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ABSTRACT

In this paper, it is established that the signal to interference plus
noise ratio (SINR) produced by a trained regularized Wiener spatio-
temporal filter can be estimated consistently in the asymptotic
regime where the number of receivers and the number of snapshots
converge to infinity at the same rate. The optimal regularization
parameter is estimated as the argument of the maximum of the
estimated SINR. Numerical simulations show that the proposed op-
timum regularized Wiener filter outperforms the existing regularized
spatio-temporal Wiener filters.

1. INTRODUCTION

Finite impulse response spatio-temporal Wiener filter estimation
using a training sequence is a very classical problem. When the
useful signal is corrupted by an additive temporally and spatially
white Gaussian noise, the optimal estimator is known to be the
standard least-squares estimate defined as the action of the inverse
of the empirical spatio-temporal covariance matrix on the empirical
cross correlation between the observation and the training sequence.
However, it is known for a long time that regularizing the empiri-
cal spatio-temporal covariance matrix by a multiple of the identity
matrix may enhance the performance of the estimate because this
matrix can be ill-conditioned or even non invertible when the size
of the training sequence is smaller than the dimension of the vector
associated to the Wiener filter. The choice of the regularization
parameter appears to be a crucial issue that was addressed in a
heuristic manner in a number of references (see e.g. [10]], [13, p.
748], [L1] and [12]]) because classical figures of merit such as the
signal to noise plus interference ratio (SINR) produced by the esti-
mated Wiener filter are difficult to estimate in the general case. In
the context of large dimension systems where the number of sensors
and the lenght of training sequence are both large, the situation ap-
pears more favourable due to some subtle self-averaging effects. The
existing related works addressed the purely spatial context. Ledoit
and Wolf proposed in [9] to find the loading factor so as to minimize
the mean-square error of the estimated empirical covariance matrix,
and showed that the optimal value can be estimated consistently.
This approach was generalized in [3] to the Tyler estimator in the
context of robust estimation. Mestre and Lagunas [7]] considered
the case where the array response is a priori known (no training se-
quence) and where the noise plus interference covariance matrix is
unknown. It is shown in [7]] that the SINR produced by the regular-
ized estimated Wiener filter can be consistently estimated from the
available observations, and proposed to estimate the loading factor
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as the argument of the SINR maximization. The optimization of the
SINR was also considered in [[14] in the context of robust estimation.

In the present paper, we assume that the observation is a M-
dimensional time series defined as a noisy output of an unknown
SIMO finite impulse response system driven by the sequence of
interest. We assume that a lenght NV training sequence is available at
the receiver side in order to estimate a regularized degree L — 1 FIR
spatio-temporal Wiener filter from the N M —dimensional obser-
vations collected during the transmission of the training sequence.
In the large system context in which M and N both converge to-
wards 400 at the same rate and where L remains fixed, we establish
that the SINR produced by the regularized estimated Wiener filter,
which, in principle, depends on the additive noise corrupting the
N available observations, converges towards a deterministic term
depending on the loading factor, the noise variance, assumed to be
known, and the unknown filter. We show that, while the channel fil-
ter is unknown, the above limit SINR can be estimated consistently
from the N available observations for each value of the regulariza-
tion parameter, and propose to estimate the loading factor as the
argument of its minimum.

This paper is organized as follows. In section 2] we present
the signal models and the underlying assumptions. In section[3} we
present some useful technical results proved in [6] and [8]. In sec-
tion[d] we establish that the SINR converges towards a deterministic
term, and section [3] addresses the consistent estimation of the limit
SINR. Finally, section [f] presents numerical experiments sustaining
our theoretical results, and comparing our proposal to the Ledoit-
Wolf ([9]]) estimator of the regularization parameter and to other em-
pirical schemes proposed in the past ([10], [13, p. 748], [L1] and

12).

12D 2. PROBLEM FORMULATION.
We assume that the observation is a M —dimensional time series
(¥n)nez defined by

P—1
Yn=3 hpsu p+ven=1,.,N (1)

p=0
where h(z) = 25 ;01 h,z7? represents the transfer function of

the unknown FIR SIMO system and (v, )nez is an i.i.d sequence
of complex Gaussian random vectors with spatial covariance matrix
o1. Although h(z) is not known, we assume that P is known, i.e.
in practice, that an upper bound of the support of the impulse re-
sponse associated to h(z) is available. We assume that a lenght N
training sequence (S»)n=1,...,~ is available at the receiver side, and
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we study the performance of the estimated regularized Wiener filter
g, defined by

g\ = (N ZY(L) (L) 4 )\IML> < Zy#hﬁ)

€ is destinated to estimate the unknown transmitted datas (sn)n> N.
In the following, for each m = 1,..., M, we denote by H,, the
L x (P+ L —1) Toeplitz matrix corresponding to the convolution of
signal (s, )nez with sequence (hy, p)p=o,...,p—1, and define M L x
(P + L — 1) block-Hankel matrix H by H = (HT,..., H3)7.
Assuming sequence ($p)n>n i.i.d., the signal to interference plus

noise ratio produced by g&“ is easily seen to be equal to

) |gAhP|2

SINR
&)= ZHHies + 2o

3

where hp is column P of H, and matrix H; is obtained by deleting
column P from matrix H. SINR(g (L)) is random in the sense that it
depends on the vectors (yn)n=1,...,N, Which are random themselves
due to the presence of the additive noise. When N goes to co and
M, L remain fixed, it is easily to see that if A = 0, the filter go con-
verges towards Wiener filter (HH* +02T) ' hp and that SINR(go)
converges towards y defined by

hj (HH* +0°I) " hp
~ 1—h% (HH* +02I) 'hp

“

Similar results hold when A > 0. On the contrary, when M, N
are of the same order of magnitude, the analysis of the behaviour of
SINR(g») is different and requires much more work. From now on,
we assume that

M, N — o0, the ratio cy = M _,¢> 0, and P

N
and L remain fixed.

To simplify the notations, N — 400 should be understood as the
above asymptotic regime. In the following, it appears convenient to
define by 32 and W the normalized M L x N block-Hankel matrices
defined by

1 L L 1 L
Y= — ",y ) W= —— (Y

VN VN

respectively. Then, the relations between the available observations
and sequence (Sn)n=1,...,N can be expressed as

L
v{)

g eey

YX=HU+W (5)

where U is the (P + L — 1) x N Hankel matrix defined by
(U)Y);n = sptip/v/N Without loss of generality, we can
assume that UU* = 1, because it is possible to replace H by
H(UU*)Y2 and U by U (UU*)"/? without modifying the
model.

In the following, we define Q(z) as the resolvent of matrix 33"
defined by Q(z) = (EX* — 2Inz) "%, and remark that the esti-
mated Wiener filter g, can be written as

gl =Q(-n=™u

whereu = = (51, ..., 8N is the P-th row of matrix U. To evalu-
ate the behav1our of the SINR given by formula (3) when N — +o0,
i&x %, and HgAH2 These terms
depend on bilinear forms of rnatrlces Q(—2) and Q(—X)? whose
asymptotic behaviour have thus to be evaluated. Model (3) can be
interpreted as an additive spiked information plus noise model, in the
sense that HU is a deterministic matrix whose rank P 4+ L — 1 does
not scale with N and that W is a random matrix with zero mean
elements. If W was a Gaussian random matrix with i.i.d. elements,
the behaviour of the bilinear forms of Q(—X\) and Q(—\)? would
appear as a consequence of the results of [2]] and [4]]. In our context,
however, the elements of matrix W are of course not i.i.d. In the
present paper, we use recent results of 6] and [8] to establish that
the bilinear forms of Q(—\) and Q(—\)? behave as if W was a
random matrix with i.i.d. elements.

3. BACKGROUND ON THE BEHAVIOUR OF MATRIX
WW*,
This paper is based on a technical result which establishes that, in
a certain sense, the eigenvalues of matrix WW™ behave as if the
entries of W were i.i.d. In order to state the corresponding result,
we recall that the Marcenko-Pastur distribution (see for example [[1])
pa with parameters (o2, d) is the probability distribution defined by

VE—a )@ —a)

-1
d,u‘d(x) = 50[1 —d ]+ + 202drx l[z*,z*](x) dz
with 2~ = 02(1 — Vd)? and 7 = ¢%(1 + V/d)?. Here, do rep-
resents the Dirac measure at the origin and 1, ,+(z) = 1 if

x € [#7,z"] and 0 elsewhere. We denote by mg(z) its Stieltjes
transform defined by ma(z) = [; d’;di_(z’\) and by mq(z) the func-
tion mq(z) = dmq(z) — (1 —d)/z. These Stieltjes transform satisfy
the Marchenko-Pastur canonical equations :

-1
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for each z € C — R*. We denote by Quw (z) and Qw (z) the
resolvent of matrices WW™ and W*W defined by Qw (2) =
(WW* — 2I1)" " and Qw(z) = (W*W — zIy)~' Then,
when N — 00, the following result holds.

Proposition 1. ([6],/8]) The eigenvalue distribution of matrix
WW?* converges almost surely towards the Marcenko-Pastur
distribution pcr. Moreover, if an,bn are 2 unit norm (ML)-
dimensional deterministic vectors, then it holds that for each z € ct

ay (Qw(z) — mer(2)I)by = 0 a.s. @

Similarly, if an, by are 2 unit norm N—dimensional deterministic
vectors, then for each z € C™, it holds that

ay (Qw(Z) - ﬁch(Z)I> by — 0 a.s. ®)

and that _

aj\f (Qw( )WN)bN*)OG,S )
Finally, for each € > 0, convergence propemes q. ©) hold uni-
formly w.r.t. z on each compact subset of C — + €.



We recall that, roughly speaking, the convergence of the eigen-
value distribution of WW ™ towards distribution p.7, means that the
histogram of the eigenvalues of any realization of WW™ tend to ac-
cumulate around the graph of the probability density of p.r. The
statements of Proposition [I] are well known when L = 1 and that
M and N converge towards +oo at the same rate. The convergence
towards /1. and (7) appear as consequences of the results of [6]], (8)
and (9) are proved in [8].

4. ASYMPTOTIC BEHAVIOUR OF THE SINR

We recall that Q(z) = (EX* — zInz)” !, and define Q(z)
by Q(z) = (Z*E — zIy)~!. In order to simplify the nota-
tions, we omit to mention the dependency w.r.t. complex vari-
able z, and put d = cL. We introduce function w(z) defined
by w(z) = smmmay- Using (6), it is easy to obtain that
mq(z) = m and mq(z) = ﬁiﬂ If the noise matrix W
was i.i.d., existing results (see [2]), [4]) would imply that Q(z) could
be approximated by

— w(2)ma(z) (HH* — w(2)I) " (10)

in the sense that each bilinear form of these 2 matrices have the same
asymptotic behaviour. In the same way, Q could be approximated
by

—w(2)ma(z) (UH'HU — w(z)I)~" (11)
Proposition [I]implies that and remain valid although W is
not an i.i.d. matrix. In order to establish this, we express express Q
in terms of Quw using the matrix inversion lemma, and use Propo-
sition as in [2]]. Due to the lack of space, we refer the reader to a
forthcoming extended version of this paper. It is possible to establish
the following Proposition.
Proposition 2. When N — 4-oo, the three terms ||hpga|>
IH:&x |12 et |gx||? can be approximated (i.e. have the same al-
most sure behaviour) by the following deterministic quantities:

e |[hpgs | ~ (hp(HH" — w(—M)I) 'hp)? (12)

o [[Hig:|” ~ w(-N)hp(HH" —w(-A\)I) *hp +
hp(HH" — w(-\I) " "hp (1 — hp(HH® — w(-M\)I) 'hp)

13)
gl = Sy g (1= b (HH — (0D hy)
WMt (), e .
) —eig PRHHE —w(-ND Che (14

Moreover, if we introduce a(\) = hp (HH* — w(—\)I)"'hp and
B(\) = hp(HH* — w(—\)I)"2hp, it holds that

SINR(gS") — 6(\) = 0 (15)
almost surely, where ¢(\) is defined by
a(N)?
‘750\) = J4d( ) w2 (=A)(w(=\)+0c2)
[1 - CK()\)H(C\C(A) + w2(—>\)—o4d] + wZ(—N)—cd 6()‘)
(16)
When cL < 1, it is possible to consider the case where A = 0.
Using the observation that w(0) = —c?, we obtain immediately that
(1 —cL)y

0) =y —— 17
d)( ) v ¥ 4+ cL ( )

where v is the SINR corresponding to the true Wiener filter (see
formula. Consequently, the estimation of the Wiener filter by gﬁ))
produces a SINR loss equal to (1 — ¢L) ==, which, of course, is
considerable when cL is close from 1. As shown below, the use of a
convenient regularization coefficient allows to improve considerably
the SINR.

5. CONSISTENT ESTIMATORS OF THE SINR

It is clear that function A — ¢(\) depends on matrix H which is
unknown. We establish in this section that it is possible to estimate
@(X) consistently for each A > 0. For this, it is sufficient to estimate
a(X) and B(X) (see (16)). It is easy to see that

a(A) = 1+ w(=A)((HH - w(-\)D) pp

By and , ((H*H — w(=\)I)"!)p p can be estimated by

uQ(—A)u*
SN Thus,

(18)

is a consistent estimate of c(\). In order to obtain an estimator 3(\)

of B(\), we observe that

hp (HH —w(—\)I) *hp =
(H'H — w(-M)I)

By , UQU* ~ rg(2)w(z) (H'H — w(z)I)"*. Multiplying

by z and taking the derivative w.r.t. z leads to the conclusion that it
is possible to estimate consistently (HH* — w(—\)I)~2)p p by:

W (=\) —o'd
w2(=A)(w(—=A) + 02d)

70.12(—)\) _ U4d(H*H - w(f/\)I)il)p,p

From this, we obtain that S(\) can be estimated consistently by the
term 3(\) defined by

BN = ‘—w(—ﬁ f Sagp QA

w’(=A) —o'd - -, )
w(=A)(w(=X) + 0%d) [“(Q(—A) —AQ*(=Mu )]
(19)

Replacing a()\) and B(A) by &(\) and 3()) in formula , we
obtain immediately a consistent estimator q@()\) of the asymptotic
SINR ¢ (). Moreover, it is possible to establish that function ¢(\)—
é()\) converges uniformly towards 0 on each compact subset of R}
Therefore, if we denote by Aop: and j\opt the argument of the max-
imum of ¢ and (;3 on a fixed compact of R, it holds that Aopt —
Aopt — 0. Therefore, maximizing function A — ¢()) allows to
estimate a regularization parameter for which the true asymptotic
SINR ¢()) is maximum. We also notice that this approach allows
to choose the smoothing factor L: it is sufficient to evaluate q@(;\opt)
for each choice of L, and to select the smoothing factor for which
the latter term is maximum. This is of course not a computation-
ally efficient procedure because it needs to evaluate matrix Q(—2X)
et Q(—A\) for each \ and each integer L.

e +w(=N(HH=-w(-N) )pp



6. NUMERICAL EXPERIMENTS.

In this section, we provide numerical simulations illustrating the
results given in the previous sections. We first illustrate the accu-
racy of the approximation SINR(gx) =~ ¢(\) where we recall that
SINR(§x) is the true SINR defined by (3). Matrix (ho,...,hp_1)
is a realization of a normalized version (so as to obtain a Frobe-
nius norm equal to 1) of random matrix (a(fy), ...,a(@p—1)), with
a(f) = ﬁ(l’ ey @ M=DOT “and where the angles are drawn
uniformly on [0, 27]. The sequence (Sp)n—1,...,n is a realization
of an i.i.d £1 sequence with probability 1/2. The signal to noise
ratio SNR is thus equal to 1/02. In the following experiments,
N = 200,M = 40 and P = 5. In figure [T SNR is equal to
8dB, L = 5, and we evaluate by Monte-Carlo simulations (10.000
realizations are generated) function A — SINR(Q&L))‘ We repre-
sent the graph of the function ¢(\) along with 2 plots represent-
ing the lower and upper bounds of the 95% confidence interval of
A= SINR(gg\m). We can notice that the 3 graphs are close one
from each other.

1ot Confidence nteval wih SNR=8 and L=5
4 T T T

x
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Fig. 1. Confidence region and asymptotic curve of SINR versus A

We now evaluate the performance of the estimator ;\opt of Aopt
and evaluate by Monte-Carlo simulation the root relative least mean
squares error of ¢(Aopt) — d(Aopt). We also evaluate the same
quantity, but when A, is estimated by other existing schemes: the
Ledoit-Wolf estimator ([9]), 3 empirical methods mentioned in [7]]
to be referred to as M1 ([10], [13| p. 748]), M2 [11]], M3 [12] in the
figure (2), and the naive estimate obtained by maximizing w.r.t. A
the expression (3) in which matrix H is replaced by XU, which, of
course, is not supposed to be a good estimator when M and N are of
the same order of magnitude. The various root relative mean squares
errors are given in figure (2) for various values of the smoothing pa-
rameter L.

We finally justify that our approach may be used in order to es-
timate a relevant value of the smoothing parameter L. As mentioned
above, we evaluate dg(}\opt) for each possible value of L, and pro-
pose to select the value of L for which the latter term is maximum.
We keep the same parameters as above. We first represent in Fig-
ure 3] function A — ¢(A) for L = 1,2,3,4,5,6,7, 8, and conclude
that L = P = 5 maximizes ¢(Aopt), but that L = 6,7, 8 also pro-
vide reasonable optimum asymptotic SINR. We can also check that
choosing in a convenient way L and A may improve considerably
the SINR.

RMMISE of iflerent diagonal loading methods

Fig. 2. RMMSE of different diagonal loading methods versus L

Fig. 3. Asymptotic SINR versus L and A

7. CONCLUSION

In this paper, we have proposed a new approach to evaluate the load-
ing factor of a regularized estimated spatio-temporal Wiener filter
in the context of large systems. Assuming that the number of sen-
sors M and the lenght of the training sequence N are large and of
the same order of magnitude, and that the degrees of the Wiener fil-
ter and of filter h(z) do not scale with M, N, we have established
that the SINR provided by the estimated regularized Wiener filter
converges towards an expression depending on the noise variance,
the channel coefficients, and the loading factor. This limit SINR
can be consistently estimated, and we have proposed to estimate the
regularization factor as the argument of the maximum of the esti-
mated limit SINR. Simulation results have shown that the proposed
approach allows to considerably improve the results provided by ex-
isting approaches.
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