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ABSTRACT

This paper addresses the statistical behaviour of spatial smoothing
subspace DoA estimation schemes using a sensor array in the case
where the number of observations N is significantly smaller than
the number of sensors M, and that the number of virtual arrays L
is such that M and N L are of the same order of magnitude. This
context is modelled by an asymptotic regime in which N L and M
both converge towards oo at the same rate. As in recent works de-
voted to the study of (unsmoothed) subspace methods in the case
where M and N are of the same order of magnitude, it is shown
that it is still possible to derive improved DoA estimators termed as
Generalized-MUSIC (G-MUSIC). The key ingredient of this work
is a technical result showing that the largest singular values and cor-
responding singular vectors of low rank deterministic perturbation
of certain Gaussian block-Hankel large random matrices behave as
if the entries of the latter random matrices were independent identi-
cally distributed.

1. INTRODUCTION

The statistical analysis of subspace DoA estimation methods using
an array of sensors is a topic that has received a lot of attention since
the seventies. Most of the works were devoted to the case where
the number of available samples N of the observed signal is much
larger than the number of sensors M of the array (see e.g. [[L1] and
the references therein), The case where M and N are large and of the
same order of magnitude was addressed for the first time in 9] us-
ing large random matrix theory. [9] was followed by various works
such as [S], [14], [Z]. In this paper, the number of observations may
also be much smaller than the number of sensors. In this context,
it is well established that spatial smoothing schemes, originally de-
veloped to address coherent sources ([1], [13]], [12]), can be used
to artificially increase the number of snapshots (see e.g. [11] and
the references therein, see also the recent related contributions [3]],
[4] devoted to the case where N = 1). Spatial smoothing consists
in considering L. < M overlapping arrays with M — L 4 1 sen-
sors, and allows to generate artificially N L snapshots observed on a
virtual array of M — L + 1 sensors. (M — L + 1) x NL matrix
Yg\f) collecting the observations is the sum of a low rank compo-
nent generated by M — L + 1-dimensional steering vectors with
a noise matrix having a block-Hankel structure. Subspace methods
can therefore still be developed. The statistical analysis of the corre-
sponding DoA estimators is standard in the regime where M — L+ 1
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remains fixed while N L converges towards co. When M is large,
this regime appears relevant when L is chosen in such a way that
M — L+1 << M, thus limiting the aperture of the virtual array and
the statistical performance of the subspace estimates. In this paper,
we study spatial smoothing subspace DoA estimators in asymptotic
regimes modelling contexts in which M and N L are large and of the
same order of magnitude and where L is much less than M in order
to not affect the aperture of the virtual array. The number of sources
K is moreover assumed small enough w.r.t. M. As in [9] and [14],
we derive improved subspace DoA estimates (called G-MUSIC es-
timates), and establish their consistency. For this, we evaluate the

behaviour of the K largest eigenvalues and corresponding eigenvec-
(L) (L)*

tors of the empirical covariance matrix —~+7—. To address this

issue, we prove that the above eigenvalues and eigenvectors have the
same asymptotic behaviour as if the noise contribution V;,L) to ma-

trix Y§VL>, a block-Hankel random matrix, was a Gaussian random
matrix with independent identically distributed entries.

This paper is organized as follows. In section [2] we precise
the signal models and the underlying assumptions In section [3| we
present our main results concerning the behaviour of the K greatest
eigenvectors and eigenvalues of the empirical covariance, and de-
duce the G-MUSIC estimates and its properties. Finally, section [4]
present numerical experiments sustaining our theoretical results.

2. PROBLEM FORMULATION.

We assume that K narrow-band and far-field source signals are im-
pinging on a uniform linear array of M sensors, with K < M. In
this context, the M —dimensional received signal (yn)nzl can be
written as

Yn = Asn + Vn,

where A = [aam(61),...,am(0k)] is the M x K matrix of
M—dimensionals steering vectors ans(61),...,am(0k), with
01,...,0k the source signals DoA, and ans (0) = \/lﬁ[l, R ei(M_l)e]T.

s, € CX contains the source signals received at time n, con-
sidered as unknown deterministic and (v,),>1 is a temporally
and spatially white complex Gaussian noise with spatial covari-
ance F[v,vi] = o?I. When the number of observations N is
much less than the number of sensors M, the standard subspace
DoA estimation scheme fails, and it is possible to use spatial
smoothing schemes in order to increase artificially the number
of snapshots (see e.g. [L1] and the references therein). Roughly
speaking, if L < M, spatial smoothing consists in considering L
overlapping subarrays of dimension M — L 4 1. At each time



n, the snapshot available on subarray [ is the (M — L + 1)-
dimensional vector ygf) = (Yi,n,-- .,yM_L_H_Ln)T. We col-
lect the available N L observations (yﬁ))lzl,_“,L’n:le into
the block-Hankel (M — L + 1) x NL matrix Y defined by

YgVL) = (yﬁ”,...,y§”,...,y§$>,...,y§$>). If we define matrix

Apr(0) astherank 1 (M — L + 1) x L Hankel matrix given by

AD(0) = VLM — L+ 1)/M an—141(9) (az(6))” ()

and if A is the rank K (M — L + 1) x K L matrix

AD) = (ABD(0), AP @), AP 0)) @

then, matrix YE\];) can be written as

YV =AY (Syely) + VY 3)

where Sy is the K x N matrix Sy = (s1,...,sn) assumed to be
full row rank K. It is easily checked that matrix A®) (Sy @ I1)
has rank K, and that its range is the K—dimensional subspace
generated by vectors aym—r+1(01),..., am—r+1(0x). When
M — L + 1 remains fixed while N L converges towards oo, the
law of large numbers implies that the empirical covariance ma-
trix YE\,L>Y§VL)* /NL has the same asymptotic behaviour than
A® (88* @1, /NL) AP* 4 6%y 1. In this context,
the orthogonal projection matrix ﬂg\f) onto the eigenspace associ-
ated to the M — L +1— K smallest eigenvalues of Y ()Y % /N L
is a consistent estimate of the orthogonal projection matrix 1™ on
the noise subspace, i.e. the orthogonal complement of
sp{am—r+1(601),...,am—r+1(0x)}. The traditional pseudo-
spectrum estimate ﬁl(\t,) (0) defined by

. o (L )
n%)(e) =am—r+1(0) HEV >aM_L+1(0) thus verify

~(t) a.s.
sup 0) —n(@)] —— 0. ()
P N (0) = n(0)| ———
where () = am—r+1(0) TP an_1+1(0) is the MUSIC

pseudo-spectrum. Moreover, the K MUSIC traditional DoA es-
timates, defined formally, for k =1, ..., K, by

01y = argmax () (6),
’ €Ty,
where 7y, is a compact interval containing 6y, and such that 7, N\Z; =
() for k # 1, are consistent, i.e.

a.s.

H(t)
ek,N m 0. (5

However, when M is large, this regime is not very interesting in
practice because it appears relevant when the size M — L + 1 of
the subarrays is much smaller that the number of antennas M, thus
reducing the resolution of the method. We therefore study spatial
smoothing schemes in regimes where the dimensions M — L + 1
and NL of matrix Y§VL) are of the same order of magnitude and
where I << M in order to not affect significantly the aperture of
the array. More precisely, we assume that integers N and L depend
on M and that

M—L—|—1_>
NL

where 0 < ¢ < co. In regime (6), IV thus converges towards oo but
at a rate that may be much lower than M, thus modelling contexts in

M — 400, N = O(M"), 1/3 < <1, c (6)

which N may be much smaller than M. As % — ¢, it is clear that
L = O(M*®) where o« = 1 — §8 verifies 0 < o < 2/3. Therefore,
L may converge towards oo but in any case, ﬁ — 0. We finally
notice that L may converge towards oo faster than NV when 5 < 1/2.
While in this regime, /N and L depend in principle on M, N — 400
should be understood as the asymptotic regime (6)) in order to short
the notations.

In regime (6), @) is no more valid because ratio (M — L +
1)/N L does not converge towards 0. Hence, is questionable,
and the aim of the following section is to derive consistent improved
subspace DoA estimates.

3. DERIVATION OF A CONSISTENT G-MUSIC METHOD.
In order to simplify the notations, we denote by X, W and Bx
the matrices defined by Xy = Y\ /V/NL, Wy = V" /VNL
and By = ﬁA(“ (Sn ®IL). This paper is based on a technical
result which establishes that, in a certain sense, the eigenvalues of
matrix W x'W ' behave as if the entries of Wy were i.i.d. In order
to state the corresponding result, we recall that the Marcenko-Pastur
distribution y with parameters (o2, ¢) is the probability distribution
defined by

V@—a )@ —a)

202cmx

du(e) = ol — ¢ V4 +

]]'[a:* ,er] (I‘) dx

with 27 = (1 — /c)? and 27 = o2(1 + /c)®. We denote
by m(z) its Stieltjes transform defined by m(z) = [ d;‘i? and
by m(z) the function m(z) = em(z) — (1 — ¢)/z. We denote by
Qn(z) and Qn(z) the so-called resolvent of matrices Wy W,
and WTVWN defined by QN(Z) = (WNWR; — ZIM_L+1)_1
and Qn(z) = (WyWy — zIyz)”" Then, in regime @, the fol-
lowing result holds.

Proposition 1. The eigenvalue distribution of matrix W n' Wy con-
verges almost surely towards the Marcenko-Pastur distribution p.
Moreover, for each € > 0, almost surely, for N large enough, all the
eigenvalues of WxW 'y belong to [t~ — e,z + €] ifc < 1, and
tolx” — e,z + € U{0}ifc > 1. Moreover, ifan, by are 2 unit
norm (M — L + 1)~dimensional deterministic vectors, then it holds
that for each z € C*

ay (Qn(2) —m(2)I) by — 0 a.s. 7

Similarly, ifan, BN are 2 unit norm N L—dimensional deterministic
vectors, then for each z € CT, it holds that

ay (QN(Z) - ﬁz(z)l) by — 0 a.s. 8)
Moreover, for each z € CV, it holds that
an (Qn(2)Wx)by — 0 a.s. 9)

Finally, for each € > 0, convergence properties q@ E) hold uni-
Sformly w.r.t. z on each compact subset of C — [0, 27 + €.

We recall that, roughly speaking, the convergence of the eigen-
value distribution of W y W3, towards distribution z means that the
histograms of the eigenvalues of any realization of Wy W tend
to accumulate around the graph of the probability density of x. The
statements of Proposition [T] are well known when L = 1 and that
M and N converge towards 400 at the same rate. Apart and
({9). Proposition appears as a consequence of the results of []. We



note that the convergence of the eigenvalue distribution of W xy'W 3,
towards the Marcenko-Pastur holds as soon as N — +o0, and does
not need to assume that N = O(M?) for 8 > 1/3. The latter
assumption is necessary to ensure that the eigenvalues of W W3,
stay in the neighborhood of the support of u, a crucial point to es-
tablish Theorem [T|below. We finally note that if A/ and L converge
toward oo at the same rate and that N remains fixed, the convergence
of the eigenvalue distribution W y W3, towards g is no longer true.
Intuitively, this is because W v depends on M N independent ran-
dom variables, and that if /V is fixed, this number is not sufficient to
ensure nice averaging effects. In particular, if N = 1, it is shown in
[2] that the eigenvalue distribution of W y W3, converges towards
an unbounded probability distribution that can be characterized by
its moments. )

In the following, we denote by (Ag,n)k=1,...mM—r+1 and
(0k,N)k=1,.... M—L+1 the eigenvalues and corresponding eigen-
vectors of XnyX3, and by \i v > Aen... > Ag,n and
(uk,~n)k=1,.. ,k the non zero eigenvalues and eigenvectors of
BnyBj%. Proposition E] allows to generalize immediately the ap-
proach used in [6] (see also [7]), and to prove that the K greatest
eigenvalues and corresponding eigenvectors of X X7 also behave
as if the entries of W were i.i.d.

Theorem 1. We assume that:

Assumption 1. The K non zero eigenvalues (A, N )k=1,..., x of ma-
trix BNBYy converge towards A1 > Ay > ... > Ag when N —
—+o0.

We denote by s, 0 < s < K, the largest integer for which
Xs > o2\/c. Then, fork =1, ..., s, it holds that
)\ 2 )\ 2
(M +0 )}\( k+0°c) S ot
k

AN == pp = (M) =
N — o0

while for k = s+ 1,..., K, /A\k,N — zT a.s. Moreover, for all
deterministic sequences of unit norm vectors (an), (bn), we have
fork=1,...,s

ay (G, N5 N — h(pr)uk nuj n) by = 0a.s.  (10)

where function h(z) is defined by h(z) = zm(2)* i (2)

(zm(2)(2))’

Here, for ease of exposition, we have assumed that A\, # )
for k # [. However, Theorem [I| and the forthcoming results still
hold true if some (Ax)k=1,...,x coincide (see [7]). Theoremleads
immediately to the derivation of the following improved estimate
7iv (0) of the pseudo-spectrum 7(6).

Theorem 2. Assume that Assumption [I| holds and that the separa-
tion condition

Ak > 024/ 1)
holds. Then, the pseudo-spectrum estimate 7jn (0) defined by
K
A * 1 A~ A kK
AN(0) =ay_r41(0) | I- - g, N N | av—1241(0)
k=1 h ()\k,N>
(12)
verifies
sup  |An (0) — nn (0)] == 0, (13)
oc[—m,m) N—o0
Finally, the corresponding DoA estimates (ék N)k=1,...,K are con-
sistent, and verify
M(ék,]\r —Ok) — 0 a.s. (]4)

This result can be proved as Theorem 3 in [7]. We remark that
in [[7]}, it is assumed that the angles (0 )k=1,...,x do not scale with
M, N, L. However, it is possible to extend the results of [7], and
thus Theorem [2] to the case where certain DoAs are spaced of the
order of the beamwidth, i.e. for some k, Oy +1 — 0, = O(ﬁ)

Under the separation condition (TI)), it is thus possible to derive
consistent subspace DoA estimators in the context of spatial smooth-
ing schemes. Roughly speaking, means that the smallest non
zero eigenvalue of the signal matrix B y B’ should be large enough
in order to ensure the separation of the noise and signal subspaces
of the empirical covariance matrix X yX7%. In the case where pa-
rameter L does not converge towards oo, it is interesting to get some
insights on the separation condition, and to evaluate how it behaves
when L increases. If L does not converge towards oo, (3 is reduced
to 1, and % — d, where d = cL. If Apr—p41 is the matrix
Ay-r41 = (am—r+1(61),...,am—r+1(0K)), it is easy to check
that

SnSk

ByBy = Ax- 11 < . A€XL> Ayr_r1 (15)

where e represents the Hadamard (i.e. element wise) product of ma-
trices, and where B stands for the complex conjugation operator
of the elements of matrix B. In order to simplify, we assume that

SnSh . . .
=NFA converges towards a diagonal matrix D when NV increases.

Therefore, % o (ATAL) — D. Therefore, the separation condi-
tion is equivalent to

o'V
VL

1\71_1)r4r_1OC Ax (Ay—rD Ajy_ryq) >

If the DoAs (Qk)kzl ,,,,,
converges towards Ix when N — +o0, and the separation condi-
tion reduces to

o?Vd

k=1, K NG

This analysis means that, provided that M and N are large enough
and that L is much lower than M, spatial smoothing allows to reduce
the threshold o2v/d corresponding to G-MUSIC methods without
spatial smoothing by the factor v/L. Therefore, if M and N are
of the same order of magnitude, our asymptotic analysis allows to
predict an improvement of the performance of the spatial smoothing
subspace methods when L increases provided L << M. If L is
however too large, the above analysis is no more justified, and the
impact of the diminution of the number of antennas becomes domi-
nant, and the performance tends to decrease.

4. NUMERICAL EXPERIMENTS.

In this section, we provide numerical simulations illustrating the re-
sults given in the previous sections. In the following experiments, we
consider 2 closely spaced sources with DoAs 1 = 0 and 0> = ﬁ,
and we assume that M/ = 160 and N = 20. The 2 x N signal ma-
trix is the realization of a random matrix with V¢ (0, 1) i.i.d. entries.
The 2 source signals are normalized in order to force the sources
to have power 1, and so that the signal to noise ratio is defined by
SNR = 1/0%. Table|[l| provides the minimum value of SNR for
which the separation condition (in its finite length version) holds,
ie.

1

AK,N

When L increases, /(M — L + 1)/N L decreases. However, when

L increases, M — L + 1 decreases and A g,y also decreases because

(c*)~! (M —L+1)/NL

& donot scale with M, N, matrix A}, ;1 Apm—r41



the smallest eigenvalue of matrix A}, .1 An—r4+1 decreases.
This explains why the minimal SNR first decreases, and then in-
creases.

L 2 4 8 16 32 64 96 128
SNR | 33.46 | 30.30 | 27.46 | 2531 | 24.70 | 28.25 | 36.11 | 51.52

Table 1. Minimum value of SNR for separation condition

In figure m we represent the mean-square errors of the G-
MUSIC estimator §; for L = 2,4,8,16 versus SNR. The corre-
sponding Cramer-Rao bounds is also represented. As expected, it is
seen that the performance tends to increase with L until L = 16. In
ﬁgurem L is equal to 16, 32, 64, 96, 128.

B N =20,M =160,6, = 0,0, = 537
10 T T T

Fig. 1. Empirical MSE of G-MUSIC SS estimator 6 versus SNR

For L = 32, it is seen that the MSE tends to degrade at high
SNR w.rt. L = 16, while the performance severely degrades for
larger values of L.

N =20,M =160,6, = 0,6, = 57
.

T
—f— =16
—.— =32
L=64
SRR =@ =1=96

== =128
= CRB

Fig. 2. Empirical MSE of G-MUSIC SS estimator 6 versus SNR

In Figure 3] parameter L is equal to 16. We compare the perfor-
mance of G-MUSIC SS with the standard MUSIC method with spa-
tial smoothing. We also represent the MSE provided by G-MUSIC
and MUSIC for L = 1. The standard unsmoothed MUSIC method
of course completely fails, while the use of the G-MUSIC SS pro-
vides a clear improvement of the performance w.r.t. MUSIC SS and
unsmoothed G-MUSIC.

N =20,M =160,L = 16,6, = 0,6, = 557

T T T

=—@— Empirical MSE (G-MUSIC)

=== Empirical MSE (MUSIC)
Empirical MSE (G-MUSIC SS)

Empirical MSE (MUSIC SS)
B  — =— CRB
v \d $ - v v

Fig. 3. Empirical MSE of different estimators of §; when L=16

We finally consider the case L = 128, and compare as above
G-MUSIC SS, MUSIC SS, unsmoothed G-MUSIC and unsmoothed
MUSIC. G-MUSIC completely fails because L and M are of the
same order of magnitude. Theorem|2| is thus no more valid, and the
pseudo-spectrum estimate is not consistent.

~ N =20,M =160,L = 128,60, = 0,0, = 537
10 T T T

T T T

=—@— Empirical MSE (G-MUSIC)

=)= Empirical MSE (MUSIC)
Empirical MSE (G-MUSIC SS)
Empirical MSE (MUSIC SS)

s s CRB

Fig. 4. Empirical MSE of different estimators of #; when L=128

5. CONCLUSION

In this paper, we have addressed the behaviour of subspace DoA es-
timators in the case where the number of observations may be much
lower than the number of sensors. In this context, we have stud-
ied the statistical performance of subspace estimators based on spa-
tial smoothing schemes. For this, we have evaluated the behaviour
of the largest singular values and corresponding singular vectors of
large random matrices defined as additive low rank perturbations of
certain random block-Hankel matrices, and established that they be-
have as if the entries of the block-Hankel matrices were i.i.d. Start-
ing from this result, we have shown that it is possible to generalize
the G-estimators introduced in [10] and [14]], and have proved their
consistency.
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