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Estimation of Toeplitz Covariance Matrices in
Large Dimensional Regime with Application

to Source Detection

Julia Vinogradova, Romain Couillet, and Walid Hachem

Abstract

In this article, we derive concentration inequalities foe spectral norm of two classical sample estimators
of large dimensional Toeplitz covariance matrices, denmating in particular their asymptotic almost sure
consistence. The consistency is then extended to the caseewhe aggregated matrix of time samples is
corrupted by a rank one (or more generally, low rank) matfiz. an application of the latter, the problem
of source detection in the context of large dimensional @enstworks within a temporally correlated noise
environment is studied. As opposed to standard procedtmissapplication is performed onlineg. without the
need to possess a learning set of pure noise samples.

Index Terms
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I. INTRODUCTION

Let (v:):ez be a complex circularly symmetric Gaussian stationary ggeavith zero mean and covariance
function (7« )kez With rp = E[virvf] andr, — 0 ask — co. We observeN independent copies div; )¢z
over the time windowt € {0,...,7 — 1}, and stack the observations in a matbix = [v,,,.]} ;" '. This
matrix can be written a¥; = WTRlT/Q, whereW; € CV*T has independer@ N (0, 1) (standard circularly
symmetric complex Gaussian) entries alh]ld2 is any square root of the Hermitian nonnegative definite Tizep

T x T matrix

To 1 rT—1
-1
L. _
Rr = [ricjloc; jer1 =
T1
T—T N A | To

A classical problem in signal processing is to estim&e from the observation of/. With the growing
importance of multi-antenna array processing, there hesntly been a renewed interest for this estimation
problem in the regime of large system dimensidres,for both N andT large.
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At the core of the various estimation methods for are the biased and unbiased estimafes and 7.

for rt, respectively, defined by

N—1T-1
o= ! g g Un t+kUp ¢ Lo<t+k<T—1
kT NT n,t+kYn t <t+k<T-—
n=0 t=0
1 N—1T-1
Fer = |k| E E Vn,t+kUp, ¢ Lo<t+k<T—1
n=0 t=0

where 1 4 is the indicator function on the set. Depending on the relative rate of growth &f and T,
the matriceskl, = [#_; plo<ij<r—1 and RY = [ rlo<ij<r—1 may not satisfy|| Ry — Ry 2% 0 or
|Rr — ITE%H 2% 0. An important drawback of the biased entry-wise estimats In its inducing a general
asymptotic bias inkY.; as for the unbiased entry-wise estimate, it may induce toghrinaccuracy in the
top-right and bottom-left entries Qﬁ%. The estimation paradigm followed in the recent literatgemerally
consists instead in building banded or tapered versionégobr ﬁ% (i.e. by weighting down or discarding a
certain number of entries away from the diagonal), expigitihere the rate of decreaserqfask — oo [1],
[2], [31, [4], [B], [6]. Such estimates use the fact thaRr — R (1) 7l — 0 with R, 7 = [[Rr]; j1}i—j<4] for
some well-chosen functiongT") (usually satisfyingy(T") — oo and~(T")/T — 0) and restrict the study to the
consistent estimation ak.,(r) 7. The aforementioned articles concentrate in particulactoices of functions
~(T) that ensure optimal rates of convergencel 8 — }ABW(T%TH for the banded or tapered estima‘Ate;(T)yT.
These procedures, although theoretically optimal, howsu#fer from several practical limitations. First, they
assume the priori knowledge of the rate of decreaserqf (and restrict these rates to specific classes). Then,
even if this were indeed known in practice, being asympfaticature, the results do not provide explicit rules
for selecting(7T') for practical finite values ofV and7'. Finally, the operations of banding and tapering do
not guarantee the positive definiteness of the resultinguiance estimate.

In the present article, we consider instead that the onlgtraimt about, is .- __ |rx| < co and estimate
Ry from the standard (non-banded and non-tapered) estinz%temd }AB%. The consistence of these estimates,
in general invalid, shall be enforced here by the chd&d” — oo with N/T — ¢ € (0,00). This setting is
more practical in applications as long as both the finite @l andT" are sufficiently large and of similar
order of magnitude. Another context where a non banded iregctification of the estimated covariance
matrix leads to a consistent estimate in the spectral norstuidied in [7].

Our specific contribution lies in the establishment of conaion inequalities for the random variables
|Rr — R%| and ||[Rr — R%|. It is shown specifically that, for alt > 0, —logP[|| Ry — R%|| > z] = O(T)
and — log P[|Rr — ITE%H > x] = O(T/logT). Aside from the consistence in norm, this implies as a cargl|
that, as long aéim sup;. | R;'|| < oo, for T large enoughﬁ% is positive definite with outstanding probability
(ﬁbT is nonnegative definite by construction).

For application purposes, the results are then extendeltetedse wheré&r is changed intd/; + Pr for
a rank-one matrix’r. Under some conditions on the right-eigenspace®gfwe show that the concentration
inequalities hold identically. The application is that okiagle source detection (modeled throuh) by an
array of N sensors embedded in a temporally correlated noise (mottgléd:). To proceed to detectiory

is estimated from/ + Pr as }AB”T or }AB%, which is used as a whitening matrix, before applying a galizd
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likelihood ratio test (GLRT) procedure on the whitened olbaton. Simulations corroborate the theoretical
consistence of the test.

The remainder of the article is organized as follows. Theceaotration inequalities for both biased and
unbiased estimates are exposed in Seéfion Il. The geretializo the rank-one perturbation model is presented
in Section Il and applied in the practical context of soudetection in Sectiof V.

Notations: The superscript-)" denotes Hermitian transposeX || stands for the spectral norm for a matrix
and Euclidean norm for a vector, anjd- ||~ is the sup norm of a function. The notations/(a,s?) and
CN (a,0?) represent the real and complex circular Gaussian diskoibsitwith meana and variancer?. For
x € C™, D, = diag(x) = diag(xo,...,xm—1) is the diagonal matrix having on its diagonal the elements of
the vectorz. Forz = [#_(;,_1,. .., Tm-1]" € C*" "1, the matrix7 (z) € C™*™ is the Toeplitz matrix built
from z with entries[7 (z)]; ; = ;. The notationsR(-) and3(-) stand for the real and the imaginary parts

respectively.

Il. PERFORMANCE OF THE COVARIANCE MATRIX ESTIMATORS
A. Model, assumptions, and results

Let (rx)rez be a doubly infinite sequence of covariance coefficientsafRpil’ € N, let Ry = T (r_(r—1),...,71-1),

a Hermitian nonnegative definite matrix. Givéh= N(T) > 0, consider the matrix model

Vi = [N 2g" ! = Wr R (1)

whereWr = [wn,t]ﬁ;zl(’)T’l has independer@\ (0, 1) entries. It is clear that, = E[v, v, ;] for anyt, k,

andn € {0,...,N — 1}.

In the following, we shall make the two assumptions below.
Assumption 1. The covariance coefficientg are absolutely summable ang # 0.

With this assumption, the covariance function

T(\) 2 Z ree” " X e 0,2r)

k=—oc0
is continuous on the intervdd, 2x]. Since||Rr|| < || Y]« (seee.g.[8, Lemma 4.1]), Assumptiohl 1 implies
thatsupy | Rr|| < oo.

We assume the following asymptotic regime which will be diyngenoted asT — oo™
Assumption 2. T'— oo and N/T — ¢ > 0.

Our objective is to study the performance of two estimatdrthe covariance function frequently considered

in the literature. These estimators are defined as

N-1T-1

. 1 .
Por = NT Z Z Un,t4+kVp ¢ Lo<t+k<T—1 ()
n=0 t=0
1 N-1T-1
Per = <~ Unt4+kVn ¢ Lo<t+h<T—1. (3)
) N(T*|k|);; n n,t = S
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SinceEr} ; = (1 — |k|/T)ry andE#y ;, = ry, the estimate} ;. is biased while?} ;. is unbiased. Let also

Eg" £ T (fli(T—l),Tv ) f?T—l),T) (4)
Ry 2T (i iy Fponyr ) - 5)

A well known advantage oﬁbT overﬁ% as an estimate offr is its structural nonnegative definiteness. In
this section, results on the spectral behavior of theseiceatare provided under the form of concentration

inequalities on| k.. — Ry | and | R% — Ry ||:

Theorem 1. Let Assumptions]1 arid 2 hold true and 1& be defined as iffd). Then, for anyx > 0,

P [HEI’T - RTH > x} < exp (cT (ﬁ —log <1 + ﬁ) + 0(1))>

whereo(1) is with respect tdI’ and depends on.

Theorem 2. Let Assumptionsl1 arid 2 hold true and fé}‘ be defined as if5). Then, for anyr > 0,

~ T2
]P’HR“*RH>z <ex 7671+01
et = > o] < | =i+ o)

whereo(1) is with respect tdI’ and depends on.

A consequence of these theorems, obtained by the Borekffadetnma, is that||]§bT — Rr|| — 0 and
|R% — Rp|| — 0 almost surely ag” — cc.

The slower rate of decrease &%/ log(T) in the unbiased estimator exponent may be interpreted by the
increased inaccuracy in the estimates-pffor values ofk close toT — 1.

We now turn to the proofs of Theoreis 1 ddd 2, starting with estaasic mathematical results that will be

needed throughout the proofs.

B. Some basic mathematical facts

Lemma 1. For z,y € C"™ and A € C™*™,
|2" Az — y" Ay| <Al (]| + ly]}) ll& =yl -
Proof:
‘:EHAx — yHAy‘ = ‘:EHAx —y" Az +yH Az — yHAy|
< |z —y)" Az| + [y" A(z — y)]

< 1Azl + llylD lz = vl

Lemma 2. Let Xy,..., X1 be independerd A/ (0, 1) random variables. Then, for any > 0,

M-1
Pl > (1 Xml> =1) > 2| < exp(—M(z —log(1+x))).

m=0
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Proof: This is a classical Chernoff bound. Indeed, giea (0, 1), we have by the Markov inequality

M-1 M-1
]P’{M_1 mz::qumP —1)> :c} =P leXp (E > |Xm|2> >exp&M(z +1)
M-1
exp (5 Z |Xm|2>]
m=0

= exp (—M (£(z + 1) + log(1 — €)))

m=0

< exp(—&M(z+1))E

sinceE [exp(¢| X, |?)] = 1/(1 — €). The result follows upon minimizing this expression wittspect to. m

C. Biased estimator: proof of Theordm 1

Define

TrNE D e
k=—(T-1)
T-1

TT(A> é Z TkSZk)\.

k=—(T—1)

Sincef%”T — Ry is a Toeplitz matrix, from([B, Lemma 4.1],

LEAEN
A€(0,27)

THO) = Tr(V)| < sup
A€[0,2m)

TH(\) — ET4()| ET5(0) = Tr(3)|

+ sup
A€(0,27)

By Kronecker's lemma [[9, Lemma 3.21]), the rightmost tertriree right-hand side satisfies

T-1
~ k’?‘k
BTS00 - Tr(v)] < z(: )' - | —— 0. (6)
k=—(T-1

In order to deal with the termup,¢(o o) |“YbT()\) — ETI’T(A)L two ingredients will be used. The first one is

the following lemma (proven in Appendix’A1):

Lemma 3. The following facts hold:

wheredr(\) = 1/VT [1,e™, ... ,e—z(T—l)/\}T_

The second ingredient is a Lipschitz property of the functidr(A) — dr(\')|| seen as a function of.

From the inequalitye—** — e="*'| < ¢\ — \'|, we indeed have

T-1
1 i TIA=N
ldr(X) — dr(N)]| = $ - E letth — =N |2 < | 7 | %
t=0

Now, denoting by|-] the floor function and choosing > 2, defineZ = {0,..., [T”] —1}. Let \; =
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2#%, i € Z, be a regular discretization of the interJal 27]. We write

sup
A€[0,27)

<max sup (|TH() = THOW| + | THO) — ETH)
€L Ne[Ai hit]

+ [ETH(O0) —ETH(V) )

<max sup |TH(N) - Th(n)
€T Xe [N, Nig1]

+ max| T4 (\) - ETH ()
1€

+max sup ‘E’Y”T()\i) ~ETL()
€T Ne[Ai,Ait1]

£ X1+ X2 + xs-
With the help of Lemma&l3 and(7), we shall provide concerarainequalities on the random terms and -
and a bound on the deterministic tergg. This is the purpose of the three following lemmas. Hereid an

the remainder(' denotes a positive constant independenf’ofThis constant can change from an expression

to another.

Lemma 4. There exists a constaiif > 0 such that for anyz > 0 and any1 large enough,

xT82 xTP=2
Px: > 2] < exp| —cT? —log —11].
Cl oo ClIY oo

Proof: Using Lemmag$13 and 1 along with] (7), we have

N H H
500 - To(n)| = |aroon LT w Vi Ve

dr (M)

dr(N\) — dp(\) dr(Ai)

<2NH|dr(A) — dr(N)|| || Re || ||Wi W ||

< O = NI |l [ WH W]

From||WHWr | < Tr(WHWr) and Lemma&R, assumiriglarge enough so that(z, 7) £ 7%~ /(CN || Y| )
satisfiesf(x,T) > 1, we then obtain

]P)[X1>$]<P

t=0 n=0

T—1N-1
CIY oD fwn e > z]

=P

% > (wnel* =1) > f(a,T) — 1
n,t

)

< exp(=NT(f(z,T) —log f(x,T) — 1)).

Lemma 5. The following inequality holds

x x
Plxs > 2] < 2TPexp| —cT'| ——— —log(1 + —— .
ez i 0 )

Proof: From the union bound we obtain:

1T%)-1
Pl >a] < Y P[|ThHOW) ~ETHOW)
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We shall bound each term of the sum separately. Since

>x}:P[Tb(A) ]ETZ’(AZ-)>3:}+]P’[ (Tb(A) Erb(Ai))>x}

it will be enough to deal with the first right-hand side term the second one is treated similarly. Let
nr(\) & Wrar(h) = Ior(M), - av-1r(A)]T wheregr(Ai) 2 Ry/*dr();). Observe thaty, r(A;) ~
CN(0, ||lgr(X\:)||*In). We know from Lemmal3 that

1

T4 (M) = ETH) = 5 (lnr )l = Ellnr(3)]?) - 8)

From [8) and LemmRBl2, we therefore get

~

o) RO > 2] < el N[ T 3.
P|Th(\) ~ ETH(N) > 2] < p( N(HqT(Ai)H lg(”mﬂmlIQ)))

Noticing that||qr(\)||? < || Y]l and that the functiorf(z) = = — 1og(1 + z) is increasing forz > 0, we
get the result. ]

Finally, the bound for the deterministic tergy is provided by the following lemma:
Lemma 6. x3 < C[| YT 71
Proof: From Lemmas$13 and 1 along with](7), we obtain

EY5(A) — EYS(A

= |dr(\" Rrdr(N) — dr (X)) Redr (A)|
< 2| Rl [|dr (A) = dr (M)

< O Yo |A = N T

From m%x sup A — X\ = Xir1 — A\ = T~9 we get the result. [ ]
€L xe[hiAiga]
We now complete the proof of Theordrh 1. Frdm (6) and Lerfiina 6gete

P[| Ry — R > @] =Pha +xe > o +o(1)].
Given a parametery € [0, 1], we can write (with some slight notation abuse)
Plxi+x2>2+0(1)] <Px1 > zer] + Plx2 > (1 —er) + o(1)].

With the results of Lemmads 4 and 5, setting=1/7', we get

P[X1+x2>:p+o(1)]§ﬂ”{xl>%}+]P’{ o > 17— )+ o(1 ]
33 B 3
SeXp(_CTQ(c{fer lo CHTTHOO 1)
1
T

JreXp(CT(% log(1+ ﬁ;”m )) +o(1)))
= exp(ch<m - 1og(1 + m) + 0(1)))

since > 2.
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D. Unbiased estimator: proof of Theorém 2

The proof follows basically the same main steps as for Tha@lewith an additional difficulty due to the
scaling termsl /(T — |k|).

Defining the function

we have

H}AB% — RTH < sup T(A) — ETA(N)

A€[0,2m)

TH) ~ Tr(N)| = sup
A€[0,2m)

sinceYr(\) = ]E“Y%(A), the estimates;; . being unbiased.
In order to deal with the right-hand side of this expression,need the following analogue of Lemiha 3,

borrowed from[[7] and proven here in AppendixIB1.

Lemma 7. The following fact holds:

F400) = dr () (% © Br) dr (Y

where® is the Hadamard product of matrices and where

T

T —li=jllosij<r—

In order to makef%()\) more tractable, we rely on the following lemma which can bevpn by direct

calculation.
Lemma 8. Letx, y € C™ and A, B € C™*™, Then
s (A® B)y = Tr(DYAD,BT)
where we recallD, = diag(x) and D, = diag(y).
Denoting
iA 76i(T—1)/\)

Dz()\) = diag(dr(N\)) = diag(1,e", ...

1
T
Qr(\) 2 Ry/*Dr(\)BrDr(\P (R )M

we get from Lemmak]7 arid 8

= 1
TH() = 5 T(Dr ()" (Ry )" WHWr Ry” Dr (V) Br)
1
= N TY(WTQT()\)W?)
1 N-1
=N 2 wh Qr(A)w, 9
wherew!! is such thatVr = [wf, ... wi_].

Compared to the biased case, the main difficulty lies heréeénfact that the matriceBr/T and Q7 ()
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have unbounded spectral norm @s— oo. The following lemma, proven in Appendix_ B2, provides some

information on the spectral behavior of these matrices wiktbe used subsequently.

Lemma 9. The matrixBr satisfies

| Br|| < V2T (\/1og T + C). (10)
For any X € [0, 2), the eigenvaluesy,...,or_; of the matrixQ(\) satisfy the following inequalities:
T—1
d o7 < 2|2 logT +C (11)
t=0
maxloe| < V2| Y| (log T)"? + C (12)
T-—1
S o < ClogT)*? +1) (13)
t=0

where the constant’ is independent oA.

We shall also need the following easily shown Lipschitz gty of the function||Dr(\) — Dp(N)|:
ID7(A) = Dr(N)|| < VTIA = X|. (14)

We now enter the core of the proof of Theorei 2. Chooging 2, let \; = 27 i € Z, be a regular

77T
discretization of the intervaD, 2x] with Z = {0,...,[T?] — 1}. We write

sup [T&(N) — ]E“Y%(A)’ <max sup |YT%(N) —TH(N)

A€[0,27) 1€Z Ne[Ai,hig1]

+ max’T () — ET%(\)

1€

+max sup ]EY%()\Z-) - E?%()\)’
€T Ne[Ai,Aig1]

£ x1+ X2 + X

Our task is now to provide concentration inequalities onrdm@dom termsy; and y» and a bound on the

deterministic termys.

Lemma 10. There exists a constadt > 0 such that, ifl" is large enough, the following inequality holds:

TB—2 T2
P < —cT? log —1)].
ba > a] < exp ( ¢ <C\/logT C\/lo_gT ))

Proof: From Equation[{9), we have

N

= Qr(\))w

1 N-1
< § X [l (@r) ~Qrn)

~ IIQT Al Z wn*

| A
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10

The norm above further develops as

1Qr(A) — Qr (Nl
< ||Rr || ||Dr(X) Br Dr (A" = D (X)) BrDr(M" + Dr (X)) Br Dr(\)™ — Dr(\) BrDr(\)™||

<2 DeN)[ B[ Bzl [|Dr(A) = Dr(A)|| < CT(V1og T+ 1) [A = Ai

where we used(10), (14), afid(\)|| = 1/+/T. Up to a change i@, we can finally writd| Q(\) — Q7 (\;)|| <
CT'=P\/logT. Assume thatf(z,T) = 2752/ (Cy/logT) satisfiesf(z,T) > 1 (always possible for every
fixed x by takingT large). Then we get by Lemnia 2

Plx1 >z <P (CN_lTl_B\/logTZ |wn 4| > x)

n,t
=P (% ;(|wnt|2 -1)> f(z,T) — 1)

< exp (=NT(f(z,T) —log (f(x,T)) —1)).

[ |
The most technical part of the proof is to control the teym which we handle hereafter.
Lemma 11. The following inequality holds:
cx®T
P > x| < ex —— (1 + o1 .
[x2 > z] < exp ( 1 IITHiologT( ( )))
Proof: From the union bound we obtain:
[77]-1

Plo>a]< > P HT%()\Z-) CETEO)| > x} . (15)

=0

Each term of the sum can be written

P H’Y%()\i) CETEO)| >

x} —P [’Y%()\i) CETE(ON) > x} +P [_ (’Y%()\i) . EY%()\Z-)) > x} .

We will deal with the termy; = P {?%()\i) —EY%()) > x} the termP {— (T%()\i) —E?%(Ai)) > x}

being treated similarly. LeQr(\;) = UrS7U! be a spectral factorization of the Hermitian matéx-(\;)

with X7 = diag(oo, . ..,or_1). SinceUr is unitary andiWr has independeriN (0, 1) elements, we get from
Equation [9)

R c 1 N-—1 y 1 N—-1T-1 )

Th(A) = N 7;) wh, S (\)wy, = N 7; ; |wn, ¢ o (16)

whereZ denotes equality in law. Sinde [e“'xﬂ =1/(1—a) whenX ~ CN(0,1) and0 < a < 1, we have
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11

by Markov's inequality and from the independence of the alalgs|w,, ;|

—-17-1
< SN fwnalor — TrQr(\) > )

n=0 t=0

oo o) TH(-28) a
T

foranyr suchthat < 7 < min . Writing log(1—z) = —z — % + R3(x) with |R3(z)| <

ocin_ z 3(1 )3 when

|z] < e< 1, we get

2,2

s en(-ra N 3 (S (%))

<on(-N (5 -7 2 ) o X | (57)) a0

We shall manage this expression by using Lemna 9. In ordeottira the termexp(N > |R3(-)|), we make

the choice
axT

logT

wherea is a parameter of order one to be optimized later. From (12)getenax; %F = O ((1ogT)_1/2).
Hence, for allT large, ™ < mlnt . Therefore,[(T7) is valid for this choice of and forT large. Moreover,

for € fixed andT large, % < e < 1 so that for thesd"

— oT 3T $ )
N;‘R3<#)‘ S 3N2(1 —6) lOgT Z |O’t| = O( (IOgT) 3/2)

from (13). Plugging the expression efin (18), we get

T-1
aTx2 2T2 2

i < eXp<7N<(logT)N 9N2(log T)2 Z ”?)) eXp( ( (logT)ig/Q))'

t=

P < exp(—lizg (a _ |T||§.{;a2T)) eXp((logC%).

Using [11), we have

The right hand side term is minimized for= ﬁ which finally gives
s < exp(—— (14 0(1)))
i L expl———5—— .
AT g T

Combining the above inequality with (115) (which inducesitiddal o(1) terms in the argument of the expo-

nential) concludes the lemma. ]

Lemma 12. x3 < CT A2 /log T
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Proof: From Lemmd7)|Rr ® Br|| < |Rr| | Br| (see [10, Theorem 5.5.1]), and (7), we get:

ET%(\;) —EY%(N)| < 2[ldr(A) — drO)|| | Bz | | Brll < CT* A — Ai] | X |loov/1og T

LemmasI0=12 show thd[y2 > z] dominates the tern®[y; > z]| and that the termy; is vanishing.
Mimicking the end of the proof of Theorel 1, we obtain Theof2m

We conclude this section by an empirical evaluation by MoBgzlo simulations ofP[| Ry — Rr|| > z]
(curves labeled Biased and Unbiased), with € {R%, R4}, T = 2N, = = 2. This is shown in Figur&l1
against the theoretical exponential bounds of TheofdmsdiZafcurves labeled Biased theory and Unbiased

theory). We observe that the rates obtained in Theoféms Plaard asymptotically close to optimal.

—0.05

-0.1

- -x-- Biased theory
—«— Biased

--©-- Unbiased theory|
—o— Unbiased

—0.2 I I I I I
10 15 20 25 30 35 40

N

—0.15 |-

o o [ ] >])

Figure 1. Error probability of the spectral norm for= 2, ¢ = 0.5, [R7]g,; = al*~!! with a = 0.6.

IIl. COVARIANCE MATRIX ESTIMATORS FOR THE
“SIGNAL PLUS NOISE” MODEL
A. Model, assumptions, and results

Consider now the following model:

Yr = [Yn,tlo<n<n-1 = Pr +Vp (19)
0<t<T—1

where theN x T matrix Vr is defined in[(Il) and wher&; satisfies the following assumption:

Assumption 3. Py £ hyshT'H? wherehy € CV is a deterministic vector such thatip, ||hr|| < oo, the
vector sy = (sg,...,s7_1)" € CT is a random vector independent Bf7 with the distributionCA (0, Ir),

andT'y = [%-j]fj;lo is Hermitian nonnegative such thatip, ||T'r|| < co.

We have here a model for a rank-one signal corrupted with as§an spatially white and temporally

correlated noise with stationary temporal correlationssé@ve that the signal can also be temporally correlated.
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Our purpose is still to estimate the noise correlation mal. To that end, we use one of the estimatais (2)
or () with the difference that the samples. are simply replaced with the samplgs ;. It turns out that
these estimators are still consistent in spectral nornuitinely, Pr does not break the consistence of these
estimators as it can be seen as a rank-one perturbation abthe termV/;- in which the subspace spanned by
(Fl/Q)HsT is “delocalized” enough so as not to perturb much the estiratf Rr. In fact, we even have the

following strong result.

Theorem 3. Let Y be defined as iffI9) and let Assumptiorid [}-3 hold. Define the estimates

N—

—

T-1

1
~bp _ *
"kT T NT T;) 2 Yn,t+kYn, e Lo<t+k<T-1
1 N-1T-1
up y
T = N(T — k) Z Z Yn,t+kYn e Lo<t+k<r—1
n=0 t=0
and let
Bb b b
R'IP = T(r—p(T—l),T’ A ,74(51_1)7,1—,)
DUp __ Aup ~up
RT - T(rf(Tfl).’T’ e 7T(T71),T)'

Then for anyx > 0,

P [HE”TP — RTH > m} < exp(—cT(ﬁ — 10g(1 + ﬁ) + 0(1)))

and

Pl R~ Rr| > ] < exp(ﬁixlﬂ““(”))-

Before proving this theorem, some remarks are in order.

Remark 1. Theorem B generalizes without difficulty to the case wherehas a fixed rankK > 1. This

captures the situation ok’ < min(N,T') sources.

Remark 2. Similar to the proofs of Theorerh$ 1 alnd 2, the proof of The@ames concentration inequalities
for functionals of Gaussian random variables based on thenemd generating function and the Chernoff
bound. Exploiting instead McDiarmid’s concentration indjty [11], it is possible to adapt Theorei 3 ta-

with bounded (instead of Gaussian) entries. This adaptati@y account for discrete sources met in digital

communication signals.

B. Main elements of the proof of Theorein 3

We restrict the proof to the more technical part that com:é}ﬁ. Defining

T-1

TPNE D At
k=—(T—1)
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and recalling thatYr(\) = kT:_i(Tq) rpet**, we need to establish a concentration inequality on

P |supye(o,27) T2 (\) — Tp(N)| > x} For any\ € [0, 27), the termY4?(\) can be written as (see Lemifia 7)

1) = a0 (T 0 ) dr
H
= dp(\)" <% ® BT> dr(N)

PRV +VEP
+dr(\)" (% @BT> dr ()

L dr (A (P%;VPT o BT) dr(\)

where Br is the matrix defined in the statement of Lemigha 7. We know frbengroof of Theorera]2 that

< exp (—%u + 0<1>>> . (20)

P| su YL\ = Yr(\)| >
p | T( ) T( )| 4|\T||i010gT

A€[0,27)

We then need only handle the terAi§ros(\) and TSTW()\).

We start with a simple lemma.
Lemma 13. Let X andY be two independent/(0, 1) random variables. Then for any € (—1,1),
Elexp(rXY)] = (1 — 72)71/2,

Proof:

1 2 2
Elexp(7XY)] = o eTWe 27V 2 dx dy
RQ
_ L[ @m0 gy gy
2T R2

=(1-7)2

With this result, we now have

Lemma 14. There exists a constamt> 0 such that

~ axT
Pl sup |YZ°(N)|>z| <exp|-— 1+0(1))).
up [TFe ) ] (- g1+ o)

Proof: We only sketch the proof of this lemma. We show that for any [0, 27],

ACTOSS afET
PT5 (V)] > a] < exp(— mw)

whereC does not depend ok € [0, 27]. The lemma is then proven by a discretization argument ofrttezval

[0, 27] analogous to what was done in the proofs of Sedfibn II. Wel dfmind P[T%"OSS(A) > z], the term
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P[Yross()\) < —az] being bounded similarly. From Lemria 8, we get

= PRV +VHP
Teross(\) = Tr (DT(A)H%DT(A)BT)
_ g DeON @) sl W Ry Dr(\) Br
gy DrO" Ry W R T4 Dy (3) Br
' N
2
= R WrGr(N)sr)

where Gr()) = RY?Dr(\)BrDr(MP(TH?)H. Let Gr(N) = UrQr UM be a singular value decomposition
of Gr()\) whereQ) = diag(wo, . ..,wr_1). Observe that the vectat; = WHhr = (x0,...,27-1)" has the
distributionCN (0, | h7||?I7). We can then write

T-1

~ 2 2

T%ross()\) é N% (IBEJ—!QTST) = N Z wt(%xt%st + %xtgst).
t=0

Notice that {Rz:, Sz, Rss, Ss¢}iy' are independent wittRz;, Sz, ~ N (0, |hr|?/2) and Rs;, Ss; ~
N(0,1/2). Letting0 < 7 < (supy ||hr||) ~t(sup, [|Gr(N)|])~! and using Markov’s inequality and Lemral 13,

we get

P [T%}"OSS(A) > :L':| =P |:€NT?§*MSS(X) > 6N7'$:| < e—N‘rzE |:€2T > wt(%mt%stﬂ—%mtgst)}

T-1 T-1
=e N7 H (1- 7'2cu152||h,T||2)71 = exp (—ch - Z log(1 — 7'2w,52||hT|2)> .
t=0 t=0

Mimicking the proof of Lemmdl9, we can establish tHa}l, w? = O(logT) and max;w; = O(y/logT)
uniformly in A € [0, 27]. Setr = b/\/log T whereb > 0 is small enough so thatip, , (7]|hr|| |G (V)]]) < 1.

Observing thatog(1 — z) = O(z) for = small enough, we get
PY5O%5 () > 2] < exp(—Nbz/\/log T + E(N,T))
where|E(N, T)| < (C/logT) Y, w? < C. This establishes Lemniall4. ]

Lemma 15. There exists a constamt> 0 such that

~ T
P| su TN > x| <expl— ar 1+0(1))).
Le[oé’ﬂ' o] ] p(= g (1 0(1)
Proof: By Lemmal8,

Y59(\) = N~ Te(DY PR Pr Dy Br)

h 2
= —H ],1\;" S?GT()\)ST

whereGr()\) = T'}/2 Dy (N Br Dp(AH(T}/*)H. By the spectral factorizatioGir () = UrSpUH with $p =

diag(og,...,or—1), We get
csigyy £ PP = | o
T = > oilsil
t=0
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and

PIYS9(N) > 2] < e VTR [ethTIIZZ,mls#]

T-1

= exp(~N7e = Y log(1 — o7z )
t=0

for any 7 € (0,1/(||hr|?sup, |Gr(N)])). Let us show that

TGz < 0[BT

—1 o—uk—0A
| Tr Gr(A)| = N~ Tr DrBr DT p| = Z —

Indeed, we have

e Tk
T—lk—4

(L5 par) (X im)“

k=0 k=0

= (LYIEFH )1/2(N(logT + C)) i < C\/ilogTT—l—l-

Moreover, similar to the proof of Lemnid 9, we can show thjto? = O(log T') andmax; |o¢| = O(\/logT)
uniformly in \. TakingT = b/+/logT for b > 0 small enough, and recalling thatg(1 — z) = 1 — z + O(2?)

for  small enough, we get that

e
ViegT — +/logT

where|E(T,\)| < (C/logT) ", 07 < C. We therefore get

P[TS9(\) > 2] < eXp(_ TrGr(\) + E(T, )\))

i Nbz
PY79(N\) > 2] < exp<fm + C)

where(C is independent of. Lemma15 is then obtained by the discretization argumettisinterval[0, 27].

[
Gathering Inequality_(20) with LemmAs]14 dnd 15, we get ticeise inequality of the statement of Theorlelm 3.

IV. APPLICATION TO SOURCE DETECTION

Consider a sensor network composedNdfsensors impinged by zero (hypothedis) or one (hypothesis

H;) source signal. The stacked signal mafrix = [yo, ...,yr—1] € CV*T from timet =0tot =T —1is

modeled as
% , H
Yr=4 ’ (21)
hTSI,J—l +Vr , Hq
wherestt = [s3,...,s%_] are (hypothetical) independe@t\V'(0, 1) signals transmitted through the constant

channelh, € CV, andVy = Wy Ry

As opposed to standard procedures where preliminary puse mata are available , we shall proceed here

€ CNV*T models a stationary noise matrix as [ (1).

to an online signal detection test solely basedYan by exploiting the consistence established in Thedrém 3.
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The approach consists precisely in estimatiRg by Rr € {fz”f,ﬁz;?}, which is then used as a whitening

matrix for Y. The binary hypothesi§ (21) can then be equivalently writte

WrRrRy? , Hy

YoR? — X ~
g hrstRyY? + WrRrRLY? | Hi.

(22)
Since HRTﬁ;l — Ir|| — 0 almost surely (by Theoref 3 as long affc(o 2. Y(A) > 0), for T' large,
the decision on the hypothesés](22) can be handled by theajieed likelihood ratio test (GLRT) [12] by

approximatingWy Ry R;/? as a purely white noise. We then have the following result.

Theorem 4. Let Ry be any of}ABbT” or }AB;” strictly defined in Theoref 3 fa¥ now following model21).
Further assumenfc(o o) Y(\) > 0 and define the test

ol Rl
- <

@ =~ > 7 (23)
Tr (v Rp'YE)
wherey € R satisfiesy > (1 + +/¢)%. Then, asT’ — oo,

0 7H0
1, H,.

Pla > ] —

Recall from [12] that the decision threshold + ,/c)?> corresponds to the almost sure limiting largest
eigenvalue of%WTW}', that is the right-edge of the support of the MarCenko-tRdatv.

Simulations are performed hereafter to assess the penfimerat the tesf(23) under several system settings.
We take heréar to be the following steering vectdtr = /p/T|[1, ..., e*™(T=D] with § = 10° andp a power
parameter. The matriRr models an autoregressive process of order 1 with parameter. [Rr];.; = a/*~!l.

In Figure[2, the detection errdr— P[a > ~|H,] of the test[(2B) for a false alarm rate (FAR)x > ~|Hy| =
0.05 underRy = ﬁ;” (Unbiased) ok = ﬁpr (Biased) is compared against the estimator that assutges
perfectly known (Oracle)i.e. that setsRy = Ry in (23), and against the GLRT test that wrongly assumes
temporally white noise (White),e. that setsky = Ir in (23). The source signal power is setyte= 1, that is
a signal-to-noise ratio (SNR) @f dB, N is varied from10 to 50 andT = N/c for ¢ = 0.5 fixed. In the same
setting as Figurg]2, the number of sensors is now fixetf te- 20, T'= N/c = 40 and the SNR (hencp) is
varied from—10 dB to 4 dB. The powers of the various tests are displayed in Figlirad3campared to the
detection methods which estimal®- from a pure noise sequence called Biased PN (pure noise) ahihséd
PN. The results of the proposed online method are close toffBiase/Unbiased PN, this last presenting the
disadvantage to have at its disposal a pure noise sequetioe @&ceiver.

Both figures suggest a close match in performance betweeanieCGmad Biased, while Unbiased shows weaker

performance. The gap evidenced between Biased and Unliasdidms the theoretical conclusions.
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Figure 2. Detection error versu§ with FAR= 0.05, p = 1, SNR= 0 dB, ¢ = 0.5, anda = 0.6.

Pla > v|Hi]
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--©-- Unbiased PN
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Figure 3. Power of detection tests versus SNR (dB) with FAR05, N = 20, ¢ = 0.5, anda = 0.6.

A. Proofs for Theorer] 1
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1) Proof of Lemmal3:Developing the quadratic forms given in the statement ofi¢hema, we get

VHV, 1 =
drOP 22T 1)) = —— —o(I' =D A[y/H )
(A =5 dr(Y) NT”Z;Oe Vi Vrlia
— Z e—z(l’_l)k Z ’U LUy
u/
T—1 1 N—-1T-1
= Z _lk’\ Z Z Uyt Un ek Lo<trk<T—1
k=—(T-1) n=0 t=0
T—1 N
— Y e - Tho,
k=—(T—1)
and
Vv E[WHW.
E |dr(MN"LLq (A)} = dp(WH(RYA)H W T]Rl/QdT(A)
N N
= dr(MP Rrdr ()
B. Proofs for Theorernl 2
1) Proof of Lemm&J]7:We have
VHY; 1 = T
T VT _ i(l=1")Xy/H ,
dr(\)" < ~ @BT> dr(\) = 7 Y. ViVl T
L/=—(T-1)
T—1 1 N—-1T-1
ik *
n 1
k——;—l) N(T —[K]) n=0 t=0 Cr B 0SS
T—1 )
= Y et =T8N
k=—(T—1)

2) Proof of Lemm&]9:We start by observing that

T—1 T—1 T 2
2
TeBi =) [Brli; =) f — 22 —— ) +T
= = i — jl = IZ Jl

T—1 T T-1 1
2 2
2;<T—_I€> (T —k)+T=2T Z—+T72T (logT +C).

Inequality [I0) is then obtained upon noticing thid@r| < /Tr B2.
We now show [(I1). Using twice the inequalityt(FG) < | F||Tt(G) when F,G € C™*™ and G is
nonnegative definite [10], we get

z_: o2(Mi) = Tr Qr(\i)? = Tr Ry Dr(\i) Br Dr( M) Rr Dy (M) Br Dp (M)
t=0

< ||Rr|| Tr R (Dr (X)) BrDr(X)™)?

< T72|Rr|* (B} < 2||X )% log T + C.

Inequality [T2) is immediate sinc&Qr|* < Tr Q2.
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As regards[(113), by the Cauchy—Schwarz inequality,

(1]

(2]
(31

(4
(5]

(6]

(7]

(8]
El

[10]
[11]

[12]

T—1 T—1 T—1 T—1
> lod )l o7 (M)l (M)] < ot (M) Y o (N)
t=0 t=0 =0 t=0

T-1 274 T-1 3/2

IN
]
2
=
L[]
2
>
I
]
2
>
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