 and prove that it also holds
for index rg. We take (9.79) as a starting point. We consider (uy, ..., u,,) satisfying
uy +us # 0for 1 < t,s < rg, or equivalently (9.81) forr = rp and p = ro — 1.
(9.93) forq = 1,r =ro — 1, and multi-index (u1, ..., u—1) leads to

( b ro—2+1 1 1

o= yeesUpg—1) = max | { — ,— | O | ———

ety (7)) © ()
and to
_ L
k(0 1)(”1» cees uro—l)o (m)

() ) )

L )r0—1+l 1
bl

which, of course, is a max ((«/77\/ «/IWV) o ( ; MNI),O /2) term as expected.

We now evaluate

SR,y = 1)
Iy
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Ifli+ug #0andu—1Il14+us #0fors =1, ..., ro—1,Proposition9.9 forr = ro+1,

multi-index (I1, u — Iy, uy, ..., ur—1),and p = ro — 1 implies that
R TR T O TR 1))
L\ 1 o 1
=max| | — , —— _
VMN VMN (MN)(ro+1)/2
and that the sum of the |« 70tD (uy, ..., Ury—1, 11, u — [1)] over these indices is a

() ) o ()

term. If /1 + ugy = 0 oru — I1 + us = 0 for some integer s, we use as previously that

1 1
K(r0+1)(u1, ...,uro_l,ll,u —ll) = mo ((MN)ro/Z)

This, in turn, implies that

sup E K(r0+l)(u]a"-7ur()flallau_ll)
u
I

L ro—I1+1 1 1
= —— 0
e ((«/MN) ’ «/MN) ((MN)W 2)

as expected.
The term

L
Dy, g1, 11, 0)] O
Do g, 1 b)) (MN)

I,

can be evaluated similarly. Finally, it is easy to show as in the proof of Lemma 9.6
that sup, ¥(1)(u) behaves as expected.

This completes the proof of (9.93) for each r and ¢ = 1. In order to establish the
proposition for each ¢, we assume that it is true until integer ¢ — 1 and prove that
it holds for integer ¢g. We prove this statement by induction on integer r and begin
to consider r = 2. We of course use (9.80) for u; + up # 0. It is easy to check as
previously that the term sup, ¥V (u) is as expected and that it is also the case for
> K@i, 11, 1) (35). However, the term

sup > 1@ @, 1w — 1))

u ll
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appears more difficult to evaluate. If u # 0, itis easy to check that D, 1 k@ (uy, Iy, u—

[1)]is a
L \'"" 1 1
max| | — ,— O | —
() ) ()
term because, except if u1 + [ = 0 or u; + u — I1 = 0 (the contribution of these
particular values to the sum is a O(=-+>) term), (9.93) used for r = 3 and integer

(MN)3/2
g — 1 implies that

o L \'"" 1 1
k7 (uy, Iy, u — 1) = max (\/W) ’m 0((MN)3/2)

and that

> kP u =1

ly#—uyuy+u

g () v (am)
= ——— max —_— , O

MN MN MN (MN)
If u = 0, the sum becomes

> @ b =)

I

(9.93) for r = 3 and integer g — 1 cannot be used to evaluate ® (uy, 1y, —I1) because
I1 — 11 = 0. We thus have to study separately this kind of term. For this, we prove the
following lemma.

Lemma 9.7 We consider an integer r > 2 and assume the following hypotheses:

— for each integer s and for each vy, ..., vg such that vg, + v, # 0,1 < 51,8 <
s, $1 # $2, it holds that

® L s—1+g—1 1 1
' (vy, ..., vy) = max (m) ,m O((MN)S/2) (9.95)

— foreach s < r — 1, and each vy, ..., vy such that vg; + vs, 7 0,1 < 51,5 <
S, $1 # $2, it holds that

(S) L S—l+q 1 1
(v, .., 0) = max((m) , M) (0] ((MN)X/z) (9.96)
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Then, ifuy, ..., ur—1 verify ug, +ug, 70,1 < 51,50 <r — 1,51 # 52, it holds that

Dy, w1 =1
0y

L\ 1
= max((m) , «/WV) 0 ((MN)’/Z) (9.97)

Proof We evaluate "tV (uy, ..., u,_1, 11, —I1) using (9.79) when r is replaced by
r + 1 and for multi-index (u1, ..., u,—1,1;, —I01). If [y = Fu, for some s, the term
K(’“)(u], U1, 01, —1))isa O (W) It is thus sufficient to prove (9.97)
when the sum is over the integers /; that do not belong to {—uy, ..., —u,—1} and
{ui, ..., ur—1}. In order to simplify the notations, we do not mention in the following
that the sum does not take into account {—uy, ..., —u,_1} and {uy, ..., u,_1}. O

If /1 does not belong to {—uy, ..., —u,—1} and {uy, ..., u,—1}, component —I; of
vector y“f corresponding to k = &y, w1, U))u=—(L—-1),...,(L—1) can be
written as

1

* — =D
Yi,-n, =K Ty, um) O (m)

(see (9.47)). Therefore, for I1 # *us, s =1,...,r —1,(9.79)) implies that

1

Dy e, L =D < kP w1 O | —
|« Wi, ... ur—1, 0, =) < |« (i, ..., ur—1)| UN

+ 16 (uy ur—1,1)| O L
9 s r—1> MN

+C su KDy, upmy L by u— D)
uPZ' , |

I5)

L
+ ZK(F+2)(’411 e, Up—1, llv lZa l3) 0 (_>

Il MN
+ suplE) @)+ sup 150 @)l + 0 (i 9.98)
" 2,0 " 3,1 (MN)(r+2)/2
where we indicate that the terms i;l) (u) associated with (u1, ..., u,—1, [, u) depend

on /1 (these terms also depend on (us)s<-—1 but it is not useful to mention this depen-
dency). In the following, we denote by a® (uy, ..., ur—1) the term

oVt upmr) = DI e 1)
I
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(9.98) implies that

_ L
eV, um) < K"V, . w0 (m)

L

+ D ke, w1 O (m)
I

+C sup 2 Dy, w1 1 by u — b))
u
I,

L
+ Z K(r+2)(u1, U1, 0,1, 13) O (m)

I1,12,13

L
~(1) ~(1)
+ S‘;PZ 2., 0l + S‘;PZ %3, )l + O ((1‘/11\’)(—+2)/2) (9.99)

I Iy

(9.96) for s = r — 1 implies that

( 71) L r—2+q 1 1
|K (M],...,Mr_1)| = max (m) ,\/7_]\] 0] (W)

and that

L
e D, . um)|O (m)

() ) )

r—I+4q
which, of course, is also a max ((«/TV) , #TN 0 (W) term as expected.

In order to evaluate the second term of the right-hand side of (9.99), we first notice
thatif/y € {—uy, ..., —u,—_1}, the Holder inequality leads to

I (u ur—1,11)1 0 L 1
Lyewws Up—1,11 MN) (MN)(r+D/2

Ifl; +us #0foreachs =1,...,r — 1, weuse (9.95) fors = r and (v1,...,v,) =
(uy,...,ur—1,1). It holds that

(r) L r—1+q—1 l l
k" (uy, ..., ur—1,11) = max (m) * TN 0((MN)’/2)
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so that

L
>, |x(’>(u1,...,ur1,zl>|0(m)
L 2 L r—l4+q—1 1 1
() =((m) o) )
MN MN MN (MN)'/

r—1+q
whichis amax (\/%v ) , \/;MTV O (W) term. The fourth term of the right-

hand side of (9.99) is evaluated similarly. Moreover, following the arguments used to
establish Lemma 9.6, it can be shown that

~(1 ~(1
sup > 125 ()l + sup > 1751 )l
A I

() i) )

It remains to evaluate the third term of the right-hand side of (9.99). The supremum
over u 7# 0is as expected, but the term corresponding to u = 0 has also to be evaluated.
We denote o @ (uy,...,ur—1) the term

a(2)(u17 ---,urfl) = Z‘K(r+2)(ula "'7“}’717117127 _12)
.l

The previous discussion implies that

aV@y, ... ur—y) < Ca®ur, ... ur—)

() )0 ()

It can be shown similarly that

a@ @y, umy) < CaPur, . upy)

() zim)° ()

where

a® @y, uy) = Z T, w1 by Iy, —13)|
l1,12,13
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More generally, if &P (uy, ..., u,_1) is defined by

Pt = D0 WP ey (i =1 p), )

it holds that

(x(p_l)(ul, o Upq) < Cd(p)(ul, ce Up)

() ) ()

and consequently that

aO@y, . umy) < CaPuy, .o upsy)
L r—1+q 1 1
+ max —_— , 0( )
(\/MN) VMN (MN)"/2

(9.100)

The Holder inequality leads immediately to

Ot(p)(u1 e Up]) = (L)p [0) (;)
T VMN (MN)'/2

and choosing p = r — 1 + ¢ provides (9.97).

We finally complete the proof of Proposition 9.10. The use of Lemma 9.7 for r = 2
establishes immediately that if (9.93) holds until integer g — 1 for each s, then it also
holds for integer ¢ and r = 2. We assume that (9.93) holds for integer ¢ until integer
r — 1, i.e. that both (9.95) and (9.96) hold, and prove that it also holds for integer r,
i.e. that

(r) L r—1+£] 1 1
k" (uy, ..., u,) = max («/TV) Wi 0((MN)’/2)

For this, we use (9.79). All the terms of the right-hand side of (9.79) are easily seen to
be as expected, except the second one. However, Lemma 9.7 implies that the second
—l+gq
L )r 1

T «/771) o (W) This completes the proof of

term is also a max ((

Proposition 9.10.
We are now in position to establish (9.42)

Corollary 9.1 If (uy, ..., u,) satisfy u; +us # O fort #s,1 <t,s <r, then(9.42)
holds forr > 2.
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Proof As L = N* with a < 2/3, it exists an integer go for which (ﬁv)r—lwo =
1
o( Wi ). Therefore,

L r—1I+qo 1 1
max (—) ,— = —
~MN ~MN ~MN
(9.93) for g = go thus implies (9.42). O

It remains to establish (9.41). For this, we take (9.80) as a starting point and prove

that the right-hand side of (9.80) is a O (W) term. We first justify that:

supiPw) =0 L (9.101)
u (MN)? '

We use the decomposition (9.91) of ¥V (u) for the following convenient value of p:
we recall that the Holder inequality implies that

~(p) L\ !
* (”)Z(N/MN) O(W/)

As L = N with o < 2/3, it exists p for which

(i) = (i)

For such a value of p, it holds that

L
= (p) —
xp (”)_0(<MN)2)

Using (9.87) for r = 2 as well as (9.42), it is easy to check that ¥V (1) — ¥® (u) is a
O (W term and that the same holds true for ¥4 (u) — ¥+ (u) for each ¢ > 1.
This establishes (9.101).

(9.42) implies that the second term of the right-hand side of (9.80)isa O ((1\%\1) 3) =

0 ((MLW)) term. It remains to establish that

1,1 = 0 (—E— 9.102)
Z (MN)2

I

Lemma 9.7 for ¢ = qo (where qq is defined in the proof of Corollary 9.1 for r = 2)
implies that this term is O(W), but this evaluation is not sufficient to prove (9.41).

Using (9.42), we now evaluate K("H)(ul, ooy ur—1, 11, =11) when ug, + ug, # 0 for
s1#£sy,—(L—1)<s1,50 <L —1andforr > 2.
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Lemma 9.8 We consider r > 2 and a multi-index (uy, ..., u,—_1,11, —11) such that
ug, +ug, 70 forsy #s2, —(L —1) <s1,50 <L — 1. Then,

—ifli £us #0fors =1,...,r — 1, it holds that

1
(r+1) —
KTy, up—r, =) =0 ((M]\])(’+2)/2) (9.103)
—ifly £uy =0 forsomes=1,...,r — 1,
L 1
(r+1) 7)) =

K (Ml,...,btr_l,ll, 11)— mo((M]V)(r+l)/2) (9.104)
Proof The proof is similar to the proof of Lemma 9.7. We take (9.98) as a starting
point, but just evaluate K(’+])(u1, ..., ur_1,11, —1) instead ofoe(])(ul, ..., ur—1) by

iterating (9.98). Using (9.42), it is easy to check that for each /1,

1
~=(1) _
Sl;p |x./'>ll(u)| =0 ((MN)(r+2)/2)

We first assume that/; £ ug # Ofors = 1, ..., r —1.(9.42) implies that the first term

of the right-hand side of (9.98) is 0((m) (and is identically 0 if = 2). The

second term is \/]fﬂ(’)(( (MN)<1r+2>/z) while the fourth term is (ﬁvy(’)((m).

The supremum over u 7% 0 of the third term is O( W) which implies that
ey, w1 < Z ‘K(r+2)(u1, cos =1, 11, By =) ‘
1)
0 1
+ (MN)(r+2)/2

As in the proof of Lemma (9.7), we iterate this inequality until an index p for which

r+p) L
Z ‘Kr p(Mla--~,Mr—1,ll,lz,~-.,lp,—lp)‘=O(W)

is a 0(((MN)++2)/2) term. This, in turn, proves (9.103). (9.104) follows directly from
the use of the Holder inequality in (9.98). O

We now complete the proof of (9.102). For this, we remark that

Do b=l = D7 e @, I, =10+ 20y, —u, uy)
I h#tuy
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Lemma 9.8 implies that

> Il b, =)= 0 (%)
(MN)

hi#duy

and that

3y, —ur,u)| = 0 (W)

This establishes (9.102) as well as (9.41).

9.3 Expansion of 31-Tr (A(z))

In the following, we establish (9.5). We recall that (5.2) implies that MLLTr (A(2)) is
given by

MLLTr (A2)
L-1 1 , o
= 02ch Z(L: I)IE (r<M>(Q°)(11) i (QWJ,IVHTW*(IM ® R)) )
=

In the following, we denote by x (/1) and x the terms defined by
1 o
~ M o 1 T
() =E (r< Q@)) 77 Tr (QWJ;VH Wy ® R)) )

and
L—1 1 o
~ o 1 *
ks :1 Z(L: I)E(‘E(M)(Q Y(0h) T (QWJ,'VHTW Ly ®R)) )
1=—L—

x(l1) and x appear to be formally similar to x(0, /;) and x(0) defined by (9.51) and
(9.52) in the particular case » = 1. While we have considered in the previous subsection
the case r > 2, a number of evaluations and results can be adapted to the easier case
r = 1. As in Sect.9.2, we expand X (/1) and X using (9.44) in the case r = 1, v =
I1,G = Jé\‘,HT, and A = (Iyy ® R). Using the same notations as in Sect. 9.2, we obtain
that

5
B =Y sih)

j=2
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and
5
F=20s
j=2

where s; = >y LS (I1). We note that the term s is reduced to O in the present context.
It is easy to check that

2 L-1
o) .
sy =3 20 E(foalili i, 0)
i=—(L—1)
and that
0_2 L—1
st =—3% % l)E(ﬁ],o(zgll,llﬂ))
i

where the terms g are defined by (9.33). Proposition 9.4 immediately implies that

2 L L
s4=;I—N - (Zzi:ﬂo,l(i,ll,ll))+0((m))

or equivalently,

2
s4(z) = Gziﬁo 1)+ 0 (L—)
MN"™™ (MN)?

where B | (z) is defined as

_ 1 _
Boa1@ =75 2 Boali 11, 1@

I1,i

Similarly, it holds that

2
s5(2) = —oziﬁl 0@+ 0 (L—)
MN"" (MN)?

where

_ | J—
Pro@ =13 > Bioli. . )E)

I1,i
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We have now to evaluate s2(z) and s3(z). For j = 2, 3, s; can be written as

S] —S] ~|—i(])

We first evaluate 53 and 5,.53 is equal to

1

- 2 2 bhyyT vh T

53 = —o’cy l§l K )(ll,lz)E[—LTr (QWJAZ,H JyH W*(IM®R))]
1,62

We remark that
E| L1 (QWJ HY ) HT W Ly ® R))
ML

L
—021(2)%(z1(2))* (1 — [1|/N)S(y +1, =0)+ O (MN)

We also have to evaluate k ®) (11, [»). Using (9.47), (9.80), and the observation that the

right-hand side of (9.80) isa O ((MN)Z) term (see (9.41)), we obtain that

2 1 L
(L) = AZNT(Zz) - Zﬁ(z 8 +L=0) + 0 ((MN)z)

Therefore, 53 can be written as

I111/N) L L?
73 = 0Sent (@) 75 ZW*"( P O ((MN)Z)

Similar calculations lead to

1—|L1/N)2( = |4L|/L
5y = obewt (2 (@) - Z( [ 1/N)=(1 = |1/ )5(1)

I—d(h, )
L2
+0(<M1\02)

Therefore, it holds that

i,lh

52(2)+53(2)+54(2)+s5(2) = = ZS(I h z)+i“)(z)+i(”(z)+0( L )
MN L2 < ’ 2 3 (MN)?
(9.105)
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where s(i, 1, z) is defined by (9.37). Proposition 9.4 implies that function sy (z)
defined by

sN(@) =0 CN ZSN(I l, 2)

il

coincides with the Stieltjes transform of a distribution whose support is included into
S}(\?) and satisfying (9.8) for K = S, O In order to complete the proof of (9.5), we finally

prove that ¥ = |& (1)| + |x(1)| isa O ( ) term. For this, we remark that ¥(!

(MN)?

verifies (9.87) in the case r = 1 and u = 0. However, the term \//I“WO ((MM(I,+,>/2)

(forr = 1)isreplacedbya O ( term. This term corresponds to the contribution

(MN)Z)
of the s( ) for Jj =2,3andi =4, 5. Inthe present context, » = 1 and itis easy to check

a )

that s’ s ) s identically zero and that s, coincides with § s ) which, using the Holder

2 2
(v ) term. In order to prove that ¥V = 0 ((/;W)

we use (9.91) as in the proof of Lemma 9.6. The Hélder inequality implies that

) o) G ()

As L = N with o < 2/3, it exists an integer p; such that

L P L
(«/MN) —° (WV)
Therefore, using (9.91) for p = pj, we obtain as in the proof of Lemma 9.6 that

N(l) _ L2
xW =0 ((MN)2

1nequallty, appears tobe a O (

as expected. This, in turn, completes the proof of (9.5).

9.4 Evaluation of E (ﬁTr(QN (z))) —ty(2)

In order to establish (9.3), we evaluate %Tr(RN (2)) — tn (2). For this, we use (8.4) for
A=1L We claim that the third, fourth, and fifth terms of the right-hand side of (8.4)

are O(£=). We just check the third term. It is clear that

(MN)2

1 1
7T (R=1D7z 1 [Tn (R~ tl)])’ =< sup |Tr(R—1DA)| [Ty, R - 1D

lAl=1

Proposition 8.1 and (7 1) immediately implies that the third term of the right-hand side

of (8.4)isa (9( 2) term. The fourth and the fifth term can be addressed similarly.

(MN)
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The first term is equal to

- 1
—oten (21 (2)1(2)) ST (Ady ® Ty [7v L (R)H])

Writing that R = tI+R—tIand H = —z7(z) +H+z7(z), and using (5.1), Proposition
8.1 and (7.1), we obtain that

1 oy 152
mvﬁ (Ady ® 7o [Ty, RH]) = —2t (2)7(2) ATLTr(A) + 0 (—(MN)Z)

Therefore, we deduce from (8.4) that

1 _ dy0,2) 1 L

This, in turn, implies that

E ! T _ L sn(2) o L5/?
(ﬁ r(QN(Z))) —iy(2) = VN m + _(MN)Z

and that (9.3) holds with § (z) = %, which has the same properties that sy (z).

This, in turn, establishes Theorem 9.1.

10 Almost Sure Location of the Eigenvalues of WW*

Under condition (9.1), we finally establish that the eigenvalues of Wy W7, lie almost
surely in a neighbourhood of the support of the Marcenko—Pastur distribution.

Theorem 10.1 If c, < 1, for each € > 0, almost surely, it exists No € N such that
all the eigenvalues of Wy W7, belong to [o? (1 — ﬁ)2 —€,0° (1 + \/a)z + €] for
N > No. If cx > 1, for each € > 0, almost surely, it exists Ny € N such that the N
nonzero eigenvalues of WyWy, belong to (o2 (1 — \/a)z — €, 07 (1 + \/a)z + €]
for N > Nj.

The proof follows [17] and the Lemma 5.5.5 of [2] which needs to verify conditions
that are less demanding than in [17].
We first establish the following lemma.

Lemma 10.1 Forall y € C;°(R) constant on the complementary of a compact inter-
val, and vanishing on Sy for each N large enough, it holds that:

L
E[Tr (y(WyWR))] = 0 ((mfﬂ) (10.1)
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13/2
E |Tr (W (WyW3)) — E (v (WyW; ))| [(W)] (10.2)

foreachl > 1.

Proof In order to establish (10.1), we first justify that for each smooth compactly
supported function v, then it holds that

L A
E[Tr (¥(WyW3))] —ML/%(?») dito,cy (W) = ML s (DN, Ye)

L \32
_0((M2) ) (10.3)

(10.3) is a consequence of Theorem 9.1. In order to prove (10.3), we cannot use
Theorem 6.2 of [17] because function 7y (z) defined by (9.3) does not satisfy |Fy (z)| <

P1(|z]) P>(1/Imz) for each z € CT, but when z belongs to the set F 15,2) defined by (9.4).
To solve this issue, we use the approach of [2] based on the Hellfer—Sjostrand formula

which is still valid when |7y (z)| is controlled by Py (|z|) P»(1/Imz) for z € F;lz). O

As we have proved in Lemma 9.3 that the Hellfer-Sjostrand formula is valid
for compactly supported distributions, (10.3) follows directly from Lemma 5.5.5 of
[2] provided we verify that for each nice constants Cy, C(/), it exist nice constants
C1, Ca, C3 and an integer Ny such that

L L3/2 1
—IE(TrQN(z)) —in(2) — —=5n(2)| <

MN (MN)2 (Imz)©s (10.4)

for each z in the domain |Re(z)| < Cy, _Cl <Im(z) < CO and for each N > Nj.
In order to check that (10.4) holds, we fix nice constants Cy, CO, and first show that

it exists Cp such that the above domain, denoted Ey c,, is included in the set F ,(\,2)
defined by (9.4) for N large enough. It is clear that for each z € Ey ¢,, it holds that

01(12) Q2(1/1m2) = 01 ((C3 + cgz)l/z) 0,(NC1) < CN®Ci

for some nice constant C, where g» = Deg(Q>). Hence,

L? L? -
— 1/Imz) < C — N®©
oy 21020 Q2(1/Imz) < €

Using that N = O(ML), we obtain immediately that

2 Ll+qzC1

L
oy 21120 Q2(1/Imz) = €~

‘M2—0C1
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Condition (9.1) implies that

L1+q2C1 o 1
M2—¢C1 N2-3a—q2C)

We choose C; > (2—3a) /g7 so that L) — 0. Therefore, %\, 01(z])Q2(1/Imz)

M2—02C1
is less than 1 for N large enough. We have thus shown the existence of a nice constant

Cy for which Dy ¢, C Fli,z) for N large enough. Hence, foreach z € En ¢,

L L3
B (TrQu (2) — 1n(2) — ~mcin ()| < IV

We now prove that if z € En c,, then Pi(|z]) P>(1/Imz) < C2 for some nice

)C3
constants C, and Cz. We remark that P;(|z]) < Py ((Co + Coz)l/ 2) and denote by
p2 and (P2 ;)i=0,..., p, the degree and the coefﬁcients of P,, respectively. If Imz < 1,
it is clear that P>(1/Imz) < (312, P») T mz) ——. This completes the proof of (10.4)

if Cé) < 1LIC, . 1, it remains to consider the case where z € Dy, c, verifies

/

Cy
1 <Imz < C() It is clear that E < Imz Therefore,

C/ P2 C/ 172
oon()-() 5

i=0

In sum, we have proved that P;(|z]) P>(1/Imz) < C» W for some nice constant
C> and for each z € En c,, which, in turn, establishes (10.4).

Equation (9.12) allows us to follow the arguments of the proof of Lemma 5.5.5 of
[2] and to establish (10.3). In order to prove (10.1), we follow [17]. We denote by «
the constant for which ¥ (1) = « outside a compact subset. Function ¥, = ¢ — « is
thus compactly supported and is equal to —« on Sy for N large enough. Therefore,

/ e diigz oy () = —& and {Dy. Ye) =0

and (10.3) implies (10.1).

The proof of (10.2) is based on the Poincaré—Nash inequality and is rather standard.
A proof is provided in [23].

As L2 5 0, (10.1) and (10.2) for I large enough imply that

™3
Tr (y (WyW3)) — 0 a.s. (10.5)
Consider a function ¢ € C;°(IR) such that

~ o =tifx e (102 (1= V&)’ — e, 0% (1 4+ Ve.) +elUl-€ el Le,21)
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—yw = 0 it x e (0P(1-ve) —e2 0 (14 e)

+€/2] U [—€/2, E/2]]lc*>1)
- 0 < ¥ (x) <1 elsewhere

Such a function  satisfies the hypotheses of Lemma 10.1. It is clear that the number
of eigenvalues of Wy W% located into ([a2 (1- ﬁ*)z —e0?(1+ ﬁ*)z +€]U
[—e, €] ]lc*>1)c is less than Tr (1/;(WNW*N ), which, by (10.5), converges almost
surely towards 0. This completes the proof of Theorem 10.1 if ¢, < 1. If ¢, > 1, we
consider a function ¥ € C2°(R) such that

— Ye(x)=1ifx € [—€/2,€/2]
- Y.(x) =0ifx € [—¢, €]
- 0 < Y.(x) < 1elsewhere

As 0 does not belong to the support of DN, it holds that (bN, Y.) = 0 for each N
large enough. Using (10.3) and the observation that function /. satisfies also (10.2), we
obtain as above that almost surely, for N large enough, the interval [—¢, €] contains
ML — N eigenvalues of WyW},. As ML — N coincides with the multiplicity of
eigenvalue 0, this implies that the N remaining (nonzero) eigenvalues are located into

[o2 (1 - ﬁ*)z —e0?(1+ \/E*)z + €]. This establishes Theorem 10.1 if ¢, > 1.

Appendix 1: Proof of Proposition 2.3

We first establish (2.14). For this, we first remark that as K coincides with the size of
square matrix A, then, fori, j € {1, 2, ..., R}, itholds that (TR,K(A)) =t(A)(i—
D Lji—ji<(k-1) is equal to

i,j

K

1
(Trxk @A), ; = e > Airicjali<itioj<k
k=1

We establish that for each R-dimensional vector b, then |[b*7g, k(A2
< b*7Tg,k (AA*)b. For this, we note that component r of b*7x  (A) is equal to

R K
— 1
(b*Tr x (A)), = ;:1 b; e ];:1 Asvi—rk Li<kti-r<k

Therefore,

R 2

Ib* Tk (A)* =D

biAkti—rk Ti<kti—r<k

x| =
M =
IM-
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and is thus less that the term a defined by

2

R R
Z ! Z ZBiAk-H—r,k Ti<kyior<k

r=1 k:l i=1
a can also be written as
| KX
a= Z bibj? ZZAk+i—rAk+j—r,k Ni<krior<k,1<k+j—r<kK
(i,))=1,...,R r=1 k=1
We denote by u the index u = k — r and rewrite a as
| X
a= Z bibjz ZzﬂlskwsR AutikAutjk Li<uti<k 1<utj<k

(i.))=1,...R k=1ueZ

or equivalently as,

a = Zzﬂkk u<R

k=l ueZ

u+i.k ]ll<u+l<K

i=1

Therefore, a satisfies

2

R
D biAuyik li<uri<k
i=1

K 1
<22 %
k=1 ueZ

or equivalently

— 1 «
a= Z bibj? Z (AA )u+i,u+j ]115“+i§K’15“+j5K
i,j)=1,...,R UeZ

We define index k as k = u + j and remark that

1
e Z (AA*)MH,MH- Ti<yvi<k,i<utj<k

K
1
= Z (AA*)k-i-i—j,k Liskti-j<k = (TR’K(AA*))LA,’

Therefore, we have shown that

Ib*Tx k (A)||* < a < b*Tx x (AA*)b
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In order to prove (2.15), it is sufficient to remark that the entry (i, j), (i, j) €
{1,2,..., R} of matrix 7 g(A) is still equal to

K

1
(Trr (W), ; = I D Awriojk Li<kyioj<k
k=1

because R < K and to follow the proof of (2.14).

Appendix 2: Proof of Lemma 4.1

We use the same ingredients than in the proof of Lemma 5-1 of [16]. Therefore, we just
provide a sketch of proof. The invertibility of Iy + olcn T(M) (E(Q(2))) forz e C*

is a direct consequence of Im (Q(z)) > 0 on C* (see (1.26)) as well as of Proposition
2.2. In order to prove (4.2), we first establish that function G(z) defined by

coincides with the Stieltjes transform of a positive CV*¥ matrix-valued measure v
carried by R™ such that v(RT) = I, i.e.

_ dv())
G(z)—/R+ -

For this, it is sufficient to check that Im(G(z)) and Im(zG(z)) are both positive on C*
and that limy,_, 1o, —iy G(iy) = Iy (see proof of Lemma 5-1 of [16]). We omit the
corresponding derivations. It is clear that

dv(.) |
x—z? = ImGz)

Im(G(z)) = Im(z) /

for z € CT.Im(G(z)) can also be written as

*71 H(z)*
Im(G@) = =2 o [0 - (@) ] -
or equivalently as
(Z) M) (Z)*
Im(G() = = [Im(2) + o2y 77 (m(zQE)) | —

As Im(zQ(z)) > 0 on C™T (see (1.26)), this implies that

m(z)
Im(z) IN > Im(G(Z)) | |

H(z)H(z)*
which implies (4.2). The other statements of Lemma 4.1 are proved similarly.

@ Springer



J Theor Probab

References

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

. Abed-Meraim, K., Moulines, E., Loubaton, Ph: Prediction error method for second-order blind iden-

tification. IEEE Trans. Signal Process. 45(3), 694-705 (1997)

. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies

in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

. Anderson, G.W.: Convergence of the largest singular value of a polynomial in independent Wigner

matrices. Ann. Probab. 41(3B), 2103-2181 (2013)

. Bai, Z., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series

in Statistics, 2nd edn. Springer, New York (2010)

. Basak, A., Bose, A., Sen, S.: Limiting spectral distribution of sample autocovariance matrices. To

appear in Bernouilli, can be downloaded on Arxiv, arXiv:1108.3147v1

. Basu, R., Bose, A., Ganguly, S., Hazra, R.S.: Limiting spectral distribution of block matrices with

Toeplitz block structure. Stat. Probab. Lett. 82(7), 1430-1438 (2012)

. Benaych-Georges, F., Nadakuditi, R.R.: The singular values and vectors of low rank perturbations of

large rectangular random matrices. J. Multivar. Anal. 111, 120-135 (2012)

. Bottcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, New York

(1999)

. Bryc, W.,, Dembo, A., Jiang, T.: Spectral measure of large random Hankel, Markov and Toeplitz

matrices. Ann. Probab. 34(1), 1-38 (2006)

Capitaine, M., Donati-Martin, C.: Strong asymptotic freeness of Wigner and Wishart matrices. Indiana
Univ. Math. J. 25, 295-309 (2007)

Capitaine, M., Donati-Martin, C., Féral, D.: The largest eigenvalue of finite rank deformation of large
Wigner matrices: convergence and non-universality of the fluctuations. Ann. Probab. 37(1), 1-47 (2009)
Capitaine, M., Donati-Martin, C., Féral, D.: Free convolution with a semi-circular distribution and
eigenvalues of spiked deformations of Wigner matrices. Electron. J. Probab. 16, 1750-1792 (2011)
Dozier, B., Silverstein, J.: On the empirical distribution of eigenvalues of large dimensional
information-plus-noise type matrices. J. Multivar. Anal. 98(4), 678-694 (2007)

Far, R.R., Oraby, T., Bryc, W., Speicher, R.: Spectra of large block matrices. Preprint available on
Arxiv, arXiv:cs/0610045

Girko, V.L.: Theory of Stochastic Canonical Equations. Mathematics and Its Applications. Kluwer
Academic Publishers, Dordrecht (2001)

Hachem, W., Loubaton, P., Najim, J.: Deterministic equivalents for certain functional of large random
matrices. Ann. Appl. Probab. 17(3), 875-930 (2007)

. Haagerup, U., Thorbjornsen, S.: A new application of random matrices: Ext(C;‘ed(Fz)) is not a group.

Ann. Math. 162(2), 711-775 (2005)

Grenander, U., Szego, G.: Toeplitz forms and their applications, 2nd edn. Chelsea Publishing Company,
New York (1984)

Hachem, W., Khorunzhiy, O., Loubaton, P., Najim, J., Pastur, L.: A new approach for capacity analysis
of large dimensional multi-antenna channels. IEEE Trans. Inf. Theory 54(9), 3987-4004 (2008)
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)
Li, T.Y., Liu, D.Z., Wang, Z.D.: Limit distributions of eigenvalues for random block Toeplitz and
Hankel matrices. J. Theor. Probab. 24(4), 1063—-1086 (2011)

Loubaton, P., Vallet, P.: Almost sure localization of the eigenvalues in a gaussian information plus
noise model. Applications to the spiked models. Electron. J. Probab. 70, 1934-1959 (2011)
Loubaton, P.: On the almost sure location of the singular values of certain Gaussian block-Hankel large
random matrices. (2014). arxiv:1405.2006 [math.PR] version 1

Male, C.: The norm of polynomials in large random and deterministic matrices. Probab. Theory Relat.
Fields 154(3—4), 477-532 (2012)

Moulines, E., Duhamel, P., Cardoso, J.F., Mayrargue, S.: Subspace methods for blind identification of
multichannel FIR filters. IEEE Trans. Signal Process. 43, 516-525 (1995)

Najim, J., Yao, J.: Gaussian fluctuations for linear spectral statistics of large random matrices. (2013).
Preprint arXiv 1309.3728

Pastur, L.A.: A simple approach for the study of the global regime of large random matrices. Ukr.
Math. J. 57(6), 936-966 (2005)

Pastur, L.A., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices. Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence (2011)

@ Springer


http://arxiv.org/abs/1108.3147v1
http://arxiv.org/abs/cs/0610045
http://arxiv.org/abs/1405/2006
http://arxiv.org/abs/1309.3728

J Theor Probab

29. Schultz, H.: Non commutative polynomials of independent Gaussian random matrices. Probab. Theory
Relat. Fields 131, 261-309 (2005)

30. Vander Veen, A.J., Talwar, S., Paulraj, A.: A subspace approach to blind space-time signal processing
for wireless communication systems. IEEE Trans. Signal Process. 45(1), 173-190 (1997)

31. Vander Veen, A.J., Vanderveen, M., Paulraj, A.: Joint angle and delay estimation using shift-invariant
tehniques. IEEE Trans. Signal Process. 46(2), 405418 (1998)

@ Springer



	On the Almost Sure Location of the Singular Values of Certain Gaussian Block-Hankel Large Random Matrices
	Abstract
	1 Introduction
	1.1 The Addressed Problem and the Results
	1.2 Motivation
	1.3 On the Literature
	1.4 Overview of the Paper
	1.5 General Notations and Definitions

	2 Preliminaries
	3 Poincaré--Nash Variance Evaluations
	4 Expression of Matrix mathbbE(Q) Obtained Using the Integration by Parts Formula
	5 Controls of the Error Term Δ
	6 Convergence Towards the Marcenko--Pastur Distribution
	7 Convergence of the Spectral Norm of mathcalTN,L(R(z) - t(z) IN)
	8 Proof of (1.18)
	9 Expansion of 1ML Tr ( mathbbE(QN(z)) )  -  tN(z)
	9.1 Useful Results Concerning the Stieltjes Transforms of Compactly Supported Distributions
	9.2 Some Useful Evaluations
	9.2.1 Evaluation of the Third and Fourth Terms of the Right-Hand Side of (9.13)
	9.2.2 Evaluation of κ(2)(l1,l2)

	9.3 Expansion of  1ML Tr( Δ(z) )
	9.4 Evaluation of mathbbE ( 1ML Tr(QN(z)) ) - tN(z)

	10 Almost Sure Location of the Eigenvalues of W W*
	Appendix 1: Proof of Proposition 2.3
	Appendix 2: Proof of Lemma 4.1
	References




