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We consider linear spectral statistics built from the block-normalized correlation matrix

of a set of M mutually independent scalar time series. This matrix is composed of

M ×M blocks that contain the sample cross correlation between pairs of time series. In
particular, each block has size L×L and contains the sample cross-correlation measured

at L consecutive time lags between each pair of time series. Let N denote the total

number of consecutively observed windows that are used to estimate these correlation
matrices. We analyze the asymptotic regime where M,L,N → +∞ while ML/N →
c?, 0 < c? < ∞. We study the behavior of linear statistics of the eigenvalues of this

block correlation matrix under these asymptotic conditions and show that the empirical
eigenvalue distribution converges to a Marcenko-Pastur distribution. Our results are

potentially useful in order to address the problem of testing whether a large number of
time series are uncorrelated or not.
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block correlation matrices

1. Introduction

1.1. Problem addressed and motivation

We consider a set of M jointly stationary zero mean complex-valued scalar time

series, denoted as y1,n, . . . , yM,n, where n ∈ Z. We assume that the joint distribution
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of ((ym,n)n∈Z)m=1,...,M is the circularly symmetric complex Gaussian law1. In this

paper, we study the behaviour of linear statistics of the eigenvalues of a certain large

random matrix built from the available data when the M time series (ym)m=1,...,M

are uncorrelated (i.e. independent), assuming that both the number of available

samples and the number of series are large. Our results are potentially useful in

order to address the problem of testing whether a large number of time series are

uncorrelated or not.

In order to introduce the large random matrix models that we will address in

the following, we consider a column vector gathering L consecutive observations of

the mth time series starting at time n, namely

yLm,n = [ym,n, . . . , ym,n+L−1]
T

and from this build an ML-dimensional column vector

yLn =
[(

yL1,n
)T
, . . . ,

(
yLM,n

)T ]T
.

We will denote by RL the ML × ML covariance matrix of this random vector,

i.e. RL = E
[
yLn
(
yLn
)H]

where (·)H stands for transpose conjugate. This matrix

is sometimes referred to as the spatio-temporal covariance matrix. Clearly, the M

series (ym)m=1,...,M are uncorrelated, to be referred to as the hypothesis H0 in the

following, if and only if, for each integer L, matrix RL is block-diagonal, namely

RL = Bdiag (RL)

where, for an ML ×ML matrix A, Bdiag (A) is the block-diagonal matrix of the

same dimension whose L×L blocks are those of A. We notice that the L×L diagonal

blocks of Bdiag (RL) are the L×L Toeplitz matrices Rm,L, m = 1, . . . ,M , defined

by

{Rm,L}k,k′ = rm (k − k′) . (1.1)

Here, rm (k), k ∈ Z, is the covariance sequence of the mth time series, defined as

rm (k) =

∫ 1

0

Sm (ν) e2πiνkdν (1.2)

where, for each m, Sm represents the spectral density of (ym,n)n∈Z. We will denote

by Rcorr,L the block correlation matrix defined by

Rcorr,L = B−1/2
L RLB−1/2

L (1.3)

where

BL = Bdiag(RL).

1Any finite linear combination z =
∑M

m=1

∑J
j=1 αjym,nj of the random variables

((ym,n)n∈Z)m=1,...,M is distributed according to the distribution NC(0, δ2), i.e. Rez and Imz
are independent and N (0, δ2/2) distributed, where δ2 > 0 is the corresponding variance
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Consequently, RL is block diagonal for each L if and only if Rcorr,L = IML for each

L.

A possible way to test whether the time series (ym)m=1,...,M are uncorrelated

thus consists in estimating Rcorr,L for a suitable value of L, and subsequently com-

paring the corresponding estimate with IML. We will assume from now on that,

for each m = 1, . . . ,M , the observations ym,1, . . . , ym,N+L−1 are available where N

represents the number of observations that are averaged to build the test statistic

for each time lag. In the following, we consider the standard sample estimate R̂corr,L

defined by

R̂corr,L = B̂−1/2
L R̂LB̂−1/2

L (1.4)

where R̂L is the empirical spatio-temporal covariance matrix given by

R̂L =
1

N

N∑
n=1

yLn
(
yLn
)H

(1.5)

and where B̂L is the corresponding block diagonal

B̂L = Bdiag(R̂L) =

 R̂1,L

. . .

R̂M,L

 . (1.6)

with R̂m,L, m = 1, . . . ,M , denoting the corresponding L×L diagonal blocks. The

expression (1.5) of R̂L explains why we assume that N+L−1 samples are available,

because if the sample size had been defined as N , R̂L should have been defined

by R̂L = 1
N−L

∑N−L
n=1 yLn

(
yLn
)H

, which would have complicated the notations. In

any case, in the asymptotic regime considered in the paper, the ratio L
N converges

towards 0. Therefore, the actual sample size N+L−1 can be written as N(1+o(1)).

Changing N with N+L−1 does therefore not modify the significance of the results

of this paper.

Remark 1.1. A relevant question here is how to choose the lag parameter L.

On the one hand, L should be sufficiently large, because this allows to identify

correlations among samples in different time series that are well spaced in time. For

instance, two time series chosen as copies of the same temporally white noise with a

relative delay higher than L lags will be perceived as uncorrelated by examination

of R̂corr,L, which is of course far from true. On the other hand, L should be chosen

sufficiently low so that ML/N � 1 in order to make the estimation error ‖R̂corr,L−
IML‖ reasonably low under the hypothesis H0. If the number M of time series

is large and that the number of observations N is not unlimited, the condition

ML/N � 1 requires the selection of a small value for L. Such a choice may thus

reduce drastically the efficiency of the uncorrelation tests based on ‖R̂corr,L−IML‖.
Finding statistics having a well defined behaviour under H0 when ML and N are
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of the same order of magnitude would allow to consider larger values of L, thus

improving the performance of the corresponding tests.

In this paper, we propose to study the behavior of spectral statistics built from

the eigenvalues of R̂corr,L, which will be denoted by (λ̂k,N )k=1,...,ML. More specifi-

cally, we will consider statistics of the form2

φ̂N =
1

ML
Tr
[
φ
(
R̂corr,L

)]
=

1

ML

ML∑
k=1

φ
(
λ̂k,N

)
(1.7)

where φ is assumed to be a suitable function, and will study the behaviour of φ̂N
under H0 in asymptotic regimes where M,N,L converge towards +∞ in such a way

that cN = ML
N converges towards a non zero constant c∗ ∈ (0,+∞).

The main result of this paper establishes the asymptotic conditions under which

φ̂N converges almost surely towards the integral of φ with respect to the Marcenko-

Pastur distribution. In order to analyze the asymptotic behavior of the above class

of statistics, we use large random matrix methods that relate the quantity φ̂N with

the empirical eigenvalue distribution of R̂corr,L, denoted as

dµ̂N (λ) =
1

ML

ML∑
k=1

δλ−λ̂k,N , (1.8)

that is

φ̂N =

∫
φ (λ) dµ̂N (λ).

We will establish the behavior of φ̂N by studying the empirical eigenvalue distribu-

tion dµ̂N (λ).

Definition 1. Let µmp,d denote the Marcenko-Pastur distribution of parameter

d. We recall that for each d > 0, µmp,d is the limit of the empirical eigenvalue

distribution of a large random matrix 1
KXXH where X is a J ×K random matrix

with zero mean unit variance i.i.d. entries and where both J andK converge towards

+∞ in such a way that J
K → d.

We will prove that, under certain asymptotic assumptions, the statistic φ̂N
can be described (up to some error terms) as the integral of φ(λ) with respect to

Marchenko-Pastur distribution of parameter cN , in the sense that

φ̂N −
∫
R+

φ(λ) dµmp,cN (λ)→ 0 (1.9)

2The application of a function φ to a Hermitian matrix should be understood as directly applied
to its eigenvalues.
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almost surely. We will also characterize the rate of convergence to zero of the corre-

sponding error term in (1.9). This result will establish the conditions under which

we can test whether the M time series y1, . . . , yM are uncorrelated by comparing

linear spectral statistics φ̂N with the corresponding limits under H0 as established

above.

1.2. On the literature

Testing whether M time series are uncorrelated is an important problem that has

been extensively addressed in the past. Apart from a few works devoted to the case

where the number of time series M converges towards +∞ (see below), the vast

majority of published papers assumed that M is a fixed integer. In this context, we

can first mention spectral domain approaches based on the observation that the M

time series (y1,n)n∈Z, . . . , (yM,n)n∈Z are uncorrelated if and only the spectral coher-

ence matrix of the M–variate time series (yn)n∈Z, where yn = (y1,n, . . . , yM,n)T , is

reduced to IM at each frequency. Some examples following this approach are [40],

[39], [9], [10]. A number of papers also proposed to develop lag domain approaches,

e.g. [17], [18], [8], [23] which considered test statistics based on empirical estimates

of the autocorrelation coefficients between the residuals of the various time series.

See also [11] for a more direct approach.

We next review the very few existing works devoted to the case where the num-

ber M of time series converges towards +∞. We are just aware of papers addressing

the case where the observations y1, . . . ,yN are independent identically distributed

(i.i.d.) and where the ratio M
N converges towards a constant d ∈ (0, 1). In particular,

in contrast with the asymptotic regime considered in the present work, these papers

assume that M and N are of the same order of magnitude. This is because, in this

context, the time series are mutually uncorrelated if and only the covariance ma-

trix E(ynyHn ) is diagonal. Therefore, it is reasonable to consider test statistics that

are functionals of the sample covariance matrix 1
N

∑N
n=1 ynyHn . In particular, when

the observations are i.i.d. Gaussian random vectors, the generalized likelihood ratio

test (GLRT) consists in comparing the test statistics log det(R̂corr) to a threshold,

where R̂corr = R̂corr,1 represents the sample correlation matrix. [19] proved that

under H0, the empirical eigenvalue distribution of R̂corr converges almost surely to-

wards the Marcenko-Pastur distribution µmp,d and therefore, that 1
MTr(φ(R̂corr))

converges towards
∫
φ(λ)dµmp,d(λ) for each bounded continuous function φ. In the

Gaussian case, [20] also established a central limit theorem (CLT) for log det(R̂corr)

under H0 using the moment method. [7] remarked that, in the Gaussian real case,

(det(R̂corr))
M/2 is the product of independent beta distributed random variables.

Therefore, log det(R̂corr) appears as the sum of independent random variables, thus

deducing the CLT. We finally mention [30] in which a CLT on linear statistics of the

eigenvalues of R̂corr is established in the Gaussian case using large random matrix
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techniques when the covariance matrix E(ynyHn ) is not necessarily diagonal. This

allows to study the asymptotic performance of the GLRT under certain class of

alternatives.

Regarding the asymptotic behaviour of the empirical eigenvalue distribution of

the complete matrix R̂L, it seems relevant to highlight the work in [26] and [27],

which also addressed in the asymptotic regime considered in the present paper. More

specifically, [26] assumed that the M mutually independent time series y1, . . . , yM
are i.i.d. Gaussian and established that the empirical eigenvalue distribution of

R̂L converges towards the Marcenko Pastur distribution µmp,c∗ . Moreover, if L =

O(Nβ) with β < 2/3, it is established that almost surely, for N large enough, all

the eigenvalues of R̂L are located in a neighbourhood of the support of µmp,c∗ . In

[27], the mutually independent time series y1, . . . , yM are no longer assumed i.i.d.

and it is established that the empirical eigenvalue distribution has a deterministic

behaviour. The corresponding deterministic equivalent is characterized, and some

results on the corresponding speed of convergence are given. As it will appear below,

the present paper uses extensively in Sections 4 and 5 the tools developed in [27].

We also mention [29], which developed large random matrix methods in order

to test the hypothesis H0. However, the approach used in [29] is based on the study

of the asymptotic behaviour of the empirical eigenvalue distribution of a frequency

smoothed estimator of the spectral coherence matrix. While the techniques devel-

oped in [29] appear in general completely different from the technical content of the

present paper, we mention that our Section 3 was inspired by Section 4.1 in [29],

even though the technical problem solved in section 3 appears harder to solve than

that in [29, Section 4.1].

We finally point out that a number of previous works addressed the behaviour

of the estimated auto-covariance matrix R̂x(τ) = 1
N

∑N−τ
n=1 xn+τx

H
n of a M dimen-

sional time series x = (xn)n∈Z at a given lag τ in the asymptotic regime where
M
N → d with d > 0. We can mention [21], [24], [25], [4], [32], which, under vari-

ous assumptions on x, study the behaviour of the empirical eigenvalue distribution

of R̂x(τ) + R̂H
x (τ), R̂x(τ)R̂H

x (τ), symmetric polynomials of (R̂x(τ), R̂H
x (τ)), or of

R̂x(τ). We also mention the work in [28], where the asymptotic behaviour of the

singular values distribution of the estimated auto-covariance matrix between finite

dimensional past and future of x (which, up to the end effects, depend on matrices

(R̂x(τ))τ=1,...,K for a fixed integer K) is studied when M
N → d with d > 0. These

contributions are not directly related to the present paper in that they study the

properties of R̂x(τ) for a single value of τ (or for a finite number of values of τ in

[28]) when M and N are of the same order of magnitude, while our random matrix

model depends, up to a block Toeplitzification of matrix R̂L, on (R̂y(τ))τ=0...,L,

where, this time, M,N,L converge towards +∞ in such a way that ML
N → c?.
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1.3. Assumptions

Assumption 1. The complex scalar time series ym, m ≥ 1, are mutually inde-

pendent, stationary, zero mean and circularly symmetric Gaussian distributed with

autocovariance sequence rm = (rm(k))k∈N defined as rm(k) = E[ym,n+ky
∗
m,n] and

associated spectral densities (Sm(ν))m≥1.

Assumption 2. All along the paper, we assume that M → +∞, N → +∞ in such

a way that cN = ML
N → c?, where 0 < c? < +∞, and that L = L(N) = O(Nβ) for

some constant β ∈ (0, 1). In order to shorten the notations, N → +∞ should be

understood as the above asymptotic regime.

We will need that the spectral densities are bounded above and below uniformly

in M , namely

Assumption 3. The spectral densities are such that

sup
m≥1

max
ν∈[0,1]

Sm(ν) = smax < +∞ (1.10)

inf
m≥1

min
ν∈[0,1]

Sm(ν) = smin > 0. (1.11)

Note that, for each m = 1, . . . ,M , the matrix Rm,L can be seen as an L ×
L diagonal block of an infinite Toeplitz matrix with symbol Sm(ν). Therefore,

Assumption 3 directly implies that, for each N , these matrices verify sminIL ≤
Rm,L ≤ smaxIL. This property will be used a number of times throughout the text.

Let us denote by rM the M -dimensional sequence of covariances, namely

rM (k) = [r1(k), . . . , rM (k)]
T

(1.12)

where rm(k), m = 1, . . . ,M are defined in (1.2). We can consider the sequence of

Euclidean norms {‖rM (k)‖}k∈Z. At some points, we will need the corresponding

series to be of order O(
√
M).

Assumption 4. The multivariate covariance sequence rM defined in (1.12) is such

that

sup
M≥1

1√
M

∑
k∈Z
‖rM (k)‖ < +∞.

On the other hand, we will also need to impose a certain rate of decayment of

supm≥1

∑
|k|≥n+1 |rm(k)| when n→ +∞. To that effect, we introduce the weighting

sequence (ω(n))n∈Z defined as

ω(n) = (1 + |n|)γ
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where γ ≥ 0 is given. This sequence belongs to the class of strong Beurling

weights (see [37], Chapter 5), which are functions ω on Z with the properties:

(i) ω(n) ≥ 1, (ii) ω(n) = ω(−n), (iii) ω(m + n) ≤ ω(m)ω(n) for all m,n ∈ Z and

(iv) n−1 logω(n) → 0 as n → ∞. We define `ω as the Banach space of two sided

sequences a = (a(n))n∈Z such that

‖a‖ω =

∞∑
n=−∞

ω(n) |a(n)| =
∞∑

n=−∞
(1 + |n|)γ |a(n)| < +∞.

When γ = 0, ω(n) = 1 for each n, and `ω coincides with the Wiener algebra

`1 = {a = (a(n))n∈Z , ‖a‖1 < +∞}. For each γ ≥ 0, it holds that ‖a‖1 ≤ ‖a‖ω,

and that `ω is included in `1. The function
∑
n∈Z a(n)e2iπnν is thus well defined

and continuous on [0, 1], and we will identify the sequence a to the above function.

In particular, with a certain abuse of notation,
∑
n∈Z a(n)e2iπnν will be denoted

by a(e2iπν) in the following. We can of course define the convolution product of

sequences in `ω, namely

(a1 ∗ a2) (n) =
∑
m∈Z

a1(m)a2(n−m)

which has the property that ‖a1 ∗ a2‖ω ≤ ‖a1‖ω ‖a2‖ω, and therefore a1 ∗ a2 ∈ `ω .

Under the convolution product, we can see `ω as an algebra (the Beurling algebra)

associated with the weight ω.

Assumption 5. For some γ0 > 0, the covariance sequence rm defined in (1.2)

belongs to `ω0
for each m, where ω0(n) = (1 + |n|)γ0 . Moreover, it is assumed that

sup
m≥1
‖rm‖ω0

<∞. (1.13)

Note that the fact that rm ∈ `ω0
implies that, for each 0 ≤ γ < γ0, we have

rm ∈ `ω, where ω(n) = (1 + |n|)γ . Moreover, (1.13) allows to control uniformly

w.r.t. m of the remainder
∑
|k|≥n+1 |rm(k)|. Indeed, observe that we can write

‖rm‖ω0
≥

∑
|k|≥n+1

(1 + |k|)γ0 |rm(k)| ≥ nγ0
∑

|k|≥n+1

|rm(k)|.

Therefore, (1.13) implies that

sup
m≥1

∑
|k|≥n+1

|rm(k)| ≤ κ

nγ0
(1.14)

for some constant κ.

In order to provide some insights on the significance of Assumptions 4 and

5, we provide examples and counterexamples. If there exists γ > γ0 for which

supm |rm(n)| ≤ κ
n1+γ for each n large enough and supm |rm(0)| < +∞, then, As-

sumptions 4 and 5 hold. If one of the time series is such that
∑
n |rm(n)| = +∞,
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then neither Assumption 4 nor Assumption 5 hold true (we recall (see [27]) that

Assumption 4 implies that for each m,
∑
n∈Z |rm(n)| < +∞)) . Finally, if one

of the time series (say y1) verifies |r1(n)| ∼n→+∞
κ

n(logn)1+δ
for δ > 0 while∑

m≥2 |rm(n)| ≤ κ
n1+γ for γ > γ0, then Assumption 4 holds, but Assumption 5

does not hold.

1.4. Main Result

The main objective of this paper is to establish the asymptotic conditions that

guarantee that we can approximate the original statistic in φ̂N by the corresponding

integral with respect to the Marchenko-Pastur distribution as in (1.9). To that

effect, we will introduce two intermediate quantities that will provide some refined

approximations of the original statistic φ̂N .

In order to introduce the first intermediate quantity, we need to consider the

matrix

Rcorr,L = B−1/2
L R̂L B−1/2

L . (1.15)

Note that Rcorr,L is matrix defined in the same way as R̂corr,L by replacing the

estimated block-diagonal autocorrelation matrix B̂L = Bdiag(R̂L) by its true value

BL = Bdiag(RL), which in fact coincides with RL (we are assuming independent

sequences). We define φN as the modified linear statistic

φN =
1

ML

ML∑
k=1

φ(λk,N ) =

∫
R+

φ(λ)dµN (λ) (1.16)

where (λk,N )k=1,...,ML are the eigenvalues of matrix Rcorr,L and where µN (λ) is

the associated empirical eigenvalue distribution.

In order to introduce the second intermediate quantity, we recall that, given an

integer K, a K×K matrix-valued positive measure µ is a σ–additive function from

the Borel sets of R onto the set of all positive definite K×K matrices (see e.g. [36,

Chapter 1] for more details).

Definition 2. We denote by SML(R+) the set of all ML × ML matrix valued

functions defined on C \ R+ by

SML(R+) =

{∫
R+

1

λ− z
dµ(λ)

}
where µ is a positive ML ×ML matrix-valued measure carried by R+ satisfying

µ(R+) = IML.

We will next introduce a deterministic scalar measure µN (λ) that will allow us

to describe the asymptotic behavior of the modified statistic φN . To that effect, we
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need to introduce some operators that were originally used in [27], which inherently

depend on the covariance sequences (rm)m≥1. In order to introduce these operators,

for ν ∈ [0, 1] and R ∈ N, we define the column vector

dR(ν) =
(

1, e2iπν , . . . , e2iπ(R−1)ν
)T

(1.17)

and let aR(ν) denote the corresponding normalized vector

aR(ν) =
1√
R

dR(ν). (1.18)

With these two definitions, we are now able to introduce the Toeplitzation operators

used to define the above deterministic measure µN (λ).

Definition 3. For a given squared matrix M with dimensions R × R, we define

Ψ
(m)
K (M), m = 1, . . . ,M , as the K ×K Toeplitz matrix given by

Ψ
(m)
K (M) =

∫ 1

0

Sm (ν) aHR (ν) MaR (ν) dK (ν) dHK (ν) dν.

The above operator is the key building block that defines Ψ and Ψ, which are

the ones that determine the master equations that define µN (λ).

Definition 4. Consider an N ×N matrix M. We define Ψ (M) as an ML×ML

block diagonal matrix with mth diagonal block given by Ψ
(m)
L (M). Finally, consider

an ML×ML matrix M, and let Mm,m denote its mth L× L diagonal block. We

define Ψ (M) as the N ×N matrix given by

Ψ (M) =
1

M

M∑
m=1

Ψ
(m)
N (Mm,m) . (1.19)

Having now introduced the above operators, we are now ready to present the

master equations that define the deterministic measure µN (λ). Consider a z ∈ C+

and the following pair of equations in TN (z), T̃N (z):

TN (z) = −1

z

(
IML + B−1/2

L Ψ
(
T̃T
N (z)

)
B−1/2
L

)−1

(1.20)

T̃N (z) = −1

z

(
IN + cNΨ

T
(
B−1/2
L TN (z)B−1/2

L

))−1

. (1.21)

We will see that there exists a unique pair of solutions (TN (z), T̃N (z)) to the above

equations in the set SML(R+)×SN (R+). We will denote as µN (λ) the matrix valued

measure with Stieltjes transform T(z) and µN the probability measure

µN (λ) =
1

ML
Tr(µN (λ)). (1.22)

With this, we have now all the ingredients to present the main result of this paper.
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Theorem 1.1. Let Assumptions 1-5 hold true. Then, µ̂N (λ) converges weakly al-

most surely to µmp,c?(λ). Furthermore:

(i) Consider φ̂N and φN defined in (1.7) and (1.16) respectively and assume

that φ is well defined and smooth on a open subset containing [0,+∞) to be defined

in section 3. For every small enough ε > 0, there exists a γ > 0 independent of N

such that

P
(∣∣∣φ̂N − φN ∣∣∣ > N ε max

(
1

M
,

1

Lγ0

))
< exp(−Nγ) (1.23)

for all N sufficiently large.

(ii) Let β < 4/5 and assume that φ is a smooth function with compact support.

Then, for every small ε > 0 there exists a γ > 0 independent of N such that

P
(∣∣∣∣φN − ∫

R+

φ(λ)dµN (λ)

∣∣∣∣ > N ε max

(
1

M
√
L
,

1

M2

))
< exp(−Nγ) (1.24)

for all N sufficiently large.

(iii) Consider the Marchenko-Pastur distribution with parameter cN = ML
N as

given in Definition 1. Then, for every γ < γ0, γ 6= 1 and every compactly supported

smooth function φ, we have∣∣∣∣∫
R+

φ(λ)dµN (λ)−
∫
R+

φ(λ)dµmp,cN (λ)

∣∣∣∣ < κ
1

L2 min(γ,1)
(1.25)

for some universal constant κ > 0.

The above theorem basically establishes three levels of approximation of the

original linear spectral statistic φ̂N and provides the speed of convergence to zero

of the corresponding error terms. In particular, it is interesting to observe that the

error term in (1.25) becomes the dominant one as soon as β < 1/3 if γ0 > 1. Note

that the situation where β is small (or, equivalently, L� M) is the most relevant

asymptotic scenario. Otherwise, the ratio M/N converges quickly towards 0, which,

in practice represents situations in which M � N . Therefore, it may be possible

to choose a reasonably large value of L such that ML
N � 1. In this context, the

simpler asymptotic regime where M,N,L converge towards +∞ in such a way that
ML
N → 0 may be relevant.

As a consequence of all the above, we observe that when β < 1/3 and γ0 >

1, the dominant error incurred by approximating the linear spectra statistic φ̂N
as an integral with respect to the Marchenko-Pastur law is in fact an unknown

deterministic term as established in (1.25).
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1.5. Outline of the proof of Theorem 1.1

In this section, we provide some detail on the strategy that is followed in the proof

of Theorem 1.1. In order to present the main steps, we first review the concept of

stochastic domination introduced in [12] and slightly adapted in [29]. We summarize

next the formulation in [29]. This definition will allow to denote the convergence

of (1.23) and (1.24) in a more compact and convenient way. More details can be

found in [29].

Definition 5 (Stochastic Domination). Consider two families of non-negative

random variables, namely X = {X(N)(u), N ∈ N, u ∈ U (N)} and Y = {Y (N)(u),

N ∈ N, u ∈ U (N)}, where U (N) is a set that may depend on N . We say that X is

stochastically dominated by Y and write X ≺ Y if, for all small ε > 0, there exists

some γ > 0 depending on ε such that

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ exp−Nγ

for each large enough N > N0(ε).

On the other hand, we will say that a family of events Ω = Ω(N)(u) holds with

exponentially high (resp. small) probability if there exist N0 and γ > 0 such that,

for any N ≥ N0, P(Ω(N)(u)) > 1 − exp(−Nγ) (resp. P(Ω(N)(u)) < exp(−Nγ)) for

each u ∈ U (N).

It can be seen that ≺ satisfies the usual arithmetic properties of order relations.

In particular, given four families of non-negative random variables X1, X2, Y1, Y2

such that X1 ≺ Y1 and X2 ≺ Y2, then X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2 (see

Lemma 2.1 in [29]).

The proof of Theorem 1.1 is developed in Sections 2 to 5. The main steps are

outlined in what follows.

(i) Before we begin with the proper technical content of the paper, we close the present

section with some useful properties and technical results that will become useful

in the rest of the paper.

(ii) Section 2 provides some preliminary results on the asymptotic behavior of the sam-

ple estimate of the spatio-temporal covariance matrix R̂L and its L × L diagonal

blocks. The objective is to show that the eigenvalue behavior of R̂corr,L can be stud-

ied by examining the eigenvalue behavior of the matrix Rcorr,L. More specifically,

we will first prove that ‖R̂L‖ is bounded with an exponentially large probability (re-

call that ‖·‖ denotes spectral norm) and that ‖R̂m,L−Rm,L‖ ≺ max(M−1/2, L−γ0)

for each m = 1, . . . ,M , where we recall that R̂m,L and Rm,L denote the mth diag-

onal block of R̂L and RL respectively (see (1.1) and (1.6)). This will immediately
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imply that

‖R̂corr,L −Rcorr,L‖ ≺ max

(
1√
M
,

1

Lγ0

)
. (1.26)

(iii) Section 3 is devoted to the proof of (1.23), which basically quantifies the influence

of replacing R̂corr,L with Rcorr,L in the corresponding linear spectral statistics.

More specifically, by exploiting the Helffer-Sjöstrand formula in combination with

the preliminary results in Section 2, Theorem 3.1 establishes that∣∣∣φ̂N − φN ∣∣∣ ≺ max

(
1

M
,

1

Lγ0

)
(1.27)

Notice that (1.23) implies that∣∣∣φ̂N − φN ∣∣∣ ≺ max

(
1√
M
,

1

Lγ0

)
Therefore, (1.27) appears as a stronger result. As shown in Section 3, its proof is

demanding.

(iv) Section 4 studies the error term φN −
∫
φ(λ)dµN (λ). First, this section shows

that, for any smooth function φ with domain containing [0,+∞) the study of the

modified statistic φN can be reduced to the study of the corresponding expectation,

EφN . More specifically, we establish that∣∣φN − EφN
∣∣ ≺ 1

M
√
L
.

The remaining error term EφN −
∫
φ(λ)dµN (λ) will be characterized by adapting

the tools developed in [27], which was devoted to the study of the empirical eigen-

value distribution of matrix R̂L. The main difference between the matrix model

considered here and the one in [27] is the fact that here the matrix R̂L is multi-

plied on both sides by the block diagonal deterministic matrix B−1/2
L , see further

(1.15). This multiplication on both sides introduces some modifications in the mas-

ter equation that defines TN (z), which is obviously different from the one in [27].

Other than that, the strategy of the proof will follow [27] almost verbatim, and

will mostly be omitted. First, we will establish the almost sure weak convergence

of µ̄N − µN towards zero (cf. Proposition 4.3). Then, by additionally imposing

β < 4/5 in Assumption 2 and assuming that φ is compactly supported, we will be

able to conclude that ∣∣∣∣EφN − ∫ φ(λ)dµN (λ)

∣∣∣∣ ≤ κ 1

M2
(1.28)

for some universal constant κ > 0. This will directly imply (1.24).

(v) Section 5 finally shows that the deterministic sequence of probability measures

(µN )N≥1 can be approximated by µmp,cN in the sense of (1.25) for compactly
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supported smooth functions φ. A central step in the proof will be to establish that

sup
m

sup
ν∈[0,1]

∣∣∣Sm(ν)aL(ν)HR−1
m,LaL(ν)− 1

∣∣∣ = O
(

1

Lmin(1,γ)

)
, γ < γ0, γ 6= 1

=
logL

L
, γ = 1 < γ0

(see further Lemma 5.1). This result, proved in Appendix D, is obtained by noting

that aL(ν)HR−1
m,LaL(ν) can be expressed in terms of the orthogonal Szegö polyno-

mials associated to the measure Sm(ν)dν, and by adapting to our context certain

asymptotic related results presented in [37, Chapter 5].

(vi) Section 6 concludes the paper with a numerical validation that confirms the con-

verge rates as established in Theorem 1.1.

The main tool in order to study the linear spectral statistics of the estimated

block correlation matrix R̂corr,L will be the Stieltjes transform of its empirical

eigenvalue distribution defined by (1.8). More specifically, we will denote by q̂N (z)

the Stieltjes transform of dµ̂N (λ), that is

q̂N (z) =

∫
R+

1

λ− z
dµ̂N (λ) =

1

ML

ML∑
k=1

1

λ̂k,N − z

which is well defined for z ∈ C+. This function can also be written as q̂N (z) =
1
MLTrQ̂N (z) where Q̂N (z) is the resolvent of matrix R̂corr,L, namely

Q̂N (z) =
(
R̂corr,L − zIML

)−1

. (1.29)

Likewise, for z ∈ C+, we will respectively denote by QN (z) the resolvent of Rcorr,L

and by qN (z) the Stieltjes transform associated to its empirical eigenvalue distri-

bution dµN (λ), namely

QN (z) =
(
Rcorr,L − zIML

)−1
(1.30)

and

qN (z) =

∫
R+

1

λ− z
dµN (λ) =

1

ML
TrQN (z).

1.6. Notations

The set C+ is composed of the complex numbers with strictly positive imaginary

parts. The conjugate of a complex number z is denoted z∗. The conjugate transpose

of a matrix A is denoted AH while the conjugate of A (i.e. the matrix whose entries

are the conjugates of the entries of A) is denoted A∗. ‖A‖ and ‖A‖F represent

the spectral norm and the Frobenius norm of matrix A, respectively. For a square

matrix A, we write A > 0 (resp. A ≥ 0) to state that A is positive definite (resp.
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positive semi-definite). If A and B are two square matrices, A < B (resp. A ≤ B)

should be read as B−A > 0 (resp. B−A ≥ 0). Also, for two general matrices A

and B, A⊗B represents the Kronecker product of A and B, i.e. the block matrix

whose block (i, j) is Ai,j B. If A is a square matrix, Im(A) and Re(A) represent

the Hermitian matrices

Im(A) =
A−AH

2i
, Re(A) =

A + AH

2
.

If (AN )N≥1 (resp. (bN )N≥1) is a sequence of matrices (resp. vectors) whose dimen-

sions increase with N , (AN )N≥1 (resp. (bN )N≥1) is said to be uniformly bounded

if supN≥1 ‖AN‖ < +∞ (resp. supN≥1 ‖bN‖ < +∞).

We will let JK denote the K × K shift matrix with ones in the first upper

diagonal and zeros elsewhere, namely {JK}i,j = δj−i=1. We will denote by J−1
K

its transpose in order to simplify the notation. Likewise, J0
K = IK will denote the

K ×K identity matrix.

If x is a complex-valued random variable, its expectation is denoted by E (x)

and its variance as

Var(x) = E(|x|2)− |E(x)|2 .

The zero-mean random variable x− E(x) is denoted x◦.

In some parts of the paper, we will need to bound quantities by constants that

do not depend on the system dimensions nor on the complex variable z. These will

be referred to as “nice constants”.

Definition 6 (Nice constants and nice polynomials). A nice constant is a

positive constant independent of the dimensions L,M,N and the complex variable

z. A nice polynomial is a polynomial whose degree is independent from L,M,N ,

and whose coefficients are nice constants. Throughout the paper, κ and P1, P2 will

represent a generic nice constant and two generic nice polynomials respectively,

whose values may change from one line to another. Finally, C(z) will denote a

general term of the form C(z) = P1(|z|)P2(1/Imz).

1.7. Background on Stieltjes transforms of positive matrix valued

measures

We recall that SK(R+) denotes the set of all Stieltjes transforms of K×K positive

matrix-valued measures µ carried by R+ verifying µ(R+) = IK . The elements of

the class SK(R+) satisfy the following properties:

Proposition 1.1. Consider an element S(z) =
∫
R+

dµ(λ)
λ−z of SK(R+). Then, the

following properties hold true:
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(i) S is analytic on C+.

(ii) Im(S(z)) ≥ 0 and Im(z S(z)) ≥ 0 if z ∈ C+.

(iii) limy→+∞−iyS(iy) = IK .

(iv) S(z)SH(z) ≤ IK
(Imz)2 for each z ∈ C+.

(v)
∫
R+ λ dµ(λ) = limy→+∞Re (−iy(IK + iyS(iy)).

Conversely, if a function S(z) satisfy properties (i), (ii), (iii), then S(z) ∈ SK(R+).

While we have not been able to find a paper in which this result is proved,

it has been well known for a long time (see however [15] for more details on (i),

(ii), (iii), (v)), as well as Theorem 3 of [1] from which (iv) follows immediately).

We however provide an elementary proof of (iv) because it is based on a version

of the matrix Schwarz inequality that will be used later. Given a certain K × K
positive matrix measure µ carried by R+, we denote by L2(µ) the Hilbert space

of all K-dimensional row vector-valued functions u(λ) defined on R+ satisfying∫
R+ u(λ) dµ(λ) uH(λ) < +∞ endowed with the scalar product

〈u,v〉 =

∫
R+

u(λ) dµ(λ) vH(λ).

Then, if U(λ) = (u1(λ)T , . . . ,uKu(λ))T )T and V(λ) = (v1(λ)T , . . . ,vKv (λ))T )T

are matrices with Ku and Kv rows respectively, all of which are elements of L2(µ),

it holds that

〈U,V〉 〈V,V〉−1 〈U,V〉H ≤ 〈U,U〉 (1.31)

where, with some abuse of notation, 〈U,V〉 denotes the matrix defined by

(〈U,V〉)i,j = 〈ui,vj〉. This inequality can be directly proven by considering the

(Ku +Kv)×K matrix W = [UT ,VT ]T and noting that 〈W,W〉 is positive semi-

definite. This implies that its Schur complement is also positive semi-definite, which

directly implies (1.31). Now, using (1.31) for U(λ) = I
λ−z and V = I, and remarking

that |λ− z|2 ≥ (Imz)2 for each λ ∈ R+, we immediately obtain (iv).

1.8. Further properties of stochastic domination and

concentration inequalities

The following result is a direct consequence of the union bound.

Lemma 1.1. Let X1, . . . , XP denote a collection of P ∈ N families of non-negative

random variables, each one defined as Xp = {X(N)
p (u), N ∈ N, u ∈ U (N)}. Let Y

denote an equivalently defined family of non-negative random variables such that

Xp ≺ Y for each p = 1, . . . , P . Assuming that P ≤ NC for some universal constant

C, we have

max
p=1,...,P

Xp ≺ Y.
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On the other hand, we will be using a number of inequalities based on concentra-

tion of functions of random Gaussian vectors. More specifically, consider the real-

valued function f(x,x∗) where x is a complex N -dimensional variable and where

(·)∗ denotes complex conjugate. If x ∼ NC(0, IN ), f(x,x∗) can be interpreted as a

function of the 2N–dimensional N (0, I2N ) vector
(√

2Re(xT ),
√

2Im(xT )
)T

. If f is

1-Lipschitz, there exists a universal constant C > 0 such that

P [|f(x,x∗)− Ef(x,x∗)| > t] ≤ C exp−Ct2. (1.32)

This concentration inequality is well known if f is a function of a N (0, IN ) real-

valued vector x ([38, Theorem 2.1.12]). We notice that (1.32) implies that |f(x,x∗)−
Ef(x,x∗)| ≺ 1 (see [29] for more details).

Finally, we will also make extensive use of the Hanson-Wright inequality, proven

in [34] for the subgaussian real-valued case, but easily extended to the complex

Gaussian context. If A denotes an N × N matrix of complex entries and if x ∼
NC(0, IN ), then

P
[
|xHAx− ExHAx| > t

]
≤ 2 exp

[
−C min

(
t2

‖A‖2F
,

t

‖A‖

)]
(1.33)

where here again C > 0 is a universal constant and where ‖·‖F and ‖·‖ respectively

denote Frobenius and spectral norms.

1.9. Additional properties of the Toeplitzification operators

We introduce here some additional properties of the Toeplitzification operators

introduced in Definitions 3-4, which will prove useful in the course of the derivations.

For a given squared matrix M with dimensions R × R, the operator Ψ
(m)
K (M) in

Definition 3 can alternatively be represented as an K × K Toeplitz matrix with

(i, j)th entry equal to{
Ψ

(m)
K (M)

}
i,j

=

R−1∑
l=−R+1

rm (i− j − l) τ (M) (l) (1.34)

or, alternatively, as the matrix

Ψ
(m)
K (M) =

K−1∑
n=−K+1

(
R−1∑

l=−R+1

rm (n− l) τ (M) (l)

)
J−nK (1.35)

where the sequence τ (M) (l), −R < l < R, is defined as

τ (M) (l) =
1

R
Tr
[
MJlR

]
. (1.36)

We observe that, with this definition,

R−1∑
r=−(R−1)

|τ(M)(r)|2 ≤ 1

R
Tr(MMH). (1.37)
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This inequality can be proven by noting that τ(M)(r), r = −R + 1, . . . , R − 1 are

the Fourier coefficients of the function ν 7→ aHR (ν)MaR(ν) so that, by Parseval’s

identity,

R−1∑
r=−(R−1)

|τ(M)(r)|2 =

∫ 1

0

∣∣aHR (ν)MaR(ν)
∣∣2 dν ≤

≤
∫ 1

0

aHR (ν)MMHaR(ν)dν =
1

R
Tr(MMH)

where we have used the Cauchy-Schwarz inequality.

We also mention the following property: If A is a R × R Toeplitz matrix with

entries Ai,j = a(i− j) for some sequence (a(l))l=−(R−1),...,R−1, and if B is another

R×R matrix, we have

1

R
Tr(AB) =

R−1∑
l=−(R−1)

a(l)τ(B)(−l) (1.38)

The following properties are easily checked (see [27]).

– Given a square matrix A of dimension K×K and a square matrix B of dimension

R×R, we can write

1

K
Tr
[
AΨ

(m)
K (B)

]
=

1

R
Tr
[
Ψ

(m)
R (A) B

]
(1.39)

– Given a square matrix M and a positive integer K, we have∥∥∥Ψ
(m)
K (M)

∥∥∥ ≤ sup
ν∈[0,1]

|Sm (ν)| ‖M‖ .

– Given a square positive definite matrix M and a positive integer K, the hypothesis

infν Sm (ν) > 0 implies that

Ψ
(m)
K (M) > 0. (1.40)

Consider now the two other linear operators in Definition 4, which respectively

operate on N ×N and ML×ML matrices. If A and B are ML×ML and N ×N
matrices, we see directly from (1.39) that

1

N
Tr
[
Ψ (A) B

]
=

1

ML
Tr [AΨ (B)] . (1.41)

We finally conclude this section by two useful propositions that follow directly

from [27].

Proposition 1.2. Let Γm(z), m = 1, . . . ,M , be a collection of L×L matrix-valued

complex functions belonging to SL (R+) and define Γ(z) as the ML ×ML block
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diagonal matrix given by Γ(z) = diag
(
Γ1(z), . . . ,ΓM (z)

)
. Then, for each z ∈ C+,

the matrix IN + cNΨ
T
(
B−1/2
L Γ(z)B−1/2

L

)
is invertible, so that we can define

Υ̃(z) = −1

z

(
IN + cNΨ

T
(
B−1/2
L Γ(z)B−1/2

L

))−1

. (1.42)

On the other hand, the matrix IML+B−1/2
L Ψ

(
Υ̃T (z)

)
B−1/2
L is also invertible, and

we define

Υ(z) = −1

z

(
IML + B−1/2

L Ψ
(
Υ̃T (z)

)
B−1/2
L

)−1

. (1.43)

Furthermore, Υ̃(z) and Υ(z) are elements of SN (R+) and SML(R+) respectively.

In particular, they are holomorphic on C+ and satisfy

Υ(z)ΥH(z) ≤ IML

(Imz)2
, Υ̃(z)Υ̃H(z) ≤ IN

(Imz)2
. (1.44)

Moreover, there exist two nice constants η and η̃ such that

Υ(z)ΥH(z) ≥ (Imz)2

16(η2 + |z|2)2
IML (1.45)

Υ̃(z)Υ̃H(z) ≥ (Imz)2

16(η̃2 + |z|2)2
IN . (1.46)

Proof. The proof is an easy adaptation of the proof of Lemma 4.1 in [27]. More

precisely, if we replace in this Lemma matrix Bdiag(EQ(z)) by Γ(z) and matrices

(R(z), R̃(z)) by (Υ(z), Υ̃(z)), it is easy to check that the arguments of the proof

of Lemma 4.1 in [27] can be extended to the particular context considered in the

present paper.

In order to state the next result, we consider two ML ×ML block diagonal

matrices S,T and two N × N matrices S̃, T̃. We also assume that S,T, S̃, T̃ are

full rank matrices. For each fixed z, we define the linear operator Φ on the set of

all ML×ML matrices by

Φ (X) = z2cNSΨ
(
S̃TΨ (X) T̃T

)
T. (1.47)

Note that the operator Φ of course depends on S,T, S̃, T̃, M,L,N and z. We also

define the following linear operators on the set of all ML×ML Hermitian matrices:

ΦTH (X) = |z|2 cNTHΨ
(
T̃∗Ψ (X) T̃T

)
T (1.48)

ΦS (X) = |z|2 cNSΨ
(
S̃TΨ (X) S̃∗

)
SH . (1.49)

We remark that both operators are positive in the sense that if X ≥ 0, then

ΦS (X) ≥ 0 and ΦTH (X) ≥ 0. Let Φ(1) (X) = Φ (X) and recursively define

Φ(n+1) (X) = Φ
(
Φ(n) (X)

)
for n ≥ 1. Then, the following result holds.
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Proposition 1.3. For any two L-dimensional column vectors a, b and for each

m = 1, . . . ,M , the inequality∣∣∣∣aH (Φ(n) (X)
)
m,m

b

∣∣∣∣ ≤ [aH (Φ
(n)
S

(
XXH

))
m,m

a

]1/2 [
bH
(

Φ
(n)

TH
(IML)

)
m,m

b

]1/2

(1.50)

holds, where (A)m,m denotes the mth L×L diagonal block of A. Moreover, if there

exist two ML×ML positive definite matrices Y1 and Y2 such that

lim
n→+∞

Φ
(n)
S (Y1)→ 0 (1.51)

lim
n→+∞

Φ
(n)

TH
(Y2)→ 0 (1.52)

then, for each ML×ML matrix X,

lim
n→+∞

Φ(n) (X)→ 0 (1.53)

If, moreover,
∑+∞
n=0 Φ

(n)
S (Y1) < +∞ and

∑+∞
n=0 Φ

(n)

TH
(Y2) < +∞, then, for each

ML×ML hermitian matrix Y, the two series
∑+∞
n=0 Φ

(n)
S (Y) and

∑+∞
n=0 Φ

(n)

TH
(Y)

are convergent. Finally, for each ML×ML matrix X,
∑+∞
n=0 Φ(n) (X) is also con-

vergent, and we have∥∥∥∥∥
+∞∑
n=0

Φ(n) (X)

∥∥∥∥∥ ≤
∥∥∥∥∥

+∞∑
n=0

Φ
(n)
S

(
XXH

)∥∥∥∥∥
1/2 ∥∥∥∥∥

+∞∑
n=0

Φ
(n)

TH
(IML)

∥∥∥∥∥
1/2

(1.54)

as well as∥∥∥∥∥
+∞∑
n=0

Φ(n) (X)

∥∥∥∥∥ ≤ ‖X‖
∥∥∥∥∥

+∞∑
n=0

Φ
(n)
S (IML)

∥∥∥∥∥
1/2 ∥∥∥∥∥

+∞∑
n=0

Φ
(n)

TH
(IML)

∥∥∥∥∥
1/2

. (1.55)

Proof. Inequality (1.50) is established in Section 5 of [27]. We now prove (1.53).

For this, we first remark that since matrices (Yi)i=1,2 are positive definite, there

exist α1 > 0 and α2 > 0 such that Yi ≥ αiIML for i = 1, 2. As the op-

erators ΦS and ΦTH are positive, it holds that Φ
(n)
S (Y1) ≥ α1Φ

(n)
S (IML) and

Φ
(n)

TH
(Y2) > α2Φ

(n)

TH
(IML) for each n. Therefore, conditions (1.51) and (1.52) imply

that Φ
(n)
S (IML)→ 0 and Φ

(n)

TH
(IML)→ 0. If X is a generic ML×ML matrix, the

inequality XXH ≤ ‖X‖2IML implies that Φ
(n)
S (XXH) ≤ ‖X‖2Φ

(n)
S (IML). There-

fore, we deduce that for each matrix X, Φ
(n)
S (XXH) → 0 when n → +∞. The

inequality in (1.50) thus leads to (1.53). Using similar arguments, we check that

the convergence
∑+∞
n=0 Φ

(n)
S (Y1) and

∑+∞
n=0 Φ

(n)

TH
(Y2) implies the convergence of∑+∞

n=0 Φ
(n)
S (Y) and

∑+∞
n=0 Φ

(n)

TH
(Y) for each positive matrix Y. If Y is not posi-

tive, it is sufficient to remark that Y can be written as the difference of 2 positive

matrices to conclude to the convergence of the above two series. We finally consider
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a general matrix X, and establish that
∑+∞
n=0 Φ(n) (X) is convergent. For this, we

remark that (1.50) implies that for each m and each k, the inequality

k∑
n=0

∣∣∣∣aH (Φ(n) (X)
)
m,m

b

∣∣∣∣ ≤
≤

[
aH

(
k∑

n=0

(
Φ

(n)
S

(
XXH

))
m,m

)
a

]1/2 [
bH

(
k∑

n=0

(
Φ

(n)

TH
(IML)

)
m,m

)
b

]1/2

(1.56)

holds. This implies that

+∞∑
n=0

∣∣∣∣aH (Φ(n) (X)
)
m,m

b

∣∣∣∣ < +∞

and that the series
∑+∞
n=0 Φ(n) (X) is convergent. The result in (1.54) is obtained by

taking the limit in the inequality (1.56), while (1.55) is an immediate consequence

of (1.54).

2. Preliminary results on the empirical estimates R̂L and R̂m,L

Consider again the sample block correlation matrix, namely R̂corr,L =

B̂−1/2
L R̂LB̂−1/2

L , where we recall that B̂L = Bdiag(R̂L). In this section, we will

show that we can replace the block diagonal sample covariance matrix B̂L by the

true matrix BL = RL without altering the asymptotic behavior of the empirical

eigenvalue distribution of Rcorr,L = B−1/2
L R̂LB−1/2

L .

For this, we proceed in three steps. First, in Section 2.1, we prove that the

spectral norm of R̂L is bounded with exponentially high probability. Then, using

similar arguments, we show in Section 2.2 that ‖B̂L − BL‖ ≺ max(M−1/2, L−γ0).

Finally, in Section 2.3 we establish that ‖B̂−1/2
L − B−1/2

L ‖ ≺ max(M−1/2, L−γ0)

using Hermitian matrix perturbation results. The fact that ‖R̂L‖ is bounded with

exponentially high probability will immediately imply that∥∥∥R̂corr,L −Rcorr,L

∥∥∥ ≺ max

(
1√
M
,

1

Lγ0

)
. (2.1)

We will write the normalized observations as wn,N = 1√
N

yLn , where n = 1, . . . , N

and

WN = [w1,N , . . . ,wN,N ] . (2.2)

Therefore R̂L coincides with R̂L = WNWH
N . In the following, we will often drop the

index N , and will denote WN ,wj,N ,QN , . . . by W,wj ,Q, . . . in order to simplify

the notations.
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2.1. Control of the largest eigenvalue of R̂L

The approach we follow is based on the observation that it is possible to add

a bounded matrix to WNWH
N to produce a block Toeplitz matrix. Controlling

the largest eigenvalue of WNWH
N becomes therefore equivalent to controlling the

largest eigenvalue of the block Toeplitz matrix, a problem that can be solved by

studying the supremum over the frequency interval of the spectral norm of the

corresponding symbol.

2.1.1. Modifying WNWH
N into a block Toeplitz matrix

In order to present this result, it is more convenient to reorganize the rows of matrix

WN . For this, we define for each n the M dimensional random vector yn defined

by

yn =

 y1,n

...

yM,n

 . (2.3)

(yn)n∈Z is thus an M–dimensional stationary random sequence whose spectral den-

sity matrix S(ν) coincides with the diagonal matrix S(ν) = Diag(S1(ν), . . . ,SM (ν)).

We next consider the ML×N matrix WN , which is defined as

WN =
1√
N



y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yL yL+1 . . . yN+L−2 yN+L−1

 . (2.4)

Observe that WN can be obtained by simple permutation of the rows of WN and

consequently WNWH
N and WNWH

N have the same eigenvalues. In particular, they

have the same spectral norm. For this reason, we may focus on the behavior ofWN

from now on.

We define matrices WN,1 and WN,2 as the ML× (N −L+ 1) and ML× (L−1)

matrices such that WN = (WN,1,WN,2). In particular, matrix WN,2 is given by

WN,2 =
1√
N



yN−L+2 yN−L+3 . . . yN−1 yN
yN−L+3 yN−L+4 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yN+1 yN+2 . . . yN+L−2 yN+L−1

 . (2.5)
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We now express WN,2 as WN,2 =WN,2,1 +WN,2,2 where WN,2,1 is the upper block

triangular matrix given by

WN,2,1 =
1√
N



yN−L+2 yN−L+3 . . . yN−1 yN
yN−L+3 yN−L+4 . . . yN 0

yN−L+4 . . . yN 0 0
...

...
...

...
...

yN 0
...

... 0

0 0 . . . 0 0


(2.6)

and where WN,2,2 is the lower block triangular matrix defined by

WN,2,2 =
1√
N



0 0 . . . 0 0

0 0 . . . 0 yN+1

0
... 0 yN+1 yN+2

...
...

...
...

...

0 yN+1 . . . . . . yN+L−2

yN+1 yN+2 . . . yN+L−2 yN+L−1


. (2.7)

In other words, matrix WN,2,1 is obtained by replacing in WN,2 vectors

yN+1, . . . ,yN+L−1 by 0, . . . ,0 while WN,2,2 is obtained by replacing in WN,2 vec-

tors yN−L+2, . . . ,yN by 0, . . . ,0. We also define WN,0 as the ML× (L− 1) lower

block triangular matrix given by

WN,0 =
1√
N



0 0 . . . 0 0

0 0 . . . 0 y1

0
... 0 y1 y2

...
...

...
...

...

0 y1 . . . . . . yL−2

y1 y2 . . . yL−2 yL−1


. (2.8)

We finally introduce the ML× (N + L− 1) block Hankel matrix W̃N defined by

W̃N = (WN,0,WN,1,WN,2,1). (2.9)

It is easy to check that W̃NW̃H
N is the block Toeplitz matrix whose M ×M blocks(

(W̃NW̃H
N )k,l

)
k,l=1,...,L

are given by

(W̃NW̃H
N )k,l = R̂k−l

where the M ×M matrices (R̂l)l=−(L−1),...,L−1 are defined by

R̂l =
1

N

N−l∑
n=1

yn+ly
H
n
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for l ≥ 0 and R̂l = R̂H
−l for l ≤ 0. In other words, for each l, R̂l is the standard

empirical biased estimate of the autocovariance matrix at lag l of the multivariate

time series (yn)n∈Z.

Matrix W̃NW̃H
N also coincides with the block Toeplitz matrix associated to the

symbol Ŝ(ν) defined by

Ŝ(ν) =

L−1∑
l=−(L−1)

R̂le
−2iπlν (2.10)

so that we can write

W̃NW̃H
N =

∫ 1

0

dL(ν)dHL (ν)⊗ Ŝ(ν) dν. (2.11)

The M × M matrix Ŝ(ν) coincides with a lag window estimator of the spec-

tral density of (yn)n∈Z. Evaluating the spectral norm of W̃NW̃H
N is easier than

that of WNWH
N , because the spectral norm of W̃NW̃H

N is upper bounded by

supν∈[0,1] ‖Ŝ(ν)‖, a term that can be controlled using a discretization in the fre-

quency domain and the epsilon net argument in CM (see e.g. [38] for an introduction

to the concept of epsilon net). In the reminder of this section, we first prove that

‖WNWH
N−W̃NW̃H

N ‖ is bounded with exponentially high probability and then estab-

lish that supν∈[0,1] ‖Ŝ(ν)‖, and thus ‖W̃NW̃H
N ‖ is also bounded with exponentially

high probability.

We first state the following lemma, which will allow to reduce various suprema

on the interval [0, 1] to the corresponding suprema on a finite grid of the same

interval. This result is adapted from Zygmund [42], and was used in [41].

Lemma 2.1. Let h(ν) =
∑L−1
l=−(L−1) hle

−2iπlν an order L − 1 real valued trigono-

metric polynomial. Then, for each ν0 ∈ [0, 1], δ > 0, K ≥ 2(1+ δ)(L−1), we define

νk = ν0 + k/K for k = 0, . . . ,K. Then, it holds that

max
ν∈[0,1]

|h(ν)| ≤
(

1 +
1

δ

)
max

k=0,...,K
|h(νk)|. (2.12)

We now compare the spectral norms of WNWH
N and W̃NW̃H

N .

Proposition 2.1. Let α denote a large enough constant. Under Assumptions 1-3

and 5, it holds that

P
(
‖WNWH

N − W̃NW̃H
N ‖ > α

)
≤ κ1L exp (−κ2Mα). (2.13)

for two nice constants κ1 and κ2.
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Proof. We drop all the subindexes N from all the matrices for clarity of exposition.

Matrix WWH is equal to WWH = W1WH
1 + (W2,1 +W2,2)(W2,1 +W2,2)H while

W̃W̃H =W0WH
0 +W1WH

1 +W2,1WH
2,1. Therefore,

WWH − W̃W̃H =W2,2WH
2,2 +W2,2WH

2,1 +W2,1WH
2,2 −W0WH

0 .

In order to establish (2.13), we have to show that P(‖W2,iWH
2,j‖ > α), i, j = 1, 2,

and P(‖W0WH
0 ‖ > α) decrease at the same rate as the right hand side of (2.13). We

just establish this property for matrix W0WH
0 , or equivalently for matrix W̃0W̃H

0 ,

where W̃0 is defined as

W̃0 =
1√
N



y1 0 . . . 0 0

y2 y1 . . . 0 0
...

. . .
. . . 0 0

yL−2 yL−3
. . . y1 0

yL−1 yL−2 . . . y2 y1

 .

It is easily seen that W̃0 can be expressed as

W̃0 =

√
L

N

∫ 1

0

dL−1(ν)dHL−1(ν)⊗ ξL,y(ν) dν (2.14)

where ξL,y(ν) is an M -dimensional column vector defined as ξL,y(ν) =
1√
L

∑L−2
l=0 yl+1e−2iπlν . The matrix version of the Cauchy-Schwarz inequality in

(1.31) with U(ν) =
√

L
N dL−1(ν) ⊗ ξL,y(ν) and V(ν) = dL−1(ν) leads immedi-

ately to

W̃0W̃H
0 ≤

L

N

∫ 1

0

dL−1(ν)dHL−1(ν)⊗ ξL,y(ν)ξHL,y(ν) dν.

From this, we obtain immediately that

‖W̃0W̃H
0 ‖ ≤ sup

ν∈[0,1]

L

N
‖ξL,y(ν)‖2.

Next, observe that ν → L
N ‖ξL,y(ν)‖2 is a real valued trigonometric polynomial of

order L − 2. Therefore, if K, δ and the points (νk)k=0,...,K are given as in Lemma

2.1, it holds that ∥∥∥W̃0W̃H
0

∥∥∥ ≤ (1 +
1

δ

)
sup

k=0,...,K

L

N
‖ξL,y(νk)‖2.

Noting that K = O(L), it is sufficient to evaluate P
(
L
N ‖ξL,y(ν)‖2 > η

)
for some

fixed ν and some well chosen constant η, and then use the union bound. Observe

first that we can express

L

N
‖ξL,y(ν)‖2 =

ML

N

1

M

M∑
m=1

|ξL,ym(ν)|2
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where ξL,ym(ν), m = 1, . . . ,M are components of ξL,y(ν). These are mutually

independent complex Gaussian random variables, so that we can use the Hanson-

Wright inequality in order to establish an exponential concentration inequality on
L
N ‖ξL,y(ν)‖2.

In order to use (1.33), we remark that for each m, ξL,ym(ν) can be written

as ξL,ym(ν) =
(
E|ξL,ym(ν)|2

)1/2
xm where x1, . . . , xM are NC(0, 1) i.i.d. random

variables. If x = (x1, . . . , xM ), 1
M

∑M
m=1 |ξL,ym(ν)|2 can be written as

1

M

M∑
m=1

|ξL,ym(ν)|2 = xHΞ(ν)x

where Ξ(ν) is the M ×M diagonal matrix with mth diagonal entry equal to

[Ξ(ν)]m,m =
1

M
E|ξL,ym(ν)|2.

In order to evaluate ‖Ξ(ν)‖ and ‖Ξ(ν)‖2F , we have to study the behaviour

of E|ξL,ym(ν)|2, i.e. the expectation of the periodogram of the sequence

ym,1, . . . , ym,L−1. The following result establishes that the diagonal entries of this

matrix are equal to scaled versions of the spectral densities 1
M Sm(ν),m = 1, . . . ,M,

up to an error that decays as O
(

1
MLmin(1,γ0)

)
.

Lemma 2.2. Under Assumptions 1 and 5, E|ξL,ym(ν)|2 can be written as

E|ξL,ym(ν)|2 = Sm(ν) + εm,L(ν) where εm,L(ν) verifies

|εm,L(ν)| ≤ κ

(L− 1)min(1,γ0)
(2.15)

for each m and for some nice constant κ.

Lemma 2.2 is proved in Appendix A.

This lemma implies that there exists a nice constant κ for which E|ξL,ym(ν)|2 ≤
κ for each ν and each m and L > 1. Therefore, if Ξ(ν) is the above mentioned

diagonal matrix, Ξ(ν) verifies ‖Ξ(ν)‖ ≤ κ
M and ‖Ξ(ν)‖2F ≤ κ2

M . Consider a nice

constant η > 2κ. Then,

P

(
1

M

M∑
m=1

|ξL,ym(ν)|2 > η

)
≤ P

(
1

M

M∑
m=1

|ξL,ym(ν)|2 − E|ξL,ym(ν)|2 > η − κ

)

≤ P

(
1

M

M∑
m=1

|ξL,ym(ν)|2 − E|ξL,ym(ν)|2 > η/2

)
.

As min
(
M(η/2)

κ , M(η/2)2

κ2

)
= M(η/2)

κ and ML/N → c?, the Hanson-Wright inequal-

ity leads to

P

(
ML

N

1

M

M∑
m=1

|ξL,ym(ν)|2 > η

)
≤ κ1 exp(−Mκ2 η)
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for some nice constants κ1 and κ2. Recalling that K = O(L), and using the union

bound to evaluate P
(
supk=0,...,K

L
N ‖ξK,y(νk)‖2 > η

)
, we have shown that, if α is

large enough, there exist two nice constants κ1 and κ2 such that

P(‖W̃0W̃H
0 ‖ > α) ≤ Lκ1 exp(−Mκ2α).

Following the same approach to evaluate the other terms ‖WN,iWH
N,j‖, we can

conclude that (2.13) is established.

As a consequence of Proposition 2.1, the evaluation of P(‖WNWH
N ‖ > α) can

be alternatively formulated in terms of the evaluation of P(‖W̃NW̃H
N ‖ > α).

2.1.2. Controlling the spectral norm of W̃NW̃H
N

In order to establish the fact that ‖W̃NW̃H
N ‖ is bounded with exponentially large

probability, we use the expression in (2.11) and remark that∥∥∥W̃NW̃H
N

∥∥∥ ≤ sup
ν∈[0,1]

‖Ŝ(ν)‖.

In the following, we thus control the spectral norm of Ŝ(ν). In particular, we have

the following result.

Proposition 2.2. If α is a large enough constant, under Assumptions 1-3 and 5,

it holds that

P

(
sup
ν∈[0,1]

∥∥∥Ŝ(ν)
∥∥∥ > α

)
< κ1L exp (−κ2Mα) (2.16)

for some nice constants κ1 and κ2.

Proof. We denote by Ŝ◦(ν) the centered matrix Ŝ◦(ν) = Ŝ(ν) − EŜ(ν). We first

notice that

sup
ν
‖Ŝ(ν)‖ ≤ sup

ν
‖EŜ(ν)‖+ sup

ν
‖Ŝ◦(ν)‖

and work on the two terms separately. First, we prove that supν ‖EŜ(ν)‖ is

bounded. Indeed, it is clear that E(Ŝ(ν)) =
∑L−1
l=−(L−1)(1 −

|l|
L )R(l)e−2iπlν where

R(l) = E(yn+ly
H
n ) is the autocovariance matrix of yn at lag l. Since the com-

ponents of yn are independent time series, matrix R(l) coincides with R(l) =

Diag ((rm(l))m=1,...,M ). Therefore,

‖EŜ(ν)‖ ≤ sup
m=1,...,M

L−1∑
l=−(L−1)

|rm(l)| ≤ sup
m≥1

∑
l∈Z
|rm(l)|.
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Condition (1.13) thus implies that supν ‖EŜ(ν)‖ < +∞. Therefore, in order to

establish (2.16), we need to study P(supν∈[0,1] ‖Ŝ◦(ν)‖ > α) for α sufficiently large.

We first show that the study of the supremum of ‖Ŝ◦(ν)‖ over [0, 1] can be

reduced to the supremum over a discrete grid with O(L) elements. The idea is to

make use Lemma 2.1 by conveniently expressing ‖Ŝ◦(ν)‖ in terms of trigonometric

polynomials.

Lemma 2.3. We consider δ, K, and (νk)k=0,...,K as in Lemma 2.1. Then, the

following result holds:

sup
ν∈[0,1]

‖Ŝ◦(ν)‖ ≤
(

1 +
1

δ

)
sup

k=0,...,K
‖Ŝ◦(νk)‖. (2.17)

Proof. We will first verify that

sup
ν∈[0,1]

‖Ŝ◦(ν)‖ = sup
ν∈[0,1],h∈SM−1

∣∣∣hH Ŝ◦(ν)h
∣∣∣ (2.18)

where SM−1 is the unit sphere in CM . We remark that, because of the continuity

of the spectral norm as well as the continuity of both true and estimated spectral

densities, there exists a certain ν̂ that achieves the supremum on the left hand side of

(2.18), that is supν∈[0,1] ‖Ŝ◦(ν)‖ = ‖Ŝ◦(ν̂)‖. Moreover, for such given ν̂, there exists

a hν̂ ∈ SM−1 for which ‖Ŝ◦(ν̂)‖ = |hHν̂ Ŝ◦(ν̂)hν̂ |. In other words, supν∈[0,1] ‖Ŝ◦(ν)‖
coincides with |hHν̂ Ŝ◦(ν̂)hν̂ |. Hence, we obtain that the left hand side of (2.18) is

less than the right hand side of (2.18). The converse inequality is obvious.

Using a similar continuity argument, we can readily see that

sup
ν∈[0,1],h∈SM−1

|hH Ŝ◦(ν)h| = |hHν̂ Ŝ◦(ν̂)hν̂ |

also coincides with supν∈[0,1] |hHν̂ Ŝ◦(ν)hν̂ |. The function ν → hHν̂ Ŝ◦(ν)hν̂ is a real

valued trigonometric polynomial of order L−1. Therefore, Lemma 2.1 implies that

sup
ν∈[0,1]

∣∣∣hHν̂ Ŝ◦(ν)hν̂

∣∣∣ ≤ (1 +
1

δ

)
sup

k=0,...,K

∣∣∣hHν̂ Ŝ◦(νk)hν̂

∣∣∣ .
Since |hHν̂ Ŝ◦(νk)hν̂ | ≤ ‖Ŝ◦(νk)‖, we have shown that

sup
ν∈[0,1]

‖Ŝ◦(ν)‖ = sup
ν∈[0,1]

∣∣∣hHν̂ Ŝ◦(ν)hν̂

∣∣∣ ≤ (1 +
1

δ

)
sup

k=0,...,K
‖Ŝ◦(νk)‖.

This establishes (2.17).

We now complete the proof of (2.16) in Proposition 2.2. The union bound leads

to

P

(
sup
ν∈[0,1]

‖Ŝ◦(ν)‖ > αN

)
≤

K∑
k=0

P
(
‖Ŝ◦(νk)‖ > δ

1 + δ
αN

)
. (2.19)
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Thus, we only need to evaluate P(‖Ŝ◦(ν)‖ > ηN ), where ν is a fixed frequency and

where ηN = δ
1+δ αN . For this, we use the epsilon net argument in CM . We recall

that an epsilon net Nε of CM is a finite set of unit norm vectors of CM having the

property that for each g ∈ SM−1, there exists an h ∈ Nε such that ‖g − h‖ ≤ ε.

It is well known that the cardinal |Nε| is upper bounded by
(
κ
ε

)2M
for some nice

constant κ. We consider such an epsilon netNε and denote by ĥ a vector of SM−1 for

which ‖Ŝ◦(ν)‖ = |ĥH Ŝ◦(ν)ĥ|, and consider a vector h̃ ∈ Nε such that ‖ĥ− h̃‖ ≤ ε.
We express h̃H Ŝ◦(ν)h̃ as

h̃H Ŝ◦(ν)h̃ =
(
ĥ + h̃− ĥ

)H
Ŝ◦(ν)

(
ĥ + h̃− ĥ

)
.

Using the triangular inequality, we obtain that∣∣∣h̃H Ŝ◦(ν)h̃
∣∣∣ ≥ ∣∣∣ĥH Ŝ◦(ν)ĥ

∣∣∣− 2
∣∣∣(h̃− ĥ)H Ŝ◦(ν)ĥ

∣∣∣− ∣∣∣(h̃− ĥ)H Ŝ◦(ν)(h̃− ĥ)H
∣∣∣ .

Since h̃ ∈ SM−1 and ‖ĥ− h̃‖ ≤ ε, we can write∣∣∣(h̃− ĥ)H Ŝ◦(ν)ĥ
∣∣∣ ≤ ‖Ŝ◦(ν)(h̃− ĥ)‖ ≤ ε ‖Ŝ◦(ν)‖

together with
∣∣∣(h̃− ĥ)H Ŝ◦(ν)(h̃− ĥ)H

∣∣∣ ≤ ε2‖Ŝ◦(ν)‖. This implies that∣∣∣h̃H Ŝ◦(ν)h̃
∣∣∣ ≥ (1− 2ε− ε2)‖Ŝ◦(ν)‖.

In the following, we assume that ε satisfies 1− 2ε− ε2 > 0. Therefore, using again

the union bound, we obtain that

P
(
‖Ŝ◦(ν)‖ > ηN

)
≤
∑

h∈Nε

P
(∣∣∣hH Ŝ◦(ν)h

∣∣∣ ≥ (1− 2ε− ε2)ηN

)
. (2.20)

In order to evaluate P(|hH Ŝ◦(ν)h| ≥ (1− 2ε− ε2)ηN ) for each unit norm vector h,

we denote by zn the scalar time series defined by zn = hHyn. Then, the quadratic

form hH Ŝ◦(ν)h coincides with ŝz(ν)−Eŝz(ν) where ŝz(ν) represents the lag-window

estimator of the spectral density of z defined by ŝz(ν) =
∑L−1
l=−(L−1) r̂z(l)e

−2iπlν .

Here, r̂z(l) is the standard empirical estimate of the autocovariance coefficient of

z at lag l. We denote by z the N–dimensional vector z = (z1, . . . , zN )T . As is well

known, ŝz(ν) can be expressed as

ŝz(ν) =

∫ 1

0

w(ν − µ)
1

N

∣∣∣∣∣
N−1∑
n=0

zn+1e−2iπnµ

∣∣∣∣∣
2

dµ (2.21)

where w(µ) is the Fourier transform of the rectangular window Il∈{−(L−1),...,L−1}.

The expression in (2.21) can also be written as a quadratic form of vector z:

ŝz(ν) = zH
(

1

N

∫ 1

0

w(ν − µ) dN (µ)dHN (µ) dµ

)
z. (2.22)
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where we recall that dN (µ) is defined by (1.17). If Rz represents the covariance

matrix of vector z, z can be written as z = R
1/2
z x for some NC(0, IN ) distributed

random vector x. Therefore, if we denote by Ω the N ×N matrix defined by

Ω = R1/2
z

1

N

∫ 1

0

w(ν − µ) dN (µ)dHN (µ) dµR1/2
z ,

the quantity ŝz(ν)− Eŝz(ν) can be written as ŝz(ν)− Eŝz(ν) = xHΩx− ExHΩx.

Therefore,

P
(
|ŝz(ν)− Eŝz(ν)| > (1− 2ε− ε2)η

)
can be evaluated using the Hanson-Wright inequality (1.33). This requires the eval-

uation of the spectral and the Frobenius norm of Ω. Observe that we can express

Ω = R
1/2
z ΩwR

1/2
z where Ωw is a Toeplitz matrix defined as

Ωw =
1

N

∫ 1

0

w(ν − µ) dN (µ)dHN (µ) dµ.

It is easy to check that the spectral norm of Rz is uniformly bounded. Moreover, the

spectral norm of Ωw is bounded by 1
N supν |w(ν)| = L/N . Therefore, ‖Ω‖ ≤ κ LN for

some nice constant κ. In order to evaluate the Frobenius norm of Ω, observe that

Ωw is band Toeplitz matrix with entries given by (Ωw)k,l = 1
N e2iπ(k−l)νI|k−l|≤L−1.

Therefore, ‖Ωw‖2F ≤ κ LN , which implies that ‖Ω‖2F ≤ κ LN . Consequently, the

Hanson-Wright inequality in (1.33) implies that, if η is large enough,

P
(∣∣∣hH Ŝ◦(ν)h

∣∣∣ ≥ (1− 2ε− ε2)η
)
≤ κ1 exp (−κ2Mη)

where we have introduced two nice constants κ1 and κ2. Recalling that |Nε| ≤(
κ
ε

)2M
, the union bound (2.20) implies that

P
(
‖Ŝ◦(ν)‖ > η

)
≤
(κ
ε

)2M

κ1 exp (−κ2Mα)

The right hand side of the above inequality can clearly be bounded by

κ3 exp (−κ4Mα) for α large enough, where κ3 and κ4 are two new nice constants.

Finally, (2.19) leads to

P

(
sup
ν∈[0,1]

‖Ŝ◦(ν)‖ > α/2

)
≤ κ1L exp (−κ2Mα)

for N sufficiently large and two nice constants κ1, κ2. This completes the proof of

Proposition 2.2. �

As a direct sequence of Propositions 2.1 and 2.2, we have the following corollary.

Corollary 2.1. For each α larger than a certain positive constant, then, it holds

that

P(‖WNWH
N ‖ > α) ≤ κ1 L exp(−κ2Mα) (2.23)

P(‖R̂L‖ > α) ≤ κ1 L exp(−κ2Mα) (2.24)
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for some nice constants κ1 and κ2. Moreover, ‖R̂L‖ satisfies

‖R̂L‖ ≺ 1. (2.25)

2.2. Evaluation of the behaviour of ‖Bdiag(R̂L)− Bdiag(RL)‖

Recall that Rm,L, m = 1, . . . ,M , denote the L × L diagonal blocks of the matrix

Bdiag(RL). We will denote by R̂m,L the mth L× L diagonal block of R̂L. In this

section, we establish that

‖R̂m,L −Rm,L‖ ≺ max

(
1√
M
,

1

Lγ0

)
. (2.26)

Note first that we can express R̂m,L as the empirical estimate of Rm,L, that is

R̂m,L =
1

N

N∑
n=1

yLm,n
(
yLm,n

)H
or equivalently by R̂m,L = Wm

N (Wm
N )

H
where Wm

N is the L × N matrix defined

by

Wm
N =

1√
N

(
yLm,1, . . . ,y

L
m,N

)
.

The arguments used in this section are based on the techniques used in Section

2.1. Therefore, we just provide a sketch of proof of (2.26) based on the same two

steps as above: first, we approximate Wm
N (Wm

N )
H

with a Toeplitz matrix and then

study the equivalent Toeplitz version of (2.26).

2.2.1. Modifying Wm
N (Wm

N )
H

into a Toeplitz matrix

We prove here that Wm
N (Wm

N )
H

can be approximated as the Toeplitz matrix

W̃m
N (W̃m

N )H where W̃m
N is obtained by replacing vectors (yn)n=1,...,N by the scalars

(ym,n)n=1,...,N in the definition of matrix WN in (2.9) above. In particular, it holds

that

W̃m
N

(
W̃m

N

)H
=

∫ 1

0

Ŝm(ν)dL(ν)dHL (ν) dν (2.27)

where Ŝm(ν) represents the mth diagonal entry of the lag window estimator (2.10).

More specifically, following the proof of Proposition 2.1, we justify that∥∥∥∥Wm
N (Wm

N )
H − W̃m

N

(
W̃m

N

)H∥∥∥∥ ≺ 1

M
. (2.28)

To verify (2.28), we drop the dependence on N of all matrices to simplify the

notation and remark that

Wm(Wm)H−W̃m(W̃m)H = Wm
2,2(Wm

2,2)H+Wm
2,2(Wm

2,1)H+Wm
2,1(Wm

2,2)H−Wm
0 (Wm

0 )H
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where the various matrices of the right hand side are obtained by replacing vectors

(yn)n=1,...,N+L−1 in the definition of matrices W2,2,W2,1,W0 used in Section 2.1

by the scalars (ym,n)n=1,...,N+L−1. In order to verify (2.28), we just briefly check

that ∥∥∥Wm
0 (Wm

0 )
H
∥∥∥ ≺ 1

M

or equivalently (after proper column permutation of (Wm
0 ) that∥∥∥∥W̃m

0

(
W̃m

0

)H∥∥∥∥ ≺ 1

M

where W̃m
0 is defined by

W̃m
0 =

√
L

N

∫ 1

0

dL−1(ν)dHL−1(ν)ξL,ym(ν) dν.

As in Section 2.1, we notice that the matrix-valued Cauchy-Schwarz inequality in

(1.31) with U(ν) =
√

L
N dL−1(ν)ξL,ym(ν) and V(ν) = dL−1(ν) implies that

W̃m
0 (W̃m

0 )H ≤ L

N

∫ 1

0

dL−1(ν)dHL−1(ν)|ξL,ym(ν)|2 dν.

This allow us to establish that∥∥∥W̃m
0 (W̃m

0 )H
∥∥∥ ≤ sup

ν∈[0,1]

L

N
|ξL,ym(ν)|2.

By Lemma 2.1 we know that the supremum can be replaced by a maximum over

O(L) points, so that by Lemma 1.1 it is sufficient to establish that

L

N
|ξL,ym(ν)|2 ≺ 1

M

for some fixed ν. Following the same reasoning as in Section 2.1, a direct application

of the Hanson-Wright inequality shows that |ξL,ym(ν)|2 ≺ 1 for any fixed ν, from

where the result follows.

2.2.2. Studying the Toeplitz equivalent of (2.26)

In order to prove (2.26), it thus remains to establish that∥∥∥∥W̃m
N

(
W̃m

N

)H
−Rm,L

∥∥∥∥ ≺ max

(
1√
M
,

1

Lγ0

)
Noting that W̃m

N (W̃m
N )H − Rm,L is the L × L Toeplitz matrix associated to the

symbol Ŝm(ν)− Sm(ν), and using Lemma 2.1, it is sufficient to prove that∣∣∣Ŝm(ν)− Sm(ν)
∣∣∣ ≺ max

(
1√
M
,

1

Lγ0

)



January 14, 2021

33

for each ν. In order to see this, we write Ŝm(ν)− Sm(ν) as

Ŝm(ν)− Sm(ν) = Ŝm(ν)− E
(
Ŝm(ν)

)
+ E

(
Ŝm(ν)

)
− Sm(ν).

The bias E(Ŝm(ν))− Sm(ν) is equal to

E
(
Ŝm(ν)

)
− Sm(ν) = −

∑
|l|≥L

rm(l)e−2iπlν − 1

N

L−1∑
l=−(L−1)

|l|rm(l)e−2iπlν .

An easy adaptation of the proof of Lemma 2.2 in Appendix A establishes that∣∣∣E(Ŝm(ν)
)
− Sm(ν)

∣∣∣ ≤ κ( 1

Lγ0
+
L(1−γ0)+

N

)
(2.29)

for some nice constant κ, where (·)+ = max (·, 0). This implies that

sup
m=1,...,M

sup
ν

∣∣∣E(Ŝm(ν)
)
− Sm(ν)

∣∣∣ ≤ κmax

(
1

Lγ0
,

1

M

)
(2.30)

for some nice constant κ. In order to study the term Ŝm(ν)−E(Ŝm(ν)), we remark

that it can be written as

Ŝm(ν)− E
(
Ŝm(ν)

)
= eTmŜ◦(ν)em

where em is the mth vector of the canonical basis of CM . Using the Hanson-Wright

inequality as in Section 2.1, we obtain immediately that for each ν and for each m,

there exist two nice constants κ1 and κ2 such that

P
(
|eTmŜ◦(ν)em| > αN

)
≤ κ1 exp(−κ2Mα2

N )

where (αN )N≥1 satisfies αN → 0 and Mα2
N → +∞. In particular, the choice

αN = N ε/
√
M satisfies this property for all small enough ε > 0, which allows to

conclude that |eTmŜ◦(ν)em| ≺M−1/2 for any fixed m and ν. However, noting again

that eTmŜ◦(ν)em is a real valued trigonometric polynomial, we see by Lemma 2.3

and Lemma 1.1 that supm,ν |eTmŜ◦(ν)em| ≺M−1/2.

As a consequence of all the above, we have established that ‖R̂m,L −Rm,L‖ ≺
max(M−1/2, L−γ0), which directly implies that

‖Bdiag(R̂L)− Bdiag(RL)‖ ≺ max

(
1√
M
,

1

Lγ0

)
. (2.31)

All these results are all the ingredients that we need in order to evaluate the spectral

norm of the matrix

ΘN = R̂corr,L −Rcorr,L (2.32)

which is carried out in the following section.
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2.3. Evaluation of ‖ΘN‖ = ‖R̂corr,L −Rcorr,L‖

We first precise that almost surely, all the matrices (R̂m,L)m=1,...,M(N),N≥1 are

invertible. To verify this, we remark that the random variable det(R̂m,L) is

a differentiable function of the 2(N + L − 1) entries of the Gaussian vector

(Re(ym,1, . . . , ym,N+L−1), Im(ym,1, . . . , ym,N+L−1)). Therefore, the probability dis-

tribution of det(R̂m,L) is absolutely continuous, and the event {det(R̂m,L) = 0}
has probability 0. Therefore, the union of the above events is also negligible, thus

showing the almost sure invertibility of the matrices (R̂m,L)m=1,...,M(N),N≥1.

Using the above definition of ΘN , we are able to write

ΘN = B̂−1/2
L R̂LB̂−1/2

L − B−1/2
L R̂LB−1/2

L

= (B̂−1/2
L − B−1/2

L )R̂LB̂−1/2
L + B−1/2

L R̂L(B̂−1/2
L − B−1/2

L ) (2.33)

We have shown above that ‖R̂m,L −Rm,L‖ ≺ max (M−1/2, L−γ0). Our first objec-

tive here is to show that ‖R̂−1/2
m,L −R

−1/2
m,L ‖ ≺ max (M−1/2, L−γ0). For this, we use

perturbation theory of Hermitian matrices arguments (see e.g. [22, Sec. 2, Ch. 1

and Sec. 1, Ch. 2]) that will also be needed in Section 3.

We first recall that Assumption 3 implies that for each N , matrices

(Rm,L)m=1,...,M verify sminIL ≤ Rm,L ≤ smaxIL. Therefore, if we denote by C a

simple closed contour included in the half plane {Re(λ) > 0} and enclosing the inter-

val [smin, smax], then, C also encloses the spectrum of the matrices (Rm,L)m=1,...,M .

This in particular implies that matrix R−1/2
m,L can be written as

R−1/2
m,L =

1

2iπ

∫
C−

1√
λ

(Rm,L − λIL)
−1

dλ (2.34)

where C− means that the contour is negatively oriented. In the following, we denote

by (λk,m)k=1,...,Km the distinct eigenvalues of Rm,L, and by (Πk,m)k=1,...,Km the

orthogonal projection matrices over the corresponding eigenspaces. Therefore,Rm,L
can be written as

Rm,L =

Km∑
k=1

λk,m Πk,m. (2.35)

We denote by ∆m,L the matrix defined by

∆m,L = R̂m,L −Rm,L. (2.36)

In order to investigate ∆m,L, it will be convenient to introduce a collection of

operators Dm,L (X), m = 1, . . . ,M , which transform L × L matrices into L × L
matrices and are defined as

Dm,L (X) =
1

2πi

∫
C−

1√
λ

(Rm,L − λIL)
−1

X (Rm,L − λIL)
−1

dλ (2.37)
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where, as before, C− is a negatively oriented simple closed contour on the half

plane Reλ > 0 enclosing [smin, smax]. As seen below, Dm,L can be interpreted as

the differential operator of the matrix valued-function A → A−1/2 evaluated at

Rm,L. Note that, using the definitions in (2.35), we can express

(Rm,L − λIL)
−1

=

Km∑
k=1

Πk,m

λk,m − λ
.

Plugging this expression into (2.37) and using the residue theorem, we can trivially

check that this operator can also be expressed as

Dm,L (X) =

Km∑
k=1

Km∑
l=1

1√
λk,m

√
λl,m(

√
λk,m +

√
λl,m)

Πk,mXΠl,m. (2.38)

We summarize next a number of properties that will be useful about these operators

throughout the paper.

Lemma 2.4. Consider the operator Dm,L as defined in (2.37)-(2.38). Then, for

every L× L matrix A:

(i) If B denotes another L× L matrix,

Tr (Dm,L(A)B) = Tr (ADm,L(B)) (2.39)

(ii) There exists a nice constant κ > 0 such that

‖Dm,L(A)‖ ≤ κ‖A‖. (2.40)

(iii) There exists a nice constant κ > 0 such that

1

L
Tr
[
Dm,L(A)DHm,L(A)

]
≤ κ 1

L
Tr(AAH). (2.41)

Proof. The identity in (2.39) follows directly from the definition of Dm,L.

To see (2.40), simply consider the definition of Dm,L in (2.37) and note that

supλ∈C ‖ (Rm,L − λIL)
−1 ‖ ≤ κ for some nice constant κ. In order to justify (2.41),

we express Dm,L(A) using (2.38) so that, noting that Πl,mΠl′,m = Πl,mδl−l′ , we

can write

Dm,L(A)Dm,L(A)H =
∑
k,k′,l

Πk,m

λ
1/2
k,m(λ

1/2
k,m + λ

1/2
l,m)

A
Πl,m

λl,m
AH Πk′,m

λ
1/2
k′,mλ

1/2
l,m(λ

1/2
k′,m + λ

1/2
l,m)

Taking the normalized trace, changing the order of the matrices, and using again

the fact that Πk,mΠk′,m = Πk,mδk−k′ , we obtain

1

L
Tr
[
Dm,L(A)Dm,L(A)H

]
=
∑
k,l

1

L
Tr

[
Πk,mA Πl,mAHΠk,m

λk,mλl,m(λ
1/2
k,m + λ

1/2
l,m)2

]
.
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Using that λk,m ≥ smin for each k and m, we obtain immediately that

Πk,mA Πl,mAHΠk,m

λk,mλl,m(λ
1/2
k,m + λ

1/2
l,m)2

≤ κΠk,mA Πl,mAHΠk,m

from where the inequality

1

L
Tr
[
Dm,L(A)Dm,L(A)H

]
≤ κ 1

L
Tr
∑
k,l

Πk,mA Πl,mAH

follows directly. Noting that
∑
k Πk,m = IL, we obtain (2.41).

Having introduced these operators, we now formulate a result that will be useful

here and in the following sections.

Lemma 2.5. Under Assumptions 1-3 and 5, it holds that

R̂−1/2
m,L −R

−1/2
m,L = −Dm,L (∆m,L) + Υm,L (2.42)

where the matrix Υm,L, implicitely defined by (2.42), verifies

‖Υm,L‖ ≺ max

(
1

M
,

1

L2γ0

)
. (2.43)

Proof. See Appendix B.

Since ‖∆m,L‖ = ‖R̂m,L − Rm,L‖ ≺ max (M−1/2, L−γ0), we directly observe

from the above proposition and (2.40) that ‖B̂−1/2
L −B−1/2

L ‖ ≺ max (M−1/2, L−γ0).

This of course implies that ‖B̂−1/2
L ‖ ≺ 1. Moreover, using the fact that ‖R̂L‖ ≺ 1

(see (2.25)), (2.33) leads to

‖ΘN‖ ≺ max

(
1√
M
,

1

Lγ0

)
. (2.44)

To close this section, we remark that the identity R̂−1
m,L − R

−1
m,L =

−R̂−1
m,L∆m,LR−1

m,L leads immediately to ‖R̂−1
m,L−R

−1
m,L‖ ≺ max

(
1√
M
, 1
Lγ0

)
. Using

this and (2.24), we obtain the following Proposition.

Proposition 2.3. Under Assumptions 1-3 and 5, there exists α0 > 0 such that for

each α ≥ α0, one may find ε > 0 and N0 (both depending on α) such that

P
(
‖Rcorr,L‖ > α

)
≤ exp−N ε (2.45)

P
(
‖R̂corr,L‖ > α

)
≤ exp−N ε (2.46)

for each N ≥ N0.
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From all the above, we can therefore conclude that the spectral behavior of the

sample block correlation matrix R̂corr,L is equivalent to the spectral behavior of the

matrix Rcorr,L = B−1/2
L R̂LB−1/2

L .

3. Study of the influence of the estimation of matrices

(Rm,L)m=1,...,M .

In this section, we study the impact of the estimation of matrices (Rm,L)m=1,...,M

on the asymptotic behaviour of the linear statistics φ̂N , defined as

φ̂N =
1

ML

ML∑
k=1

φ(λ̂k,N ) =

∫
R+

φ(λ)dµ̂N (λ)

More specifically, we evaluate the behaviour of φ̂N − φN where φN is defined in

(1.16) by establishing the following result.

Theorem 3.1. Let Assumptions 1-3 and 5 hold true. Assume that the function

φ is defined on (−δ,+∞) for some δ > 0 and smooth in a neighbourhood of the

interval [0, α0] where α0 is defined in Proposition 2.3. Then, it holds that

|φ̂N − φN | ≺ max

(
1

M
,

1

Lγ0

)
. (3.1)

In order to establish Theorem 3.1, we first mention that Proposition 2.3 implies

that it is possible to assume without restriction that φ is compactly supported by

the interval [−δ, α] for some α > α0. To justify this claim, we consider ξ ∈ (α0, α)

and introduce the event AN defined by

AN =
{
‖Rcorr,L‖ ≤ ξ

}
∩
{
‖R̂corr,L‖ ≤ ξ

}
.

Proposition 2.3 implies that there exists a η > 0 for which P (AcN ) ≤ exp−Nη for

each N large enough. We denote by φc a smooth function, supported by [−δ, α], and

which coincides with φ on the interval [−δ/2, ξ]. Then, it is clear that φ̂N and φN
coincide with φ̂c,N and φc,N respectively on AN . For each ε > 0, by conditioning

on the event AN and its complementary AcN we can express

P
(
|φ̂N − φN | > N ε max

(
1

M
,

1

Lγ0

))
=

= P
(
|φ̂c,N − φc,N | > N ε max

(
1

M
,

1

Lγ0

)
, AN

)
+

+ P
(
|φ̂N − φN | > N ε max

(
1

M
,

1

Lγ0

)
, AcN

)
where we have used the fact that φ̂N and φN respectively coincide with φ̂c,N
and φc,N on AN . Now, for N large enough we can bound the first term of the
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above equation by P(|φ̂c,N − φc,N | > N ε max(M−1, L−γ0)) and the second term by

P(AcN ) ≤ exp(−Nη). Therefore, it is sufficient to establish that |φ̂c,N − φc,N | ≺
max(M−1, L−γ0) to prove (3.1). For this reason, from now on we assume without

loss of generality that φ is supported by [−δ, α].

The main tool that we will use in order to analyze the asymptotic behavior of

the linear spectral statistics is the Helffer-Sjöstrand formula for sufficiently regular,

compactly supported functions.This formula was already used in the large random

matrices literature, see e.g. [2], [3], [31]. In order to introduce this tool, assume that

φ(λ) is compactly supported and of class Ck+1 for a certain integer k, and denote

by Φk(φ) : C→ C the function of complex variable

Φk(φ)(x+ iy) =

k∑
l=0

(iy)l

l!
φ(l)(x)ρ(y) (3.2)

where ρ : R→ R+ is a smooth, compactly supported function (to fix the ideas, we

assume that the support of ρ is [−2, 2]) that takes the value 1 in a neighbourhood

of zero. Now, taking z = x + iy, we see that the function Φk(φ)(z) is compactly

supported on the complex plane, and therefore by [35, Lemma 20.3] we have∫
φ(λ)dµ(λ) =

1

π
Re

∫
C+

dx dy ∂Φk(φ)(z)sµ(z)

where µ is a probability measure, sµ(z) its Stieltjes transform and where we define

∂Φk(φ)(z) =
∂Φk(φ)(x+ iy)

∂x
+ i

∂Φk(φ)(x+ iy)

∂y
.

In particular, according to the definition of Φk(φ)(z) in (3.2), we can see that

∂Φk(φ)(z) =
(iy)k

k!
φ(k+1)(x)

when y belongs to a neighbourhood of zero where ρ(y) = 1. The regularity of

φ will allow us to bound quantities of the form |∂Φk(φ)(z)y−k| when y is in a

neighbourhood of zero.

Consider now the two resolvents Q̂N (z) and QN (z) defined in (1.29) and (1.30)

respectively. Recall that their normalized trace is equal to the Stieltjes transform

of the empirical eigenvalue distribution of R̂corr,L and Rcorr,L respectively. Hence,

a direct application of the Helffer-Sjöstrand formula to our problem leads to the

identity

φ̂N − φN =
1

π
Re

∫
D
dx dy ∂̄Φk(φ)(z)

(
1

ML
Tr(Q̂N (z))− 1

ML
Tr(QN (z))

)
(3.3)

where D is defined by D = [−δ, α] × [0, 2] and where k is large enough. Before

going into the details of the proof of Theorem 3.1, we first present the main steps

of the proof. In what follows, we will omit the dependence on N and z in all the

matrices in order to simplify the notation.
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We recall that Θ is the matrix defined in (2.32) and remark that, by the defi-

nition of resolvents, we can write

Q̂−Q = −QΘQ̂ = −QΘQ + QΘQΘQ̂

Therefore, (3.3) can also be written as

φ̂N − φN = − 1

π
Re

∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
(TrQ2Θ)

+
1

π
Re

∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr(QΘQΘQ̂). (3.4)

Having established these basic facts, the proof of Theorem 3.1 proceeds as follows:

(1) The first step of the proof consists in showing that, by virtue of (2.44), the second

term of (3.4) can be disregarded from the evaluation, in the sense that∣∣∣∣ 1πRe

∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr(QΘQΘQ̂)

∣∣∣∣ ≺ max

(
1

M
,

1

L2γ0

)
(3.5)

We therefore just need to evaluate the first term of the right hand side of (3.4).

(2) In the second step, it is proved that Θ can be written as

Θ =
(
B̂−1/2 − B−1/2

)
B1/2Rcorr +Rcorr B1/2

(
B̂−1/2 − B−1/2

)
+ Θ2 (3.6)

where ‖Θ2‖ ≺ max(M−1, L−2γ0). This will imply that the contribution of Θ2 to

the first term of the right hand side of (3.4) can be omitted.

(3) If we take Θ1 = Θ−Θ2, the purpose of the third step is to establish that∣∣∣∣∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr(Q2Θ1)

∣∣∣∣ ≺ max

(
1

M
,

1

Lγ0

)
. (3.7)

For this, we will just verify that∣∣∣∣∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr
[
Q2(B̂−1/2 − B−1/2)B1/2Rcorr

]∣∣∣∣ ≺ max

(
1

M
,

1

Lγ0

)
(3.8)

(note that the second term in (3.6) can be handled similarly). The proof of (3.8)

is demanding. Using Lemma 2.5, we only need to show that∣∣∣∣∣
∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L(∆m,L)R1/2

m,L(Q + zQ2)m,m

]∣∣∣∣∣
≺ max

(
1

M
,

1

Lγ0

)
(3.9)

where Qm,m denotes the mth L × L diagonal block of Q, where the operator

Dm,L is defined in (2.37)-(2.38) and where ∆m,L is defined in (2.36). We will only

establish that∣∣∣∣∣
∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L(∆m,L)R1/2

m,LQm,m

]∣∣∣∣∣ ≺ max

(
1

M
,

1

Lγ0

)
(3.10)
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because the term due to z(Q2)m,m can be handled similarly. In order to show this,

we rely on the fact that, up to a term stochastically dominated by 1
M , it is possible

to replace matrices (R̂m,L)m=1,...,M in (3.10) by their Toeplitz approximations

R̂tm,L = W̃m
N (W̃m

N )H , m = 1, . . . ,M introduced in (2.27) of Section 2.2. The

upper bound in (2.29) will imply that the contribution of the bias of the Toeplitz

estimates of (Rm,L)m=1,...,M to (3.10) is a term of order O(max (M−1, L−γ0)). At

this point, it will remain to study the term ζ defined by

ζ =

∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
R̂tm,L − E(R̂tm,L)

)
R1/2
m,LQm,m

]
.

(3.11)

Recall that r̂m(l) = 1
N

∑N−l
n=1 ym(n + l)y∗m(n) and r̂m(−l) = r̂∗m(l) for l ≥ 0 rep-

resent the empirical estimate of the autocovariance sequence of ym at lag l, and

consider r̂◦m(l) = r̂m − Er̂m(l). With these definitions and using (2.39) and (1.38,

the term ζ can be re-written as

ζ =

∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

L−1∑
u=−(L−1)

r̂◦m(u) τ
(
Dm,L

(
R1/2
m,LQm,m

))
(−u)

(3.12)

where we recall that if A is a L × L matrix, τ(A)(u) is defined by τ(A)(u) =
1
LTr(AJuL), see (1.36). This way of expressing ζ will be the key to showing that

|ζ| ≺ 1

M
(3.13)

which will complete the proof of Theorem 3.1. This will be shown in two final steps.

– We check that E(ζ) = O(M−1). To verify this, we use that the Nash-Poincaré

inequality and obtain that Var
[
τ
(
Dm,L(R1/2

m,LQm,m)
)

(−u)
]

= O(N−1). Since

Var(r̂m(u)) is also a term of order O(N−1), we obtain immediately from the

Schwartz inequality that E(ζ) = O(M−1).

– The most difficult part of the proof consists in establishing that

|ζ − E(ζ)| ≺ 1

M
. (3.14)

For this, for each m, we introduce the (N + L − 1)–dimensional row vector

ym = (ym,1, . . . , ym,N+L−1), which can be re-written as

ym = xmR1/2
m,N+L−1 (3.15)

for some NC(0, IN+L−1)-distributed row vector xm. By using the above defini-

tion, we can re-interpret ζ as a function of of the M(N + L− 1) i.i.d. NC(0, 1)

entries of vector

x = (x1, . . . ,xM ). (3.16)

If ζ, considered as a function of (x,x∗) were a Lipschitz function with constant

of order O(M−1), the result in (3.14) would follow from conventional concentra-

tion inequalities of Lipschitz functions of Gaussian random vectors (see (1.32)
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above). Unfortunately, the terms r̂m(u) are not Lipschitz functions of x due to

the quadratic dependence on this vector. In any case, it is still true that for each

ε > 0, the inequality |r̂m(u)− E(r̂m(u))| ≤ Nε

N holds for fixed u and m, except

for an event that has exponentially small probability. Therefore, we show that

it is possible to replace (for each u and m) r̂m(u) − E(r̂m(u)) by a well chosen

function, and that the corresponding modification ζ̃ of ζ is Lipschitz with con-

stant Nε

M . We deduce from this that |ζ − E(ζ)| ≺ Nε

M for each ε > 0, a property

which will directly imply (3.14).

We now proceed with the three steps of the proof.

Step 1. In order to establish (3.5), we simply notice that∣∣∣∣∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr(QΘQΘQ̂)

∣∣∣∣ ≤ ∫
D
dx dy |∂̄Φk(φ)(z)|

∣∣∣∣ 1

ML
Tr(QΘQΘQ̂)

∣∣∣∣ .
It is clear that if z ∈ C+, we can use the item (iv) in Proposition 1.1 to establish

that ∣∣∣∣ 1

ML
Tr(QΘQΘQ̂)

∣∣∣∣ ≤ ‖Q‖2‖Q̂‖‖Θ‖2 ≤ 1

(Imz)3
‖Θ‖2.

Since φ is smooth by assumption, we can choose k ≥ 3 to guarantee that the integral∫
D dx dy |∂̄Φk(φ)(z)| 1

(Imz)3
is finite. This, together with (2.44), shows that∣∣∣∣∫

D
dx dy ∂̄Φk(φ)(z)

1

ML
(TrQΘQΘQ̂)

∣∣∣∣ ≤ κ‖Θ‖2 ≺ max

(
1

M
,

1

L2γ0

)
which completes the proof of (3.5).

Step 2. In order to establish (3.6), we take (2.33) as a starting point and express

R̂ as R̂ = B1/2RcorrB1/2, that is

Θ =
(
B̂−1/2 − B−1/2

)
B1/2RcorrB1/2B̂−1/2 +Rcorr B1/2

(
B̂−1/2 − B−1/2

)
=
(
B̂−1/2 − B−1/2

)
B1/2Rcorr +Rcorr B1/2

(
B̂−1/2 − B−1/2

)
+ Θ2

where Θ2 is given by

Θ2 =
(
B̂−1/2 − B−1/2

)
B1/2RcorrB1/2

(
B̂−1/2 − B−1/2

)
.

As we showed that ‖B̂−1/2 − B−1/2‖ ≺ max(M−1/2, L−γ0), ‖Θ2‖ clearly

verifies ‖Θ2‖ ≺ max(M−1, L−2γ0) as expected. Hence, using the inequality

| 1
MLTr(Q2Θ2)| ≤ ‖Θ2‖

(Imz)2 together with∫
D
dx dy

∣∣∂̄Φk(φ)(z)
∣∣ 1

(Imz)2
< +∞
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we obtain that∣∣∣∣∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr(Q2Θ2)

∣∣∣∣ ≤ κ ‖Θ2‖ ≺ max

(
1

M
,

1

L2γ0

)
.

Step 3. We finally establish (3.7), and just verify (3.8) because the contribution

of the second term of Θ1 can be handled similarly. Using (2.42) and the resolvent

identity RcorrQ = I + zQ, we obtain immediately that the term on the left hand

side of (3.8) can be written as the sum of the term on the left hand side of (3.9)

plus a term depending on the matrices (Υm)m=1,...,M . As this last term is easily

seen to be stochastically dominated by max(L−2γ0 ,M−1), (3.8) becomes equivalent

to (3.9).

We now prove (3.10). We first reason that we can replace the matrices R̂m,L
with their Toeplitz approximations R̂tm,L. Indeed, it was shown in (2.28) of Section

2.2 that ‖R̂m,L − R̂tm,L‖ ≺ 1
M . We claim that this implies that∣∣∣∣∣

∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
R̂m,L − R̂tm,L

)
R1/2
m,LQm,m

]∣∣∣∣∣ ≺ 1

M

Indeed, a direct use of (2.40) together with the fact that ‖Qm,m‖ ≤ (Imz)−1 for

z ∈ C+ shows that∣∣∣∣∣ 1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
R̂m,L − R̂tm,L

)
R1/2
m,LQm,m

]∣∣∣∣∣ ≤ κ

Imz
sup

m=1,...,M
‖R̂m,L−R̂tm,L‖

for some nice constant κ > 0. However, since the integral
∫
D dx dy |∂̄Φk(φ)(z)| 1

Imz

is finite as long as k ≥ 1, we readily see that∣∣∣∣∣
∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
R̂m,L − R̂tm,L

)
R1/2
m,LQm,m

]∣∣∣∣∣ ≤
≤ κ sup

m=1,...,M
‖R̂m,L − R̂tm,L‖ ≺

1

M
.

Consequently, in order to establish (3.10), it only remains to prove that∣∣∣∣∣
∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
R̂tm,L −Rm,L

)
R1/2
m,LQm,m

]∣∣∣∣∣ ≺
≺ max

(
1

M
,

1

Lγ0

)
. (3.17)

Given the Toeplitz structure of R̂tm,L − Rm,L, the bound that was established in

(2.29) directly implies that supm=1,...,M ‖ER̂tm,L−Rm,L‖ ≤ κ(L−γ0+N−1L(1−γ0)+).
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This leads immediately to∣∣∣∣∣
∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

1

L
Tr
[
Dm,L

(
E
(
R̂tm,L

)
−Rm,L

)
R1/2
m,LQm,m

]∣∣∣∣∣ ≤
≤ κ

(
1

Lγ0
+
L(1−γ0)+

N

)
≤ κ

(
1

Lγ0
+

1

M

)
.

It thus remains to study ζ defined in (3.11). Noting that R̂tm,L − E(R̂tm,L) is the

L×L Toeplitz matrix with entries r̂◦m(i− j) = r̂m(i− j)−Er̂m(i− j), 1 ≤ i, j ≤ L,

we can establish, by virtue of (2.39) and (1.38),

1

L
Tr
[
Dm,L(R̂tm,L − E(R̂tm,L))R1/2

m,LQm,m

]
=

1

L
Tr
[
(R̂tm,L − E(R̂tm,L))Dm,L(R1/2

m,LQm,m)
]

=

L−1∑
u=−(L−1)

r̂◦m(u) τ(Dm,L(R1/2
m,LQm,m))(−u).

We first study the expectation of ζ and prove that

E(ζ) = O
(

1

M

)
. (3.18)

For this, we first note that, using again (2.39), we can write

E(ζ) =

∫
D
dx dy ∂̄Φk(φ)(z)

1

M

M∑
m=1

L−1∑
u=−(L−1)

E
(
r̂◦m(u)

1

L
Tr
(
Q◦m,mDm,L(J−uL )R1/2

m,L

))
where we recall that Q◦m,m = Qm,m−E(Qm,m). By the Cauchy-Schwarz inequality,

we have∣∣∣∣E(r̂◦m(u)
1

L
Tr
(
Q◦m,mDm,L(J−uL )R1/2

m,L

))∣∣∣∣ ≤
≤ Var1/2(r̂m(u)) Var1/2

(
1

L
Tr
(
Qm,mDm,L(J−uL )R1/2

m,L

))
(3.19)

and it is therefore enough to bound these two variances. Regarding Var(r̂m(u)), we

observe that we can write

r̂m(u) =
1

N
xmR1/2

m,N+L−1

(
IN
0

)
J−uN (IN , 0)R1/2

m,N+L−1x
H
m (3.20)

from which we deduce immediately that Var(r̂m(u)) ≤ κ
N . Regarding the term

corresponding to the second variance in (3.19), we first introduce the following

lemma, proven in Appendix C.

Lemma 3.1. Let xm,i the ith entry of vector xm defined in (3.15) and consider an

ML×ML deterministic matrix A. For z ∈ C+, we have

M∑
m=1

N+L−1∑
i=1

∣∣∣∣ 1

ML
Tr

(
∂Q

∂xm,i
A

)∣∣∣∣2 ≤ κ

MN

1 + |z|
(Imz)3

(
1 +

1

Imz

)
1

ML
Tr(AAH)

(3.21)
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for some nice constant κ.

As a consequence of the above lemma, we have the following result, which follows

from a direct application of the Poincaré-Nash inequality (see further [27, Lemma

3.1]).

Corollary 3.1. Let (AN )N≥1 denote a sequence of deterministic ML ×ML ma-

trices. Then,

Var
1

ML
Tr (ANQ) ≤ κ

MN

1 + |z|
(Imz)3

(
1 +

1

Imz

)
1

ML
Tr(ANAH

N ) (3.22)

for some nice constant κ.

We can apply the above corollary to study the second variance term in (3.19)

by defining the ML× L matrix Em, which is composed of M blocks of dimension

L × L, all of which are zero except for the mth one, which is equal to IL. This

means that we can express Qm,m = EH
mQEm. Hence, the use of (3.22) with AN =

EmDm,L(J−uL )R1/2
m,LEH

m leads immediately to

Var

(
1

L
Tr
(
Q◦m,mDm,L(J−uL )R1/2

m,L

))
≤ κ

N

1 + |z|
(Imz)3

(
1 +

1

Imz

)
.

Using these two bounds in (3.19) we can conclude that

|E(ζ)| ≤ κ

M

∫
D
dx dy |∂̄Φk(φ)(z)| 1

(Imz)3/2

(
1 +

1

Imz

)1/2

.

Noting that φ is smooth, we see that the above integral is finite by choosing k ≥ 2,

and consequently (3.18) is proved.

We finally establish that |ζ − E(ζ)| ≺ 1
M following the approach in [29]. More

specifically, we interpret ζ as a function of the M(N + L − 1)–dimensional vector

x = (x1, . . . ,xM ) (where we recall that the vectors (xm)m=1,...,M are defined by

(3.15)) and exchange ζ by a term that is Lipschitz with a relevant Lipschitz constant.

For each ε > 0, we denote by AN,ε the composite event

AN,ε =
⋂

m=1,...,M
u=−(L−1),...,L−1

{
|r̂m(u)− E(r̂m(u))| < Nε√

N

}
(3.23)

⋂(⋂
m=1,...,M

{
‖xm‖2
N+L−1 ≤ 2

})
.

It is clear that
∣∣∣ ‖xm‖2N+L−1 − 1

∣∣∣ ≺ 1√
N

and that |r̂m(u)− E(r̂m(u))| ≺ 1√
N

. Therefore,

the family of events (AN,ε)N≥1 holds with exponentially high probability, i.e. there

exist N0 and η > 0 such that P
(
AcN,ε

)
≤ exp−Nη for each N ≥ N0. Our strategy is

to replace ζ with a certain random variable ζ̃ε such that ζ̃ε = ζ on AN,ε and which,

considered as a function of x, is Lipschitz with constant Nε

M . In order to build ζ̃ε, we
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consider a smooth function g(t) satisfying g(t) = t if t ∈ [−1, 1], g(t) = 0 if |t| ≥ 2,

g(t) ≥ 0 if t ≥ 0, g(t) ≤ 0 if t ≤ 0 and |g(t)| ≤ 2|t| for each t. We then define gN,ε(t)

by

gN,ε(t) =
N ε

√
N
g

(√
N

N ε
t

)
(3.24)

It is easy to check that gN,ε verifies:

gN,ε(t) = t if |t| ≤ N ε

√
N
, gN,ε(t) = 0 if |t| ≥ 2N ε

√
N
, |gN,ε(t)| ≤

2N ε

√
N

for each t

(3.25)

and

g′N,ε(t) = 0 if |t| ≥ 2N ε

√
N
, |g′N,ε(t)| ≤ κ if |t| ≤ 2N ε

√
N
. (3.26)

We also introduce a C1 function g̃(t) verifying g̃(t) = 1 if t ∈ [0, 2], and g̃(t) = 0 if

t does not belong to [−1, 3]. We then define ζ̃ε by

ζ̃ε =
1

M

∫
D
dx dy ∂̄Φk(φ)(z)f(x, z) (3.27)

where f(x, z) is defined by

f(x, z) =

M∑
m=1

g̃

(
‖xm‖2

N + L− 1

) L−1∑
u=−(L−1)

gN,ε(r̂
◦
m(u)) τ(Dm,L(R1/2

m,LQm,m(z))(−u)

 .

(3.28)

It is clear that ζ̃ε = ζ on the set AN,ε. In the following, we first establish that, con-

sidered as a function of x, ζ̃ε is a Lipschitz function with constant Nε

M . This property

will imply that |ζ̃ε − E(ζ̃ε)| ≺ Nε

M . Next, we justify that if |ζ̃ε − E(ζ̃ε)| ≺ Nε

M , then

|ζ − E(ζ)| ≺ Nε

M . As this property will be true for each ε > 0, we will deduce from

this that |ζ − E(ζ)| ≺ 1
M as expected.

In order to show that ζ̃ε is a Lipschitz function with constant Nε

M , we establish

that the norm square of the gradient of ζ̃ε is a O(N
2ε

M2 ) term.

Lemma 3.2. Under the assumptions of Theorem 3.1, the inequality

‖∇ζ̃ε‖2 =

M∑
m0=1

N+L−1∑
i=1

∣∣∣∣∣ ∂ζ̃ε
∂xm0,i

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂ζ̃ε
∂x∗m0,i

∣∣∣∣∣
2
 ≤ κN2ε

M2
(3.29)

holds true for some nice constant κ > 0.

We just evaluate the contribution of the derivatives w.r.t. the variables xm0,i

because the derivatives w.r.t. x∗m0,i
can be addressed in a similar way. It is clear
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that ∣∣∣∣∣ ∂ζ̃ε
∂xm0,i

∣∣∣∣∣
2

≤ κ

M2

∫
D
dx dy

∣∣∂̄Φk(φ)(z)
∣∣2 ∣∣∣∣ ∂f

∂xm0,i

∣∣∣∣2
so that Lemma 3.2 will be established if we choose k ≥ 4 and prove that

M∑
m0=1

N∑
i=1

∣∣∣∣ ∂f

∂xm0,i

∣∣∣∣2 ≤ N2ε P1(|z|)P2

(
1

Imz

)
(3.30)

where P1 and P2 are nice polynomials, with deg(P2) ≤ 4.

We now observe that the derivative ∂f/∂xm0,i is the sum of the followings three

terms:

T 1
m0,i = g̃′

(
‖xm0‖2

N + L− 1

)
x∗m0,i

N + L− 1

 L−1∑
u=−(L−1)

gN,ε(r̂
◦
m0

(u)) τ(Dm0,L(R1/2
m0,L

Qm0,m0
))(−u)



T 2
m0,i = g̃

(
‖xm0

‖2

N + L− 1

) L−1∑
u=−(L−1)

g′N,ε(r̂
◦
m0

(u))
∂r̂m0

(u)

∂xm0,i
τ(Dm0,L(R1/2

m0,L
Qm0,m0

))(−u)



T 3
m0,i =

M∑
m=1

g̃

(
‖xm‖2

N + L− 1

) L−1∑
u=−(L−1)

gN,ε(r̂
◦
m(u)) τ(Dm,L(R1/2

m0,L

∂Qm,m

∂xm0,i
))(−u)


We first address the behaviour of

∑
m0,i
|T 1
m0,i
|2. For this, we first remark that∣∣∣∣g̃′( ‖xm0

‖2

N + L− 1

)∣∣∣∣2 ≤ κ1 ‖xm0
‖2

N+L−1≤3
.

Now, using the inequality |gN,ε(t)| ≤ 2 Nε√
N

together with the Cauchy-Schwartz

inequality, we obtain∣∣∣∣∣∣
L−1∑

u=−(L−1)

gN,ε(r̂m0
(u)− E(r̂m0

(u)) τ(Dm0,L(R1/2
m0,L

Qm0,m0
))(−u)

∣∣∣∣∣∣
2

≤

≤ κL N
2ε

N

L−1∑
u=−(L−1)

∣∣∣τ(Dm0,L(R1/2
m0,L

Qm0,m0
))(u)

∣∣∣2 .
Now, the inequality in (1.37) together with (2.41) imply that, for each L×L matrix

A, we have

L−1∑
u=−(L−1)

|τ(Dm0,L(A))(u)|2 ≤ κ 1

L
Tr(AAH) (3.31)
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for some nice constant κ > 0. Using this for A = R1/2
m0,L

Qm0,m0
leads to the

conclusion that

L−1∑
u=−(L−1)

∣∣∣τ(Dm0,L(R1/2
m0,L

Qm0,m0))(u)
∣∣∣2 ≤ κ 1

L
Tr
(
Qm0,m0Q

H
m0,m0

)
. (3.32)

Therefore, we obtain that

|T 1
m0,i|

2 ≤ κ

(N + L− 1)

LN2ε

N

|xm0,i|2

N + L− 1
1 ‖xm0‖

2

N+L−1≤3

1

L
Tr
(
Qm0,m0

QH
m0,m0

)
from where we deduce that

N+L−1∑
i=1

|T 1
m0,i|

2 ≤ κ

(N + L− 1)

LN2ε

N

1

L
Tr
(
Qm0,m0Q

H
m0,m0

)
and

M∑
m0=1

N+L−1∑
i=1

|T 1
m0,i|

2 ≤ κ N
2ε

N

1

ML
Tr
(
QQH

)
≤ κ N

2ε

N

1

(Imz)2
.

We now consider
∑
m0,i
|T 2
m0,i
|2. We first remark that∣∣∣∣g̃( ‖xm0

‖2

N + L− 1

)∣∣∣∣2 ≤ κ1 ‖xm0
‖2

N+L−1≤3

and that
∣∣g′N,ε(r̂m0

(u)− E(r̂m0
(u))

∣∣2 ≤ κ. Therefore, a direct use of the Cauchy-

Schwartz inequality and (3.32) leads us to

∣∣T 2
m0,i

∣∣2 ≤ κ1 ‖xm0
‖2

N+L−1≤3

(∑
u

∣∣∣∣∂r̂m0(u)

∂xm0,i

∣∣∣∣2
)

1

L
Tr
(
Qm0,m0Q

H
m0,m0

)
.

Using (3.20), we obtain that

N+L−1∑
i=1

∣∣∣∣∂r̂m0
(u)

∂xm0,i

∣∣∣∣2 ≤ κ

N + L− 1

‖xm0
‖2

N + L− 1

and eventually that∑
m0,i

∣∣T 2
m0,i

∣∣2 ≤ κ 1

ML
Tr
(
QQH

)
≤ κ

(Imz)2
.

We finally study
∑
m0,i
|T 3
m0,i
|2. Using once more the fact that |gN,ε(t)|2 ≤ 4N

2ε

N

and that
∣∣∣g̃ ( ‖xm0

‖2

N+L−1

)∣∣∣2 ≤ κ, Jensen inequality leads immediately that

∑
m0,i

|T 3
m0,i|

2 ≤ κN2ε

N
ML

M∑
m=1

L−1∑
u=−(L−1)

∑
m0,i

∣∣∣∣τ (Dm,L(R1/2
m,L

∂Qm,m

∂xm0,i

))
(u)

∣∣∣∣2
(3.33)
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In order to evaluate
∑
m0,i
|T 3
m0,i
|2, we use (2.39) and observe that we can write

τ

(
Dm,L

(
R1/2
m,L

∂Qm,m

∂xm0,i

))
(u) =

1

L
Tr

(
∂Qm,m

∂xm0,i
Dm,L(JuL)R1/2

m,L

)
=

1

L
Tr

(
∂Q

∂xm0,i
A

)
where A is the ML ×ML matrix defined by A = EmDm,L(JuL)R1/2

m,LEH
m. Lemma

3.1 leads immediately to

∑
m0,i

∣∣∣∣τ (Dm,L(R1/2
m,L

∂Qm,m

∂xm0,i

))
(u)

∣∣∣∣2 ≤ κ

N

(1 + |z|)
(Imz)3

(
1 +

1

Imz

)
Plugging this into the evaluation (3.33) eventually leads to∑

m0,i

|T 3
m0,i|

2 ≤ κN2ε (1 + |z|)
(Imz)3

(
1 +

1

Imz

)
This establishes (3.30) and Lemma 3.2. Therefore, we have shown that, considered

as a function of x, ζ̃ε is Lipschitz with constant κN
ε

M . The Gaussian concentration

inequality thus implies that
∣∣∣ζ̃ε − E(ζ̃ε)

∣∣∣ ≺ Nε

M .

It remains to justify that
∣∣∣ζ̃ε − E(ζ̃ε)

∣∣∣ ≺ Nε

M implies that |ζ − E(ζ)| ≺ Nε

M . For

this, it is sufficient to follow the proof of [29, Lemma 4.1, p.41].

4. Evaluation of the modified statistic φN

4.1. Reduction to the study of the expectation of φN

In this short section, we show that we can reduce the study of the statistic φN to

the study of the expectation E(φN ) up to an error that is dominated by 1
M
√
L

. We

express the result in terms of the following proposition.

Proposition 4.1. Let Assumptions 1-3 and 5 hold true and let φ have the same

properties as in the statement of Theorem 3.1. Then,∣∣φN − E
(
φN
)∣∣ ≺ 1

M
√
L
. (4.1)

We devote the rest of the section to the proof of this result. We first reason that,

without loss of generality, we can replace the function φ by a smooth function that

is supported by [−δ, α] for some α > α0 (see the statement of Theorem 3.1 for a

definition of α0, δ). The justification is the same that we used at the initial steps of

the proof of Theorem 3.1 and is therefore omitted. We therefore focus on this class

functions for the rest of the proof.
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In order to show Proposition 4.1, consider again the Helffer-Sjöstrand represen-

tation of φN in (3.3), which allows us to write

φ
◦
N = φN − EφN =

1

π
Re

∫
D
dx dy ∂̄Φk(φ)(z)

1

ML
Tr (QN (z)− EQN (z)) . (4.2)

Here again, the idea is to consider φ
◦
N as a function of the NC(0, IM(N+L−1))-

distributed random vector x defined in (3.16). We will show that this function

is Lipschitz with constant of order O((M
√
L)−1), so that the result follows from

conventional concentration results of Gaussian functionals in (1.32) (see also [38,

Theorem 2.1.12]).

Indeed, let ∇φ◦N denote the gradient of φ
◦
N with respect to x. Then, we can

obviously write

∥∥∥∇φ◦N∥∥∥2

=

M∑
m0=1

N+L−1∑
i=1

∣∣∣∣ ∂φN∂xm0,i

∣∣∣∣2 +

∣∣∣∣∣ ∂φN∂x∗m0,i

∣∣∣∣∣
2

where we recall that xm0,i denotes the ith entry of xm, the mth block of x, with

dimension N + L− 1. A direct use of Lemma 3.1 shows that

M∑
m0=1

N+L−1∑
i=1

∣∣∣∣ ∂φN∂xm0,i

∣∣∣∣2 ≤ κ

MN

∫
D
dx dy

∣∣∂Φk(φ)(z)
∣∣2 1 + |z|

(Imz)3

(
1 +

1

Imz

)
for some nice constant κ, where the integral on the right hand side is finite if we

select k ≥ 4, which is always possible because φ is smooth. This concludes the proof

of Proposition 4.1.

4.2. Weak convergence of µN(λ) and evaluation of E(φN)

The aim of this section is twofold. On the one hand, we will show that µN (λ)−µN (λ)

converges weakly almost surely to zero. On the other hand, we will evaluate the

convergence of the E(φN ) by establishing that, when L3/2

MN → 0 (equivalently β <

4/5), we have ∣∣∣∣E (φN)− ∫ φ(λ)dµN (λ)

∣∣∣∣ ≤ κ L

MN
(4.3)

for some nice constant κ > 0.

We will address the problem by studying 1
MLTr (EQN (z)−TN (z)). We will

study this term by conveniently adapting the tools in [27] to the present context.

First, we study the master equations that define the matrix function TN (z) in the

statement of Theorem 1.1 and establish existence and unicity of the solution using

again the tools developed in [27, Section 5]. We then establish that, considering a
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sequence of ML ×ML deterministic matrices AN of uniformly bounded spectral

norm, we have ∣∣∣∣ 1

ML
Tr [(EQN (z)−TN (z)) AN ]

∣∣∣∣ ≤ κ L

MN

for z in a certain subset of C+, assuming that β < 4/5. Even if the subset where

the above inequality holds is not the whole semiplane C+, it will be sufficient to

deduce (4.3) by conveniently adapting the arguments in [2, Lemma 5.5.5].

First of all, we consider here the two asymptotic equivalents T(z),T̃(z), as the

solutions to the equations (1.20)-(1.21).

Proposition 4.2. There exists a unique pair of functions (T(z), T̃(z)) ∈
SML(R+) × SN (R+) that satisfy (1.20)–(1.21) for each z ∈ C+. Moreover, one

can find two nice constants η and η̃ such that

T(z)TH(z) ≥ (Imz)2

16(η2 + |z|2)2
IML (4.4)

T̃(z)T̃H(z) ≥ (Imz)2

16(η̃2 + |z|2)2
IN . (4.5)

The proof follows the steps as the proof of Proposition 5.1 in [27]. To prove

existence, we consider the composition of (1.20)–(1.21) as a mapping in the set of

ML ×ML block diagonal matrices. Using Proposition 1.2 one can establish that

iterating these two equations one can create a sequence of ML×ML diagonal block

matrices with blocks belonging to the class SL (R+) that has a limit in this set.

Then, in a second step, it can be shown that this limit is a solution to the canonical

equation. For more details, the reader may refer to the proof of Proposition 5.1 in

[27].

The proof of unicity follows the same path that was established in [27]. More

specifically, assume that T(z), T̃(z) and S(z), S̃(z) are matrices solutions of the sys-

tem (1.20, 1.21) of equations at point z, and assume that T(z) and S(z) have posi-

tive imaginary parts. Let TB(z) = B−1/2
L T(z)B−1/2

L and SB(z) = B−1/2
L S(z)B−1/2

L .

It is easily seen that

TB(z)− SB(z) = ΦB,0 (TB(z)− SB(z)) (4.6)

where we have defined the operator ΦB,0 (X) as

ΦB,0 (X) = z2cNSB(z)Ψ
(
S̃T (z)Ψ (X) T̃T (z)

)
TB(z) (4.7)

where X is an ML ×ML matrix. This operator is the analog of Φ0 (X) in [27]

translated to our current matrix model. Operating like in [27] we write Φ
(1)
B,0 (X) =

ΦB,0 (X) and recursively define Φ
(n+1)
B,0 (X) = ΦB,0(Φ

(n)
B,0(X)) for n ≥ 1. By (4.6),

unicity is proven if we are able to show that limn→∞ Φ
(n)
B,0(X) = 0 for every ML×
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ML matrix X. Now, using Proposition 1.3 it is easily established that, for any two

L-dimensional column vectors a, b, we can write∣∣∣∣aH (Φ
(n)
B,0 (X)

)
m,m

b

∣∣∣∣ ≤ [aH (Φ
(n)
SB

(
XXH

))
m,m

a

]1/2 [
bH
(

Φ
(n)

THB
(IML)

)
m,m

b

]1/2

(4.8)

where ΦTHB
and ΦSB are the positive operators defined by

ΦTHB
(X) = |z|2 cNTH

B (z)Ψ
(
T̃∗(z)Ψ (X) T̃T (z)

)
TB(z) (4.9)

ΦSB (X) = |z|2 cNSB(z)Ψ
(
S̃T (z)Ψ (X) S̃∗(z)

)
SHB (z). (4.10)

Thus, by Proposition 1.3, limn→∞Φ
(n)
B,0(X) = 0 will follow directly if we are able

prove that there exist two positive definite matrices Y1 and Y2 such that Φ
(n)

THB
(Y1)

and Φ
(n)
SB

(Y2) converge towards 0.

Lemma 4.1. Let T(z), T̃(z) be a solution to the canonical equation (1.20, 1.21)

at point z ∈ C+ satisfying Im(T(z)) ≥ 0, and define TB(z) = B−1/2
L T(z)B−1/2

L . Let

X be a positive semi definite matrix. Then, it holds that

Φ
(n)
TB

(X)→ 0 (4.11)

and

Φ
(n)

THB
(X)→ 0 (4.12)

as n→∞. Moreover, the series
∑+∞
n=0 Φ

(n)
TB

(X) and
∑+∞
n=0 Φ

(n)

THB
(X) converge.

Proof. The proof of the lemma follows the same steps as the proof of Lemma 5.4

in [27] and is therefore omitted.

As a consequence of all the above, Theorem 1.1 will be a direct implication of

the following result.

Proposition 4.3. We consider a sequence (AN )N≥1 of ML ×ML deterministic

matrices such that supN ‖AN‖ ≤ a for some nice constant a. Then, for each z ∈
C+, we have

1

ML
Tr (AN (QN (z)−TN (z)))→ 0 (4.13)

almost surely. For any bounded continuous function φ we have∣∣∣∣ 1

ML
Tr
(
φ(Rcorr,L)

)
−
∫
φ(λ)dµN (λ)

∣∣∣∣→ 0 (4.14)

almost surely.
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Assume, in addition, that L3/2

MN → 0, i.e. that β < 4
5 . In this case, we have∣∣∣∣ 1

ML
Tr (AN (EQN (z)−TN (z)))

∣∣∣∣ ≤ C(z)
L

MN
(4.15)

when z belongs to a set EN defined as

EN =

{
z ∈ C+,

L3/2

MN
P1(|z|)P2(1/Imz) < 1

}
and where P1 and P2 are two nice polynomials. Finally, for each compactly supported

smooth function φ, we have∣∣∣∣ 1

ML
ETr

(
φ(Rcorr,L)

)
−
∫
φ(λ)dµN (λ)

∣∣∣∣ ≤ κ L

MN
(4.16)

for some nice constant κ > 0.

Proof. The proof of (4.13) can be established by essentially following the approach

in [27]. The main idea is to consider the resolvent in (1.30) together with the co-

resolvent, defined as

Q̃N (z) =
(
WH

NB−1
L WN − zIN

)−1
.

Using a trivial modification of [27, Lemma 3.1] one can reduce the problem to

the study of the expectations EQN (z) and EQ̃N (z). We can then introduce two

matrix-valued functions RN (z) and R̃N (z) defined as

R̃N (z) = −1

z

(
IN + cNΨ

T
(
B−1/2
L EQN (z)B−1/2

L

))−1

(4.17)

RN (z) = −1

z

(
IML + B−1/2

L Ψ
(
R̃T
N (z)

)
B−1/2
L

)−1

(4.18)

which are the analogous of the same quantities in [27, Section 4]. In particular, one

can establish that Lemma 4.1 and Proposition 4.3 in [27] also hold true with these

new definitions, so that∣∣∣∣ 1

ML
Tr [AN (EQN (z)−RN (z))]

∣∣∣∣ ≤ C(z)
L

MN

for all z ∈ C+. In order to see this, we need to make explicit use of Assumption

4. At this point, in order to show (4.13) and (4.15) one only needs to evaluate the

quantity RN (z)−TN (z) using the approach in Section 6 of [27], which essentially

holds verbatim after replacing the operators Φ1(X) and Φt1(X) with

ΦB,1 (X) = z2cNRB(z)Ψ
(
R̃T
N (z)Ψ (X) T̃T

N (z)
)

TB(z) (4.19)

ΦtB,1(X) = z2cN Ψ
(
T̃T
N (z)Ψ(TB(z)XRB(z))R̃T

N (z)
)

(4.20)

where now RB(z) = B−1/2
L RN (z)B−1/2

L . In particular, (4.15) will follow the ar-

guments in [27, Section 6.1], which basically requires the application of Montel’s
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theorem. To see that (4.13) implies (4.14) we need to check that (µ̄N )N≥1 is almost

surely tight and (µN )N≥1 is tight (see [15, Corollary 2.7]). The fact that (µ̄N )N≥1

is almost surely tight follows from the fact that∫
R+

λdµ̄N (λ) =
1

ML
TrB−1/2

L WNWH
NB
−1/2
L =

1

M

M∑
m=1

1

L
Tr
[
R−1/2
m,L R̂m,LR

−1/2
m,L

]
.

The identity in (2.26) implies that

sup
m=1,...,M

∣∣∣∣ 1LTr
[
R−1/2
m,L R̂m,LR

−1/2
m,L

]
− 1

∣∣∣∣→ 0, a.s.

Therefore,
∫
R+ λdµ̄N (λ) → 1 almost surely, and tightness holds with probabil-

ity one. To verify that (µN )N≥1 is tight, we evaluate
∫
R+ λdµN (λ) using item

(v) of Proposition 1.1 and immediately obtain that
∫
R+ λdµN (λ) = IML and∫

R+ λdµN (λ) = 1, so tightness established.

To establish (4.15) when β < 4/5, we follow the corresponding arguments in [27,

Section 6.2]. Regarding (4.16), it will be a direct consequence of [6, Lemma 5.5.5]3

provided that we are able to show that, given two nice constants C0, C
′
0, there exist

three nice constants C1, C2, C3 and an integer N0 such that∣∣∣∣ 1

ML
Tr (EQN (z)−TN (z))

∣∣∣∣ ≤ C2
L

MN

1

(Imz)C3

for all z inside the domain |Rez| ≤ C0, N−C1 ≤ Imz ≤ C ′0 and N > N0. For this,

it is sufficient to to follow the arguments used to establish Theorem 10.1 in [26].

Remark 4.1. We notice that (4.16) is just established for compactly supported

functions φ. In order to extend (4.16) to non compactly supported φ, it would be

necessary to establish that the support of µN is included for each N large enough in

a compact subset independent from N . While we feel that this property holds, its

proof does not seem obvious. In Section 6 we provide an example of non-compactly

supported φ for which (4.16) still holds.

5. Approximation by a Marchenko-Pastur distribution

Let us denote by tN (z) the Stieltjes transform of the Marcenko-Pastur law µmp,cN
associated to the parameter cN = ML

N . In other words, for each z ∈ C+, tN (z) is

the unique solution of the equation

tN (z) =
1

−z + 1
1+cN tN (z)

(5.1)

3The statement of [6, Lemma 5.5.5] requires that the function φ vanishes on the support of µN .
However, the reader may check that this assumption is in fact not needed.
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for which Im(tN (z)) ≥ 0. If TN (z) represents the deterministic equivalent of QN (z),

solution of the equations (1.20, 1.21), the following theorem establishes that, for

each γ < γ0, γ 6= 1, the Stieltjes transform 1
MLTrTN (z) is well approximated by

tN (z), up to an error of order O(L−2 min(1,γ).

The strategy of the proof follows two steps. In a first step, we will establish

that the spectral norm of the error between the two Stieltjes transforms ‖TN (z)−
tN (z)IML‖ is upper bounded by a term that decays as L−min(1,γ) for each γ <

γ0, γ 6= 1. In a second stage, this result is used to obtain a refined convergence rate

for the normalized trace of the result, so that, in fact

1

ML
Tr (TN (z)− tN (z)IML) ≤ 1

L2 min(γ,1)
P1(z)P2

(
1

Imz

)
(5.2)

for each z ∈ C+ and for two nice polynomials P1(z), P2(z).

We observe here that a direct application of the above result to the Helffer-

Sjöstrand formula implies (1.25) in Theorem 1.1. Indeed, observe that in this case

we can write∫
R+

φ(λ)dµN (λ)−
∫
R+

φ(λ)dµmp,N (λ) =

=
1

π
Re

∫
D
dx dy ∂Φk(φ)(z)

1

ML
Tr (TN (z)− tN (z)IML) .

If k is taken to be larger than or equal to the degree of P2 in (5.2), this directly shows

(1.25). On the other hand, from the convergence of 1
MLTr (TN (z)− tN (z)IML) for

all z ∈ C+ to zero together with the fact that both (µN )N≥1 and (µmp,cN )N≥1 are

tight4, we see that µN −µmp,cN converges weakly to zero. But since µmp,cN in turn

converges weakly to µmp,c? , the proof of Theorem 1.1 is completed.

Remark 5.1. We again notice that (1.25) is established for compactly supported

smooth functions φ. As in the context of Remark 4.1, the generalization of (1.25)

to non compactly supported functions would need to prove that the support of µN
is included in a compact independent of N .

We will present the two stages of the proof in two separate subsections that

follow. In order to simplify the notation, we will drop from now on the subindex N

in all relevant quantities, i.e. tN (z), t̃N (z), cN ,TN (z), T̃N (z), etc.

5.1. Bounding the spectral norm ‖TN(z)− tN(z)IML‖

The objective of this section is to prove the following result.

4Tightness of (µN )N≥1 has been established before, whereas tightness of (µmp,cN )N≥1 follows
from the fact that cN → c?.
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Theorem 5.1. Under Assumptions 2, 3 and 5, there exist two nice polynomials P1

and P2 as given in Definition 6, such that for each γ < γ0, γ 6= 1, the inequality

‖TN (z)− tN (z)IML‖ ≤
1

Lmin(γ,1)
P1(|z|)P2

(
1

Imz

)
(5.3)

holds for each z ∈ C+.

We devote the rest of this section to the proof of Theorem 5.1. First of all,

it is well known that the function t̃(z) = ct(z) − 1−c
z coincides with the Stieltjes

transform of the probability measure cµmp,c + (1− c)δ0 and is equal to

t̃(z) = − 1

z(1 + ct(z))
(5.4)

so that t(z) can also be written as

t(z) = − 1

z(1 + t̃(z))
.

Consider here the two matrix-valued functions T̃mp(z) and Tmp(z) defined by

T̃mp(z) = −1

z

(
IN + cNΨ

T
(
B−1/2
L t(z)IML B−1/2

L

))−1

(5.5)

Tmp(z) = −1

z

(
IML + B−1/2

L Ψ
(
T̃T
mp(z)

)
B−1/2
L

)−1

. (5.6)

According to Proposition 1.2, these functions belong to SN (R+) and SML(R+)

respectively, and verify the various properties of functions Υ̃(z) and Υ(z) defined

in the statement of that proposition. In order to establish Theorem 5.1, we define

∆mp(z) by

∆mp(z) = t(z)IML −Tmp(z) (5.7)

and express t(z)IML −T(z) as

t(z)IML −T(z) = (Tmp(z)−T(z)) + ∆mp(z). (5.8)

We also define tB(z), TB,mp(z) and ∆B,mp(z) by tB(z) = B−1/2
L t(z)IML B−1/2

L ,

TB,mp(z) = B−1/2
L Tmp(z)B−1/2

L and ∆B,mp(z) = B−1/2
L ∆mp(z)B−1/2

L respectively.

Using the definition of Tmp and T̃mp as well as the canonical equations (1.20, 1.21),

we obtain easily that

TB,mp(z)−TB(z) = ΦB,2 (tB(z)−TB(z)) (5.9)

where ΦB,2 is the linear operator acting on ML×ML matrices defined as

ΦB,2(X) = cz2TB,mp(z)Ψ
(
T̃T
mp(z)Ψ (X) T̃T (z)

)
TB(z). (5.10)

Using this definition, we can re-write (5.8) as

tB(z)−TB(z) = ΦB,2 (tB(z)−TB(z)) + ∆B,mp(z). (5.11)
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Our approach is to use Proposition 1.3 in order to establish that

tB(z)−TB(z) =

+∞∑
n=0

Φ
(n)
B,2 (∆B,mp(z)) (5.12)

and that ‖tB(z) − TB(z)‖ ≤ C(z) ‖∆B,mp(z)‖. The identity in (5.3) will then be

established if we are able to show that ‖∆B,mp(z)‖ ≤ C(z) 1
Lmin(1,γ) if γ < γ0, γ 6= 1.

We begin by evaluating the spectral norm of ∆mp(z) and ∆B,mp(z). For this,

we observe that T̃T
mp(z) is given by

T̃T
mp(z) = −1

z

(
IN + ct(z)Ψ

(
B−1
L

))−1

where we can express Ψ
(
B−1
L

)
as

Ψ
(
B−1
L

)
=

∫ 1

0

1

M

M∑
m=1

Sm(ν)aHL (ν)R−1
m,LaL(ν)dN (ν)dHN (ν) dν.

Let us denote by EN the N ×N matrix defined by

EN =

∫ 1

0

(
1

M

M∑
m=1

εm,L (ν)

)
dN (ν) dHN (ν) dν (5.13)

where εm,L(ν) is defined by

εm,L (ν) = Sm(ν)aHL (ν)R−1
m,LaL (ν)− 1.

It is clear that Ψ
(
B−1
L

)
= IN + EN , so that T̃T

mp(z) can be written as

T̃T
mp(z) =

[
−z(1 + ct(z))

(
IN +

ct(z)

1 + ct(z)
EN

)]−1

or equivalently as

T̃T
mp(z) = t̃(z) IN

(
IN − c z t(z) t̃(z)EN

)−1

= t̃(z)IN + czt(z)t̃2(z)EN

(
IN − c z t(z) t̃(z)EN

)−1
.

In order to express Tmp(z) in a convenient way, we define Γ(z) as the ML ×ML

block diagonal matrix given by

Γ(z) = Ψ
(
EN

(
IML − c z t(z) t̃(z)EN

)−1
)
. (5.14)

Using that Ψ(IN ) = BL, we obtain

Tmp(z) =
[
−z
(

(1 + t̃(z))IML + czt(z)t̃2(z)B−1/2
L Γ(z)B−1/2

L

)]−1

or, equivalently,

Tmp(z) = t(z)
(
IML − c(zt(z)t̃(z))2ΓB(z)

)−1

= t(z)IML + t(z)c(zt(z)t̃(z))2ΓB(z)
(
IML − c(zt(z)t̃(z))2ΓB(z)

)−1
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where ΓB(z) = B−1/2
L Γ(z)B−1/2

L . We eventually obtain that

∆mp(z) = −t(z)c(zt(z)t̃(z))2ΓB(z)
(
I− c(zt(z)t̃(z))2ΓB(z)

)−1
. (5.15)

The asymptotic behaviour of ∆mp(z) depends on the behaviour of matrix EN ,

which itself depends on the properties of the terms (εm(ν))m=1,...,M . The following

Lemma, established in the Appendix D, is the key point of the proof of Theorem

5.1.

Lemma 5.1. For each γ < γ0, it holds that

sup
m≥1

sup
ν∈[0,1]

|εm,L(ν)| ≤ κ

Lmin(γ,1)
(5.16)

for some nice constant κ (depending on γ) if γ 6= 1 while if γ = 1,

sup
m≥1

sup
ν∈[0,1]

|εm,L(ν)| ≤ κ logL

L
. (5.17)

In the following, we use Lemma 5.1 for a value of γ as close as possible to γ0

in order to obtain the fastest speed of convergence for supm≥1 supν∈[0,1] |εm,L(ν)|.
If γ0 ≤ 1, γ < γ0 ≤ 1 cannot be equal to 1. If γ0 > 1, we will of course consider a

value of γ for which 1 < γ < γ0. Therefore, in the following, we assume that γ 6= 1.

If γ0 ≤ 1, we thus obtain that for each γ < γ0

sup
m≥1

sup
ν∈[0,1]

|εm,L(ν)| ≤ κ

Lγ
(5.18)

holds, while if γ0 > 1,

sup
m≥1

sup
ν∈[0,1]

|εm,L(ν)| ≤ κ

L
. (5.19)

Noting that EN is the N × N Toeplitz matrix with symbol 1
M

∑M
m=1 εm,L(ν), we

immediately infer from this discussion the following corollary.

Corollary 5.1. If γ0 ≤ 1, then, for each γ < γ0, there exists a nice constant κ

depending on γ for which ‖EN‖ ≤ κ
Lγ . If γ0 > 1, there exists a nice constant κ

such that ‖EN‖ ≤ κ
L .

In order to control the norm of Γ(z), we mention that for each z ∈ C+,

then c|zt(z)t̃(z)|2 < 1 (see e.g. Lemma 1.1 in [26]). Therefore, the inequalities

|zt(z)t̃(z)| ≤ 1√
c

and c|zt(z)t̃(z)| ≤
√
c hold on C+. Corollary 5.1 thus im-

plies that for L large enough, ‖IN − c z t(z) t̃(z)EN‖ > 1 −
√
c ‖EN‖ > 1

2 and

‖
(
IN − c z t(z) t̃(z)EN

)−1 ‖ < 2 hold for each z ∈ C+. For L large enough, we

thus have ‖EN

(
IN − c z t(z) t̃(z)EN

)−1 ‖ ≤ κ
Lmin(γ,1) for some nice constant κ, a

property which also implies that ‖Γ(z)‖ ≤ κ
Lmin(γ,1) because if X̃ is any N × N
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matrix, then ‖Ψ(X̃)‖ ≤ smax ‖X̃‖, where we recall that smax is an upper bound on

the spectral densities (cf. Assumption 3). We also notice that for L large enough,

‖IML − c(zt(z)t̃(z))2ΓB(z)‖ > 1 − ‖ΓB(z)‖ > 1
2 for each z ∈ C+, and therefore,

that ‖
(
IML − c(zt(z)t̃(z))2ΓB(z)

)−1 ‖ < 2 on C+. This, in turn, implies that

‖∆mp(z)‖ ≤
C(z)

Lmin(γ,1)
(5.20)

and also ‖∆B,mp(z)‖ ≤ C(z)
Lmin(γ,1) for L large enough, as we wanted to show.

We now establish that (5.12) holds. We first prove that for any ML × ML

block matrix matrix X the series
∑+∞
n=0 Φ

(n)
B,2(X) is convergent. For this, we use

Proposition 1.3. According to Lemma 4.1,
∑+∞
n=0 Φ

(n)

THB
(Y) < +∞ for each positive

matrix Y. In order to establish a similar property for operator ΦTB,mp , we notice

that a simple calculation leads to the identity

ImTB,mp(z)

Imz
= B−1/2

L Tmp(z)T
H
mp(z)B

−1/2
L + ΦTB,mp

(
ImtB
Imz

)
if z ∈ C+. This implies that

ImtB(z)

Imz
= B−1/2

L Tmp(z)T
H
mp(z)B

−1/2
L +

Im∆B,mp(z)

Imz
+ ΦTB,mp

(
ImtB
Imz

)
.

Noting that ‖∆B,mp(z)‖ ≤ C(z)
Lmin(γ,1) , Lemma B.1 in [16] implies that∥∥∥∥ Im∆B,mp(z)

Imz

∥∥∥∥ ≤ C(z)

Lmin(γ,1)
.

Proposition 1.2 implies that Tmp(z)T
H
mp(z) ≥ 1

C(z)IML for each z ∈ C+. Therefore,

if we denote by Y1(z) the matrix Y1(z) = B−1/2
L Tmp(z)T

H
mp(z)B

−1/2
L +

Im∆B,mp(z)
Imz ,

then, Y1(z) > 1
C(z) IML > 0 if z ∈ FN where FN is a subset of C+ defined by

FN =

{
z ∈ C+,

1

Lmin(1,γ)
P1(|z|)P2

(
1

Imz

)
≤ κ

}
(5.21)

for some nice constant κ. Using the same arguments as in [27], we obtain that for

each z ∈ FN , the series
∑+∞
n=0 Φ

(n)
TB,mp

(Y1(z)) is convergent. Proposition 1.3 implies

that for each positive matrix Y,
∑+∞
n=0 Φ

(n)
TB,mp

(Y) < +∞ and that for each matrix

X, the series
∑+∞
n=0 Φ

(n)
B,2 (X) is convergent if z ∈ FN . Therefore, (5.12) holds true

for z ∈ FN , and∥∥∥∥∥
+∞∑
n=0

Φ
(n)
B,2 (∆B,mp(z))

∥∥∥∥∥ ≤ ‖∆B,mp(z)‖
∥∥∥∥∥

+∞∑
n=0

Φ
(n)
TB,mp

(IML)

∥∥∥∥∥
1/2 ∥∥∥∥∥

+∞∑
n=0

Φ
(n)
TB

(IML)

∥∥∥∥∥
1/2

.

It is easy to check that
∑+∞
n=0 Φ

(n)
TB,mp

(IML) < C(z)IML for z ∈ FN . Therefore, we

obtain that ‖tB(z) − TB(z)‖ ≤ C(z)
Lmin(γ,1) for each z ∈ FN . It remains to evaluate

‖tB(z) − TB(z)‖ if z does not belong to FN . For this, we remark that ‖tB(z) −
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TB(z)‖ ≤ ‖tB(z)‖ + ‖TB(z)‖ ≤ C(z). As z does not belong to FN , the inequality

1 ≤ C(z)
Lmin(1,γ) holds for a certain C(z), from which we deduce that ‖tB(z)−TB(z)‖ ≤

C(z)
Lmin(γ,1) as expected. Since the matrix B−1/2

L verifies B−1/2
L > 1√

smin
IML, we obtain

(5.3) for each z ∈ C+.

5.2. Bounding the term 1
ML

Tr (tN(z)IML − TN(z))

We begin by considering the identity in (5.11), and obtain that

t(z)IML−T(z) = B1/2
L ΦB,2

(
B−1/2
L (t(z)IML −T(z))B−1/2

L

)
B1/2
L +∆mp(z) (5.22)

which directly implies that

t(z)− 1

ML
Tr(T(z)) =

1

ML
Tr
(

ΦB,2

(
B−1/2
L (t(z)IML −T(z))B−1/2

L

)
BL
)

+

+
1

ML
Tr(∆mp(z)). (5.23)

We introduce the operator ΦtB,2 defined by the property that, for any two ML×ML

matrices X, Y, we have

1

ML
Tr (XΦB,2(Y)) =

1

ML
Tr
(
YΦtB,2(X)

)
. (5.24)

This can be seen as a transpose operator of ΦB,2. Using (1.41) it can be expressed

in closed form as

ΦtB,2(X) = cz2Ψ
(
T̃TΨ(TBXTB,mp)T̃

T
mp

)
.

Using (5.24), the expression in (5.23) can be rewritten as

t(z)− 1

ML
Tr(T(z)) =

1

ML
Tr
(

(t(z)IML −T(z))B−1/2
L ΦtB,2(BL)B−1/2

L

)
+

1

ML
Tr(∆mp(z)). (5.25)

In order to simplify (5.25), we observe that there exists C(z) = P1(|z|)P2( 1
Imz ) for

some nice polynomials P1 and P2 such that

‖TB(z)− t(z)B−1
L ‖ ≤

C(z)

Lmin(γ,1)

‖TB,mp(z)− t(z)B−1
L ‖ ≤

C(z)

Lmin(γ,1)

and

‖zT̃(z)− zt̃(z)IN‖ ≤
C(z)

Lmin(γ,1)

‖zT̃mp(z)− zt̃(z)IN‖ ≤
C(z)

Lmin(γ,1)
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which follow directly from Theorem 5.1 and (5.20). From this, it is easily checked

that for each matrix X, ΦtB,2(X) can be written as

ΦtB,2(X) = c(zt(z)t̃(z))2 Ψ
(
Ψ(B−1

L XB−1
L )
)

+ Υ(X) (5.26)

where Υ is a linear operator verifying

‖Υ(X)‖ ≤ κ C(z)
‖X‖

Lmin(γ,1)
(5.27)

for each z ∈ C+. By (5.26), and using the fact that Ψ(B−1
L ) = IN + EN and that

Ψ(IN ) = BL, we obtain

ΦtB,2(B) = u(z) Ψ
(
Ψ(B−1

L )
)

+ Υ(BL) = u(z) (BL + Ψ(EN )) + Υ(BL) (5.28)

where we have introduced the definition u(z) = c(zt(z)t̃(z))2. We can express the

above equation as

ΦtB,2(BL) = u(z)BL + Υ(BL) + u(z)Ψ(EN ). (5.29)

Plugging (5.29) into (5.25), we obtain

t(z)− 1

ML
Tr(T(z)) = u(z)

(
t(z)− 1

ML
Tr(T(z))

)
+

1

ML
Tr(∆mp(z)) + δ1(z)

where δ1(z) is the error term defined as

δ1(z) =
1

ML
Tr
(

(t(z)IML −T(z))B−1/2
L (Υ(BL) + u(z)Ψ(EN ))B−1/2

L

)
.

We recall (see e.g. [26], Lemma 1.1) that u(z) verifies 1 − |u(z)| > 1
C(z) on C+,

where C(z) = P1(|z|)P2( 1
Imz ) for some nice polynomials P1 and P2. Therefore, we

have the inequality∣∣∣∣t(z)− 1

ML
Tr(T(z))

∣∣∣∣ ≤ C(z)

∣∣∣∣ 1

ML
Tr(∆mp(z))

∣∣∣∣+ |δ1(z)|. (5.30)

The bound in (5.3) together with Corollary 5.1, and the properties of operator Υ

imply that |δ1(z)| ≤ C(z)
L2min(γ,1) . As a consequence, in order to complete the proof of

(5.2), we only need to establish the following fundamental Lemma.

Lemma 5.2. Under the above assumptions and for any z ∈ C+, we have∣∣∣∣ 1

ML
Tr(∆mp(z))

∣∣∣∣ ≤ C(z)

L2 min(γ,1)
(5.31)

where C(z) = P1(|z|)P2( 1
Imz ) for two nice polynomials P1 and P2.

To justify (5.31), we consider Eq. (5.15) and express (IML − u(z)ΓB(z))−1 as

(IML − u(z)ΓB(z))−1 = IML + u(z)ΓB(z)(IML − u(z)ΓB(z))−1.

Hence, ∆mp(z) can thus be rewritten as

∆mp(z) = −t(z)u(z)ΓB(z) + ∆mp,1(z)
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where ∆mp,1(z) is now defined by

∆mp,1(z) = −t(z)u2(z) (ΓB(z))
2

(IML − u(z)ΓB(z))−1.

Using the fact that ‖ΓB(z)‖ ≤ κ
Lmin(γ,1) on C+, we obtain immediately that

‖∆mp,1(z)‖ ≤ C(z)
L2min(γ,1) for each z ∈ C+. We finally remark that ΓB(z) can be

written as

ΓB(z) = B−1/2
L Ψ(EN )B−1/2

L + czt(z)t̃(z)Ψ
(
E2
N (IN − czt(z)t̃(z)EN )−1

)
. (5.32)

The spectral norm of the right hand side of (5.32) is clearly upper bounded by a

term such as κ
L2min(γ,1) for each z ∈ C+. Therefore, 1

MLTr(∆mp(z)) can be written

as

1

ML
Tr(∆mp(z)) = −t(z)u(z)

1

ML
Tr(Ψ(EN )B−1

L ) + δ2(z) (5.33)

where δ2(z) verifies |δ2(z)| ≤ C(z)
L2min(γ,1) for each z ∈ C+. Using (1.41), we notice

that 1
MLTr(Ψ(EN )B−1

L ) is equal to

1

ML
Tr(Ψ(EN )B−1

L ) =
1

N
Tr(ENΨ(B−1

L )) =
1

N
Tr (EN (IN + EN ))

so that 1
MLTr(∆mp(z)) can in turn be rewritten as

1

ML
Tr(∆mp(z)) = −t(z)u(z)

1

N
Tr(EN ) + δ3(z) (5.34)

where |δ3(z)| ≤ C(z)
L2min(γ,1) for each z ∈ C+. We complete the proof of (5.31) by

simply noting that

Tr(EN ) = 0. (5.35)

This can be shown by noting that we can express Rm,L as

Rm,L =

∫ 1

0

Sm(ν)dL(ν)dHL (ν)dν.

As a consequence of this,∫ 1

0

Sm(ν)aHL (ν)R−1
m,LaL(ν)dν =

1

L
Tr
[
R−1
m,LRm,L

]
= 1

which directly implies that∫ 1

0

εm,L(ν)dν =

∫ 1

0

Sm(ν)aHL (ν)R−1
m,LaL(ν)dν − 1 = 0.

However, from the definition of EN we see that

Tr (EN ) =
1

M

M∑
m=1

∫ 1

0

εm,L(ν)dν = 0

which completes the proof.
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(a) M = 10, N = 600, L = 80. (b) M = 80, N = 600, L = 10.

(c) M = 10, N = 1000, L = 80. (d) M = 80, N = 1000, L = 10.

Fig. 1. Histogram of the eigenvalues of R̂corr,L and Marchenko-Pastur law for different values of

M,N,L with ρ = 0.5. Upper plots correspond to a situation where cN > 1 whereas lower plots
deploy the case cN < 1.

6. Numerical Validation

The aim of this section is to validate the asymptotic study carried out above via

simulations. To that effect, we consider a simple example in which the M indepen-

dent time series are all autoregressive processes of order one with parameter ρ and

unit power. By this, we mean that we generate each time series independently by

the recursion ym,n+1 = ρym,n + em,n where em,n ∼ NC(0, 1− |ρ|2).

Let us first compare the empirical eigenvalue distribution of the sample cross

correlation matrix R̂corr,L with the measure µN and the Marchenko-Pastur distri-

bution with parameter cN . Figure 1 represents the histogram of the eigenvalues of

R̂corr,L together with the Marchenko-Pastur distribution µmp,cN for different val-

ues of M,N,L. In general terms, the Marchenko-Pastur approximation provides a

relatively good approximation of the actual eigenvalue density. In general terms, we

observe that the Marchenko-Pastur law is a very good approximation of the actual

empirical eigenvalue distribution, even for relatively low values of M,L.
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Next, consider a correlation detection test statistic consisting of the sum of

the squared value of all the off-diagonal entries of R̂corr,L. As mentioned in the

introduction, this is reasonable test since under H0 the true cross-correlation matrix

Rcorr,L is equal to an identity. This corresponds to a linear spectral statistic of

R̂corr,L built with the function φ(λ) = (λ− 1)2.

Remark 6.1. We observe that this function is not compactly supported so that

in principle the asymptotic rates predicted in items (ii) and (iii) of Theorem 1.1

are not guaranteed to hold. However, we claim here that these two items still hold

for the choice φ(λ) = (λ − 1)2. Indeed, consider first item (ii) in the statement

of this theorem. The only point in the proof of this item where the hypothesis of

compactly supported φ(λ) is used is in order to establish (4.16). However, for this

choice of φ(λ) it is possible to compute 1
MLETr

(
φ(Rcorr,L)

)
in closed form as well

as
∫
φ(λ)dµN (λ), and to establish that

1

ML
ETr

(
φ(Rcorr,L)

)
=

∫
φ(λ)dµN (λ) (6.1)

so that (4.16) is, in fact, trivial. Indeed, the quantity on the left hand side can

be computed by using conventional formulas on the expectation of four Gaussian

random vectors, whereas the quantity on the right hand side can be evaluated by

relating the second order moment of the measure µN (λ) with its Stieltjes transform.

In both cases, we can establish that both quantities are equal to∫
φ(λ)dµN (λ) = cN + cN

1

ML
Tr
(
B−1
L Ψ(EN )

)
(6.2)

where we recall that EN is defined in (5.13). Regarding item (iii) in Theorem 1.1,

we simply need to observe that
∫
φ(λ)dµmp,cN (λ) = cN , so that∫

φ(λ)dµN (λ)−
∫
φ(λ)dµmp,cN (λ) = cN

1

ML
Tr
(
B−1
L Ψ(EN )

)
. (6.3)

Consequently, a direct application of Corollary 5.1 thus leads to the conclusion that

(1.25) also holds for this particular choice of φ(λ). We may therefore consider this

statistic to validate the results of the paper.

In order to assess the error between φ̂N and the corresponding integral of φ(λ)

with respect to the Marchenko-Pastur distribution, we considered here a set of

104 realizations of the multivariate autoregressive process described above. In each

experiment, we fixed the three parameters c∗, N and β and considered a set of

M = [(c∗N)1−β ] independent time series, where [x] here denotes the integer that is

closest to x. The number of time lags was therefore fixed to L = [(c∗N)β ]. Figure

2 represents the error between φ̂N and its corresponding asymptotic limit as a

function of β for different values of N . The errors are represented as the square

root of the empirical mean of the corresponding normalized difference, averaged

over the 104 realizations. The plots on the left hand side represent the total error
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φ̂N −
∫
φ(λ)dµmp,N whereas plot on the right hand side represent the two main

constituent errors, namely: “Error 1” (solid lines) represents the square root of the

empirical mean of the square of φ̂N −
∫
φ(λ)dµN , and “Error 2” (dotted lines)

represents
∫
φ(λ)dµN −

∫
φ(λ)dµmp,N as given in (6.3).

These numerical results tend to confirm the fact that the error between the

considered statistic and its asymptotic deterministic approximation tends to be

dominated by two different phenomena depending on whether M � L (large β) or

M � L (small β). In the fist case, the main contribution to the error corresponds

to the term φ̂N −
∫
φ(λ)dµN (Error 1). We recall that, since the correlation se-

quence considered here decays exponentially to zero, this error term is dominated

by N−(1−β), which in particular increases with β. Conversely, when M � L (small

β), the error is dominated by the difference between the two measures µN and

µmp,N . We have seen that this error term is dominated by a term of order N−2β ,

which in particular decreases with β. Observe also that the optimum choice of β

appears to be close to 1/3, which corresponds to the case where the two error rates

coincide.
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APPENDICES

A. Proof of Lemma 2.2

A classical calculation (see e.g. Theorem 4.3.2 in [5] in the non Gaussian case) leads

to

E|ξL,ym(ν)|2 =

L−2∑
−(L−2)

(1− |l|/L)rm(l)e−2iπlν .

Taking into account that Sm(ν) =
∑
l rm(l)e−2iπlν , we obtain immediately that

E|ξL,ym(ν)|2 = Sm(ν) + εm,L(ν)

where εm,L(ν) is defined by

εm,L(ν) = −
∑
|l|≥L−1

rm(l)e−2iπlν − 1

L

L−2∑
−(L−2)

|l|rm(l)e−2iπlν .

It is clear that

|εm,L(ν)| ≤
∑
|l|≥L−1

|rm(l)|+ 1

L

L−2∑
−(L−2)

|l||rm(l)|.

Using the bound in (1.14) we directly obtain an upper bound of the first term,

namely ∑
|l|≥L−1

|rm(l)| ≤ κ

(L− 1)γ0
.

If γ0 ≥ 1,
∑L−2
−(L−2) |l||rm(l)| ≤ ‖rm‖ω0 and it holds that 1

L

∑L−2
−(L−2) |l||rm(l)| ≤ κ

L .

Therefore, if γ0 ≥ 1, we obtain that

|εm,L(ν)| ≤ κ

L
.
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If γ0 < 1, we equivalently have

L−2∑
−(L−2)

|l||rm(l)| ≤ L1−γ0‖rm‖ω0
.

Therefore, the inequality

1

L

L−2∑
−(L−2)

|l||rm(l)| ≤ κ

(L− 1)γ0

holds, as well as

|εm,L(ν)| ≤ κ

Lγ0
.

This completes the proof of Lemma 2.2.

B. Proof of Lemma 2.5

In order to establish (2.42), we first recall that ‖R̂m,L − Rm,L‖ ≺
max (M−1/2, L−γ0). We consider some δ > 0 for which Nδ max (M−1/2, L−γ0)→ 0

and introduce the event EN defined by

EN =

{
max

m=1,...,M
‖R̂m,L −Rm,L‖ < Nδ max (M−1/2, L−γ0)

}
(B.1)

Then, the event EN holds with exponentially high probability. In order to establish

(2.43), we have to evaluate P(‖Υm,L‖ > N ε max (M−1, L−2γ0)) for each ε > 0. For

this, we express P(‖Υm,L‖ > N ε max (M−1, L−2γ0)) as

P
(
‖Υm,L‖ > N ε max (M−1, L−2γ0), EN

)
+P
(
‖Υm,L‖ > N ε max (M−1, L−2γ0), EcN

)
.

Therefore, it holds that

P(‖Υm,L‖ > N ε max (M−1, L−2γ0)) ≤
≤ P(EcN ) + P

(
‖Υm,L‖ > N ε max (M−1, L−2γ0), EN

)
.

In order to establish (2.43), we thus just need to prove that there exists a γ > 0

such that P
(
‖Υm,L‖ > N ε max (M−1/2, L−γ0), EN

)
≤ exp(−Nγ) for each N large

enough. For this, we remark that for each N large enough, on EN , all the eigenvalues

of matrices R̂m,L are enclosed by the contour C. Therefore, on EN , the equality

R̂−1/2
m,L =

1

2iπ

∫
C−

1√
λ

(
R̂m,L − λIL

)−1

dλ (B.2)

holds. We note here that
(
R̂m,L − λIL

)−1

can be written as(
R̂m,L − λIL

)−1

= (Rm,L − λIL)
−1

+

−
(
R̂m,L − λIL

)−1 (
R̂m,L −Rm,L

)
(Rm,L − λIL)

−1
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so that, by iterating this formula, we obtain

(
R̂m,L − λIL

)−1

= (Rm,L − λIL)
−1 − (Rm,L − λIL)

−1
∆m,L (Rm,L − λIL)

−1
+

+
(
R̂m,L − λIL

)−1

∆m,L (Rm,L − λIL)
−1

∆m,L (Rm,L − λIL)
−1
.

We deduce from this expression together with (2.34) and (B.2) that on EN we can

write

R̂−1/2
m,L −R

−1/2
m,L = − 1

2iπ

∫
C−

1√
λ

(Rm,L − λIL)
−1

∆m,L (Rm,L − λIL)
−1

dλ+

+
1

2iπ

∫
C−

1√
λ

(
R̂m,L − λIL

)−1

∆m,L (Rm,L − λIL)
−1

∆m,L (Rm,L − λIL)
−1

dλ.

(B.3)

Now, it is clear that on the contour C, | 1√
λ
| and the spectral norm of (Rm,L − λIL)

−1

are upper bounded by a nice constant. This property also holds for (R̂m,L−λIL)−1

on the event EN . Therefore, on EN , the spectral norm of the second term on the

right hand side of (B.3) is upper bounded by κ‖∆m,L‖2, which is stochastically

dominated by max(M−1, L−2γ0). This, in turn, establishes that there exists a γ > 0

such that P
(
‖Υm,L‖ > N ε max (M−1, L−2γ0), EN

)
≤ exp(−Nγ) for each N large

enough. This completes the proof of Lemma 2.5.

C. Proof of Lemma 3.1

We first express matrix Wm
N in terms of vector xm. For this, we observe that for

each l = 1, . . . , L, the N–dimensional vector (ym,l, . . . ,ym,N+l−1) can be written

as

(ym,l, . . . ,ym,N+l−1) = ymJ
−(l−1)
N+L−1

(
IN
0

)
= xmR1/2

m,N+L−1J
−(l−1)
N+L−1

(
IN
0

)

Therefore, matrix Wm
N can be written as

Wm
N =

1√
N


xmR1/2

m,N+L−1
...

xmR1/2
m,N+L−1J

−(L−1)
N+L−1

 (
IN
0

)
(C.1)
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We recall that WN is the matrix WN =
(
(W1

N )T , . . . , (WL
N )T

)T
, and that R̂L =

WNWH
N . Using this notation, we can write

∂QN (z)

∂xm0,i
= −QN (z)B−1/2

L

∂R̂L
∂xm0,i

B−1/2
L QN (z)

= − 1√
N

QN (z)B−1/2
L Em0


eHi R

1/2
m0,N+L−1

...

eHi R
1/2
m0,N+L−1J

−(L−1)
N+L−1

 (
IN
0

)
WH

N B
−1/2
L QN (z)

where we recall that Em0
is an ML × L selection matrix with entries (Em0

)i,j =

δi=(m0−1)M+j and where ei denotes the ith column of IN+L−1. We introduce the

matrix HN (z) defined by

HN (z) =
1√
N

(
IN
0

)
WH

NB
−1/2
L QN (z)ANQN (z)B−1/2

L .

It is easily seen that

1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)
= − 1

ML
Tr


eHi R

1/2
m0,N+L−1

...

eHi R
1/2
m0,N+L−1J

−(L−1)
N+L−1

 HN (z) Em0
.

If we denote by fm0

l the l-th column of Em0
, we can re-write the above expression

as ∣∣∣∣ 1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)∣∣∣∣2 =
1

M2

∣∣∣∣∣ 1L
L∑
l=1

eHi R
1/2
m0,N+L−1J

−(l−1)
N+L−1 HN (z) fm0

l

∣∣∣∣∣
2

.

Consequently, a direct application of Jensen’s inequality leads to∣∣∣∣ 1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)∣∣∣∣2 ≤ 1

M2

1

L

L∑
l=1

(fm0

l )H HH
N (z)J

(l−1)
N+L−1R

1/2
m0,N+L−1ei×

× eHi R
1/2
m0,N+L−1J

−(l−1)
N+L−1 HN (z) fm0

l .

Hence, using
∑
i eie

H
i = IN+L−1 and J

(l−1)
N+L−1Rm0,N+L−1J

−(l−1)
N+L−1 ≤ κ IN+L−1, we

obtain ∑
m0,i

∣∣∣∣ 1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)∣∣∣∣2 ≤ κ 1

M

1

ML
Tr
(
HH
N (z)HN (z)

)
so that, inserting the expression of HN (z) above,

∑
m0,i

∣∣∣∣ 1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)∣∣∣∣2 ≤
≤ κ

MN

1

ML
Tr
(
B−1/2
L QH

N (z)AH
NQH

N (z)B−1/2
L WNWH

NB
−1/2
L QN (z)ANQN (z)B−1/2

L

)
.
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Finally, using the resolvent identity B−1/2
L WNWH

NB
−1/2
L QN (z) = IML + zQN (z),

we obtain

‖QH
N (z)B−1/2

L WNWH
NB
−1/2
L QN (z)‖ ≤ 1

Imz

(
1 +

|z|
Imz

)
≤ 1 + |z|

Imz

(
1 +

1

Imz

)
so that (3.21) follows directly from∑
m0,i

∣∣∣∣ 1

ML
Tr

(
∂QN (z)

∂xm0,i
AN

)∣∣∣∣2 ≤ κ

MN

1 + |z|
Imz

(
1 +

1

Imz

)
1

ML
Tr
(
ANQN (z)B−1

L QH
N (z)AH

N

)
≤ κ

MN
(1 + |z|) 1

(Imz)3

(
1 +

1

Imz

)
1

ML
Tr
(
ANAH

N

)
.

D. Proof of Lemmas 5.1

The proof of Lemma 5.1 follows from the observation that the term

aHL (ν)R−1
m,LaL(ν) can be expressed in terms of the Szegö orthogonal polynomials

associated to the scalar product

〈zk, zl〉 =

∫ 1

0

Sm(ν)e2iπ(k−l)ν dν. (D.1)

For each integer l, we introduce the monic orthogonal polynomial Φl(z) defined by

Φ
(m)
l (z) = zl − zl|sp(1, z, . . . , zl−1) (D.2)

where the symbol |A stands for the orthogonal projection over the space A in the

sense of the scalar product (D.1). We denote by σ2,m
l the norm square of Φ

(m)
l , and

define for each l the normalized orthogonal polynomial φ
(m)
l (z) by

φ
(m)
l (z) =

Φ
(m)
l (z)

σml
. (D.3)

It is well known that the sequence (σ2,m
l )l≥0 is decreasing, that σ2,m

0 = rm(0), and

that liml→+∞ σ2,m
l = σ2,m coincides with exp

∫ 1

0
logSm(ν)dν. It is clear that the

normalized orthogonal polynomials satisfy

〈φ(m)
l , φ

(m)

l′
〉 =

∫ 1

0

φ
(m)
l (e2iπν)

(
φ

(m)

l′
(e2iπν)

)∗
Sm(ν)dν = δl−l′ .

In the following, we also denote by Φ
(m)∗
l (z) and φ

(m)∗
l (z) the degree l polynomials

defined by

Φ
(m)∗
l (z) = zl

(
Φ

(m)
l (z−∗)

)∗
, φ

(m)∗
l (z) = zl

(
φ

(m)
l (z−∗)

)∗
.

Noting that Φl is for each l a monic polynomial, it is clear that Φ
(m)∗
l (z) can be

written as

Φ
(m)∗
l (z) = 1 +

l∑
k=1

a
(m)
k,l z

k (D.4)
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for some coefficients (a
(m)
k,l )k=1,...,l. Moroever, Φ

(m)∗
l (z) coincides with

Φ
(m)∗
l (z) = 1− 1|sp(z, z2, . . . , zl)

and the l–dimensional vector a
(m)
l = (a

(m)
1,l , . . . , a

(m)
l,l )T is given by(

1

a
(m)
l

)
= σ2,m

l R−Tm,l+1 e1 (D.5)

where e1 is the l + 1–dimensional vector e1 = (1, 0, . . . , 0)T . It is moreover easily

checked that

ym,n − ym,n|sp(ym,n−1, . . . , ym,n−l) = ym,n +

l∑
k=1

a
(m)∗
k,l ym,n−k (D.6)

where the orthogonal projection operator is this time defined on the space of all

finite second moment complex valued random variables. For more details on these

polynomials, we refer the reader to [37] and [13].

The matrix R−1
m,L can be written as

R−1
m,L = Am,L Diag

(
1

σ2,m
0

, . . . ,
1

σ2,m
L−1

)
AH
m,L (D.7)

where Am,L is the upper-triangular matrix defined by

Am,L =



1 a
(m)
1,1 a

(m)
2,2 . . . a

(m)
L−1,L−1

0 1 a
(m)
1,2 . . . a

(m)
L−2,L−1

...
. . . 1

. . .
...

...
. . .

. . .
. . .

...

0 . . . . . . 0 1


. (D.8)

In order to see this, simply observe that Rm,LAm,L is lower triangular because

of (D.5) and the fact that RTm,l+1 = Jl+1Rm,l+1Jl+1. Since AH
m,L is also lower

triangular, so is the product AH
m,LRm,LAm,L. However, matrix AH

m,LRm,LAm,L is

also hermitian, which implies that it must be diagonal. Close examination of (D.5)

reveals that its diagonal entries are equal to σ2,m
l for l = 0, . . . , L− 1. Inverting the

corresponding equation we obtain (D.7).

Using the above decomposition of the matrix R−1
m,L we immediately obtain that

aL(ν)HAm,L =
1√
L

(
1, e−2iπνΦ

(m)∗
1 (e2iπν), . . . , e−2iπ(L−1)νΦ

(m)∗
L−1 (e2iπν)

)
and consequently

aL(ν)H R−1
m,LaL(ν) =

1

L

L−1∑
l=0

|φ(m)∗
l (e2iπν)|2. (D.9)
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We first explain informally why, for each m, Sm(ν)aL(ν)H R−1
m,LaL(ν)−1 converges

uniformly towards 0. For this, we need to recall certain results that are summarized

next.

Since the spectral densities Sm (ν) are uniformly bounded from below, we can

define the cepstrum coefficients (cm(k))k∈Z, namely

cm (k) =

∫ 1

0

logSm (ν) e2πiνkdν.

We notice that liml→+∞ σ2,m
l = σ2,m coincides with exp cm(0). Assumption 5 and

a generalization of the Wiener-Lévy theorem (see e.g. [37]) implies that for each m,

cm ∈ `ω for each γ ≤ γ0. We define the function π(m)(z) given by

π(m)(z) = exp−

(
cm(0)/2 +

+∞∑
n=1

cm(−n)zn

)
.

Then, π(m)(z) and ψ(m)(z) = 1
π(m)(z)

are analytic in the open unit disk D and

continuous on the closed unit disk. In the following, we denote by π(m)(z) =∑+∞
n=0 π

(m)(n)zn and ψ(m)(z) =
∑+∞
n=0 ψ

(m)(n)zn their expansion in D. Moreover,

functions ν → π(m)(e2iπν) and ν → ψ(m)(e2iπν) also belong to `ω0
. To check this,

we denote by (c̃m(n))n≥0 the one-sided sequence defined by c̃m(0) = cm(0)/2 and

c̃m(n) = cm(−n) for n ≥ 1. Then, the sequences π(m) and ψ(m) can be written as

π(m) =

+∞∑
k=0

(−1)k

k!
(c̃m)∗(k), ψ(m) =

+∞∑
k=0

1

k!
(c̃m)∗(k)

where for a sequence a, a∗(k) represents a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
k

. Observe, in particular, that

both sequences are one-sided. Now, for each γ ≤ γ0, it holds that

‖π(m)‖ω ≤
+∞∑
k=0

1

k!
‖c̃m‖kω = exp(‖c̃m‖ω) ≤ exp(‖cm‖ω) (D.10)

‖ψ(m)‖ω ≤
+∞∑
k=0

1

k!
‖c̃m‖kω = exp(‖c̃m‖ω) ≤ exp(‖cm‖ω). (D.11)

In the following, we also need a version of (D.10, D.11) holding uniformly w.r.t. m.

For this, we establish the following lemma, which can be seen as a uniform version

of the generalized Wiener-Lévy theorem.

Lemma D.1. Consider a function F (z) holomorphic in a neighbourhood of the

interval [smin, smax] where smin and smax are defined in Assumption 3. Then, for
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each γ < γ0 and for each m, the function F oSm belongs to `ω and 5

sup
m≥1
‖F oSm‖ω < +∞. (D.12)

Proof. We adapt the proof of the Wiener-Levy theorem in [42] (Theorem 5.2, p.

245). We first claim that if p is an integer such that p > 1 + γ0 and if G(ν) =∑
n∈Z g(n)e2iπnν belongs to Cp, then, g ∈ `ω0

, and

‖g‖ω0
≤ κ

(
sup
ν
|G(ν)|+ sup

ν
|G(p)(ν)|

)
(D.13)

for some constant κ depending only on γ0. To verify (D.13), we remark that |G(0)| ≤
supν |G(ν)|. Moreover, for each n 6= 0, the integration by parts formula leads to

g(n) =
1

(2iπn)p

∫ 1

0

G(p)(ν)e−2iπnν dν

and to |g(n)| ≤ 1
(2π)p

1
|n|p supν |G(p)(ν)|. As p > 1+γ0, we obtain immediately that

(D.13) holds.

Since F is holomorphic in a neighbourhood of [smin, smax], there exists a ρ > 0

for which F is holomorphic in the open disk D(s, 2ρ) for each s ∈ [smin, smax]. In

particular, for each m and each ν, F is holomorphic in D(Sm(ν), 2ρ). We consider

a partial sum Sm,n0(ν) =
∑n0

k=−n0
rm(k)e−2iπkν , and claim that for each γ < γ0,

we have

‖Sm(ν)− Sm,n0
(ν)‖ω =

∑
|k|≥(n0+1)

(1 + |k|)γ |rm(k)| ≤ κ

nγ0−γ0

(D.14)

for some nice constant κ. To justify (D.14), we remark that

‖rm‖ω0
≥

∑
|k|≥(n0+1)

(1+|k|)γ0 |rm(k)| ≥ nγ0−γ0

∑
|k|≥(n0+1)

(1+|k|)γ |rm(k)| = nγ0−γ0 ‖Sm(ν)−Sm,n0
(ν)‖ω.

Assumption 5 implies that supm ‖rm‖ω0 < +∞. This leads immediately to (D.14).

We choose n0 in such a way that κ

n
γ0−γ
0

≤ ρ
2 , and notice that (D.14) leads to

supν |Sm(ν) − Sm,n0(ν)| ≤ ρ
2 for each m. Therefore, the circle C(Sm,n0(ν), ρ) with

center Sm,n0
(ν) and radius ρ is included into D(Sm(ν), 2ρ), and Sm(ν) belongs to

the disk D(Sm,n0
(ν), ρ). The Cauchy formula implies that

(F oSm) (ν) =
1

2π

∫ 2π

0

F (Sm,n0
(ν) + ρeiθ)

Sm(ν)− Sm,n0(ν)− ρeiθ
ρ eiθ dθ. (D.15)

5We make the slight abuse of notation by identifying the ω-norm of a function on the unit circle
as the corresponding norm of its Fourier coefficient sequence.
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Since |Sm(ν)− Sm,n0
(ν)| ≤ ρ

2 , it holds that

ρeiθ

Sm(ν)− Sm,n0
(ν)− ρeiθ

= −
+∞∑
k=0

ρ−ke−ikθ (Sm(ν)− Sm,n0
(ν))

k

and that ∥∥∥∥ ρeiθ

Sm(ν)− Sm,n0(ν)− ρeiθ

∥∥∥∥
ω

≤
+∞∑
k=0

ρ−k‖Sm − Sm,n0
‖kω ≤ 2.

Using (D.13), it is easy to check that Gm(ν, θ) defined by Gm(ν, θ) = F (Sm,n0
(ν)+

ρeiθ) verifies

sup
m,θ,ν

‖Gm(ν, θ)‖ω ≤ κ

for each γ ≤ γ0 for some nice constant κ. We thus obtain that for some nice constant

κ, it holds that ∥∥∥∥ F (Sm,n0
(ν) + ρeiθ)

Sm(ν)− Sm,n0(ν)− ρeiθ
ρ eiθ

∥∥∥∥
ω

≤ κ

for each γ < γ0, each m and each θ. (D.15) thus implies (D.12). The proof of Lemma

D.1 is thus complete.

The use of Lemma D.1 for f(x) = log x shows that

sup
m
‖cm‖ω < +∞ (D.16)

for each γ < γ0. Therefore, (D.10, D.11) imply that

sup
m
‖π(m)‖ω ≤ κ, sup

m
‖ψ(m)‖ω ≤ κ. (D.17)

It also holds that Sm(ν) =
∣∣ψ(m)(e2iπν)

∣∣2 and therefore ψ(m)(z) coincides with

the outer spectral factor of Sm in the sense that both ψ(m)(z) and 1
ψ(m)(z)

= π(m)(z)

are analytic in the unit disc. Theorem 5.1.8 in [37] leads to the conclusion that

‖φ(m)∗
l − π(m)‖ω → 0 when l→ +∞, a result which implies that

sup
ν

∣∣∣φ(m)∗
l (e2iπν)− π(m)(e2iπν)

∣∣∣→ 0. (D.18)

Given the fact that Sm(ν) =
∣∣∣ 1
π(m)(e2iπν)

∣∣∣2, (1.10) and (1.11) allow us to conclude

that

0 < inf
m

inf
ν
|π(m)(e2iπν)| ≤ sup

m
sup
ν
|π(m)(e2iπν)| < +∞. (D.19)

Therefore, (D.18) leads to supν | 1
π(m)(e2iπν)

φ
(m)∗
l (e2iπν) − 1| → 0, and to

supν

∣∣∣| 1
π(m)(e2iπν)

|2|φ(m)∗
l (e2iπν)|2 − 1

∣∣∣→ 0, or equivalently, to

sup
ν

∣∣∣Sm(ν)|φ(m)∗
l (e2iπν)|2 − 1

∣∣∣→ 0. (D.20)
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This, in turn, implies that

sup
ν

∣∣∣∣∣Sm(ν)
1

L

L∑
l=1

|φ(m)∗
l (e2iπν)|2 − 1

∣∣∣∣∣→ 0 (D.21)

when L→ +∞ as expected. In order to complete the proof of Lemma 5.1, we have

thus to prove that (D.21) holds uniformly w.r.t. m, and to evaluate the rate of

convergence. For this, we can follow the proof of Theorem 5.1.8 in [37], adapting

the corresponding arguments to our particular context.

Theorem 5.1.8 in [37] follows from general results concerning Wiener-Hopf

operators defined on the Wiener algebra `1. As explained below, we will show

that supm ‖φ
(m)∗
l − π(m)‖1 → 0, and will only use that supm ‖rm‖ω < +∞ and

supm ‖cm‖ω < +∞ for each γ < γ0 in order to obtain an upper bound of the above

term. In the following, we denote by C(m) the operator defined on the Wiener

algebra `1 by

C(m)a = rm ∗ a

where rm is the sequence defined by rm(n) = rm(−n) for each n ∈ Z. C(m) can

alternatively be defined in the Fourier transform domain as the multiplication op-

erator ∑
n∈Z

a(n)e2iπnν → Sm(ν)
∑
n∈Z

a(n)e2iπnν .

It is well known that ‖C(m)‖1 = ‖rm‖1 = ‖rm‖1. As Sm(ν) = |ψ(m)(e2iπν)|2, the

operator C(m) can be factorized as C(m) = L(m)U (m) = U (m)L(m) where U (m)

and L(m) represent the multiplication operators by ψ(m)(e2iπν) and
(
ψ(m)(e2iπν)

)∗
defined on `1 respectively. We denote by P+ the projection operator defined on `1
by

P+ ({a(n), n ∈ Z}) = {a(n), n ≥ 0}

or equivalently in the Fourier transform domain by

P+

(∑
n∈Z

a(n)e2iπnν

)
=

+∞∑
n=0

a(n)e2iπnν .

The operator P− is defined by P− = I − P+. The operator U (m) is called

upper triangular in the sense that P−U
(m)P+ = 0 while L(m) is lower trian-

gular because P+L
(m)P− = 0. Moreover, as π(m) = 1

ψ(m) belongs to `1 and

π(m)(e2iπν) =
∑+∞
n=0 π

(m)(n) e2iπnν , the operators U (m) and L(m) are invertible,

and (U (m))−1 and (L(m))−1 are upper triangular and lower triangular respectively.

In the Fourier domain, (U (m))−1 and (L(m))−1 correspond respectively to the mul-

tiplication operator by π(m)(e2iπν) and (π(m)(e2iπν))∗ These properties imply that
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the factorization C(m = L(m)U (m) = U (m)L(m) is a Wiener-Hopf factorization. In

the following, we denote by T (m) the Toeplitz operator defined on `1 by

T (m) = P+C
(m)P+. (D.22)

It is clear that if j ≥ 0 and if δj is the sequence δj defined by δj(n) = δn−j , then,

< δi, T
(m)δj >, defined as

(
T (m)δj

)
(i), is equal to rm(j− i). Therefore, the matrix

representation of T (m) in the basis (δj)j≥0 is the infinite matrix RTm,∞. Theorem

5.1.1 in [37] implies that, considered as an operator defined on Range(P+), T (m) is

invertible, i.e. that for each a ∈ Range(P+), there exists a unique b ∈ Range(P+)

such that T (m)b = a.
(
T (m)

)−1
b is of course defined as a. If an element a does not

belong to Range(P+),
(
T (m)

)−1
a is defined as

(
T (m)

)−1
P+a. We also notice that(

T (m)
)−1

= P+

(
U (m)

)−1
P+

(
L(m)

)−1
P+. For each n ≥ 1, we denote by Qn the

projection operator defined by

Qn ({a(l), l ∈ Z}) = {a(l), 0 ≤ l ≤ n} (D.23)

or equivalently by

Qn

(∑
l∈Z

a(l)e2iπlν

)
=

n∑
l=0

a(l)e2iπlν .

We also introduce the truncated Toeplitz operator T
(m)
n defined by

T (m)
n = QnC

(m)Qn = QnT
(m)Qn. (D.24)

We note that in the basis (δj)j=0,...,n, the matrix representation of T
(m)
n is the

matrixRTm,n+1. We now introduce the projection operatorRn defined byRn = P+−
Qn, and state the following Lemma which appears as an immediate consequence of

Theorem 5.1.2 and Theorem 5.1.3 in [37].

Lemma D.2. For each n ≥ 0, it holds that RnL
(m)Qn = RnL

−(m)Qn =

QnU
(m)Rn = QnU

−(m)Rn = 0. Moreover, there exists an integer n0 indepen-

dent of m such that for each n ≥ n0, T
(m)
n , considered as an operator defined

on Range(Qn), is invertible, in the sense that for each a ∈ Range(Qn), it ex-

ists a unique b ∈ Range(Qn), defined as (T
(m)
n )−1a, such that T

(m)
n b = a. If

a ∈ Range(P+), (T
(m)
n )−1a is defined as (T

(m)
n )−1a = (T

(m)
n )−1Qna. Moreover,

there exists a nice constant α such that, for each n ≥ n0 and each a ∈ Range(P+),

the inequality ∥∥∥∥(T (m)
n

)−1

a

∥∥∥∥
1

≤ α ‖a‖1 (D.25)

holds.

Proof. We just verify that RnL
(m)Qn = 0, and omit the proof of the three other

identities. For this, we have just to check that if a(e2iπν) =
∑n
l=0 a(n)e2iπlν , then
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(
ψ(m)(e2iπν)

)∗
a(e2iπν) can be written as(

ψ(m)(e2iπν)
)∗
a(e2iπν) =

n∑
l=−∞

b(l)e2iπlν

for some coefficients (b(l))l=−∞,...,n. This, of course, holds true because(
ψ(m)(e2iπν)

)∗
=
∑∞
l=0(ψ(m)(l))∗e−2iπlν .

In order to be able to use Theorem 5.1.2 in [37], we establish that it exists an

integer n0 such that ‖P−(L(m))−1RnU
(m)‖1 ≤ 1

2 and ‖Rn(U (m))−1P−L
(m)‖1 ≤ 1

2

for each n ≥ n0 and for each m. If a ∈ `1, we evaluate P−(L(m))−1RnU
(m)a

in the Fourier transform domain, and denote x
(m)
n (e2iπν) the function defined

by x
(m)
n (e2iπν) = Rnψ

(m)(e2iπν)a(e2iπν), which, of course, can be written as

x
(m)
n (e2iπν) =

∑+∞
l=n+1 x

(m)
n (l)e2iπlν . The operation of (L(m))−1 is equivalent to

the multiplication by (π(m)(e2iπν))∗ in the Fourier transform domain, which is as-

sociated to a left-sided series. Therefore,

P−

(
π(m)(e2iπν)

)∗
x(m)
n (e2iπν) = P−

[
+∞∑
l=n+1

(
π(m)(l)

)∗
e−2iπlνx(m)

n (e2iπν)

]
.

The norm of the right hand side can be bounded as∥∥∥∥∥P−
[

+∞∑
l=n+1

(
π(m)(l)

)∗
e−2iπlνx(m)

n (e2iπν)

]∥∥∥∥∥
1

≤

∥∥∥∥∥
+∞∑
l=n+1

(
π(m)(l)

)∗
e−2iπlν

∥∥∥∥∥
1

‖ψ(m)‖1‖a‖1

or equivalently,∥∥∥P−(L(m))−1RnU
(m)
∥∥∥

1
≤

(
+∞∑
l=n+1

|π(m)(l)|

)
‖ψ(m)‖1.

The bound in (D.17) implies that supm ‖ψ(m)‖1 ≤ κ and that supm ‖π(m)‖ω ≤ κ

for some nice constant κ. It is therefore clear that for each γ < γ0 and for each m,

we have

κ ≥ ‖π(m)‖ω ≥
+∞∑
l=n+1

(1 + l)γ |π(m)(l)| ≥ (1 + n)γ
+∞∑
l=n+1

|π(m)(l)|.

We conclude from this that

+∞∑
l=n+1

|π(m)(l)| ≤ κ

nγ
(D.26)

and therefore ∥∥∥P−(L(m))−1RnU
(m)
∥∥∥

1
≤ κ

nγ
(D.27)

for some nice constant κ. It can be shown similarly that∥∥∥Rn(U (m))−1P−L
(m)
∥∥∥

1
≤ κ

nγ
. (D.28)
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This implies that it exists an integer n0 such that ‖P−(L(m))−1RnU
(m)‖1 ≤ 1

2 and

‖Rn(U (m))−1P−L
(m)‖1 ≤ 1

2 for each n ≥ n0 and for each m. Therefore, Theorem

5.1.2 in [37] implies that for each n ≥ n0 and for each m, it holds that T
(m)
n is

invertible and that for each a ∈ Range(Qn), it holds that ‖(T (m)
n )−1a‖ ≤ αm,n‖a‖1

where αm,n is given by

αm,n =
∥∥∥(L(m))−1(U (m))−1

∥∥∥
1

+ 2 max
(∥∥∥(U (m))−1

∥∥∥
1
,
∥∥∥(L(m))−1

∥∥∥
1

)(∥∥∥P−(L(m))−1
∥∥∥

1
+
∥∥∥Rn(U (m))−1

∥∥∥
1

)
.

The bounds in (D.17) imply that for each m and n, αm,n ≤ α for some nice constant

α. Therefore, ‖(T (m)
n )−1a‖ ≤ α‖a‖1 for each n ≥ n0, for each m, and for each

a ∈ Range(Qn). If a ∈ Range(P+), (T
(m)
n )−1a is equal to (T

(m)
n )−1Qna. Therefore,

‖(T (m)
n )−1a‖1 ≤ α‖Qna‖1 ≤ α‖a‖1. This completes the proof of the lemma.

Lemma D.2 and Theorem 5.1.3 in [37] imply the following corollary.

Corollary D.1. For each integer m and for each a ∈ Range(P+), it holds that

lim
n→+∞

∥∥∥(T (m)
n )−1a− (T (m))−1a

∥∥∥
1

= 0. (D.29)

Proof. (D.25) implies that T
(m)
n is invertible for each n ≥ n0. We use the obser-

vation that (T
(m)
n )−1T

(m)
n = Qn. Therefore, the operator (T

(m)
n )−1 − (T (m))−1 can

be written as

(T (m)
n )−1 − (T (m))−1 = (T (m)

n )−1
(
T (m) − T (m)

n

)
(T (m))−1 + (Qn − I)(T (m))−1.

We conclude from this and (D.25) that for each n ≥ n0, it holds that

‖(T (m)
n )−1a−(T (m))−1a‖1 ≤ α ‖(T (m)−T (m)

n )(T (m))−1a‖1+‖(T (m))−1a−Qn(T (m))−1a‖1.
(D.30)

It is clear that ‖(T (m))−1a − Qn(T (m))−1a‖1 → 0 when n → +∞. Moreover, for

each b ∈ Range(P+), (T (m) − T (m)
n ) b can be expressed as

(T (m) − T (m)
n ) b = −

(
QnC

(m) (Qn − P+) b+ (Qn − P+)C(m)P+b
)
. (D.31)

From this, we obtain immediately that for each m, ‖(T (m) − T (m)
n ) b‖1 → 0 when

n→ +∞. Taking b = (T (m))−1a leads to (D.29).

Corollary D.1 implies that for each m, ‖(T (m)
n )−1δ0 − (T (m))−1δ0‖1 converges

towards 0 when n → +∞. Since the matrix representation of T
(m)
n in the ba-

sis (δj)j=0,...,n coincides with matrix RTm,n+1, (D.5) implies that (T
(m)
n )−1δ0 co-

incides with the sequence 1
σmn

(1, a
(m)
1,n , . . . , a

(m)
n,n , 0, . . .) whose Fourier transform co-

incides with 1
σmn
φ
∗(m)
n (e2iπν). Therefore, the Fourier transform of the `1 sequence
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(T (m))−1δ0 is the limit of 1
σmn
φ
∗(m)
n (e2iπν) in the `1 metric. Theorem 5.1.8 in [37] im-

plies that for each γ < γ0 and for each m, ‖φ(m)∗
n −π(m)‖ω → 0, and therefore that

‖φ(m)∗
n − π(m)‖1 → 0 as n→ +∞. As it is well known that σmn → σm = exp cm(0)

2 ,

this discussion leads to the conclusion that for each m,

(T (m))−1δ0 =
1

σm
π(m). (D.32)

In the following, we establish the following proposition.

Proposition D.1. If γ < γ0, there exist an integer n1 and a nice constant κ such

that

sup
m≥1
‖(T (m)

n )−1δ0 − (T (m))−1δ0‖1 ≤
κ

nγ
(D.33)

for each n ≥ n1.

Proof. In order to establish (D.33), we use (D.30) and (D.31) for a = δ0 and

b = (T (m))−1δ0 = 1
σm π(m). We first evaluate ‖(T (m))−1δ0 − Qn(T (m))−1δ0‖1, or

equivalently 1
σm

∑+∞
k=n+1 |π(m)(n)|. In order to check that supm

1
σm < +∞, we

notice that (1.11) implies that infm c0(m) > −∞, and that infm exp c0(m)
2 > 0.

Therefore, it holds that supm
1
σm < +∞. The bound in (D.26) thus implies that for

each n ≥ n0 and for each m, it holds that∥∥∥(T (m))−1δ0 −Qn(T (m))−1δ0

∥∥∥
1
≤ κ

nγ

for some nice constant κ. It remains to control ‖(T (m) − T (m)
n )(T (m))−1δ0‖1. As

supm
1
σm < +∞, it is sufficient to study ‖(T (m) − T (m)

n )π(m)‖1. For this, we use

(D.31) for b = π(m), and obtain that∥∥∥(T (m) − T (m)
n )π(m)

∥∥∥
1
≤
∥∥∥C(m)

∥∥∥
1

∥∥∥π(m) −Qnπ(m)
∥∥∥

1
+
∥∥∥(P+ −Qn)C(m)π(m)

∥∥∥
1
.

(D.34)

The bound in (D.26) implies that the first term of the right hand side of (D.34) is

upper bounded by κ
nγ for some nice constant κ for each n and each m. The second

term of the right hand side of (D.34) is given by∥∥∥(P+ −Qn)C(m)π(m)
∥∥∥

1
=

∞∑
k=n+1

∣∣∣(C(m)π(m)
)

(k)
∣∣∣

where it holds that (
C(m)π(m)

)
(k) =

+∞∑
l=0

rm(k − l)π(m)(l).

Therefore,

∞∑
k=n+1

∣∣∣(C(m)π(m)
)

(k)
∣∣∣ ≤ +∞∑

k=n+1

+∞∑
l=0

|rm(k − l)||π(m)(l)|.
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We express the right hand side of the above inequality as

+∞∑
k=n+1

+k∑
l=0

|rm(k − l)||π(m)(l)|+
+∞∑

k=n+1

+∞∑
l=k+1

|rm(k − l)||π(m)(l)|

or equivalently as

+∞∑
k=n+1

∑
u+v=k,u≥0,v≥0

|rm(u)||π(m)(v)|+
+∞∑

k=n+1

∑
u+v=k,u≤−1,v≥0

|rm(u)||π(m)(v)|.

It is clear that

+∞∑
k=n+1

∑
u+v=k,u≥0,v≥0

|rm(u)||π(m)(v)| ≤

(
+∞∑
l=0

|π(m)(l)|

) +∞∑
k=[(n+1)/2]

|rm(k)|

+

(
+∞∑
k=0

|rm(k)|

) +∞∑
l=[(n+1)/2]

|π(m)(l)|


and that

+∞∑
k=n+1

∑
u+v=k,u≤−1,v≥0

|rm(u)||π(m)(v)| ≤

∑
k≤−1

|rm(k)|

( +∞∑
l=n+1

|π(m)(l)|

)
.

Using the fact that that supm ‖rm‖ω < +∞, we obtain, using the same arguments

as in (D.26), that

sup
m

+∞∑
l=n+1

|π(m)(l)| < κ

nγ

for some nice constant κ. We have thus shown that

sup
m
‖(P+ −Qn)C(m)π(m)‖1 ≤

κ

nγ

and this completes the proof of Proposition D.1.

Proposition D.1 immediately allows to study the behaviour of ‖φ∗(m)
n − π(m)‖1

when n→ +∞.

Corollary D.2. If γ < γ0, it exists an integer n2 and a nice constant κ for which

‖φ(m)∗
n − π(m)‖1 ≤

κ

nγ
(D.35)

for each n ≥ n2 and each m.

Proof. φ
(m)∗
n −π(m) coincides with σmn (T

(m)
n )−1δ0−σm(T (m))−1δ0, which can also

be written as

φ(m)∗
n − π(m) = σmn

(
(T (m)
n )−1δ0 − (T (m))−1δ0

)
+ (σmn − σm)(T (m))−1δ0
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or equivalently as

φ(m)∗
n − π(m) = σmn

(
(T (m)
n )−1δ0 − (T (m))−1δ0

)
+ (σmn − σm)

π(m)

σm
. (D.36)

We notice that σmn = 〈(T (m)
n )−1δ0, δ0〉−1 and that σm = 〈(T (m))−1δ0, δ0〉−1. We

express σmn − σm as

σmn − σm = σmn σ
m

(
1

σm
− 1

σmn

)
= σmn σ

m
〈

(T (m)
n )−1δ0 − (T (m))−1δ0), δ0

〉
.

Noting that supm,n σ
m
n ≤ supm r0(m) < +∞, we obtain that for each n large

enough and for each m, the inequality

σmn − σm ≤ κ‖(T (m)
n )−1δ0 − (T (m))−1δ0‖1 ≤

κ

nγ

holds for some nice constant κ. (D.35) thus follows immediately from Proposition

D.1.

We finally complete the proof of Lemma 5.1. (D.35) implies that

sup
m

sup
ν
|φ(m)∗
n (e2iπν)− π(m)(e2iπν)| ≤ κ

nγ

for each n ≥ n2. Using (D.19) and Sm(ν) = 1
|π(m)(e2iπν)|2 , we obtain that

sup
m

sup
ν

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ ≤ κ

nγ
(D.37)

for each n ≥ n2. We recall that εm(ν) is equal to

εm,L(ν) =
1

L

L−1∑
n=0

Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1.

Therefore,

|εm,L(ν)| ≤ 1

L

L−1∑
n=0

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ .
We express the right hand side as

1

L

n2−1∑
n=0

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣+
1

L

L∑
n=n2

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣
and handle the two terms separately. On the one hand, (D.37) implies that

1

L

L∑
n=n2

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ ≤ κ 1

L

L∑
n=n2

1

nγ
.

If γ > 1,
∑L
n=n2

1
nγ is a bounded term, and we obtain that

sup
m

sup
ν

1

L

L∑
n=n2

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ ≤ κ

L
.
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If γ = 1, the above term is bounded by κ logL
L , and if 0 < γ < 1, it holds that

L∑
n=n2

1

nγ
≤ κL1−γ

and that

sup
m

sup
ν

1

L

L∑
n=n2

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ ≤ κ

Lγ
.

We finally justify that there exists a nice constant κ such that

sup
m

sup
ν

n2−1∑
n=0

∣∣∣Sm(ν)|φ(m)∗
n (e2iπν)|2 − 1

∣∣∣ ≤ κ.
Indeed, since n2 is a fixed integer, we have just to verify that for each n ≤ n2,

supm supν |φ
(m)∗
n (e2iπν)| < +∞. For this, we recall that the non normalized poly-

nomials Φ
(m)
n and Φ

(m)∗
n verify the relation the well known recursion formula

Φ
(m)
n+1(z) = zΦ(m)

n (z) − α(m)
n Φ(m)∗

n (z) (D.38)

Φ
(m)∗
n+1 (z) = Φ(m)∗

n (z) − α(m)∗
n zΦ(m)

n (z). (D.39)

Here, (αm(n))n≥0 are the reflection coefficients sequence associated to autocovari-

ance (rm(n))n∈Z, also called in [37] the Verblunsky coefficients. For each n, it holds

that |αm(n)| < 1. It is obvious that ‖Φ(m)
n ‖1 = ‖Φ(m)∗

n ‖1. Therefore, (D.38) implies

that

‖Φ(m)∗
n+1 ‖1 ≤ (1 + |αm(n)|)‖Φ(m)∗

n ‖1 ≤ 2‖Φ(m)∗
n ‖1.

Noting that ‖Φ(m)∗
0 ‖1 = 1, we obtain that ‖Φ(m)∗

n ‖1 ≤ 2n, and that

supm supν |Φ
(m)∗
n (e2iπν)| ≤ 2n. As infm,n σ

m
n > 0, the normalized polynomials verify

supm supν |φ
(m)∗
n (e2iπν)| < +∞. This completes the proof of Lemma 5.1.


