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ABSTRACT

It is shown that the distribution of the estimated canonical correlation
coefficients between the past and the future of a high-dimensional
multivariate white noise sequence converges almost surely towards
a limit distribution whose density is given in closed form. A sketch
of proof, based on free probability technics, is provided. Finally, it
is briefly explained how this result can be used to produce consistent
uncorrelatedness tests in the high-dimensional context.

Index Terms— High-dimensional time series, canonical corre-
lation analysis, large random matrix

1. INTRODUCTION

The canonical correlation coefficients between 2 linear subspaces
Y1 and Y2 contained in some ambient Hilbert space are de-
fined as the singular values of the projection operator from Y1

onto Y2. If (ωi,1)i∈I and (ωj,2)j∈J represent any orthonormal
bases of Y1 and Y2 respectively, the canonical correlation coeffi-
cients coincide with the singular values of the matrix with entries
(< ωi,1, ωj,2 >)i∈I,j∈J where <,> represents the scalar product
of the ambient space. This concept was introduced in multivariate
analysis by Hotelling (see e.g. [8]) when Y1 and Y2 represent the
spaces generated by the components of 2 Gaussian zero mean ran-
dom vectors y1 and y2. In this context, the canonical correlation
coefficients allow in some sense to quantify the information that can
be obtained on the linear combinations of the components of yi by
observing yj for i 6= j. This led to the introduction of the very
popular canonical correlation analysis between 2 sets of random
variables. The canonical correlation coefficients can also be defined
in time series analysis in order to evaluate the relationships between
the past and the future of a given Gaussian zero mean multivariate
time series (yn)n∈Z (see e.g. [9]). In this context, the 2 subspaces,
denoted here Yp (the past) and Yf (the future), are defined respec-
tively as the spaces generated by the components of yn for n ≤ 0
and the components of yn for n > 0. The canonical correlation
coefficients between the past and the future of (yn)n∈Z are of fun-
damental interest if y has a rational spectrum because the number r
of non zero canonical correlation coefficients is finite, and coincides
with the minimal dimension of the state-space representations of
y. We refer the reader to [10] for an exhaustive presentation of the
related results and their important implications on questions such as
the identification of state space models or reduction model technics.
See also the concise monography [15]. In a number of practi-
cal procedures, Yp and Yf are replaced by the finite dimensional
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spaces Yp,L and Yf,L generated respectively by the components
of yn, n = −(L − 1), . . . , 0 and yn, n = 1, . . . , L for a certain
integer L ≥ r, a condition that implies that the number of non zero
coefficients between Yp,L and Yf,L is still equal to r. We refer
again to [10] for more details on the effects of the truncation. As the
second order statistics of y are very often unknown, the correlation
coefficients between Yp,L and Yf,L have to be estimated from N
avalaible samples y1, . . . ,yN . If Yp,L and Yf,L are the two block
Hankel ML×N matrices defined by

Yp,L =



y1 y2 . . . yN−1 yN
y2 y3 . . . yN yN+1

...
...

...
...

...
...

...
...

...
...

yL yL+1 . . . yN+L−2 yN+L−1

 (1)

and

Yf,L =



yL+1 yL+2 . . . yN−1+L yN+L

yL+2 yL+3 . . . yN+L yN+L+1

...
...

...
...

...
...

...
...

...
...

y2L y2L+1 . . . yN+2L−2 yN+2L−1


(2)

the correlation coefficients between Yp,L and Yf,L are usually es-
timated by the canonical correlation coefficients between the row
spaces of Yp,L and Yf,L (see e.g. [15]). We remark that matrices
Yp,L and Yf,L depend on the non available samples yn, N + 1 ≤
n ≤ N + 2L − 1. As these end effects have no implication in
the following, we prefer to use the definitions (1, 2) in order to
simplify the notations. The above estimation procedure produces
reasonably accurate results when the ratio cN = ML/N is small
enough. However, if y is high-dimensional, i.e. if M is large, the
condition cN << 1 will not be verified as soon as the number of
observations is not unlimited. It is therefore important to evaluate
the behaviour of the above estimators when cN is not negligible. In
this paper, we address this problem by studying the behaviour of the
above estimators in the high-dimensional regime where L is a fixed
integer and whereM andN both converge towards infinity in such a
way that the ratio cN = ML/N converges towards a non zero con-
stant c < 1. As this problem appears difficult in general contexts,
we specifically consider the simple case where (yn)n∈Z is an uncor-
related complex Gaussian time series, i.e. E(yny∗m) = Rδn−m for
some positive definite matrix R. In this context, the true canonical
correlation coefficients between the past and the future of y are of
course all equal to 0, i.e. r = 0. Using large random matrix meth-
ods, more specifically free probability technics, we show that the



estimated canonical correlation coefficients have a limit determinis-
tic distribution that is given in closed form. In practice, this means
that for each realization of sequence y1, . . . ,yN , the histogram of
the estimated coefficients is close from the graph of the probabil-
ity density of the above mentioned limit distribution. If c ≤ 1/2,
the limit distribution is absolutely continuous and its support is the
interval [0, 2

√
c(1− c)], and if c > 1/2, a Dirac mass at point 1

appears. While this new result is valid in the specific case of a white
noise sequence y, we believe it is useful for the following reasons:
First, when the observation is the sum of a white noise with a useful
signal with a low rank rational spectral density, the use of pertur-
bation technics (see e.g. [3] in the context of simpler random ma-
trix models) should allow to derive the conditions under which the
largest estimated canonical correlation coefficients escape from the
interval [0, 2

√
c(1− c)], thus revealing the presence of the useful

signal. Second, our results provide various tests, consistent in the
high-dimensional context, to verify that the samples (yn)n=1,...,N

come from an uncorrelated sequence or not.
We finally mention that a number of previous works addressed

the behaviour of canonical correlation coefficients in the high-
dimensional case. However, the underlying random matrix models
are simpler than in the present paper. More specifically, the random
matrices Yp,L and Yf,L defined by (1, 2) are replaced by indepen-
dent matrices Y1 and Y2 with i.i.d. elements, a property that is
not verified by Yp,L and Yf,L. In 1980, [17] addressed the case of
Gaussian i.i.d. entries and derived the limit distribution of the canon-
ical correlation coefficients between the row spaces of Y1 and Y2.
More recently, [18] extended this result to the case where Y1 and
Y2 are independent matrices with non Gaussian i.i.d. entries. We
also note that [19] took benefit of this result to propose independence
tests between 2 sets of i.i.d. high-dimensional samples, a question
which is not the same than the derivation of high-dimensional white-
ness tests. We finally mention that [2] extended the result of [17] to
the case where Y1 and Y2 have Gaussian i.i.d. entries, but EY1Y

∗
2

N
is a non zero low rank matrix.

2. THE MAIN RESULT

For each n, yn can be written as yn = R1/2yn,iid where
(yn,iid)n∈Z is an i.i.d. sequence of Nc(0, I) distributed random
vectors. It is clear that the row spaces of Yp,L and Yf,L coin-
cide with the row spaces of the block Hankel matrices Yp,L,iid

and Yf,L,iid defined from vectors (yn,iid)n=1,...,N+2L−1. There-
fore, the correlations coefficients between the 2 pairs of subspaces
coincide, and there is no restriction to assume that R = I in the
following. From now on, we thus assume that (yn)n≥1 is an in-
dependent sequence of Nc(0, I) distributed random vectors. In
order to simplify the notations, we denote by W,Wp,Wf the
matrices defined by W = 1√

N
(y1, . . . ,yN ), Wp = 1√

N
Yp,L

and Wf = 1√
N

Yf,L. The estimated canonical correlation co-
efficients therefore coincide with the singular values of matrix
Σ = (WfW

∗
f )−1/2WfW

∗
p(WpW

∗
p)−1/2 because the rows of

(WfW
∗
f )−1/2Wf and (WpW

∗
p)−1/2Wp represent orthonormal

bases. In the following, we rather study the singular values to the
square, or equivalently the eigenvalues of the ML × ML matrix
ΣΣ∗, in the asymptotic regime where cN = ML/N converges
towards c < 1, L being supposed to remain fixed. This regime will
be referred to as N → +∞ in order to simplify the notations. In the
following, we denote by (λk)k=1,...,ML the eigenvalues of ΣΣ∗.
The main result of this paper is the following Theorem.

Theorem 1 The empirical eigenvalue distribution dµ̂(λ) of ΣΣ∗

defined as dµ̂(λ) = 1
ML

∑ML
k=1 δλ−λk converges weakly almost

surely towards the probability distribution dµ(λ) given by

dµ(λ) =
1

c

√
λ (4c(1− c)− λ)

2πλ(1− λ)
1[0,4c(1−c)] dλ+max(2−1

c
, 0)δλ−1

(3)

Interestingly, measure µ coincides with the limit eigenvalue distri-
bution derived in [17] when matrices Yp,L,Yf,L are replaced by 2
independent ML×N random matrices withNc(0, 1) i.i.d. entries.
We note that a similar phenomenon holds for the limit eigenvalue
distribution of YiY

∗
i

N
, which, for i = p, f , converges towards the

Marcenko-Pastur distribution, i.e. the limit eigenvalue distribution
of the above matrices if Yp,L,Yf,L were replaced by a ML × N
random matrix with Nc(0, 1) i.i.d. entries (see e.g. [11]). We also
remark that the support of µ is equal [0, 4c(1 − c)] ∪ {1}1c>1/2.
Therefore, while the true canonical correlation coefficients betweeen
the finite dimensional past and future Yp,L and Yp,L are all zero, the
high-dimensionality of the observation produces a spreading of the
distribution of the estimated coefficients. We however remark that
the density of µ converges towards +∞ when λ → 0. In practice,
this means that a number of eigenvalues of the matrix ΣΣ∗ are con-
centrated around 0. We also notice that if c > 1/2, a mass at λ = 1
appears. If c > 1/2, cN = ML/N is also strictly larger than 1/2
for M and N large enough, and the intersection of the row spaces of
Yp,L and Yf,L is a non zero subspace whose dimension is at least
equal to 2ML − N = N(2cN − 1). Therefore, 1 is eigenvalue of
matrix ΣΣ∗ with multiplicity at least equal to N(2cN − 1). This in
accordance with Theorem 1.

Fig. 1 illustrates Theorem 1. In the corresponding numerical
experiment, N = 1200,M = 75, L = 4 so that cN = 1

4
. The

histogram of the eigenvalues of a realization of matrix ΣΣ∗ is rep-
resented as well the graph of the corresponding limit probability den-
sity. As expected, the 2 plots are close one from each other, and a
number of eigenvalues are close from 0.

Fig. 1. Histogram of the eigenvalues, N = 1200,M = 75, L =
4, c = 1

4

Due to the lack of space, we of course cannot provide the proof
of Theorem 1. However, we present in the next section a sketch of
the main arguments.

3. SKETCH OF PROOF

3.1. Background on free probability theory.

The proof uses free probability technics. We thus provide some
background on the corresponding theory in order to make this paper



reasonnably self-contained for non expert readers. Due to the lack
of space, some concepts are presented in a rather unformal way. We
refer the reader to the short summary provided in [4] (see section V)
in which the necessary concepts are introduced rigourously. Section
2.4 in [14] is also recommended. For a deeper view of the theory,
we refer to [6] and [12]. A non commutative probability space is a
couple (A, φ) where A is a non commutative algebra having a unit
denoted 1 and φ is a linear functional such that φ(1) = 1. We also
assume that φ verifies φ(ab) = φ(ba). An element a ∈ A is called
a non commutative random variable, and the distribution of a is de-
fined as the linear functional ρa defined on the algebra of complex
polynomials in 1 variable C(X) by ρa(P ) = φ(P (a)). For each in-
teger k ≥ 1, φ(ak) is called the order k moment of ρa. In a number
of useful contexts, ρa is associated to a probability measure µa de-
fined on R by φ(ak) =

∫
R λ

kdµa(λ) for each k ≥ 1. If a1, . . . , ap
are p elements of A, the joint distribution of a1, . . . , ap is this time
the linear functional defined on the algebra of complex polynomi-
als in p variables by ρa(Xi1 . . . Xiq ) = φ(ai1 . . . aiq ) where the
indices i1, i2, . . . , iq belong to {1, 2, . . . , p}.

A typical example of non commutative probability space is
(HP , φtr) whereHP represents the set of all P ×P Hermitian ma-
trices and where φtr(H) = 1

P
TrH for each Hermitian matrix H.

In this context, the distribution of H is associated to the probabil-
ity distribution µH = 1

P

∑P
k=1 δλ−λk(H) where (λk(H))k=1,...,P

represent the eigenvalues of H. In other words, µH coincides with
the empirical eigenvalue distribution of H.

A central notion of the theory is the concept of freeness, which,
in some sense, plays the role of the independence in classical proba-
bility theory. As the formal definition is may be not very informative,
we omit to introduce it, and rather mention that if 2 elements a1 and
a2 are free, then, the joint distribution of (a1, a2) can be retrieved
from the individual distributions of a1 and a2. In this case, if ρa1
and ρa2 are associated to 2 compactly supported probability distri-
butions µa1 and µa2 , then the distribution of a1 + a2 is associated
to a certain probability measure µa1 � µa2 called the free additive
convolution product of µa1 and µa2 . If moreover µa1 and µa2 are
carried by R+, the probability distribution associated to a1a2 is a
certain probability measure µa1 � µa2 called the free multiplicative
convolution product of µa1 and µa2 . These convolution products
can in practive be evaluated using some relevant analytic tools. It
is also possible to define the freeness of 2 sets of non commutative
random variables as well as the mutual freeness of a1, . . . , ap.

The connection between free probability theory and large ran-
dom matrices is based on the observation that certain mutually in-
dependent large random Hermitian P × P matrices, considered as
elements of the non commutative probability space (HP , φtr), be-
have almost surely as free non commutative random variables when
their dimension converges towards +∞. In this case, the corre-
sponding random matrices are said to be asymptotically free almost
surely. We refer the reader to [6], p. 147, for a formal definition.
In particular, if (H1,P )P≥1 and (H2,P )P≥1 are two sequences of
independent Hermitian unitarily invariant 1 P × P random matrices
whose empirical eigenvalue distributions converge almost surely to-
wards 2 compactly supported probability measures µ1 and µ2, then
(H1,P )P≥1 and (H2,P )P≥1 are asymptotically free almost every-
where. Therefore, H1 + H2 has a limit eigenvalue distribution
equal to µ1 � µ2. If moreover H1 and H2 are positive matrices,
µ1 and µ2 are carried by R+, and the limit eigenvalue distribution of
H1H2 is µ1 � µ2 (see also [13] and [16] for direct approaches that

1in the sense that for each unitary matrix U, the probability distributions
of Hi and U∗HiU coincide

do not use free probability theory). Another useful result states that
if (HP )P≥1 is a sequence of Hermitian unitarily invariant P × P
random matrices whose empirical eigenvalue distribution converges
almost surely, and if (Di,P )i=1,...,I are I P×P deterministic matri-
ces whose joint distribution defined in (HP , φtr) is convergent (i.e.
the joint moments of (Di,P )i=1,...,I converge when P → +∞),
then, (HP )P≥1 and ((Di,P )i=1,...,I)P≥1 are almost surely asymp-
totically free. Both results are consequences of Corollary 4.3.6, p.
156 in [6].

3.2. The main steps of the proof of the Theorem.

The first step consists in remarking that if Wp and Wf are replaced
by finite rank perturbations, matrix ΣΣ∗ will be affected by a finite
rank perturbation which has no influence of its limit eigenvalue dis-
tribution. We therefore modify Wp and Wf by replacing samples
yN+1,yN+2, . . . ,yN+2L−1 by the samples y1,y2, . . . ,y2L−1. As
L remains finite, this modification induces a finite rank perturbation
of both matrices. In order to simplify the notations, the new matrices
will be still denoted Wp, Wf , and Σ. We denote by Π the N ×N
permutation matrix defined by Πen = en+1 for n = 1, . . . , N − 1
and ΠeN = e1 where e1, . . . , eN represents the canonical ba-
sis of CN . Then, it is easily seen that the new matrices Wp and
Wf are given by Wp = (WT , (WΠ)T , . . . , (WΠL−1)T )T and
Wf = ((WΠL)T , (WΠL+1)T , . . . , (WΠ2L−1)T )T , where we
recall that W = 1√

N
(y1, . . . ,yN ). We also introduce theN ×ML

orthogonal matrices Θp and Θf given by Θi = W∗
i (WiW

∗
i )−1/2

for i = p, f . Matrix ΣΣ∗ coincides with ΣΣ∗ = Θ∗fΘpΘ
∗
pΘf

As for the second step, we notice that up to the eigenvalue 0, the
ML×ML matrix Θ∗fΘpΘ

∗
pΘf has the same eigenvalues than the

N ×N matrix ΘfΘ
∗
fΘpΘ

∗
p. Therefore, it is sufficient to evaluate

the limit eigenvalue distribution of ΘfΘ
∗
fΘpΘ

∗
p. Matrices ΘfΘ

∗
f

and ΘpΘ
∗
p are the orthogonal projection matrices on the row spaces

of Wf and Wp respectively. Therefore, their empirical eigenvalue
distribution both coincide with cNδλ−1 + (1− cN )δλ, and converge
towards the same limit dν(λ) = cδλ−1 + (1− c)δλ. If ΘfΘ

∗
f and

ΘpΘ
∗
p were almost surely asymptotically free, the limit eigenvalue

distribution of ΘfΘ
∗
fΘpΘ

∗
p would be equal to ν � ν, and easy

calculations would imply that the limit distribution of Θ∗fΘpΘ
∗
pΘf

is the measure µ defined by (3).
Theorem 1 will thus be proved if we establish that ΘfΘ

∗
f and

ΘpΘ
∗
p are almost surely asymptotically free. This is the third step

of the proof. In order to establish this fundamental property, we state
the following adaptation of Lemma 6 in [5].

Lemma 1 We consider a sequence of N × N hermitian ran-
dom matrices (XN )N≥1 and N × N deterministic matrices
(UN

l ,V
N
l )l=1,...m such that XN and {(UN

l ,V
N
l )l=1,...m} are al-

most surely asymptotically free. Then, if
(UN

l ,V
N
l )l=1,...m satisfy UN

l VN
l = VN

l UN
l = IN for each l =

1, . . . ,m as well as 1
N

Tr(UN
k VN

l ) = δk−l for all k, l = 1 . . .m,
then the random matrices
UN

1 XNVN
1 , . . . ,U

N
mXNVN

m are almost surely asymptotically
mutually free.

We first verify that it is possible to apply Lemma 1 when m = 2L,
X = W∗W, and Ul = Π∗(l−1),Vl = U−1

l = Πl−1. It is
clear that {(Π∗(l−1),Πl−1)l=1,...,2L} verify the conditions of the
Lemma. Moreover, matrix W∗W is unitarily invariant. Hence, as
recalled in paragraph 3.1, W∗W and {(Π∗(l−1),Πl−1)l=1,...,2L}
are almost surely asymptotically free. Lemma 1 thus leads to the
conclusion that W∗W,Π∗W∗WΠ, . . . ,Π∗(2L−1)W∗WΠ2L−1



are almost surely asymptotically mutually free. This immediately
implies that W∗

pWp =
∑L−1
l=0 Π∗lW∗WΠl and W∗

fWf =∑2L−1
l=L Π∗lW∗WΠl are also almost surely asymptotically free.

In order to complete the proof, we mention that it is possible to
show that the empirical eigenvalue distributions of W∗

pWp and
W∗

fWf converge a.s. towards cµMP + (1 − c)δλ where µMP

is the Marcenko-Pastur distribution with parameter c. Moreover,
for each ε > 0, almost surely, for each N large enough, all the
non zero eigenvalues of W∗

pWp and W∗
fWf are located into

[(1 −
√
c)2 − ε, (1 +

√
c)2 + ε]. As c < 1, we choose ε in such

a way that (1 −
√
c)2 − 2ε > 0 and consider a smooth function

f(λ) which is equal to 1 on [(1 −
√
c)2 − ε, (1 +

√
c)2 + ε] and

which vanishes outside [(1−
√
c)2− 2ε, (1 +

√
c)2 + 2ε]. Then, we

claim that almost surely, ΘiΘ
∗
i = f(W∗

iWi) for i = p, f for each
N large enough. To check this, we express W∗

iWi, as W∗
iWi =∑ML

k=1 γi,kθi,kθ
∗
i,k where the (γi,k, θi,k)k=1,...,ML are the non

zero eigenvalues and eigenvectors of W∗
iWi. Almost surely, for N

large enough, γi,k belongs to [(1 −
√
c)2 − ε, (1 +

√
c)2 + ε] and

f(γi,k) = 1 for each k = 1, . . . ,ML. Therefore, f(W∗
iWi) is

equal to
∑ML
k=1 θi,kθ

∗
i,k, which, of course, coincides with ΘiΘ

∗
i .

Approximating uniformly function f on [0, (1 +
√
c)2 + 2ε] by a

sequence of polynomials, and using the a.s. asymptotic freeness of
W∗

pWp and W∗
fWf eventually lead to the conclusion that ΘfΘ

∗
f

and ΘpΘ
∗
p are almost surely asymptotically free.

4. APPLICATION TO UNCORRELATEDNESS TESTING

In order to test that the high-dimensional time series y verifies
E(yn+ly

∗
n) = 0 for l = 1, . . . , 2L − 1, to be referred to as the

hypothesis H0, it is possible to compare the empirical eigenvalue
distribution µ̂ of matrix ΣΣ∗ with its limit µ under H0. If the
2 measures are close enough, the decision is that H0 holds, and
vice and versa. There are a number of ways to compare µ̂ and
µ. It is possible to consider the Kolmogorov-Smirnov statistics
η = supλ |F̂ (λ) − F (λ)| where F̂ and F represent the cumulative
distribution functions of µ̂ and µ, and to compare η to a threshold.
Other kind of distance can also be considered, such as the Wasser-
stein distance. If f is a test function, another approach is to compare∫
f(λ)dµ̂(λ) to its limit

∫
f(λ)dµ(λ) (see e.g. [19] when Yp,L

and Yf,L are replaced by independent i.i.d. non Gaussian matri-
ces). In particular, it is easily seen that the first moment of µ, i.e.∫
λdµ(λ) coincides with c. Therefore, it is relevant to compare the

test statistics γ =
∣∣ 1
ML

TrΣΣ∗ − c
∣∣ to 0.

We illustrate the performance of the Kolmogorov-Smirnov (KS)
test (Fig. 2) and of the test associated to the statistics γ (Fig. 3).
We plot 3 ROC curves obtained by Monte-Carlo simulations. The
signal generated under hypothesis H1 is a M -dimensional signal
(zn)n∈Z whose M components ((zm,n)n∈Z)m=1,...,M are mutu-
ally independent autoregressive sequences of order 1 with coeffi-
cients (am)m=1,...,M uniformly distributed between 0.35 and 0.45.
The number of observations N is equal to N = 1200, the ratio
cN = ML/N is equal to 1

4
, and the integerL take the valuesL = 2,

L = 4, and L = 8. Therefore, M is equal to M = 150, M = 75
and M = 37 respectively. It is observed that the performance of
the tests depends on L, or equivalently of M : the larger M , the
better the performance. This is because under H0, the ML ×ML
random matrices Wf and Wp depend on MN independent scalar
random variables. Intuitively, the convergence towards 0 of η and γ
depends on MN , so that the observed loss of performance when L
increases was expected. We also notice the test statistics γ provides

better results than the KS test. While we have not yet evaluated the
asymptotic distribution of η and γ under H0, the better performance
of γ is probably due to the fact that γ converges faster towards 0
than η: in the context of simpler models, statistics such as γ and
η are OP ( 1

N
) and OP ( 1

N2/5 ) terms respectively (see e.g. [1] and
the references therein). We finally remark that the ROC curves of
course also depend on the (am)m=1,...,M which control the speed
of convergence towards 0 of the autocovariance sequences of the
components of (zn)n∈Z.

Fig. 2. ROC curves for the KS test

Fig. 3. ROC curves for the test statistics γ

5. CONCLUDING REMARKS.

We conclude by indicating some directions for future research. An
interesting problem would be to study the largest canonical corre-
lation coefficients when the observation contains a “useful signal”
having low dimensional state-space representations, and to evaluate
the conditions under which some coefficients escape from the inter-
val [0, 2

√
c(1− c)]. This kind of result could be used to detect such

a signal. Finally, the applications to uncorrelatedness testing, briefly
mentioned in the present paper, pose a number of open questions:
among others, consider the case where L→ +∞ in order to be able
to test that the observation is an i.i.d. sequence, establish some CLT
on the above mentioned test statistics, make the appropriate connec-
tions with traditional tests used in standard asymptotic regimes such
as the multivariate Portmanteau tests (see e.g. [7]).
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