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Performance Analysis of Spatial Smoothing Schemes
in the Context of Large Arrays
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Abstract—This paper addresses the statistical behavior of
spatial smoothing subspace DoA estimation schemes using a
sensor array in the case where the number of observations N is
significantly smaller than the number of sensors 1/, and that the
smoothing parameter L is such that A/ and NL are of the same
order of magnitude. This context is modeled by an asymptotic
regime in which VL and M both tend to oo at the same rate. As
in recent works devoted to the study of (unsmoothed) subspace
methods in the case where M/ and N are of the same order of mag-
nitude, it is shown that it is still possible to derive improved DoA
estimators termed as Generalized-MUSIC with spatial smoothing
(G-MUSIC SS). The key ingredient of this work is a technical
result showing that the largest singular values and corresponding
singular vectors of low rank deterministic perturbation of certain
Gaussian block-Hankel large random matrices behave as if the
entries of the latter random matrices were independent identically
distributed. This allows to conclude that when the number of
sources and their DoA do not scale with M, N, L, a situation
modeling widely spaced DoA scenarios, then both traditional
and Generalized spatial smoothing subspace methods provide
consistent DoA estimators whose convergence speed is faster than
%. The case of DoA that are spaced of the order of a beamwidth,
which models closely spaced sources, is also considered. It is
shown that the convergence speed of G-MUSIC SS estimates is
unchanged, but that it is no longer the case for MUSIC SS ones.

Index Terms— Large random matrices, spatial smoothing, DoA
estimation.

I. INTRODUCTION

HE statistical analysis of subspace DoA estimation

methods using an array of sensors is a topic that has
received a lot of attention since the seventies. Most of the works
were devoted to the case where the number of available sam-
ples N of the observed signal is much larger than the number
of sensors M of the array (see e.g. [15] and the references
therein). More recently, the case where M and IV are large and
of the same order of magnitude was addressed for the first time
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in [11] using large random matrix theory. [11] was followed
by various works such as [6]-[8], [18]. The number of obser-
vations may also be much smaller than the number of sensors.
In this context, it is well established that spatial smoothing
schemes, originally developed to address coherent sources ([5],
[12], [14]), can be used to artificially increase the number of
snapshots (see e.g. [15] and the references therein, see also the
recent related contributions [16], [17] devoted to the case where
N = 1). Spatial smoothing consists in considering L < M
overlapping arrays with A — L + 1 sensors, and allows to
generate artificially N L snapshots observed on a virtual array
of M — L + 1 sensors. The corresponding (M — L+ 1} x NL
matrix, denoted YEL) , collecting the observations is the sum of
a low rank component generated by (M — L + 1)-dimensional
steering vectors with a noise matrix having a block-Hankel
structure. Subspace methods can still be developed, but the
statistical analysis of the corresponding DoA estimators was
addressed in the standard regime where A/ — L + 1 remains
fixed while NL tends to co. This context is not the most
relevant when M is large because L must be chosen such that
the number of virtual sensors M — L 4 1 be small enough w.r.t.
NL, thus limiting the statistical performance of the estimates.
In this paper, we study the statistical performance of spatial
smoothing subspace DoA estimators in asymptotic regimes
where M — L + 1 and NL both tend to oo at the same rate,
where % — 0 in order to not affect the aperture of the virtual
array, and where the number of sources K does not scale with
M, N, L. For this, it is necessary to evaluate the behaviour

of the K largest eigenvalues and corresponding eigenvectors
(L) (L)+

of the empirical covariance matrix —*5~7%—. To address this
issue, we prove that the above eigenvalues and eigenvectors
have the same asymptotic behaviour as if the noise contribution
Vf\f) to matrix Y‘,\ﬁ ), a block-Hankel random matrix, was
a Gaussian random matrix with independent identically dis-
tributed entries. To establish this result, we rely on the recent
result [9] addressing the behaviour of the singular values of
large block-Hankel random matrices built from i.i.d. Gaussian

sequences. [9] implies that the empirical eigenvalue distribution
(L)y/ (L)

of matrix —*g7¥— converges towards the Marcenko-Pastur
distribution, and that its eigenvalues are almost surely located in
the neighborhood of the support of the above distribution. This,
and other additional technical results derived in the present
paper, allow to generalize the results of [3] to our random

matrix model, and to characterize the behaviour of the largest

. . vy~
eigenvalues and eigenvectors of —*<+*—. We deduce from
this improved subspace estimators, called DoA G-MUSIC SS

(spatial smoothing) estimators, which are similar to those of
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[18] and [6]. We deduce from the results of [19] that when the
DoAs do not scale with M, N, L, i.e. if the DoAs are widely
spaced compared to aperture array, then both G-MUSIC SS and
traditional MUSIC SS estimators are consistent and converge
at a rate faster than 1\1—4 Moreover, when the DoAs are spaced
of the order of %, the behaviour of G-MUSIC SS estimates
remains unchanged, but the convergence rate of traditional
subspace estimates is lower.

This paper is organized as follows. In Section II, we specify
the signal models, the underlying assumptions, and formulate
our main results. In Section III, we prove that the largest sin-
gular values and corresponding singular vectors of low rank de-
terministic perturbation of certain Gaussian block-Hankel large
random matrices behave as if the entries of the latter random ma-
trices were independent identically distributed. In Section IV,
we apply the results of Section III to matrix Yg\],:), and follow
[6] in order to propose a G-MUSIC algorithm to the spatial
smoothing context of this paper. The consistency and the con-
vergence speed of the G-MUSIC SS estimates and of the tradi-
tional MUSIC SS estimates are then deduced from the results
of [19]. Finally, Section V presents numerical experiments sus-
taining our theoretical results.

Notations: For a complex matrix A, we denote by
AT A A* its transpose, conjugate and its conjugate
transpose, and by Tr (A) and ||A| its trace and spectral
norm. If A is a P X P hermitian matrix, we denote by
AL(A) > X(A) > ... > Ap(A) the eigenvalues of matrix A
arranged in the decreasing order. The identity matrix will be I.
For a sequence of random variables (Xy), o, and a random
variable X, we write

Xn a.s. X

n—ro0
when X,, converges almost surely towards X . Finally, X,, =
op (1) will stand for the convergence of X,, to 0 in probability,
and X,, = Op(1) will stand for tightness (boundlessness in

probability).
II. PROBLEM FORMULATION AND MAIN RESULTS

A. Problem formulation

We assume that K narrow-band and far-field source signals
are impinging on a uniform linear array of M sensors, with K <
M . In this context, the M -dimensional received signal (y,,),,
can be written as N

Yn = A]MSW, + Vn,

where
e Ay = [aM(Hl),...,aM(OK)] is the M x K matrix
of M -dimensional steering vectors aps(01), ..., an(0k),
with 81,...,0x the source signals DoA, and ap () =
L[L . ei(Mfl)O}T;

VM
K . . . .
* s, € C" contains the source signals received at time 7,

considered as unknown deterministic;

* (Vn),>; is a temporally and spatially white com-
plex Gaussian noise with spatial covariance matrix
E[v,v:] = ¢’L

We note that assuming the source signals as unknown determin-
istic also allows to cover the case of random signals because any
realization of a random signal can be considered as a determin-
istic signal. The received signal is observed between time 1 and
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time IV, and we collect the available observations in the A x N
matrix Y defined by

Yv=I[y1,...,¥yN] =AuMSN + Vy (1)

with Sy = [s1,...,sy] and Vy = [v1,...,vy]. We as-
sume that Rank(Sy) = K for each M, N greater than K.
The DoA estimation problem consists in estimating the K DoA
01,...,0k from the matrix of samples Y .

When the number of observations /N is much less than the
number of sensors M, the standard subspace method fails. In
this case, it is standard to use spatial smoothing schemes in order
to artificially increase the number of observations. In particular,
itis well established that spatial smoothing schemes allow to use
subspace methods even in the single snapshot case, i.e. when IV
= 1 (see e.g. [15] and the references therein). If L < M, spatial
smoothing consists in considering L overlapping subarrays of
dimension M — L-+1. At each time n, L snapshots of dimension
M — L + 1 are thus available, and the scheme provides N L
observations of dimension M — L + 1. In order to be more
specific, we introduce the following notations. If L is an integer
less than A7, we denote by y,(f) the (M — L + 1) x L Hankel
matrix defined by

Yin Yaon YL.n
Y2.n Yan YL+1n
yT(LL) _ . .
YM—-L+1n YM-L+2n YMn

)
Column ! of matrix Ji,(f) corresponds to the observation on sub-
array / at time n. Collecting all the observations on the various
subarrays allows to obtain /N L snapshots, thus increasing arti-
ficially the number of observations. We define Y](VL) as the (M
— L + 1) x NL block-Hankel matrix given by

Y :( fL),...,yfVL)) 3)

In order to express YE\,L), we consider the (M — L + 1) x L

Hankel matrix A% (6) defined from vector aps(6) in the same

way than y,&“. We remark that A(L)(G) is rank 1, and can be

written as

LM —L+1)
M

We consider the (M — L + 1) x KL matrix A%

A(L) = (.A(L)(Hl), A(L) (92)a e 7A(L) (HK)) (5)

AL (g) = ay-r1(8) (ac(®)" (@)

which, of course, is a rank K matrix whose range coincides with
the subspace generated by the (M — L+ 1)-dimensional vectors

ay-r11001), . ,anm-r11(0K). Y%) can be written as
Y = AP Sy eI+ VY (6)

where matrix V%) is the block Hankel matrix corresponding to
the additive noise. As matrix Sy ® Iy, is full rank, the extended
observation matrix Y%’) appears as a noisy version of a low
rank component whose range is the K -dimensional subspace
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generated by vectors aps—z+1(61),...,am—r+1(fKx). More-

over, it is easy to check that

L L)
£ (VEVETY _ o
NI - M—L+41

Therefore, it is potentially possible to estimate the DoAs
(A% )k=1,... x using a subspace approach based on the eigen-

L L)%

values / eigenvectors decomposition of matrix % The
asymptotic behaviour of spatial smoothing subspace methods
is standard in the regimes where M — L 4 1 remains fixed
while VL converges towards co. This is due to the law of
large numbers which implies that the empirical covariance

Y&y . .
—27— has the same asymptotic behaviour than

AL (SNSN o1 ) AE* 4 o215, ;4. In this context, the

matrix

. (L
orthogonal projection matrix I~ onto the eigenspace associ-

L L)
ated to the M — L + 1 — K smallest eigenvalues of : z)v‘g :
is a consistent estimate of the orthogonal projection matrix
'Y on the noise subspace, i.e. the orthogonal complement of
spiapr r£41(61),---,apm r11(0k)}. In other words, it holds
that
f[g\f) ~a®P| 5 0a.s.

(7

where we recall that if A is a matrix, then, ||A|| represents the
spectral norm of A. The traditional pseudo-spectrum estimate
AV (6) defined by

At iy (L)
'n%) (0) =ay_141(0) My ay_41(6)

thus verifies

S5 (6) = n()| 20 ®)
€|—m, T .

where 1(6) = aM_L+1(0)*H(L)aM_L+1(9) is the MUSIC
pseudo-spectrum. Moreover, the 5’ MUSIC traditional DoA es-
timates, defined formally, for k = 1,..., K, by

H,E )N = argmin 77](\,) (9)
0y

)

where Zj, is a compact interval containing €y and such that Z; N
Z; = B for k # [, are consistent, i.e.

(10)

However, the regime where M — L + 1 remains fixed while
N L tends to co is not very interesting in practice because the
size M — L + 1 of the subarrays may be much smaller that
the number of antennas M, thus reducing the resolution of
the method. We therefore study spatial smoothing schemes in
regimes where the dimensions M — L + 1 and N L of matrix

L 0

Y,\f ) are of the same order of magnitude and where 37
in order to keep unchanged the aperture of the array. More
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precisely, we assume that integers N and L depend on M and
that

M — 400, N=0(M"), §<ﬁ§1, cN:% — ey
(11)

In regime (11), IV thus converges towards co but at a rate that
may be much lower than M thus modeling contexts in which
N is much smaller than M. As N — oo, it also holds that
% — ¢,. Therefore, it is clear that L = O(M®) where o
= 1 — B verifies with 0 < « < 2/3. L may thus tend to oo
(even faster than N if 3 < 1/2) but condition &« < 2/3 (or
equivalently 4 > 1/3) implies that the convergence speed of
L to +-o0 is not arbitrarily fast. As explained in Section II-B,
condition L = O(M*) with < 2/3 implies that matrix VS\%) ,
behaves, in some sense, as a random matrix with i.i.d. entries,
and that the results of [6] and [19] obtained in the case L = 1
can be extended to asymptotic regime (11).

As in regime (11) N depends on M, it could be appropriate
to index the various matrices and DoA estimators by integer M
rather than by integer N. However, we prefer to use the index N
in the following in order to keep the notations unchanged. We
also denote projection matrix ) and pseudo-spectrum 7(6)
by H(,V) and ny (#) because they depend on M. Moreover, in
the following, the notation NV — +oo should be understood as
regime (11) for some 8 € (1/3,1].

B. Main Results
. iy . Y Py
In regime (11), the empirical covariance matrix —57%—

is not a good estimate of the true covariance matrix
A®) (SVSV ® IL) AM@* 4 52T, ;.1 in the sense that

_(a@ (SxSk
(o (2
does not converge towards 0 almost surely. Roughly speaking,
this is because the true covariance matrix depends on
w = O(M?) parameters, and that the number
of independent random variables that are available for estima-
tion is equal to M N, which, in regime (11), is of course not
sufficient. Therefore, (7) is no more valid, and hence, (10) is
questionable. In this paper, we show that it is possible to gener-
alize the G-MUSIC estimators introduced in [6] and [19] in the
case where L = 1 to the context of spatial smoothing schemes
in regime (11). In order to explain this unformally, we denote

(L)
by Xu, Zpy, and By the matrices defined by X = J%—,
(L) )
Zy =

V—NL, and By = \/—_A (L) (S @ Ir) (we do not
mention that these matrices depend on L in order to simplify
the notations), and observe that

L L)
Yy
NL

®I >A(L) +o I]\/[ L+1 ‘

Xy =By +Zxy

We denote by (Ar,n);—; and (@p.n),_;  j thenonzero
eigenvalues and related eigenvectors of matrix BxyBj,, and by
Ak N =1, ar— 1 @0d (Qk N)—y 3y g theeigenvalues
and eigenvectors of matrix X xyX7,. Matrix X 5 coincides with
the sum of rank K deterministic matrix B and block-Hankel
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random matrix Zy due to the noise, and it is of course of funda-
mental interest to specify the behaviour of the K largest eigen-
values (S‘k,N)k:L...,K and related eigenvectors (g, N ),y g
in the asymptotic regime (11). If matrix Z 5 was i.i.d., the results
of [3] and [6] would imply that, under the so-called separation
condition

AN > 024/cs, for each N large enough (12)

then, for each £ = 1,..., K, it would hold that

ay - r41(0) 0y N0y, vay Ly1(6)
= h*(kaN)aZM,LJrl((9)*llk_Nllz‘Na1\/[7L+1(0) + O(l) a.s.

(13)

for each #, where function h, is a known function (see
Section III for more details). This would immediately imply
that the traditional pseudo-spectrum estimate ﬁgf,’) (8) would
verify

K
1% (0)=1 > hu(Ak,v)an - p41(0) v 0f van - 141 (0)
= +o(l) a.s. (14)
and that the true MUSIC pseudo-spectrum
nn(0) =an 1 (8) M ay _141(6)
K
=1—ay r41(0)" Z ug vuy yvay - r41(0)
k=1

could be estimated consistently by

P £k
« Uk, NUg A

b (5\19,1\7)

While matrix Z is of course not i.i.d. as soon as L > 1, we
prove in this paper that the fundamental identity (13), in prin-
ciple valid when Z  is i.i.d., still holds in the asymptotic regime
(11). Using the approach of [3], (13) appears as a consequence
of the following results (see Proposition 1):

i) The eigenvalue distribution of matrix ZxZ%, converges
almost surely towards the so-called Marcenko-Pastur
(see Section III-B for more details). More importantly,
almost surely, for each N large enough, the eigenvalues
of ZxZ?% lie in the interval [0, 02(1 + \/cx)? + €] where
€ can be arbitrarily small.

ii) The entries of matrices (ZyZ% —21) 7",
(Z%Zy — 21)"" behave as the entries of matrices
my(z)Iys and M. (2)Ing, where m,(z) represents the
Stieltjes transform of the Marcenko-Pastur distribution
and where M., (z) = exmy(2) — (1 — ¢4)/z, while the
entries of (ZyZ% — 2I)” " Zy converge almost surely
towards 0.

(1) follows directly from [9] where it is shown that the eigen-
value distribution of matrix Z 7% converges almost surely to-
wards the Marcenko-Pastur as soon as N — +o0 holds, and that
the non zero eigenvalues of Z ; 2%, are arbitrarily close from in-
terval [0(1 — \/ex)?, 0*(1 + y/cx)?] when N is large enough,

K
Hn(g)=1- ZaMfL+1(9) ay r+1(0) (15)
k=1
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provided parameter 3 defined in (11) satisfies 8 > 1/3. If how-
ever 3 < 1/3, the latter property is not guaranteed, and the gen-
eral approach of [3] fails. This explains why parameter 3 cannot
be arbitrarily small. (ii) does not follow directly from [9], and
needs therefore some extra technical efforts (see Appendix A).

(i) and (ii) not only imply (14) and the consistency of 7 (6)
for each 4, but also that

sup iy (6)—

ge[—m,m

k=1

K
(1—Zh*(;\k7N)aML+1 (9)*uk’Nu}§7NaM,L+1 (99 —0 a.s.
(16)

and

sup |in(8) —nn(8)] = 0 a.s. 17

oc[—m,x]
These uniform consistency properties allow to study the
asymptotic behaviour of the traditional MUSIC SS esti-
mates (Gl(ct.)zv)k: . g and of the G-MUSIC SS estimates

(é’f:N)k:l,.i.,K defined as the K most significant local minima
of |fin(8)]. More precisely, (16) and (17) allow to gener-
alize immediately in the asymptotic regime (11) the proof of
Theorem 3 of [6] and the proof of Theorem 1 of [19] (these
theorems address the case L = 1), and to conclude that, under
the separation condition (12), it holds that:

. (HA,(f)N);M:lK and (éka)k:L__”K are consistent and

verify
M (60— 6) > 0as. (18)
M (ék‘N - ek) S0 a.s. (19)

(18) and (19) hold when the DoA (8 )r=1,. .k are fixed
parameters that do not depend on M and N. In prac-
tice, this assumption corresponds to practical situations
where the DoA are widely spaced because when the DoA
(Ox)k=1,.. K are fixed, the ratio
mink# l‘gk - !9['
@n)

tends to co. Adapting the proof of Theorem 3 of [19], we
obtain that:

« IfK =2,5%58 5 T, andifthe 2 DoAs scale with M, N
suchthat 0y ;v — 01 v = O (%), then the G-MUSIC SS
estimates still verify (19) while the traditional MUSIC SS
estimates no longer verify (18)

As in the case L = 1, the separation condition (12) ensures
that th& )Ix"(lgrgest eigenvalues of the empirical covariance ma-
trix % correspond to the K sources, and the signal and
noise subspaces can be separated. In order to obtain some in-
sights on this condition, and on the potential benefit of the spa-
tial smoothing, we study the separation condition when M and
N tend to oo at the same rate, i.e. when % — d,, or equiva-
lently that § = 1 and that L does not scale with V. In this case,
it is clear that ¢, coincides with ¢, = d, /L. Under the assump-

tion that SX5X converges towards a diagonal matrix D when NV

¢S
N
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increases, then we establish that the separation condition holds

if

o?\/d,
VL

for each (M, N) large enough. If L = 1, the separation condi-

tion introduced in the context of (unsmoothed) G-MUSIC algo-
rithms ([6]) is of course recovered, i.e.

Mg (AL AyD) > o?\/d,

If M is large and that L. < M, matrix ARFLHAM,L_H
is close from A3}, A and the separation condition is nearly
equivalent to

Ak (A py1Am £11D) > (20)

o?\/d,
VL

Therefore, it is seen that the use of the spatial smoothing
scheme allows to reduce the threshold o%+/d, corresponding to
G-MUSIC method without spatial smoothing by the factor v/L.
Therefore, if M and N are the same order of magnitude, our
asymptotic analysis allows to predict an improvement of the
performance of the G-MUSIC SS methods when L increases
provided L < M. If L becomes too large, the above rough
analysis is no more justified and the impact of the diminution
of the number of antennas becomes dominant, and the perfor-
mance tends to decrease.

AK (A’IFMAMD) >

IITI. ASYMPTOTIC BEHAVIOUR OF THE LARGEST SINGULAR
VALUES AND CORRESPONDING SINGULAR VECTORS OF
FINITE RANK PERTURBATIONS OF CERTAIN LARGE RANDOM
BLOCK-HANKEL MATRICES

In this section, IV, M, L still satisfy (11) while K is a fixed
integer that does not scale with N. We consider the (M + L —
1) x N L block-Hankel random matrix VE\%) defined previously,
as well as matrix Z defined by Zy = ﬁVf\f). The entries
of Zx have of course variance o2 /NL. In this section, By

represents a deterministic (M + L — 1) x N L matrix verifying

sup || By < 400, Rank(By) = K 21
N

for each N large enough, and not necessarily matrix
\/%—LA(L) (Sy © 1) as in Section II-B. .

We denote by A1 v > A2~ ... > Ag w the non zero eigen-
values of matrix ByB7; arranged in decreasing order, and by
(g N)p_y  and(8gN),_;  theassociated leftand right
singular vectors of By . The singular value decomposition of
By is thus given by

K
1 1.
3 ~ %k 3 *
BN = E )\,§7A,Vuk’Nuk7N = UNA12VUN
k=1

Moreover, we assume that:

Assumption 1: The K non zero eigenvalues (Ax,n),—;
of matrix ByB7; converge towards Ay > A2 > ... > Ag
when N — —+o0.

Here, for ease of exposition, we assume that the eigenvalues
(Mg, N)k=1,..., k have multiplicity 1 and that A, # X; for k # [.
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However, the forthcoming results can be easily adapted if some
Aj, coincide.
We define matrix X as

Xy =By +Zx (22)

X can thus be interpreted as a rank K perturbation of
the random block-Hankel matrix Zy. The purpose of this
section is to formalize claim (13), and to present rigorous
results characterizing the behaviour of the K largest eigen-
values (S‘k-N)k:l,.A.;K of matrix X X% as well as of their
corresponding eigenvectors (0 n)k=1,. k. As shown in
Section I1I-B, matrix Z x satisfies properties that allow to follow
the approach of [3]. For the reader's convenience, we provide
in Section III-A a short introduction to this approach in order to
highlight the importance of the results of Section III-B devoted
to the asymptotic properties of the eigenvalues of Z yZ3%;.

A. Introduction to the Approach of [3]

The approach of [3] allows to check if some of the K largest
eigenvalues (’A\MN)IC:L.“ 5 of matrix X X7, escape from the
interval [0,0%(1 + \/Z)Q] when N — 400, and to evaluate
the behaviour of the corresponding eigenvectors. We present
the formulation of subsection 5-3 and subsection 5-6 in [4],
which, while being equivalent to [3], is more direct. For NV large
enough, it appears that the eigenvalues of Z y Z%; cannot exceed
a?(1+4 \/c.)? + € where € can be chosen arbitrarily small (see
statement (ii) in Proposition 1 below). In order to characterize
the eigenvalues of Xy X% that exceed o?(1 + /c;)? + ¢, it is
sufficient to express Xy X7 — 2I as )

XX — 2= ZnZy — 21+ (UN, szJNA?V)

(i 1) ek
Ix 0 )\AZO%Zy

If z is chosen real and greater than o?(1 + (/c,)? + €, ma-
trix ZyZ% — 21 is invertible, and if we denote by Qn (z) the
so-called resolvent of Z 5 Z?%; defined by

Qn(2) = (EnZy — D)

then, X 5 X% — zI can be written as

(23)

XnXy —21=(ZNZy — =])
- L Anv L Uy
(1 (U L ZnTU, A2> N I)( L >>
(+QN(2) N, LnUnAy (IK 0 A}\rU’fVZ?\r
(24)
Therefore, if z > o%(1 + \/Z)Q + ¢, z is eigenvalue of Xy X%

if and only if
- 1 (Ay 1
det (I + Qn(2)(Un,ZyUpnAZ) ( II’{V g)

Uy
x % [T+ r7% =0
A3 %z,

or equivalently, if and only if det(T n(z)) = 0 where T (z) is
the 2K x 2K matrix defined by
T =T+ (i gy ) Q)
~(z) = lak Lo n(z
ARUNZy
=1 Ay Ig
X (UN,ZNUNAN) (IK 0 >

*
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It turns out that it is possible to evaluate the behaviour of the
entries of matrix T (z) when N — +00. More precisely, the
entries of T (z) depend on bilinear forms of matrices QN(z),
QN(Z)ZN, and Z?\,QN(Z)ZN =I+ ZQN(Z) where QN(Z)
is the resolvent of matrix Z};Zy defined by

Qu(z) =(Z3Zy — 21) "

Statement (iii) of Proposition 1 shows that it is possible to char-
acterize the asymptotic behaviour of these bilinear forms, and
thus the limit form of the equation verified by the eigenvalues
of X y X that exceed a%(1 + \/Z)2 + €. This analysis allows
to establish (38) and (39).

In order to evaluate the behaviour of the eigenvector Gy
associated to an eigenvalue S\k, ~ that converges towards a value
pi. that exceeds o (1 4 /¢, )%, we use the identity

(25)

o 1 N _
U Ny = %/(XNXN —z2I) baz (26)
Cr,

where Cy, is a contour enclosing the eigenvalue 5\;9; N, and not the
other eigenvalues of X X7}, . In order to obtain (40), it is suf-
ficient to express matrix (X X% — 2I) " in terms of Qn (z)
using (24), to evaluate the asymptotic behaviour of the corre-
sponding entries using statement (iii) of Proposition 1, and even-
tually to compute the limiting behaviour of the contour integral
at the righthandside of (26).

B. Behaviour of the Eigenvalues of Matrix ZnyZ%

We first recall the definition of the Marcenko-Pastur distri-
bution 1,2 . of parameters o2 and ¢ (see e.g. [1]). iy2 . is the
probability distribution defined by

N R L Caar P
d/uzfQ.c(a’) - 50 [lic }JrJr 2olona ]l[l —,zt] (‘L) dx
with 2~ = %(1 — /¢)? and zt = o%(1 + /c)?%. Its Stieltjes
transform m,> .(z) defined by

monle) = [ Ve

A—z
R

is known to satisfy the fundamental equation
T 27

1+o2em 2 (2)

mtr?.c(’z) = — 24 o2

or equivalently,

1

mg2,c(2) = —z (]_ =+ Uzﬁlg?,c(z)) (28)
1

ﬁ’LaE c(’z) = (29)

’ —z (1 + o%emg2 o(2))

where 17,2 .(2) is known to coincide with Stieltjes transform of
the Marcenko-Pastur distribution 2, . 1 = ¢fig2 o+ (1—¢)do.

In order to simplify the notations, we denote by m.,(z) and
. (z) the Stieltjes transforms of Marcenko-Pastur distributions
o2 e, and g o, 1. m.(2) and M. (2) verify Equations (28)
and (29) for ¢ = c,. We also denote by 2, and ;" the terms
2, = o*(1— /)% and 2} = o?(1 + \/ex)%. We recall that
function w, (z) defined by

1

wa(2) = zmy(2) M (z)

(30)
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+ 2

is analytic on C — [z, ,z/], verifies w.(z}) = o /c., and
increases from o?,/c, to 400 when x increases from z to
+00 (see [3], section 3.1). Moreover, if ¢.{w) denotes function
defined by

(w+ o?)(w+ o?es)
w

pu(w) = 3D
then, ¢, increases from a:;f to +00 when w increases from
02\/5 to +o0. Finally, it holds that

du (wa(2)) = 2

foreachz € C — [z, ,z]].
The main results of this paper are based on the following
Proposition.
Proposition 1:
* (i) The eigenvalue distribution of matrix Z y Z3}; converges
almost surely towards the Marcenko-Pastur distribution
o2 e, , of equivalently, for each z € C — R™,

1
M-L+1

* (ii) For each ¢ > 0, almost surely, for N large enough,
all the eigenvalues of ZxZ% belong to [0?(1 — \/c,)? —
e,02(14 \/er)? + €] ife. < 1,and to [¢2(1 — \/&r)? —
e,02(1+ (/e.)* + U {0} ife. > 1.

« (iii) Moreover, ifay, by are (M — L+ 1)-dimensional de-
terministic vectors satisfying sup 5 (|lan ||, [|bx|]) < +o0,
then it holds that for each z € C — RT,

(32)

Tr (Qn(z)) — m.(z) — 0 a.s. (33)

ay (Qn(z) — m.(z2)I) by — 0 a.s. 34)

Similarly, ifay and b N are NL—dimensional deterministic
vectors verifying supy (||an]), [[bx]]) < +oc, then for
each z € C — R, it holds that

ay (QN(Z) - ﬁm*(z)I) by — 0a.s. (35)
Moreover, for each z € C — R, it holds that
aly (Qn(2)Zn) by — 0 a.s. (36)

Finally, for each ¢ > 0, convergence properties (34)—(36)
hold uniformly w.r.t. z on each compact subset of C —
0,25 + ¢].

(1) and (ii) follow directly from [9] while (iii) requires some
additional work. See Appendix A for more details.

Remark 1: Proposition 1 implies that in a certain sense, ma-
trix Z 77 behaves as if the entries of Zy were 1.i.d because
Proposition 1 is known to hold for i.i.d. matrices. In the i.i.d.
case, (33) was established for the first time in [10], the almost
sure location of the eigenvalues of ZZ%; can be found in [1]
(see Theorem 5—11), while (34), (35) and (36) are trivial modi-
fications of Lemma 5 of [6].

We notice that the convergence towards the Marcenko-Pastur
distribution holds as soon as N — +o0 and M ‘NLLH — ¢y. In
particular, the convergence is still valid if N = O(M?) for
each 0 < 3 < 1, or equivalently if L = O(M®) for each
0 < «a < 1. L can therefore tends to co much faster than N.
However, the hypothesis that 3 > 1/3, which is also equivalent
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to L = O(M®) with & < 2/3, is necessary to establish item
(ii).
C. The K Largest Eigenvalues and Eigenvectors of X y X'y

As mentioned in Section II-B, while matrix Z 5 does not meet
the conditions formulated in [3], Proposition 1 allows to use the
approach used in [3], and to prove that the K largest eigenvalues
and corresponding eigenvectors of X X3;. behave as if the
entries of Z 5 were i.i.d. In particular, the following result holds.

Theorem 1: We denote by s, 0 < s < K, the largest integer
for which

X, > a%\/en (37)
Then, for k = 1,..., s, it holds that
o a5 A+ oDy + a2e
)\k,N;)pk :(b(Ak) — ( k )( k ) =+ (38)
N—oo )\k
Moreover, for k = s 4+ 1, ..., K, it holds that
/A\k,N -zl as. (39)

Finally, for all deterministic sequences of unit norm vectors
(di,n), (da ), we have fork = 1,...,s

* N ok
di Ok N yd2 N

= h*(p;g)diNuk’Nu;ng,N +0o(1) a.s., (40)
where function h,(z) is defined by
w,(2)? — ole.
() = ) @)

—wa(2)(wilz) + o%e.)

IV. DERIVATION OF A CONSISTENT G-MUSIC METHOD

We now use the results of Section III for matrix
Xy = YV/VNLand By = A-A3)(Sy @ I1). We

recall that (Mg n)k=1,..m—r+1 and (O N)r=1,. M—L+1
represent the eigenvalues and eigenvectors of the empirical
covariance matrix YY" /NL, and that (\e n),_, g
and (ug n)k=1, r are the non zero eigenvalues and corre-
sponding eigenvectors of + A (SN 8% /N & I1)AE)*, We
recall that Hg\f) represents the orthogonal projection matrix
onto the noise subspace, i.e. the orthogonal complement of the
space generated by vectors (aas—r+1(0k))k=1,.. k and that
7 (0) is the corresponding MUSIC pseudo-spectrum

NN (0) =ap—_r-1(6)" HE\%) apr-ry1(6)

Theorem 1 allows to generalize immediately the results of [6]
and [19] concerning the consistency of G-MUSIC and MUSIC
DoA estimators in the case L = 1. More precisely:

Theorem 2: Assume that the K non zero eigenvalues

(Mk,N)g—y. g converge towards deterministic terms
A1 > A2 > ... > Ag and that
Mg > o2\/e, (42)

Then, for each #,the estimator #jx (6) of the pseudo-spectrum
nn(6) defined by

AN () = (an—r41(8)" {I— Z Tk NTEN
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is consistent, and verifies moreover

sup
ge[—n,m]

i (6) - (0)] 220, (44)

The consistency of estimator (43) is a direct consequence of
(40) and (38). The uniform consistency property (44) can be
proved as Proposition 1 in [6]. We notice that the proof of this
Proposition uses extensively Lemma 5 in [6], which, in the con-
text of the present paper has to be replaced by item (iii) of Propo-
sition 1.

In order to obtain some insights on condition (42) and on
the potential benefits of the spatial smoothing, we explicit the
separation condition (42) when M and N tend to oo at the same
rate, i.e. when 1 d,, or equivalently that 3 = 1 and that L
does not scale W1th N. In this case, it is clear that ¢, coincides
with ¢, = d, /L. It is easily seen that

1 SnS%
AW (2N I, ) A
L ( N @

M-L+1 (SNSN
=——— Ay 111

i ATAL) Mory1 (45)

where e represents the Hadamard (i.e. element wise) product of
matrices, and where A ;, stands for the complex conjugatlon op-
erator of the elements of matrix A ;. If we assume that A Sy
converges towards a diagonal matrix D when JV increases, then
% o (ATA ) converges towards the diagonal matrix D e
Diag(ATA;) = D. Therefore Vy" e (ATA;) ~ D when
N is large enough. Using that + — 0, we obtain that the sepa-
ration condition is nearly equlvalent to

o Vd,

Ak (Ap-p+1D Ay 1) > Nis

or to

o?\/d,
VL

for each (M, N} large enough. If L = 1, the separation condi-
tion introduced in the context of (unsmoothed) G-MUSIC algo-
rithms ([6]) is of course recovered, i.e.

Mg (A4 AyD) > o?4/d,

for each (M, N) large enough. If M is large and that L <
M, matrix A}, ;. Ay 41 is close from A}, Ay and the
separation condition is nearly equivalent to

o?\/d,
VL

Therefore, it is seen that the use of the spatial smoothing
scheme allows to reduce the threshold ¢2?+/d, corresponding
to G-MUSIC method without spatial smoothing by the factor
VL. Hence, if M and N are the same order of magnitude,
our asymptotic analysis allows to predict an improvement of
the performance of the G-MUSIC methods based on spatial
smoothing when L increases provided L < M. If L becomes
too large, the above rough analysis is no more justified and
the impact of the diminution of the number of antennas be-
comes dominant, and the performance tends to decrease. This

)\K (A}(\/[fL+1A]\/[7L+1D) > (46)

AK ( )Ik\/IAMD) >
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analysis is sustained by the numerical simulations presented in
Section V. .

We define the DoA G-MUSIC SS estimates (6r, 5 )g=1
by

K

10y

ék,N = argmin |n (0)] , 47)

6€Ty
where 7, is a compact interval containing 5 and such that
I, NI, = 0 for k # l. As in [6], the uniform consistency
(44) as well as the particular structure of directional vectors
aps - 1.+1(0) imply the following result which can be proved like
Theorem 3 of [6].
Theorem 3: Under condition (42), the DoA G-MUSIC SS
estimates (@k,N)kzlw,K verify

M (ék,N - ek) S 0as. (48)
foreachk =1,..., K.

Remark 2: We remark that under the extra assumption that
% converges towards a diagonal matrix, [6] (see also
[20] for more general matrices S) proved when L. = 1 that
M3/2 (ék ~ — 0;) converges in distribution towards a Gaussian
distribution. It would be interesting to generalize the results of
[6] and [20] to the G-MUSIC estimators with spatial smoothing
in the asymptotic regime (11). This is a difficult task that is not
within the scope of the present paper.

Theorem 1 also allows to generalize immediately the results
of [19] concerning the consistency of the traditional estimates
(@,@V) k=1, x inthe case L = 1. In particular, while the tradi-
tional estimate ﬁ%) (6) of the pseudo-spectrum is not consistent,
it is shown in [19] (see Theorem 1) that if L = 1, then the ar-
guments of its local minima (9,(5)1\,) k=1,...,K are consistent and
verify

M (8 —6) —+ 0a.s. (49)
for each & = 1,..., K if the separation condition is verified.

The proof of Theorem 1 in [19] can be immediately adapted to
the context of the present paper. For this, it is sufficient to follow
the proof of [19], and to use Theorem 1, as well as the uniform
consistency property

sup |2 (8)—

o€ -n,x)

k=1
(50)

which can be proved in the same way that (44). We note that,
as Ay N — Pk, then (50) and (16) are equivalent. Therefore, the
following result holds.

Theorem 4: Under condition (42), the DoA traditional

MUSIC SS estimates (eiit,?w)k:th verify
M (8 —6) —+ 0a.s. (51)

foreachk =1,..., K.
Remark 3: 1t is established in [19] in the case L = 1 that if
SwSN converges towards a diagonal matrix, then M3/2(41") —

K
(1 —Z h* (pk)aML+1(9)*uk,NuZANaML+1(9)> ' —0 a.s.
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61 ) has a Gaussian behaviour, and that the corresponding vari-
ance coincides with the asymptotic variance of A3/ Q(ékw‘\f —
). In particular, if L = 1, the asymptotic performance of
MUSIC and G-MUSIC estimators coincide. It would be inter-
esting to check whether this result still holds true for the MUSIC
and G-MUSIC estimators with spatial smoothing.

Theorems 2 and 3 as well as (49) are valid when the DoAs
(0x),_, are fixed parameters, i.e. do not depend on M and
N. Theréfbre, the ratio

mink# l‘gk — (9['
(2r)

M

converges towards +oc. In practice, this context is thus able to
model practical situations in which supy_, 16 — 8] is signifi-
cantly larger than the aperture of the array. In the case L = 1,
[19] also addressed the case where the DoA's (0, n),_; g
depend on N, M and verify 8 x — 6,5 = O (4 ). This con-
text allows to capture practical situations in which the DoA's are
spaced of the order of a beamwidth. In order to simplify the cal-
culations, [19] considered the case K = 2,8y v = 01 v + 5
and where matrix % — I,. However, the results can be
generalized easily to more general situations. It is shown in
[19] that the G-MUSIC estimates still verify (48), but that, in
general, M (9,(:)1\[ — 01) does not converge towards 0. The re-
sults of [19] can be generalized immediately to the context of
G-MUSIC estimators with spatial smoothing in regime (11). For
this, we have to assume that 02 y = 01 y + {7 (in [19], M and
N are of the same order of magnitude so that the assumptions
Oy = 01, v + % and 02 v = 01 N + §F are equivalent), and
to follow the arguments of section 4 in [19]. The conclusion of
this discussion is the following Theorem.

Theorem 5: Assume K = 2,0, v = 01 n + 77, and that

SNA? A — T,. If the separation condition

sinc k
1—

> ole, (52)

holds, then the G-MUSIC SS estimates (6% N)p—1 o defined by

0. = argmin |7 (0)| (53),

0€ly N
where 7, y = [Hk’N — S Oen + ﬁ] for e small enough,
verify

M(ék,N — ak,N) — 0 a.s. (54)

In general, the traditional MUSIC SS estimates defined by (53)
when the G-MUSIC estimate fx(6) is replaced by the tradi-
tional spectrum estimate 'ﬁf\t,) (8) are such that M (é,(:)N — 6 N)
does not converge towards 0. 7

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations illustrating
the results given in the previous sections. We first consider 2
closely spaced sources with DoAs #; = 0 and 8, = 53, and
we assume that M = 160 and N = 20. The 2 x N signal ma-
trix is obtained by normalizing a realization of a random matrix
with M (0,1) i..d. entries such that the 2 source signals have
power 1. The signal to noise ratio is thus equal to SNR = 1/02.
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TABLE I
MINIMUM VALUE OF SNR FOR SEPARATION CONDITION
L 2 4 8 16 32 64 96 128
SNR | 33.46 | 30.30 | 27.46 | 2531 | 24.70 | 28.25 | 36.11 | 51.52
N =20,M =160,0; = 0,02 = 577
104 . : : : : :

MSE

! ! !

28

1 0—7 L 1 1
18 20 22 24

L
26
SNR

34

Fig. 1. Empirical MSE of G-MUSIC SS estimator 6, versus SNR.

Table I provides the minimum value of SNR for which the sepa-
ration condition, in its finite length version (i.e. when the limits
(Ag)r=1_. K and ¢, are replaced by (Ag n)r=1. Kk and ey re-
spectively) holds, i.e.

-1 1

AK,N

(M—L+1)
NL

(%)

It is seen that the minimal SNR first decreases but that it in-
creases if L is large enough. This confirms the discussion of the
previous section on the effect of L on the separation condition.

In Fig. 1, we represent the mean-square errors of the
G-MUSIC SS estimator él for L = 2, 4, 8, 16 versus SNR.
The corresponding Cramer-Rao bounds are also represented.
As expected, it is seen that the performance tends to increase
with L until L = 16. In Fig. 2, L is equal to 16, 32, 64, 96, 128.

For L = 32, it is seen that the MSE tends to degrade at high
SNR w.r.t. L = 16, while the performance severely degrades
for larger values of L.

In Fig. 3, parameter L is equal to 16. We compare the per-
formance of G-MUSIC SS with the standard MUSIC method
with spatial smoothing. We also represent the MSE provided by
G-MUSIC and MUSIC for L = 1. The standard unsmoothed
MUSIC method of course completely fails, while the use of the
G-MUSIC SS provides a clear improvement of the performance
w.r.t. MUSIC SS and unsmoothed G-MUSIC.

We finally consider the case L = 128, and compare in
Fig. 4 as above G-MUSIC SS, MUSIC SS, unsmoothed
G-MUSIC and unsmoothed MUSIC. G-MUSIC SS completely
fails because L and M are of the same order of magnitude.
Theorem 2 is thus no more valid, and the pseudo-spectrum
estimate is not consistent.

We now consider 2 widely spaced sources with DoAs 8; = 0

and 8, 5%, and keep the same parameters as above. We
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MSE

MSE

MSE

T
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N =20,M = 160,06, = 0,0, =
1072 < ‘

.
—— L-16
—— | =32
L=64
=@ =L-9
== L=128
— CRB

1073 L . -l TS

28

—7 I ! ! I
10 18 20 22 24 26
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Fig. 2. Empirical MSE of G-MUSIC SS estimator 6, versus SNR.

N =20,M =160,L = 16,0, = 0,0, = 5%
1074 ‘ : :

=—@== Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
Empirical MSE (G-MUSIC SS)

Empirical MSE (MUSIC SS)
. R s CRB S
v v v v\ v v
1075
10-6
1077 ’
18 20 22 24 26 28 30 32 34
SNR
Fig. 3. Empirical MSE of different estimators of §; when L. = 16.
102 N =20,M =160,L =128,0, = 0,0 = 577
: =@ Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
Empirical MSE (G-MUSIC SS)
Empirical MSE (MUSIC SS)
1073k e CRB
1074
q
1075
10-6
10-7 ; ; ; ; ; ; ;
18 20 22 24 26 28 30 32 34
SNR

Fig. 4. Empirical MSE of different estimators of ; when L = 128.
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N=20, M=160, L=16, 6, =0, =5 x2I

1073 T T T T T I I T T
f w—@== Empirical MSE (G-MUSIC)
; b b === Empirical MSE (MUSIC)
>4 © Empirical MSE (G-MUSIC SS)|
-\w '\0\ Empirical MSE (MUSIC SS)
3 — CRB
1074 ¢ 1

0 105
1076
10-7 L L L L L L L L L
-8 -6 -4 -2 0 2 4 6 8 10 12
SNR

Fig. 5. Empirical MSE of different estimators of §; when L = 16 and widely
spaced DoAs.

consider the case L = 16, and represent in Fig. 5 the perfor-
mance of MUSIC, G-MUSIC, MUSIC-SS, and G-MUSIC-SS.
It is first observed that, in contrast with the case of closely
spaced DoAs, MUSIC-SS and G-MUSIC-SS have the same per-
formance when the SNR is above the threshold 6 dB. This is in
accordance with Theorem 4, and tends to indicate that, as in the
case L = 1,if SN,\,S X converges towards a diagonal matrix, then
the asymptotic performance of G-MUSIC-SS and MUSIC-SS
coincide (see Remark 3). The comparison between the methods
with and without spatial smoothing also confirms that the use of
spatial smoothing schemes allows to improve the performance.

We finally consider the case of K = 5 sources located
at —2m /18, —7/18,0,7 /18,27 /18 while M and N are
still equal to 160 and 20, and L = 16. We evaluate by
Monte-Carlo simulations # 22:1 E|in(0x) — na (k)12 as
well as 37 Eln(8x) — nn(8x))? i.e. the means of the
MSE of the estimated localization functions, evaluated at the
true angles. We recall that the G-MUSIC SS estimate of the lo-
calization function is consistent, but that it is not the case of the
MUSIC SS estimate. This is confirmed by Fig. 6 which shows
that the MSE of the G-MUSIC SS estimate is significantly
smaller than the MSE of MUSIC SS estimate. It is also seen
that the MSE of the MUSIC SS estimate converges towards 0
when the signal to noise ratio tends to co. This is because for
each z > z, h.(z) — 1 ifo? — 0. Therefore, (50) implies
that 3% (6) ~ nx (9) for each 8 when o2 ~ 0.

VI. CONCLUSION

In this paper, we have addressed the behaviour of subspace
DoA estimators based on spatial smoothing in asymptotic
regimes where M and VL tend to oo at the same rate. For this,
we have evaluated the behaviour of the largest singular values
and corresponding singular vectors of large random matrices
defined as additive low rank perturbations of certain random
block-Hankel matrices, and established that they behave as if
the entries of the block-Hankel matrices were i.i.d. Starting
from this result, we have shown that it is possible to generalize
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=== MUSIC SSL =16
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MSE

105

1076}

10-7

10-8 i i i i i
0 5 10 15 20 25 30
SNR

Fig. 6. Mean of the MSE(localization function), K = 5, L = 16.

the G-estimators introduced in [6], and have deduced from [19]
their properties.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 is based on the results of [9]. In
order to explain this, we denote by W the NL x (M — L+1)

matrix defined by
1

Wy = Y/
N o v
T
W n can be written as Wy = (W%)T, .. ,Wf\],V)T) where

matrices (Wg\?))nzl ..... n are independent identically dis-

tributed L x (M — L + 1) Hankel matrices built from i.i.d.
standard complex Gaussian sequences with variance Mf—z+1
[9] studied the asymptotic behaviour of the empirical eigen-
value distribution of W y' W7, as well the almost sure location
of its eigenvalues in the asymptotic regime (11). As Z}Zyn
coincides with ey Wy W, and that, apart 0, the eigenvalues
of ZZy and Z yZ7; coincide, it is clear that the results of [9]
can be used in order to establish items (i) and (ii) of Proposition
1. To help the reader to connect the results of [9] to the context
of the present paper, we mention that the integers (M, N) in
[9] should be exchanged by (N, M — L + 1).

We omit the proof of (i) and first briefly justify (ii). For this,
we mention that Theorem 1.1 in [9] implies that almost surely,
for each & > 0 and for N large enough, all the eigenvalues of
Wy W7 are located in [0% (1 — \/1:?)2757 a1+ \/c,f_l)z—i—
§life=! < Landin[02(1 — V&, 1) =8, 02(1 + v/eu 1) +4]U
{0}ife,t > 1. As ZyZy = ex WA W4, and that ey — cs,
we obtain that all the eigenvalues of Z*; Zx belong to [0?(1 —
V&) = dew, 02 (1+ (/e0)? + de.] if et < 1,and in [0?(1 —
V& )2 =dcy,0?(1+/ex)? + 8, ]U{0} if et > 1. As the non
zero eigenvalues of Z3, Z y and of Z 5 Z7; coincide, we deduce
immediately that (ii) holds.

(iii) depends on the asymptotic properties of Qn(z) and
Qn(z). If we denote by Qnw(z) and Qun.w(z) the re-
solvents of matrices WyW73 and W3, Wy respectively,
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it is easily seen that Qn(z) = ex'Quw (zey') and that
Qn(z) = c&lQN.W(gcgfl). As ey — ¢, Qn(z) and

~(z) behave as ¢;1Qnw(zc;l) and e 'Qnw(zelt).
As z € C — R if and only if ze; 1 € C — R¥, in order to
establish (35) and (34), it is sufficient to establish the following
properties of Qx w and Qn w:

ay (Qnw(z) — t(2)I) by — 0 a.s. (55)
(equivalent to (35)), and
ay (QMW(Z) — 1, (z)I) by — 0 a.s. (56)

(equivalent to (34)) for each z € C — R*. Here, #,(z) and £,(2)
are the Stieltjes transforms of the Marcenko-Pastur distributions
of parameters (¢2,c; ') and (02¢; !, e.) which are related to
m.(z) and . (z) by the relations m.(z) = ¢! t.(zc; 1) and
Mma(2) = ert te(zet).

Proofof (55): While (55) does not appear explicitly in [9],
it can be deduced rather easily from the various intermediate
results proved in [9]. For this, we first remark that

ay (Qnaw(z) — t.(2)I) by
= ay (Quw(z) — E(Qun.w(2))) by
+ay (E(Qrw(z)) — ( )I)by

and establish that the 2 terms at the right hand side of the above
equation converge towards 0. In order to simplify the notations,
we denote by £ the first term. The almost sure convergence of £
towards O follows from the Poincaré-Nash inequality (see e.g.
Proposition 2 of [9]). More precisely, £ can be considered as
a smooth function £(W p, WN) of the entries of W and of
matrix W n whose entries are the complex conjugates of the
entries of Wy. For each n = 1,..., N, we denote by W',
the entry (4,7) of L x (M — L + 1) matrix W Then, the
Poincaré-Nash inequality is a concentration inequality which

states that
oo 0\
= oo, k) |

€<, >
et ()

n,n'i,j,i, 5’
We notice that the structure of Wy implies that

Var(¢

sl

n,n'i,7,4",7

0.2

o Ns(i4 ity
7M7L+15(n n)o(i+j =i +j4")

E (W Wi)) =
so that the above sums reduce to simpler terms. The above upper
bound of Var(£) was evaluated in Proposition 3-1 in [9] (see
Eq. (3.2)). Exchanging (M,N) by (N,M — L + 1) in this
proposition, we obtain immediately that Var(¢) = E|£|*> = O

M+L+1) = O (£). As L/M — 0, this implies that ¢ con-
verges in probability towards 0. In order to prove the almost sure

convergence, we briefly justify that for each &, it holds that

Ea%—0<<§)3

(57)
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(57) can be established by induction on k. As mentioned above,
(57) is verified for ¥ = 1. We now assume that it holds until
integer £ — 1, and prove (57). For this, we use the obvious re-
lation:

E[¢* = [E@&5)|” + Var(e")

In order to manage Var(¢¥), we use again the Poincaré-Nash
inequality. As

oek
OW? .,

o€
oOW?Z;

— kgk—l

the Poincaré-Nash inequality leads to

Var(£¥)

kY Y

TR
n,n’ t.4,4.3

L, 0¢
2k—2
62 s

Y Y

‘=,
n,n' 4,7,8,7

ser 96\ g (v o e 26
e[ () Cmomon) (555

(59)

E (W2 W) (%) ]

(58)

Following the proof of Proposition 3-1 in [9], it is easy to
check that the Poincaré-Nash inequality leads to

(|§‘2k72)

where C is a constant that depends on z but not on the dimen-
sions L, M, N. As (57) is assumed to hold until integer & — 1,
this implies that Var(¢*) = O((L/M)*). The Schwartz in-
equality leads immediately to

(El¢*)” <E (&) E (g™

which is a O((L/M)*) term. This establishes (57). As L =
O(M®) with a < 2/3, it is clear that (L/M)? verifies

3
LY (L
M M1+2-3a

Therefore, (57) for n = 3 leads to

|
E(lf) =0 (m)

As 2 — 3a > 0, the use of the Markov inequality and of the
Borel-Cantelli lemma imply that £ converges towards 0 almost
surely as expected.

It remains to justify that

ay (E(Qnw(2))

For this, we first simplify the notations and denote by
W, W, Q, the matrices Wx, Wy, Qn w(z). Moreover, Q
is a NL x NL block matrix, so that we denote by Q;'*;"*
its entry (iy + (n1y — 1)L,i2 + (nay — 1)L). We also denote

Var(¢k) < ¢ %[E

B <

—t.(z2)I) by — 0 (60)
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(wj) M 141 the columns of W. Although it is not stated
exp11c1tly in [9], (60) can be deduced from various intermediate
evaluations. In order to be more specific, we mention that it is
proved in [9] that matrix E{Q) can be written as

E(Q(2)) =In @ Ry(z) + An(2) (61)

(see Eq. (4.14) in [9]) where Ry (z) is a L x L matrix whose
expression is omitted, and where Ax(z) is shown to verify
ayAn(z )by — 0 using the Poincaré-Nash inequality (see Eq.
(5.3) in [9]). As this will be useful to establish (56), we give
some insights on the proof of (61). [9] uses the identity
E[(QE] =~ 10 —i2)d(m o) +LE [(@WW*) e

: (62)
It turns out that the second term of the righthandside of (62)
can be expressed in terms of the entries of E{Q) and of other
terms that tend to 0. To obtain the corresponding expression, [9]
evaluates E[(Qw,w} )”11;”] = E[(Qwy);" (w;‘):;"] for each
k, 3,11,12,n1,n2. For this, the identity

Efl@wop (w)] = S E(a

i3,M3

s WS Y J)

Z1713 iz, k
and the so-called the integration by parts formula (see e.g.
Proposition 1.1 in [9])
k) _’rLQ
E(Quewi, W)

-YE (quw/ )
i’ g

are used. After some calculations, this allows to express

n1,NIYRT 2
0 (Qil-i:s Win)
OW

M-—-L+1
El@ww)i] = 3 (Qww

=1

)nl 212

41,92

in terms of the entries of E(Q) and of other terms that tend to
0, and to plug the corresponding expression into (62). This, in
turn, leads to (61).

In order to complete the proof of (60), it remains to justify
that

a% (In @ Ry (2) — t(z))) by — 0

or equivalently that

ay (In @ Ry (2) — tn(2)T) by — 0 (63)

where tx(z) is the Stieltjes transform of the Marcenko-Pastur
distribution of parameters (02, cy ), which, of course, verifies
tn(2) — tu(2) — 0 because cy — ¢.. The reader may check
that (63) follows from Corollary 5.1, Theorem 7.1 and Eq. (7.3)
in [9].
Sketch of Proof of (56): As above, we denote (M — L +
1) % (M — L+1) matrix Q. w (z)) by Q in order to simplify the
notations. Using the Poincaré-Nash inequality, it can be proved
like above that

ay (Q - [E(Q)) by — 0a.s.
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and establish that
ak ([E (Q(Z)) - f*(z)I) by 0

for each z € C — RT. The behaviour of matrix E(Q) is not
studied in [9]. However, it can be evaluated using the results of
[9]. We first briefly justify that

E(Q)
where R, is a certain (M —L+1)x (M — L+ 1) matrix, and

where A verifies ajAby — 0. The proof of (65) uses the same
ingredients than the proof of (61). We first remark that

(64)

—R+A (65)

WQW = QW*W =1+ :Q (66)
The above mentioned evaluation of E[(Qwy);" (w;)ln;] for
each k, j, i1, 12, 71, no allows to calculate E((W*QW); 1) in
terms of the entries of E(Q) and of E(Q), and other terms that
converge towards 0. Plugging this relation as well as (61) into
(66) leads to the expression (65). As previously, akAby — 0
is obtained using the Poincaré-Nash inequality.

The proof of a}; (R(z) — #.(2)I)by — 0 is omitted because
it needs the introduction of several notations of [9], and does not
bring new insight.

Proof of (36): We first remark that for each § € R, the
distribution of matrix Z ye® coincides with the distribution of
Z . Therefore, it holds that

E (Qn(2)Zne™®) =E(Qn(2)Zn)

which implies that E(Qn (z)Z ) = 0. In order to complete the
proof of (36), it is sufficient to establish that if we denote by x
the random variable Ky = aj (Qn (z)ZN)f)N, then, for each
p > 1, it holds that

Elxy — E(kn)|? =0 <<%>p>

Choosing p large enough leads to xy — E(kny) = &y —
0 a.s. as expected. (67) can be proved like above by using the
Poincaré-Nash inequality.

We finally justify that for each ¢ > 0, (34)—(36) hold uni-
formly w.r.t. z on each compact subset of C — [0, 2] + ¢]. We
just prove that it is the case for (36). By item (ii), almost surely,
function z — rn(2) is analytic on C — [0, z] + ¢]. We use a
standard argument based on Montel’s theorem [13, p. 282]. We

(67)

first justify that for each compact subset X € C — [0, z] + €],
then it exists a constant n such that
sup [y (2)] <7 (68)

ZEK

for each NV large enough. We consider the singular value de-
composition of matrix Zy:

ZN = FNANG?V

where Ay represents the diagonal matrix of non zero singular
values of Zy. kn(z) can be written as

* 2 -1 * 1
:‘iN(Z) = aNFN (AN — ZI) ANerN
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Therefore, it holds that

lan([Ibx|

o) < | (a3 1) A

Item (ii) implies that the entries of A% are located into [0, 2} +
€] for each N large enough. Therefore, for each z € K, it holds
that

1
<
~ dist ([0, 21 + €], K)

H(A?V - zI)q Ay

The conclusion follows from the hypothesis that vectors ay and
by satisfy supy(Jlan]], ||bwl]}) < 400. (68) implies that the
sequence of analytic functions (Ky)y~; is @ normal family.
Therefore, Montel's theorem [13, p. 282]implies the existence
of a subsequence extracted from (xx) -~ that converges uni-
formly on each compact subset of C — [0, 2 + €| towards a cer-
tain analytic function .. As (36) holds for each = € C — R™,
function x, is identically zero. We have thus shown that each
converging subsequence extracted from (kn)n>1 converges
uniformly towards 0 on each compact subset of C — [0, z + ¢].
This, in turn, shows that the whole sequence converges uni-
formly on each compact subset of C — [0, z,” + €] as expected.
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