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ABSTRACT sponding ergodic capacity denotégl,,.. in the following.
It is defined as the sum over the transmit antennas of the

This paper is devoted to the study of the ergodic capacity OftermsE(log(l + SINR;)), where SINR represents the out-

frequency selective MIMO systems equipped with a MMSE put MMSE SINR associated to the stream sent by antgnna
receiver when the channel state information is available atc has been studied extensively in the past if the chan-
the receiver side and when the second order statistics of then’e”l”il;eStatic and available at the transmitter- in this cente

chanqel taps are "”OV.V” fT[ the transmltt_er side. As t_h_e Xthe design of an optimum precoder has been addressed in a
pression of t_h|_s capacity Is rather complicated and difficul number of papers (see e.g. [7]). However, assuming that the
to analyse, It is s_tud|ed in the case where the number Oftransmitter is aware of the channel state information isroft
transmit and receive antennas converge-te at the same not realistic in the context of mobile wireless systems. In

rate. In this asymptotic regime, the main results of the pape this paper, we assume that the MIMO channel is frequency

are related to the_deS|gn of an optimal precode_zr in the Caseselective, known at the receiver side, but that its second or
where the transmit antennas are correlated. It is shown tha

the left sinaular ei ¢ £ th i d Yer statistics are available at the transmitter side. AZIn [
the Ieft singular eigenvectors ot the optimum precoder Co- y,o cpanne| taps are modelled as independent Gaussian ran-
incide with the eigenvectors of the mean of the channel taps

transmit covariance matrices, and its singular values@re s dom matrices with possible transmit correlations. To our
. . S 9 best knowledge(,,....se S€EMS Not to have been studied ex-
lution of a certain maximization problem.

tensively in the past.
As the expression df,,,...s¢ IS a rather complicated, we
1. INTRODUCTION evaluate its behaviour in the case where the number of trans-
mit and receive antennas convergetteo at the same rate.
It is now well established that using multiple transmit and In this asymptotic regime(,,,..s. has the same behaviour
receive antennas potentially allows to increase the Shranno that a simpler terng,,,,,s.. As observed in a number of sit-
capacity of digital communications systems. Since the sem-uations,C,,... is a reliable aprroximation of,,,,,,sc, even
inal work of Teletar ([8]), the ergodic Shannon capacity of for a realistic number of transmit and receive antennas. We
block fading MIMO systems has been studied extensively. address the optimization @,,,,,.. W.I.t. linear precoders,
If the channel state information is available at the reaeive and show that the left singular vectors of the optimum pre-
side while the transmitter is only aware of its second order coder(s) coincide with the eigenvectors of a covariance ma-
statistical properties, important questions such as the im trix depending on the second order statistics of the channel
pact of channel correlations on the capacity or the design oftaps. The singular values are moreover solution of a certain
optimal precoding schemes have been addressed by severalptimization problem.
authors (see e.g. [3] for a review).
The ergodic Shannon capacity is certainly a valuable
figure of merit if the MIMO system under consideration is 2. ASYMPTOTIC EXPRESSION OF CyysE-
equipped with a maximum likelihood decoder. As this re-
ceiver may be difficult to use in practice, in particular if We consider a MIMO system equipped withreceive an-
the MIMO channel is frequency selective, it is also quite tennas and transmit antennas. The transfer functiHiiz)
relevant to study the potential performance of MIMO sys- of the discrete-time equivalent MIMO channel is given by
tems equipped with suboptimum linear interfaces. In this H(z) = lL:_Ol H;z~!. The channel tap§H;);—o,. -1
paper, we consider the MMSE receiver, and study the corre-are assumed to be mutually independent Gaussian random



matrices. As in [2], each matrixH, is modelled as

1 —
Hy = p!t = HC) (1)

wherep represents the total received power per receive an-
tenna and wher#l; is a zero mean complex Gaussian ma-

trix with unit variance independent identically distribdt
(i.i.d.) entries. MatrixC; is a positive matrix modelling the
impact of transmit antennas correlation on the th path.
p11Tr(C;) represents the power of pathif we denoteC

the matrix
1 L—1
C=— C

we assume that® > 0 and that%TrC = 1. The normal-

izations ensure that the total received power is indepeinden
of L andt and thus allow to compare in a fair fashion sit-
uations in which the number of paths and the number of

transmit antennas differ. Model (1) implies tHd{ ")
can be written as

H(62i7rf) :pl/QI:I(e2i7rf)Cl/2 (2)

where matrixH (e2"/) is a zero mean Gaussianx ¢ ran-

dom matrix with variancelt i.i.d. entries. This is based on

the observation that the covariance matrix of \fd¢e?""/))
coincides withp/t C ® I, (see [2] for more details). This

given by
1

B = _ -1 3)
T Qe ), g df

where matrixQ(e?*/) is defined by

. 0'2 . . 0'2 -1
Q(e2z7rf) _ <H(62mf)HH(e2mf) + I)
p p
The ergodic capacity,,,,sc of the MIMO system under
consideration is thus equal to

t ¢ 1/2 4
EY " (logy(1 4 8;)) = —Ezlogz (/_1/2(Q(€2mf))j,j df)

j=1

4)
where the mathematical expectation is over the joint proba-
bility distribution of random matrice#l,,..., Hy_;. Itis
clear the expression df,,.,.s. is complicated and difficult
to exploit.

Whenr andt converge to+oo at the same rate, the
entries of Q(e?™f) converge towards deterministic terms
which only depend on the statistical propertiedkf2" /).

By (2), the second order statistical propertiestbfe™/)
are independent of the frequengy Therefore, the large
system approximation of the entri€ye?"/) are indepen-
dent of f. Using the results of [4], it is possible to prove the

means that for eacl, H(e*"/) can be interpreted as the ~following theorem.
channel matrix of a semi-correlated flat fading MIMO chan- Theorem 1 For each f, whent and r converge to+oc in

nel whose transmit correlation matrix is independent of the

frequencyf.
The transmitter sendsstreams of symbols

((sj(n))nez)j=1,....+ (One stream per transmit antenna). In

this section, we assume that the),—1 .., are unit vari-
ance mutually independent i.i.d.
spondingr-variate discrete-time received signgl(n))nez
is given by

L-1

y(n) =) Hs(n—1) +v(n)

=0

wheres(n) = (sy(n),...,s:(n))T and wherev is a white
Gaussian noise with covariance matfixv(n)v(n)f) =
0?1,. Each symbol sequencs is estimated by the non
causal Wiener filter whose transfer function is

hj(e2i7rf)H(H(e2i7rf)H(e2i7rf)H + J2Ir)71

whereh,(e?77) is the j — th column of H(e*77). Itis
standard that the SINR; provided by this linear receiver is

1[2] addresses uplink transmissions so that the receive aasare cor-
related. Here, we rather focus on downlink transmissionsth@dransmit
antennas are correlated

sequences. The corre-

suchaway thaf — «, then, the entries of matri@ (e*"/)
converge in probability towards the entries of the determin
istic matrix (I; + §(C) C)~!, whereé(C) is the unique
strictly positive solution of the equation

o? 1 T
—5+-T I -
p5+t 6 C(I+6C) : (5)

Using Theorem 1, we get im@ediately that,,, .. has the
same asymptotic behaviour th@t,,,,s. defined by

_ ¢ 1 )
C'rnmss = 1 g - (6)
2o <<I+6<c> c))

3,3

In other words, the relative errgfmmsc—Cmmecl converges
towards0 in the above asymptotic regime.

We now present some simulation experiments which show

that the number of antennasandt for which the approxi-
mationC,,mse ~ Cmmse IS relevant depends on the number
of pathsL. In Figure 1, we represent the average of the rel-
ative error betweeg, 5. andC,mse WhenL = 1,4, 7,10
forr =t =4, 5 =10 dB, andC = I. The average of the
relative error is evaluated o200 independent realizations
of the matriceH(!));~o,...,z.—1. Itis clear that ifL = 1,
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Fig. 1. Average of the relative error.

then the large system approximant is rather far fm, sc,
but that forL = 4,7, 10, the error becomes reasonable.

The above discussion shows that in rich scattering envi-

ronments, our large system approximatiorCgf,, . is reli-
able for realistic numbers of transmit and receive antennas
Therefore, it is relevant to study,, .. in place ofC,,mse.
In the rest of the paper, we study the effect®bnC,,,se,
and discuss on the design of linear precoders that optimize,

Cmmse

3. DESIGN OF OPTIMAL PRECODERS.

3.1

CT’L’VVLSC .

Influence of the transmit correlation matrix C on

In order to motivate the use of linear precoders, we first es-
tablish in this paragraph that diagonal correlation masic
provide higher values of,,,,.... In the remainder of this
paragraph, we mention explicitely th@t,,,... depends on

C = - 3/ € and use the notatiaf,,,.s.(C). We have
the following result.

Proposition 1 LetC = UDU be the eigenvalues/ eigen-
vectors decomposition of matn¥, Where the diagonal en-
tries (d;) =1,
Then,

.....

Emmse(c) < émmse(D) (7)

Proof. We first note that parameté(C) defined by (5) de-
pends on matrixC, but through its eigenvalues. Therefore,
§(C) coincides with§(D). C,,mse(C) can thus be written
Hy\— |ukx,j|2
(I+4¢(D)UDUY);

as
Zlog2<1+5 D) ]})
j :; )d

(1+§(D)UDUH); !
— 1+ 0(D)d

1
UDUH)

mm.se

is given by

wherel',,; = Diag(v1,0pt; - - -

whereuy, ; is the entry(k, j) of unitary matrixU. The func-
tion y — log, + is convex onR*. As Zk Llug 2 =1
(becausdl is umtary) we have

t

Zum logy (1 + 8(D)dy)

1 1
082 t [uk, ;12
k=1 T+o(D)dy

Summing overj, and using tha}_;_, |ux ;|* = 1, we get
that

"LTVL&E

dk) C’mrnse (D)

t
<D loga(l
k=1

This resultimplies that the maximum 6f,,,,,s.(C) over the
set of all possible correlation matrices for whifir(C) =
1 is reached for a diagonal correlation matrix.

3.2. Structure of linear precoders.

Proposition 1 suggests that the use of a linear precoder at

the transmitter side may be fruitfull. L& be at x ¢t matrix
satisfying; LTr(KK#) = 1, and assume that vectlfs,, is
transmltted instead of vectsy, at each time:. The capac-

ity Coomse Of this precoded system equiped with the MMSE
receiver is of course obtained by replacing covariance ma-

trix C by matrix K CK. More preciselyC,,ms. iS given
by (4), but in which matrixQ(e?"/) is now defined by

2imfy
Q(e™™) ’

whereH(e2™/) is a zero mean i.i.d. Gaussian random ma-
trix with % variance entries. In order to design the precoder

K, it is quite natural to optimiz€,,,,,s. over the set of all
precoding matrice¥ for which + Tr(KK*) = 1. As the
expression of,,,,s. IS quite complicated, we propose to

study the maximization of the large system approximation
Crnmse VersusK. We thus denoté€,,,,,.se bY Crumse (K) in

the following. C,,,.ms. (K) is given by

mmse

1
—1
353

Z o82 ( (I+6(KFCK)KHCK);
(8)

wheres (K CK) is the unique positive solution of the equa-

tion (5) in which matrixC is replaced by matridK* CK.
The main result of this paper is the following theorem.

Theorem 2 LetC = UDUY be the eigenvalues/eigenvectors

decomposition of matri€. LetK,,: be the precoding ma-

trix K.+ defined by

UD 2/

opt

Kopt (9)

. Yt,0pt) IS @ positive diago-
nal matrix solution of the optimization problem

o2 SIS - o?
e <KHCl/2H(62z7rf)HH(e2wrf)Cl/QK+ >
p ).



Problem 1 Maximizey~'_, log, (1 + 7; 6(T")) under the con-
straints
1
r:Dmg%,“ngzo,fﬂD—ﬁv:1 (10)
whered(T') is the unique positive solution of the equation

(5) in whichC is replaced byl

Proof. In order to prove Theorem 2, we consider a precod-

ing matrixK such that} Tr(KK') = 1, and the eigenval-
ues/ eigenvectors decompositi®’ CK = WI'W# of
matrix K¥ CK. Then, the precoding matriK, = KW
satisfies! Tr(K,KZ) = 1 and is such thak/ CK, is di-
agonal. More importantly, we have

Emmse(K) S 6m,mse (Kd) (11)

(11) can be shown as Proposition 1. This discussion im-

plies that it is sufficient to look for precoding matric&s
for which K¥ CK is a positive diagonal matri¥'. This
condition is satisfied if and only iK can be written as
K = UD/2@r'/? where ® is a unitary matrix. As
%Tr(KKH) is supposed to be equal to 1, matrittand®
moreover satisfy: TrD~'@I'®" = 1. Each precodeK

defined above can thus be parameterized by the unitary ma-

trix ® and the positive diagonal matrx or equivalently by
the hermitian matrixR = OI'©” because matri©I!/?
is uniquely defined fronR.. C,;,;mse(K) is equal to

i1 logy(1 + 6(T) ), or equivalently tolog, det(T
J(R)R) because the eigenvalues®fcoincide with the en-
tries of matrixT’, which in particular imply that(T") =
§(R). Hence, the optimization af,,,,,.(K) is equivalent
to the following problem

Problem 2 Maximizelog, det (I+§(R)
straints

R) under the con-

1
RZQEﬁDAR:L (12)

In order to complete the proof of Theorem 2, it is sufficient
to prove that it exists diagonal matrices which are solgion
of Problem 2. This is established in the Appendix.

3.3. Study of Problem 1.

Theorem 2 shows that the determination of an optimal pre-

coderK,,; needs to solve the optimization Problem 1. This
problem cannot be solved in closed form, exceit= 1.

In this context, the results of [1] imply that the solutions
of Problem 1 are the vectorg,, = (V1,0pts -+ > Vt,0pt)
whoses largest components coincide wn@n and whose

t — s smallest ones are 0. The valuesok ¢ depends on the
signal to noise ratio. 1§ < ¢, Problem 1 has therefore mul-
tiple solutions. This in particular implies that f@ = I,
the functlonz 1 logy(1 +v;6(A)) is not concave on the
convex set deflned by the constraints (10).

If D #£ 1, it seems difficult to characterize analytically
the solutions of Problem 1. We have thus to use numeri-
cal technics. We propose to parameterizeby v; = 632
in order to get rid of the constraing; > 0, and to use
a standard gradlent algorithm with projection on the con-

straint Zj 1 dﬂ = 1 at each iteration. Note that the con-
vergence of this algorithm torwards a global maximum of
ijl log, (1 + 7;0(A)) is not guaranteed because, as ex-
plained above, this last function is in general not concave.
However, we have checkedli = I, then the gradient algo-
rithm always converges towards one of the above mentioned
global maximum.

3.4. Numericalillustration of the precoder optimization.

In order to illustrate the impact of the precoder optimiaati

0N Cumse @aNAComse iN @ realistic context, we follow the
propagation model introduced in [2] in which each path cor-
responds to a scatterer cluster characterized by a meag angl|
of departure and an angle spread. We refer the reader to [2]
for more details on the corresponding correlation matrix.

In the following numerical experiment, = ¢t = 4, the
number of paths i€, = 5, they share the same power, and
their mean departure angles and angle spreads, expressed in
Radians, are equal tv72,1.3,0.93,2.1,2.9 and 0.1, 0.17,
0.03, 0.05, 0.08 respectively. In Figure 2, we have repre-
sented’,,mse (I) (without precoding) as well &,,,,5¢ (Kopt)
whereK,,; is the optimal precoder. We have also repre-
sented the true ergodic capaciti&s,, s (I) andC, . se (Kopt )
evaluated by Monte Carlo simulations. Figure 2 confirms
thatC,,mse aNdC,, s are reasonably close one from each
other in both cases. In particular, optimizidg,,,s. over
the precoder also allows to improve a lot the true capacity

Cmmse .

4. CONCLUDING REMARKS.

We summarize the advantages of our asymptotic analysis of
Cmmse- It first allows to prove the relevance of precoders
K = UD~/21"/2 whereT is a positive diagonal matrix.
Second, the entries of the optimum matlixare solution

of an optimization problem that can be solved by a compu-
tationally attractive gradient algorithm. If in contrasta-

trix I' was designed to maximize the true ergodic capacity
Crumse(UD™1/2T), the corresponding gradient algorithm
would have a high computational cost. This is because this
function of I, as well as its derivatives w.r.t. the entries of
T, cannot be expressed in closed form. They have to be
evaluated by Monte Carlo simulations, thus complicating a
lot the maximization algorithm.

APPENDIX
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Fig. 2. Capacity with and without optimum precoding.

inequality

1
;TrD‘1VAVH > _TrD'A

S

(15)

which is extensively used in [5] (see the Appendix of [5]).
(15) implies that

0.2

1 1
—zTrD_lA + ;TrA(I +A)I <
p

S

The functiong () defined by

21 1
o(u) = %ETerl,uA + ;TI“IJA(I + pA) !

is an increasing function such thatl) < 7. Therefore, it
exists a uniqueu; > 1 for which ¢(ug) = 1. This means
that matrixug A satisfies (13). Finally, equality (14) holds
becausq:; > 1. We denote by8,; the matrixSy; = ugA.
(14) implies that for each matri® satisfying (13), then the
diagonal matrixS, verifies (13) andlog, det(I + S) <

We prove that there exists diagonal matrices which are log, det(I + S,). This, in turn, establishes that there ex-
solutions of Problem 2. For this, we introduce a simplifica- sts diagonal matrices which are solutions of Problem 3, and
tion of Problem 2 based on the observation that there existstherefore of Problem 2.

a one-to-one correspondence between the set of maRices
satisfying the constraints (12) and the set of positive imatr
cesS verifying

21 1
§20, 2 TD IS+ [ TrS(I+8) " = g (13)
p

In effect, if R satisfies (12), thet8 = §(R)R verifies
1TrD™'S = §(R) +TrD~'R = §(R). The equation (13)
follows immediately from the definition (5) of(R). Con-
versely, ifS is a positive matrix for which (13) holds, then
R = }Trifj—lss satisfies (12) and(R) = 1TrD~'S.
Problem 2 is eventually equivalent to

Problem 3 Maximizelog det (I + S) under the constraints
(13).

and we have to establish that there exists diagonal matrices

that are solutions of Problem 3. LBtbe a matrix verify-
ing the constraints (13), and I8t= VAV be the eigen-
values/ eigenvectors decomposition of maSixwhere the
eigenvalues(\;);—1,...+ (the diagonal entries of diagonal

matrix A) are arranged in decreasing order. Then, we claim

that it existsuy > 1 such thatug A verifies the constraints
(13), and

log, det (I+ S) = log, det (I+ A) < log, det (I+ pqA)
(14)
To prove this, we first note thatTrS(I+S) ! = 1 TrA(I+

Tt
A)~!. We recall that the eigenvalu€d,);_; . are ar-
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