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Performance Analysis of Spatial Smoothing Schemes
in the Context of Large Arrays
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Abstract—This paper addresses the statistical behavior of
spatial smoothing subspace DoA estimation schemes using a
sensor array in the case where the number of observations is
significantly smaller than the number of sensors , and that the
smoothing parameter is such that and are of the same
order of magnitude. This context is modeled by an asymptotic
regime in which and both tend to at the same rate. As
in recent works devoted to the study of (unsmoothed) subspace
methods in the case where and are of the same order of mag-
nitude, it is shown that it is still possible to derive improved DoA
estimators termed as Generalized-MUSIC with spatial smoothing
(G-MUSIC SS). The key ingredient of this work is a technical
result showing that the largest singular values and corresponding
singular vectors of low rank deterministic perturbation of certain
Gaussian block-Hankel large random matrices behave as if the
entries of the latter random matrices were independent identically
distributed. This allows to conclude that when the number of
sources and their DoA do not scale with , a situation
modeling widely spaced DoA scenarios, then both traditional
and Generalized spatial smoothing subspace methods provide
consistent DoA estimators whose convergence speed is faster than
. The case of DoA that are spaced of the order of a beamwidth,

which models closely spaced sources, is also considered. It is
shown that the convergence speed of G-MUSIC SS estimates is
unchanged, but that it is no longer the case for MUSIC SS ones.
Index Terms— Large random matrices, spatial smoothing, DoA

estimation.

I. INTRODUCTION

T HE statistical analysis of subspace DoA estimation
methods using an array of sensors is a topic that has

received a lot of attention since the seventies. Most of the works
were devoted to the case where the number of available sam-
ples of the observed signal is much larger than the number
of sensors of the array (see e.g. [15] and the references
therein). More recently, the case where and are large and
of the same order of magnitude was addressed for the first time
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in [11] using large random matrix theory. [11] was followed
by various works such as [6]–[8], [18]. The number of obser-
vations may also be much smaller than the number of sensors.
In this context, it is well established that spatial smoothing
schemes, originally developed to address coherent sources ([5],
[12], [14]), can be used to artificially increase the number of
snapshots (see e.g. [15] and the references therein, see also the
recent related contributions [16], [17] devoted to the case where

). Spatial smoothing consists in considering
overlapping arrays with sensors, and allows to
generate artificially snapshots observed on a virtual array
of sensors. The corresponding
matrix, denoted , collecting the observations is the sum of
a low rank component generated by -dimensional
steering vectors with a noise matrix having a block-Hankel
structure. Subspace methods can still be developed, but the
statistical analysis of the corresponding DoA estimators was
addressed in the standard regime where remains
fixed while tends to . This context is not the most
relevant when is large because must be chosen such that
the number of virtual sensors be small enough w.r.t.

, thus limiting the statistical performance of the estimates.
In this paper, we study the statistical performance of spatial
smoothing subspace DoA estimators in asymptotic regimes
where and both tend to at the same rate,
where in order to not affect the aperture of the virtual
array, and where the number of sources does not scale with

. For this, it is necessary to evaluate the behaviour
of the largest eigenvalues and corresponding eigenvectors
of the empirical covariance matrix . To address this
issue, we prove that the above eigenvalues and eigenvectors
have the same asymptotic behaviour as if the noise contribution

to matrix , a block-Hankel random matrix, was
a Gaussian random matrix with independent identically dis-
tributed entries. To establish this result, we rely on the recent
result [9] addressing the behaviour of the singular values of
large block-Hankel random matrices built from i.i.d. Gaussian
sequences. [9] implies that the empirical eigenvalue distribution
of matrix converges towards the Marcenko-Pastur
distribution, and that its eigenvalues are almost surely located in
the neighborhood of the support of the above distribution. This,
and other additional technical results derived in the present
paper, allow to generalize the results of [3] to our random
matrix model, and to characterize the behaviour of the largest
eigenvalues and eigenvectors of . We deduce from
this improved subspace estimators, called DoA G-MUSIC SS
(spatial smoothing) estimators, which are similar to those of
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[18] and [6]. We deduce from the results of [19] that when the
DoAs do not scale with , i.e. if the DoAs are widely
spaced compared to aperture array, then both G-MUSIC SS and
traditional MUSIC SS estimators are consistent and converge
at a rate faster than . Moreover, when the DoAs are spaced
of the order of , the behaviour of G-MUSIC SS estimates
remains unchanged, but the convergence rate of traditional
subspace estimates is lower.
This paper is organized as follows. In Section II, we specify

the signal models, the underlying assumptions, and formulate
our main results. In Section III, we prove that the largest sin-
gular values and corresponding singular vectors of low rank de-
terministic perturbation of certain Gaussian block-Hankel large
randommatrices behave as if the entries of the latter randomma-
trices were independent identically distributed. In Section IV,
we apply the results of Section III to matrix , and follow
[6] in order to propose a G-MUSIC algorithm to the spatial
smoothing context of this paper. The consistency and the con-
vergence speed of the G-MUSIC SS estimates and of the tradi-
tional MUSIC SS estimates are then deduced from the results
of [19]. Finally, Section V presents numerical experiments sus-
taining our theoretical results.
Notations: For a complex matrix , we denote by

its transpose, conjugate and its conjugate
transpose, and by and its trace and spectral
norm. If is a hermitian matrix, we denote by

the eigenvalues of matrix
arranged in the decreasing order. The identity matrix will be .
For a sequence of random variables and a random
variable , we write

when converges almost surely towards . Finally,
will stand for the convergence of to 0 in probability,

and will stand for tightness (boundlessness in
probability).

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Problem formulation
We assume that narrow-band and far-field source signals

are impinging on a uniform linear array of sensors, with
. In this context, the -dimensional received signal

can be written as

where
• is the matrix
of -dimensional steering vectors ,
with the source signals DoA, and

;
• contains the source signals received at time ,
considered as unknown deterministic;

• is a temporally and spatially white com-
plex Gaussian noise with spatial covariance matrix

.
We note that assuming the source signals as unknown determin-
istic also allows to cover the case of random signals because any
realization of a random signal can be considered as a determin-
istic signal. The received signal is observed between time 1 and

time , and we collect the available observations in the
matrix defined by

(1)

with and . We as-
sume that for each greater than .
The DoA estimation problem consists in estimating the DoA

from the matrix of samples .
When the number of observations is much less than the

number of sensors , the standard subspace method fails. In
this case, it is standard to use spatial smoothing schemes in order
to artificially increase the number of observations. In particular,
it is well established that spatial smoothing schemes allow to use
subspace methods even in the single snapshot case, i.e. when

(see e.g. [15] and the references therein). If , spatial
smoothing consists in considering overlapping subarrays of
dimension . At each time , snapshots of dimension

are thus available, and the scheme provides
observations of dimension . In order to be more
specific, we introduce the following notations. If is an integer
less than , we denote by the Hankel
matrix defined by

...
...

...
...

...
...

...
...

...
...

(2)
Column of matrix corresponds to the observation on sub-
array at time . Collecting all the observations on the various
subarrays allows to obtain snapshots, thus increasing arti-
ficially the number of observations. We define as the

block-Hankel matrix given by

(3)

In order to express , we consider the
Hankel matrix defined from vector in the same
way than . We remark that is rank 1, and can be
written as

(4)

We consider the matrix

(5)

which, of course, is a rank matrix whose range coincides with
the subspace generated by the -dimensional vectors

. can be written as

(6)

where matrix is the block Hankel matrix corresponding to
the additive noise. As matrix is full rank, the extended
observation matrix appears as a noisy version of a low
rank component whose range is the -dimensional subspace
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generated by vectors . More-
over, it is easy to check that

Therefore, it is potentially possible to estimate the DoAs
using a subspace approach based on the eigen-

values / eigenvectors decomposition of matrix . The
asymptotic behaviour of spatial smoothing subspace methods
is standard in the regimes where remains fixed
while converges towards . This is due to the law of
large numbers which implies that the empirical covariance
matrix has the same asymptotic behaviour than

. In this context, the

orthogonal projection matrix onto the eigenspace associ-
ated to the smallest eigenvalues of
is a consistent estimate of the orthogonal projection matrix

on the noise subspace, i.e. the orthogonal complement of
. In other words, it holds

that

(7)

where we recall that if is a matrix, then, represents the
spectral norm of . The traditional pseudo-spectrum estimate

defined by

thus verifies

(8)

where is the MUSIC
pseudo-spectrum. Moreover, the MUSIC traditional DoA es-
timates, defined formally, for , by

(9)

where is a compact interval containing and such that
for , are consistent, i.e.

(10)

However, the regime where remains fixed while
tends to is not very interesting in practice because the

size of the subarrays may be much smaller that
the number of antennas , thus reducing the resolution of
the method. We therefore study spatial smoothing schemes in
regimes where the dimensions and of matrix

are of the same order of magnitude and where
in order to keep unchanged the aperture of the array. More

precisely, we assume that integers and depend on and
that

(11)
In regime (11), thus converges towards but at a rate that

may be much lower than thus modeling contexts in which
is much smaller than . As , it also holds that

. Therefore, it is clear that where
verifies with . may thus tend to

(even faster than if ) but condition (or
equivalently ) implies that the convergence speed of
to is not arbitrarily fast. As explained in Section II-B,

condition with implies that matrix ,
behaves, in some sense, as a random matrix with i.i.d. entries,
and that the results of [6] and [19] obtained in the case
can be extended to asymptotic regime (11).
As in regime (11) depends on , it could be appropriate

to index the various matrices and DoA estimators by integer
rather than by integer . However, we prefer to use the index
in the following in order to keep the notations unchanged. We
also denote projection matrix and pseudo-spectrum
by and because they depend on . Moreover, in
the following, the notation should be understood as
regime (11) for some .

B. Main Results

In regime (11), the empirical covariance matrix
is not a good estimate of the true covariance matrix

in the sense that

does not converge towards 0 almost surely. Roughly speaking,
this is because the true covariance matrix depends on

parameters, and that the number
of independent random variables that are available for estima-
tion is equal to , which, in regime (11), is of course not
sufficient. Therefore, (7) is no more valid, and hence, (10) is
questionable. In this paper, we show that it is possible to gener-
alize the G-MUSIC estimators introduced in [6] and [19] in the
case where to the context of spatial smoothing schemes
in regime (11). In order to explain this unformally, we denote
by , , and the matrices defined by ,

, and (we do not
mention that these matrices depend on in order to simplify
the notations), and observe that

We denote by and the non zero
eigenvalues and related eigenvectors of matrix , and by

and the eigenvalues
and eigenvectors of matrix . Matrix coincides with
the sum of rank deterministic matrix and block-Hankel
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random matrix due to the noise, and it is of course of funda-
mental interest to specify the behaviour of the largest eigen-
values and related eigenvectors
in the asymptotic regime (11). If matrix was i.i.d., the results
of [3] and [6] would imply that, under the so-called separation
condition

(12)

then, for each , it would hold that

(13)

for each , where function is a known function (see
Section III for more details). This would immediately imply
that the traditional pseudo-spectrum estimate would
verify

(14)

and that the true MUSIC pseudo-spectrum

could be estimated consistently by

(15)

While matrix is of course not i.i.d. as soon as , we
prove in this paper that the fundamental identity (13), in prin-
ciple valid when is i.i.d., still holds in the asymptotic regime
(11). Using the approach of [3], (13) appears as a consequence
of the following results (see Proposition 1):

i) The eigenvalue distribution of matrix converges
almost surely towards the so-called Marcenko-Pastur
(see Section III-B for more details). More importantly,
almost surely, for each large enough, the eigenvalues
of lie in the interval where
can be arbitrarily small.

ii) The entries of matrices ,
behave as the entries of matrices

and , where represents the
Stieltjes transform of the Marcenko-Pastur distribution
and where , while the
entries of converge almost surely
towards 0.

(i) follows directly from [9] where it is shown that the eigen-
value distribution of matrix converges almost surely to-
wards theMarcenko-Pastur as soon as holds, and that
the non zero eigenvalues of are arbitrarily close from in-
terval when is large enough,

provided parameter defined in (11) satisfies . If how-
ever , the latter property is not guaranteed, and the gen-
eral approach of [3] fails. This explains why parameter cannot
be arbitrarily small. (ii) does not follow directly from [9], and
needs therefore some extra technical efforts (see Appendix A).
(i) and (ii) not only imply (14) and the consistency of

for each , but also that

(16)

and
(17)

These uniform consistency properties allow to study the
asymptotic behaviour of the traditional MUSIC SS esti-
mates and of the G-MUSIC SS estimates

defined as the most significant local minima
of . More precisely, (16) and (17) allow to gener-
alize immediately in the asymptotic regime (11) the proof of
Theorem 3 of [6] and the proof of Theorem 1 of [19] (these
theorems address the case ), and to conclude that, under
the separation condition (12), it holds that:
• and are consistent and
verify

(18)

(19)

(18) and (19) hold when the DoA are fixed
parameters that do not depend on and . In prac-
tice, this assumption corresponds to practical situations
where the DoA are widely spaced because when the DoA

are fixed, the ratio

tends to . Adapting the proof of Theorem 3 of [19], we
obtain that:

• If , , and if the 2 DoAs scale with
such that , then the G-MUSIC SS
estimates still verify (19) while the traditional MUSIC SS
estimates no longer verify (18)

As in the case , the separation condition (12) ensures
that the largest eigenvalues of the empirical covariance ma-
trix correspond to the sources, and the signal and
noise subspaces can be separated. In order to obtain some in-
sights on this condition, and on the potential benefit of the spa-
tial smoothing, we study the separation condition when and

tend to at the same rate, i.e. when , or equiva-
lently that and that does not scale with . In this case,
it is clear that coincides with . Under the assump-
tion that converges towards a diagonal matrix when
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increases, then we establish that the separation condition holds
if

(20)

for each large enough. If , the separation condi-
tion introduced in the context of (unsmoothed) G-MUSIC algo-
rithms ([6]) is of course recovered, i.e.

If is large and that , matrix
is close from and the separation condition is nearly
equivalent to

Therefore, it is seen that the use of the spatial smoothing
scheme allows to reduce the threshold corresponding to
G-MUSIC method without spatial smoothing by the factor .
Therefore, if and are the same order of magnitude, our
asymptotic analysis allows to predict an improvement of the
performance of the G-MUSIC SS methods when increases
provided . If becomes too large, the above rough
analysis is no more justified and the impact of the diminution
of the number of antennas becomes dominant, and the perfor-
mance tends to decrease.

III. ASYMPTOTIC BEHAVIOUR OF THE LARGEST SINGULAR
VALUES AND CORRESPONDING SINGULAR VECTORS OF

FINITE RANK PERTURBATIONS OF CERTAIN LARGE RANDOM
BLOCK-HANKEL MATRICES

In this section, still satisfy (11) while is a fixed
integer that does not scale with . We consider the

block-Hankel randommatrix defined previously,
as well as matrix defined by . The entries
of have of course variance . In this section,
represents a deterministic matrix verifying

(21)

for each large enough, and not necessarily matrix
as in Section II-B.

We denote by the non zero eigen-
values of matrix arranged in decreasing order, and by

and the associated left and right
singular vectors of . The singular value decomposition of

is thus given by

Moreover, we assume that:
Assumption 1: The non zero eigenvalues

of matrix converge towards
when .
Here, for ease of exposition, we assume that the eigenvalues

have multiplicity 1 and that for .

However, the forthcoming results can be easily adapted if some
coincide.
We define matrix as

(22)

can thus be interpreted as a rank perturbation of
the random block-Hankel matrix . The purpose of this
section is to formalize claim (13), and to present rigorous
results characterizing the behaviour of the largest eigen-
values of matrix as well as of their
corresponding eigenvectors . As shown in
Section III-B, matrix satisfies properties that allow to follow
the approach of [3]. For the reader's convenience, we provide
in Section III-A a short introduction to this approach in order to
highlight the importance of the results of Section III-B devoted
to the asymptotic properties of the eigenvalues of .

A. Introduction to the Approach of [3]
The approach of [3] allows to check if some of the largest

eigenvalues of matrix escape from the
interval when , and to evaluate
the behaviour of the corresponding eigenvectors. We present
the formulation of subsection 5-3 and subsection 5-6 in [4],
which, while being equivalent to [3], is more direct. For large
enough, it appears that the eigenvalues of cannot exceed

where can be chosen arbitrarily small (see
statement (ii) in Proposition 1 below). In order to characterize
the eigenvalues of that exceed , it is
sufficient to express as

If is chosen real and greater than , ma-
trix is invertible, and if we denote by the
so-called resolvent of defined by

(23)

then, can be written as

(24)

Therefore, if , is eigenvalue of
if and only if

or equivalently, if and only if where is
the matrix defined by
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It turns out that it is possible to evaluate the behaviour of the
entries of matrix when . More precisely, the
entries of depend on bilinear forms of matrices ,

, and where
is the resolvent of matrix defined by

(25)

Statement (iii) of Proposition 1 shows that it is possible to char-
acterize the asymptotic behaviour of these bilinear forms, and
thus the limit form of the equation verified by the eigenvalues
of that exceed . This analysis allows
to establish (38) and (39).
In order to evaluate the behaviour of the eigenvector

associated to an eigenvalue that converges towards a value
that exceeds , we use the identity

(26)

where is a contour enclosing the eigenvalue , and not the
other eigenvalues of . In order to obtain (40), it is suf-
ficient to express matrix in terms of
using (24), to evaluate the asymptotic behaviour of the corre-
sponding entries using statement (iii) of Proposition 1, and even-
tually to compute the limiting behaviour of the contour integral
at the righthandside of (26).

B. Behaviour of the Eigenvalues of Matrix
We first recall the definition of the Marcenko-Pastur distri-

bution of parameters and (see e.g. [1]). is the
probability distribution defined by

with and . Its Stieltjes
transform defined by

is known to satisfy the fundamental equation
(27)

or equivalently,
(28)

(29)

where is known to coincide with Stieltjes transform of
theMarcenko-Pastur distribution .
In order to simplify the notations, we denote by and

the Stieltjes transforms ofMarcenko-Pastur distributions
and . and verify Equations (28)

and (29) for . We also denote by and the terms
and . We recall that

function defined by

(30)

is analytic on , verifies , and
increases from to when increases from to

(see [3], section 3.1). Moreover, if denotes function
defined by

(31)

then, increases from to when increases from
to . Finally, it holds that

(32)

for each .
The main results of this paper are based on the following

Proposition.
Proposition 1:
• (i) The eigenvalue distribution of matrix converges
almost surely towards the Marcenko-Pastur distribution

, or equivalently, for each ,

(33)

• (ii) For each , almost surely, for large enough,
all the eigenvalues of belong to

if , and to
if .

• (iii) Moreover, if are -dimensional de-
terministic vectors satisfying ,
then it holds that for each ,

(34)

Similarly, if and are -dimensional deterministic
vectors verifying , then for
each , it holds that

(35)

Moreover, for each , it holds that

(36)

Finally, for each , convergence properties (34)–(36)
hold uniformly w.r.t. on each compact subset of

.
(i) and (ii) follow directly from [9] while (iii) requires some

additional work. See Appendix A for more details.
Remark 1: Proposition 1 implies that in a certain sense, ma-

trix behaves as if the entries of were i.i.d because
Proposition 1 is known to hold for i.i.d. matrices. In the i.i.d.
case, (33) was established for the first time in [10], the almost
sure location of the eigenvalues of can be found in [1]
(see Theorem 5–11), while (34), (35) and (36) are trivial modi-
fications of Lemma 5 of [6].
We notice that the convergence towards the Marcenko-Pastur

distribution holds as soon as and . In
particular, the convergence is still valid if for
each , or equivalently if for each

. can therefore tends to much faster than .
However, the hypothesis that , which is also equivalent
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to with , is necessary to establish item
(ii).

C. The Largest Eigenvalues and Eigenvectors of
Asmentioned in Section II-B, while matrix does not meet

the conditions formulated in [3], Proposition 1 allows to use the
approach used in [3], and to prove that the largest eigenvalues
and corresponding eigenvectors of . behave as if the
entries of were i.i.d. In particular, the following result holds.
Theorem 1: We denote by , , the largest integer

for which
(37)

Then, for , it holds that

(38)

Moreover, for , it holds that

(39)

Finally, for all deterministic sequences of unit norm vectors
, , we have for

(40)

where function is defined by

(41)

IV. DERIVATION OF A CONSISTENT G-MUSIC METHOD

We now use the results of Section III for matrix
and . We

recall that and
represent the eigenvalues and eigenvectors of the empirical
covariance matrix , and that
and are the non zero eigenvalues and corre-
sponding eigenvectors of . We
recall that represents the orthogonal projection matrix
onto the noise subspace, i.e. the orthogonal complement of the
space generated by vectors and that

is the corresponding MUSIC pseudo-spectrum

Theorem 1 allows to generalize immediately the results of [6]
and [19] concerning the consistency of G-MUSIC and MUSIC
DoA estimators in the case . More precisely:
Theorem 2: Assume that the non zero eigenvalues

converge towards deterministic terms
and that

(42)

Then, for each ,the estimator of the pseudo-spectrum
defined by

(43)

is consistent, and verifies moreover

(44)

The consistency of estimator (43) is a direct consequence of
(40) and (38). The uniform consistency property (44) can be
proved as Proposition 1 in [6]. We notice that the proof of this
Proposition uses extensively Lemma 5 in [6], which, in the con-
text of the present paper has to be replaced by item (iii) of Propo-
sition 1.
In order to obtain some insights on condition (42) and on

the potential benefits of the spatial smoothing, we explicit the
separation condition (42) when and tend to at the same
rate, i.e. when , or equivalently that and that
does not scale with . In this case, it is clear that coincides
with . It is easily seen that

(45)

where represents the Hadamard (i.e. element wise) product of
matrices, and where stands for the complex conjugation op-
erator of the elements of matrix . If we assume that
converges towards a diagonal matrix when increases, then

converges towards the diagonal matrix
. Therefore, when

is large enough. Using that , we obtain that the sepa-
ration condition is nearly equivalent to

or to

(46)

for each large enough. If , the separation condi-
tion introduced in the context of (unsmoothed) G-MUSIC algo-
rithms ([6]) is of course recovered, i.e.

for each large enough. If is large and that
, matrix is close from and the

separation condition is nearly equivalent to

Therefore, it is seen that the use of the spatial smoothing
scheme allows to reduce the threshold corresponding
to G-MUSIC method without spatial smoothing by the factor

. Hence, if and are the same order of magnitude,
our asymptotic analysis allows to predict an improvement of
the performance of the G-MUSIC methods based on spatial
smoothing when increases provided . If becomes
too large, the above rough analysis is no more justified and
the impact of the diminution of the number of antennas be-
comes dominant, and the performance tends to decrease. This
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analysis is sustained by the numerical simulations presented in
Section V.
We define the DoA G-MUSIC SS estimates

by

(47)

where is a compact interval containing and such that
for . As in [6], the uniform consistency

(44) as well as the particular structure of directional vectors
imply the following result which can be proved like

Theorem 3 of [6].
Theorem 3: Under condition (42), the DoA G-MUSIC SS

estimates verify

(48)

for each .
Remark 2: We remark that under the extra assumption that

converges towards a diagonal matrix, [6] (see also
[20] for more general matrices ) proved when that

converges in distribution towards a Gaussian
distribution. It would be interesting to generalize the results of
[6] and [20] to the G-MUSIC estimators with spatial smoothing
in the asymptotic regime (11). This is a difficult task that is not
within the scope of the present paper.
Theorem 1 also allows to generalize immediately the results

of [19] concerning the consistency of the traditional estimates
in the case . In particular, while the tradi-

tional estimate of the pseudo-spectrum is not consistent,
it is shown in [19] (see Theorem 1) that if , then the ar-
guments of its local minima are consistent and
verify

(49)

for each if the separation condition is verified.
The proof of Theorem 1 in [19] can be immediately adapted to
the context of the present paper. For this, it is sufficient to follow
the proof of [19], and to use Theorem 1, as well as the uniform
consistency property

(50)

which can be proved in the same way that (44). We note that,
as , then (50) and (16) are equivalent. Therefore, the
following result holds.
Theorem 4: Under condition (42), the DoA traditional

MUSIC SS estimates verify

(51)

for each .
Remark 3: It is established in [19] in the case that if

converges towards a diagonal matrix, then

has a Gaussian behaviour, and that the corresponding vari-
ance coincides with the asymptotic variance of

. In particular, if , the asymptotic performance of
MUSIC and G-MUSIC estimators coincide. It would be inter-
esting to check whether this result still holds true for theMUSIC
and G-MUSIC estimators with spatial smoothing.
Theorems 2 and 3 as well as (49) are valid when the DoAs

are fixed parameters, i.e. do not depend on and
. Therefore, the ratio

converges towards . In practice, this context is thus able to
model practical situations in which is signifi-
cantly larger than the aperture of the array. In the case ,
[19] also addressed the case where the DoA's
depend on and verify . This con-
text allows to capture practical situations in which the DoA's are
spaced of the order of a beamwidth. In order to simplify the cal-
culations, [19] considered the case ,
and where matrix . However, the results can be
generalized easily to more general situations. It is shown in
[19] that the G-MUSIC estimates still verify (48), but that, in
general, does not converge towards 0. The re-
sults of [19] can be generalized immediately to the context of
G-MUSIC estimators with spatial smoothing in regime (11). For
this, we have to assume that (in [19], and

are of the same order of magnitude so that the assumptions
and are equivalent), and

to follow the arguments of section 4 in [19]. The conclusion of
this discussion is the following Theorem.
Theorem 5: Assume , , and that

. If the separation condition

(52)

holds, then the G-MUSIC SS estimates defined by

(53)

where for small enough,
verify

(54)

In general, the traditional MUSIC SS estimates defined by (53)
when the G-MUSIC estimate is replaced by the tradi-
tional spectrum estimate are such that
does not converge towards 0.

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations illustrating
the results given in the previous sections. We first consider 2
closely spaced sources with DoAs and , and
we assume that and . The signal ma-
trix is obtained by normalizing a realization of a random matrix
with i.i.d. entries such that the 2 source signals have
power 1. The signal to noise ratio is thus equal to .
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TABLE I
MINIMUM VALUE OF SNR FOR SEPARATION CONDITION

Fig. 1. Empirical MSE of G-MUSIC SS estimator versus SNR.

Table I provides the minimum value of SNR for which the sepa-
ration condition, in its finite length version (i.e. when the limits

and are replaced by and re-
spectively) holds, i.e.

It is seen that the minimal SNR first decreases but that it in-
creases if is large enough. This confirms the discussion of the
previous section on the effect of on the separation condition.
In Fig. 1, we represent the mean-square errors of the

G-MUSIC SS estimator for , 4, 8, 16 versus SNR.
The corresponding Cramer-Rao bounds are also represented.
As expected, it is seen that the performance tends to increase
with until . In Fig. 2, is equal to 16, 32, 64, 96, 128.
For , it is seen that the MSE tends to degrade at high

SNR w.r.t. , while the performance severely degrades
for larger values of .
In Fig. 3, parameter is equal to 16. We compare the per-

formance of G-MUSIC SS with the standard MUSIC method
with spatial smoothing. We also represent the MSE provided by
G-MUSIC and MUSIC for . The standard unsmoothed
MUSIC method of course completely fails, while the use of the
G-MUSIC SS provides a clear improvement of the performance
w.r.t. MUSIC SS and unsmoothed G-MUSIC.
We finally consider the case , and compare in

Fig. 4 as above G-MUSIC SS, MUSIC SS, unsmoothed
G-MUSIC and unsmoothed MUSIC. G-MUSIC SS completely
fails because and are of the same order of magnitude.
Theorem 2 is thus no more valid, and the pseudo-spectrum
estimate is not consistent.
We now consider 2 widely spaced sources with DoAs

and , and keep the same parameters as above. We

Fig. 2. Empirical MSE of G-MUSIC SS estimator versus SNR.

Fig. 3. Empirical MSE of different estimators of when .

Fig. 4. Empirical MSE of different estimators of when .
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Fig. 5. Empirical MSE of different estimators of when and widely
spaced DoAs.

consider the case , and represent in Fig. 5 the perfor-
mance of MUSIC, G-MUSIC, MUSIC-SS, and G-MUSIC-SS.
It is first observed that, in contrast with the case of closely
spaced DoAs,MUSIC-SS and G-MUSIC-SS have the same per-
formance when the SNR is above the threshold 6 dB. This is in
accordance with Theorem 4, and tends to indicate that, as in the
case , if converges towards a diagonal matrix, then
the asymptotic performance of G-MUSIC-SS and MUSIC-SS
coincide (see Remark 3). The comparison between the methods
with and without spatial smoothing also confirms that the use of
spatial smoothing schemes allows to improve the performance.
We finally consider the case of sources located

at while and are
still equal to 160 and 20, and . We evaluate by
Monte-Carlo simulations as
well as i.e. the means of the
MSE of the estimated localization functions, evaluated at the
true angles. We recall that the G-MUSIC SS estimate of the lo-
calization function is consistent, but that it is not the case of the
MUSIC SS estimate. This is confirmed by Fig. 6 which shows
that the MSE of the G-MUSIC SS estimate is significantly
smaller than the MSE of MUSIC SS estimate. It is also seen
that the MSE of the MUSIC SS estimate converges towards 0
when the signal to noise ratio tends to . This is because for
each , if . Therefore, (50) implies
that for each when .

VI. CONCLUSION
In this paper, we have addressed the behaviour of subspace

DoA estimators based on spatial smoothing in asymptotic
regimes where and tend to at the same rate. For this,
we have evaluated the behaviour of the largest singular values
and corresponding singular vectors of large random matrices
defined as additive low rank perturbations of certain random
block-Hankel matrices, and established that they behave as if
the entries of the block-Hankel matrices were i.i.d. Starting
from this result, we have shown that it is possible to generalize

Fig. 6. Mean of the MSE(localization function), , .

the G-estimators introduced in [6], and have deduced from [19]
their properties.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 is based on the results of [9]. In
order to explain this, we denote by the
matrix defined by

can be written as where
matrices are independent identically dis-
tributed Hankel matrices built from i.i.d.
standard complex Gaussian sequences with variance .
[9] studied the asymptotic behaviour of the empirical eigen-
value distribution of as well the almost sure location
of its eigenvalues in the asymptotic regime (11). As
coincides with and that, apart 0, the eigenvalues
of and coincide, it is clear that the results of [9]
can be used in order to establish items (i) and (ii) of Proposition
1. To help the reader to connect the results of [9] to the context
of the present paper, we mention that the integers in
[9] should be exchanged by .
We omit the proof of (i) and first briefly justify (ii). For this,

we mention that Theorem 1.1 in [9] implies that almost surely,
for each and for large enough, all the eigenvalues of

are located in
if , and in
if . As , and that ,

we obtain that all the eigenvalues of belong to
if , and in

if . As the non
zero eigenvalues of and of coincide, we deduce
immediately that (ii) holds.
(iii) depends on the asymptotic properties of and

. If we denote by and the re-
solvents of matrices and respectively,
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it is easily seen that and that
. As , and

behave as and .
As if and only if , in order to
establish (35) and (34), it is sufficient to establish the following
properties of and :

(55)

(equivalent to (35)), and

(56)

(equivalent to (34)) for each . Here, and
are the Stieltjes transforms of the Marcenko-Pastur distributions
of parameters and which are related to

and by the relations and
.

Proof of (55): While (55) does not appear explicitly in [9],
it can be deduced rather easily from the various intermediate
results proved in [9]. For this, we first remark that

and establish that the 2 terms at the right hand side of the above
equation converge towards 0. In order to simplify the notations,
we denote by the first term. The almost sure convergence of
towards 0 follows from the Poincaré-Nash inequality (see e.g.
Proposition 2 of [9]). More precisely, can be considered as
a smooth function of the entries of and of
matrix whose entries are the complex conjugates of the
entries of . For each , we denote by
the entry of matrix . Then, the
Poincaré-Nash inequality is a concentration inequality which
states that

We notice that the structure of implies that

so that the above sums reduce to simpler terms. The above upper
bound of was evaluated in Proposition 3-1 in [9] (see
Eq. (3.2)). Exchanging by in this
proposition, we obtain immediately that

. As , this implies that con-
verges in probability towards 0. In order to prove the almost sure
convergence, we briefly justify that for each , it holds that

(57)

(57) can be established by induction on . As mentioned above,
(57) is verified for . We now assume that it holds until
integer , and prove (57). For this, we use the obvious re-
lation:

In order to manage , we use again the Poincaré-Nash
inequality. As

the Poincaré-Nash inequality leads to

(58)

(59)

Following the proof of Proposition 3-1 in [9], it is easy to
check that the Poincaré-Nash inequality leads to

where is a constant that depends on but not on the dimen-
sions . As (57) is assumed to hold until integer ,
this implies that . The Schwartz in-
equality leads immediately to

which is a term. This establishes (57). As
with , it is clear that verifies

Therefore, (57) for leads to

As , the use of the Markov inequality and of the
Borel-Cantelli lemma imply that converges towards 0 almost
surely as expected.
It remains to justify that

(60)

For this, we first simplify the notations and denote by
, the matrices . Moreover,

is a block matrix, so that we denote by
its entry . We also denote
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the columns of . Although it is not stated
explicitly in [9], (60) can be deduced from various intermediate
evaluations. In order to be more specific, we mention that it is
proved in [9] that matrix can be written as

(61)

(see Eq. (4.14) in [9]) where is a matrix whose
expression is omitted, and where is shown to verify

using the Poincaré-Nash inequality (see Eq.
(5.3) in [9]). As this will be useful to establish (56), we give
some insights on the proof of (61). [9] uses the identity

(62)
It turns out that the second term of the righthandside of (62)
can be expressed in terms of the entries of and of other
terms that tend to 0. To obtain the corresponding expression, [9]
evaluates for each

. For this, the identity

and the so-called the integration by parts formula (see e.g.
Proposition 1.1 in [9])

are used. After some calculations, this allows to express

in terms of the entries of and of other terms that tend to
0, and to plug the corresponding expression into (62). This, in
turn, leads to (61).
In order to complete the proof of (60), it remains to justify

that

or equivalently that

(63)

where is the Stieltjes transform of the Marcenko-Pastur
distribution of parameters , which, of course, verifies

because . The reader may check
that (63) follows from Corollary 5.1, Theorem 7.1 and Eq. (7.3)
in [9].

Sketch of Proof of (56): As above, we denote
matrix by in order to simplify the

notations. Using the Poincaré-Nash inequality, it can be proved
like above that

and establish that

(64)

for each . The behaviour of matrix is not
studied in [9]. However, it can be evaluated using the results of
[9]. We first briefly justify that

(65)

where is a certain matrix, and
where verifies . The proof of (65) uses the same
ingredients than the proof of (61). We first remark that

(66)

The above mentioned evaluation of for
each allows to calculate in
terms of the entries of and of , and other terms that
converge towards 0. Plugging this relation as well as (61) into
(66) leads to the expression (65). As previously,
is obtained using the Poincaré-Nash inequality.
The proof of is omitted because

it needs the introduction of several notations of [9], and does not
bring new insight.

Proof of (36): We first remark that for each , the
distribution of matrix coincides with the distribution of

. Therefore, it holds that

which implies that . In order to complete the
proof of (36), it is sufficient to establish that if we denote by
the random variable , then, for each

, it holds that

(67)

Choosing large enough leads to
as expected. (67) can be proved like above by using the

Poincaré-Nash inequality.
We finally justify that for each , (34)–(36) hold uni-

formly w.r.t. on each compact subset of . We
just prove that it is the case for (36). By item (ii), almost surely,
function is analytic on . We use a
standard argument based on Montel’s theorem [13, p. 282]. We
first justify that for each compact subset ,
then it exists a constant such that

(68)

for each large enough. We consider the singular value de-
composition of matrix :

where represents the diagonal matrix of non zero singular
values of . can be written as
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Therefore, it holds that

Item (ii) implies that the entries of are located into
for each large enough. Therefore, for each , it holds

that

The conclusion follows from the hypothesis that vectors and
satisfy . (68) implies that the

sequence of analytic functions is a normal family.
Therefore, Montel's theorem [13, p. 282]implies the existence
of a subsequence extracted from that converges uni-
formly on each compact subset of towards a cer-
tain analytic function . As (36) holds for each ,
function is identically zero. We have thus shown that each
converging subsequence extracted from converges
uniformly towards 0 on each compact subset of .
This, in turn, shows that the whole sequence converges uni-
formly on each compact subset of as expected.

REFERENCES
[1] Z. D. Bai and J. W. Silverstein, Spectral Analysis of Large Dimen-

sional RandomMatrices, 2nd ed. New York, NY, USA: Springer Ser.
Statist., 2010.

[2] F. Benaych-Georges and R. R. Nadakuditi, “The eigenvalues and
eigenvectors of finite, low rank perturbations of large random ma-
trices,” Adv. Math., vol. 227, no. 1, pp. 494–521, 2011.

[3] F. Benaych-Georges and R. R. Nadakuditi, “The singular values
and vectors of low rank perturbations of large rectangular random
matrices,” J. Multivar. Anal., vol. 111, pp. 120–135, 2012.

[4] R. Couillet, “Robust spiked random matrices and a robust G-MUSIC
estimator,” J. Multivar. Anal., vol. 140, pp. 139–161, 2015.

[5] J. E Evans, D. F Sun, and J. R. Johnson, Application of advanced
signal processing techniques to angle estimation in ATC navigation and
surveillance systems M.I.T. Lincoln Lab, Lexington, MA, USA, Rep.
582, 1982.

[6] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, “A sub-
space estimator for fixed rank perturbations of large random matrices,”
J. Multivar. Anal., vol. 114, pp. 427–447, 2012.

[7] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet, “Large
information plus noise random matrix models and consistent subspace
estimation in large sensor networks,” Random Matrices: Theory Appl.,
vol. 1, no. 2, 2012.

[8] B. A. Johnson, Y. I. Abramovich, and X. Mestre, “MUSIC, G-MUSIC,
maximum-likelihood performance breakdown,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3944–3958, 2008.

[9] P. Loubaton, “On the almost sure location of the singular values of cer-
tain Gaussian block-Hankel large random matrices,” J. Theoret. Prob-
abil., May 12, 2015 [Online]. Available: http://link.springer.com/ar-
ticle/10.1007/s10959-015-0614-z

[10] V. A.Marcenko and L. A. Pastur, “Distribution of eigenvalues for some
sets of random matrices,” Math. USSR-Sbornik, vol. 1, p. 457, 1967.

[11] X. Mestre, “Improved estimation of eigenvalues and eigenvectors of
covariance matrices using their sample estimates,” IEEE Trans. Inf.
Theory, vol. 54, no. 11, pp. 5113–5129, 2008.

[12] S. U. Pillai and B. H. Kwon, “Performance analysis of MUSIC type
high resolution estimators for direction finding in correlated and co-
herent scenes,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37,
no. 8, pp. 1176–1189, 1989.

[13] W. Rudin", Real and Complex Analysis, 3rd ed. NewYork, NY,USA:
McGraw-Hill, 1987.

[14] T. J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for estima-
tion of coherent signals,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 33, no. 8, pp. 806–811, 1985.

[15] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, Cramer-Rao
bound,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5,
pp. 720–741, 1989.

[16] A. Thakre, M. Haardt, and K. Giridhar, “Single snapshot spatial
smoothing with improved effective array aperture,” IEEE Signal
Process. Lett., vol. 16, no. 6, pp. 505–508, 2008.

[17] A. Thakre, M. Haardt, and K. Giridhar, “Tensor-based spatial
smoothing (TB-SS) using multiple snapshots,” IEEE Trans. Signal
Process., vol. 58, no. 5, pp. 2715–2728, 2010.

[18] P. Vallet, P. Loubaton, and X. Mestre, “Improved subspace estima-
tion for multivariate observations of high dimension: The deterministic
signal case,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1043–1068,
Feb. 2012.

[19] P. Vallet, P. Loubaton, and X. Mestre, “A statistical comparison be-
tween MUSIC and G-MUSIC,” in Proc. ICASSP, Brisbane, Australia,
Apr. 19–24, 2015, pp. 2829–2833.

[20] P. Vallet, X. Mestre, and P. Loubaton, “A CLT for G-MUSIC DOA
estimator,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Bucharest,
Romania, 2012.

Gia-Thuy Pham (S’14) received the M.Sc. degrees
in fundamental mathematics and applied mathe-
matics, in 2011 and 2013, respectively, both from
the Université Paris-Sud XI, France.
Since 2013, he has been pursuing the Ph.D. degree

at the Université Paris-Est, France. His research inter-
ests include statistical signal processing and statistics
of large random matrices.

Philippe Loubaton (M’88–SM’06–F’08) received
the M.Sc. and Ph.D. degrees from Ecole Nationale
Supérieure des Télécommunications, Paris, France,
in 1981 and 1988, respectively.
From 1982 to 1986, he was a member of the tech-

nical staff of Thomson-CSF/RGS, where he worked
in digital communications. From 1986 to 1988, he
worked with the Institut National des Télécommuni-
cations as an Assistant Professor of Electrical Engi-
neering. In 1988, he joined the Signal Processing De-
partment, Ecole Nationale Supérieure des Télécom-

munications, Paris. Since 1995, he has been a Professor of Electrical Engi-
neering at Paris-EstMarne la Vallé University, Champs surMarne, France. After
some work on two parameter stationary stochastic processes, his present re-
search interests are in statistical signal processing, and digital communications
with a special emphasis on blind equalization, multiuser communication sys-
tems and multicarrier modulations, performance analysis of large communica-
tion systems via large random matrices methods, and statistics of large random
matrices.
Dr. Loubaton served as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING (1999–2001, 2005–2007), IEEE COMMUNICATIONS
LETTERS (2001–2003), and EURASIP Signal Processing (2006–2012). He was
a member of the IEEE Signal Processing for Communications Technical Com-
mittee (1998–2004).

Pascal Vallet (S’08–M’11) received the M.Sc. and Ph.D. degrees from ESIEE
Paris, France, in 2008 and the Université Paris-Est in 2011, respectively.
Since 2012, he has been an Associate Professor with Bordeaux INP, France.

His research interests include statistical signal processing for digital communi-
cation systems.


