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ABSTRACT

This paper is devoted to the study of the ergodic capacity of
frequency selective MIMO systems equipped with a MMSE
receiver when the channel state information is available at
the receiver side and when the second order statistics of the
channel taps are known at the transmitter side. As the ex-
pression of this capacity is rather complicated and difficult
to analyse, it is studied in the case where the number of
transmit and receive antennas converge to+∞ at the same
rate. In this asymptotic regime, the main results of the paper
are related to the design of an optimal precoder in the case
where the transmit antennas are correlated. It is shown that
the left singular eigenvectors of the optimum precoder co-
incide with the eigenvectors of the mean of the channel taps
transmit covariance matrices, and its singular values are so-
lution of a certain maximization problem.

1. INTRODUCTION

It is now well established that using multiple transmit and
receive antennas potentially allows to increase the Shannon
capacity of digital communications systems. Since the sem-
inal work of Teletar ([8]), the ergodic Shannon capacity of
block fading MIMO systems has been studied extensively.
If the channel state information is available at the receiver
side while the transmitter is only aware of its second order
statistical properties, important questions such as the im-
pact of channel correlations on the capacity or the design of
optimal precoding schemes have been addressed by several
authors (see e.g. [3] for a review).

The ergodic Shannon capacity is certainly a valuable
figure of merit if the MIMO system under consideration is
equipped with a maximum likelihood decoder. As this re-
ceiver may be difficult to use in practice, in particular if
the MIMO channel is frequency selective, it is also quite
relevant to study the potential performance of MIMO sys-
tems equipped with suboptimum linear interfaces. In this
paper, we consider the MMSE receiver, and study the corre-

sponding ergodic capacity denotedCmmse in the following.
It is defined as the sum over the transmit antennas of the
termsE(log(1 + SINRj)), where SINRj represents the out-
put MMSE SINR associated to the stream sent by antennaj.
Cmmse has been studied extensively in the past if the chan-
nel is static and available at the transmitter; in this context,
the design of an optimum precoder has been addressed in a
number of papers (see e.g. [7]). However, assuming that the
transmitter is aware of the channel state information is often
not realistic in the context of mobile wireless systems. In
this paper, we assume that the MIMO channel is frequency
selective, known at the receiver side, but that its second or-
der statistics are available at the transmitter side. As in [2],
the channel taps are modelled as independent Gaussian ran-
dom matrices with possible transmit correlations. To our
best knowledge,Cmmse seems not to have been studied ex-
tensively in the past.

As the expression ofCmmse is a rather complicated, we
evaluate its behaviour in the case where the number of trans-
mit and receive antennas converge to+∞ at the same rate.
In this asymptotic regime,Cmmse has the same behaviour
that a simpler termCmmse. As observed in a number of sit-
uations,Cmmse is a reliable aprroximation ofCmmse, even
for a realistic number of transmit and receive antennas. We
address the optimization ofCmmse w.r.t. linear precoders,
and show that the left singular vectors of the optimum pre-
coder(s) coincide with the eigenvectors of a covariance ma-
trix depending on the second order statistics of the channel
taps. The singular values are moreover solution of a certain
optimization problem.

2. ASYMPTOTIC EXPRESSION OF CMMSE .

We consider a MIMO system equipped withr receive an-
tennas andt transmit antennas. The transfer functionH(z)
of the discrete-time equivalent MIMO channel is given by
H(z) =

∑L−1
l=0 Hlz

−l. The channel taps(Hl)l=0,...,L−1

are assumed to be mutually independent Gaussian random



matrices. As in [2]1, each matrixHl is modelled as

Hl = p1/2 1√
Lt

HlC
1/2
l (1)

wherep represents the total received power per receive an-
tenna and whereHl is a zero mean complex Gaussian ma-
trix with unit variance independent identically distributed
(i.i.d.) entries. MatrixCl is a positive matrix modelling the
impact of transmit antennas correlation on thel − th path.
p 1

L
1
t Tr(Cl) represents the power of pathl. If we denoteC

the matrix

C =
1

L

L−1
∑

l=0

Cl

we assume thatC > 0 and that1t TrC = 1. The normal-
izations ensure that the total received power is independent
of L andt and thus allow to compare in a fair fashion sit-
uations in which the number of paths and the number of
transmit antennas differ. Model (1) implies thatH(e2iπf )
can be written as

H(e2iπf ) = p1/2H̃(e2iπf )C1/2 (2)

where matrixH̃(e2iπf ) is a zero mean Gaussianr × t ran-
dom matrix with variance1t i.i.d. entries. This is based on
the observation that the covariance matrix of vec(H(e2iπf ))
coincides withp/tC ⊗ Ir (see [2] for more details). This
means that for eachf , H(e2iπf ) can be interpreted as the
channel matrix of a semi-correlated flat fading MIMO chan-
nel whose transmit correlation matrix is independent of the
frequencyf .

The transmitter sendst streams of symbols
((sj(n))n∈Z)j=1,...,t (one stream per transmit antenna). In
this section, we assume that the(sj)j=1,...,t are unit vari-
ance mutually independent i.i.d. sequences. The corre-
spondingr-variate discrete-time received signal(y(n))n∈Z

is given by

y(n) =

L−1
∑

l=0

Hls(n − l) + v(n)

wheres(n) = (s1(n), . . . , st(n))T and wherev is a white
Gaussian noise with covariance matrixE(v(n)v(n)H) =
σ2Ir. Each symbol sequencesj is estimated by the non
causal Wiener filter whose transfer function is

hj(e
2iπf )H(H(e2iπf )H(e2iπf )H + σ2Ir)

−1

wherehj(e
2iπf ) is the j − th column ofH(e2iπf ). It is

standard that the SINRβj provided by this linear receiver is

1[2] addresses uplink transmissions so that the receive antennas are cor-
related. Here, we rather focus on downlink transmissions andthe transmit
antennas are correlated

given by

βj =
1

∫ 1/2

−1/2
(Q(e2iπf ))j,j df

− 1 (3)

where matrixQ(e2iπf ) is defined by

Q(e2iπf ) =
σ2

p

(

H(e2iπf )HH(e2iπf ) +
σ2

p
I

)−1

The ergodic capacityCmmse of the MIMO system under
consideration is thus equal to

E

t
∑

j=1

(log2(1 + βj)) = −E

t
∑

j=1

log2

(

∫ 1/2

−1/2

(Q(e2iπf ))j,j df

)

(4)
where the mathematical expectation is over the joint proba-
bility distribution of random matricesH0, . . . ,HL−1. It is
clear the expression ofCmmse is complicated and difficult
to exploit.

When r and t converge to+∞ at the same rate, the
entries ofQ(e2iπf ) converge towards deterministic terms
which only depend on the statistical properties ofH(e2iπf ).
By (2), the second order statistical properties ofH(e2iπf )
are independent of the frequencyf . Therefore, the large
system approximation of the entriesQ(e2iπf ) are indepen-
dent off . Using the results of [4], it is possible to prove the
following theorem.

Theorem 1 For eachf , whent and r converge to+∞ in
such a way thatrt → α, then, the entries of matrixQ(e2iπf )
converge in probability towards the entries of the determin-
istic matrix (It + δ(C) C)−1, whereδ(C) is the unique
strictly positive solution of the equation

σ2

p
δ +

1

t
Trδ C(I + δ C)−1 =

r

t
(5)

Using Theorem 1, we get immediately thatCmmse has the
same asymptotic behaviour thatCmmse defined by

Cmmse =

t
∑

j=1

log2

(

1

(I + δ(C) C)−1
j,j

)

(6)

In other words, the relative error|Cmmse−Cmmse|
Cmmse

converges
towards0 in the above asymptotic regime.

We now present some simulation experiments which show
that the number of antennasr andt for which the approxi-
mationCmmse ≃ Cmmse is relevant depends on the number
of pathsL. In Figure 1, we represent the average of the rel-
ative error betweenCmmse andCmmse whenL = 1, 4, 7, 10
for r = t = 4, p

σ2 = 10 dB, andC = I. The average of the
relative error is evaluated on200 independent realizations
of the matrices(H(l))l=0,...,L−1. It is clear that ifL = 1,
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Fig. 1. Average of the relative error.

then the large system approximant is rather far fromCmmse,
but that forL = 4, 7, 10, the error becomes reasonable.

The above discussion shows that in rich scattering envi-
ronments, our large system approximation ofCmmse is reli-
able for realistic numbers of transmit and receive antennas.
Therefore, it is relevant to studyCmmse in place ofCmmse.
In the rest of the paper, we study the effect ofC onCmmse,
and discuss on the design of linear precoders that optimize
Cmmse.

3. DESIGN OF OPTIMAL PRECODERS.

3.1. Influence of the transmit correlation matrix C on
Cmmse.

In order to motivate the use of linear precoders, we first es-
tablish in this paragraph that diagonal correlation matrices
provide higher values ofCmmse. In the remainder of this
paragraph, we mention explicitely thatCmmse depends on
C = 1

L

∑L−1
l=0 Cl and use the notationCmmse(C). We have

the following result.

Proposition 1 LetC = UDUH be the eigenvalues/ eigen-
vectors decomposition of matrixC, where the diagonal en-
tries (dj)j=1,...,t of D are arranged in decreasing order.
Then,

Cmmse(C) ≤ Cmmse(D) (7)

Proof. We first note that parameterδ(C) defined by (5) de-
pends on matrixC, but through its eigenvalues. Therefore,
δ(C) coincides withδ(D). Cmmse(C) can thus be written
as

Cmmse(C) =

t
∑

j=1

log2

(

1

(I + δ(D)UDUH)−1
j,j

)

(I + δ(D)UDUH)−1
j,j is given by

(I + δ(D)UDUH)−1
j,j =

t
∑

k=1

|uk,j |2
1 + δ(D)dk

whereuk,j is the entry(k, j) of unitary matrixU. The func-
tion y → log2

1
y is convex onR+. As

∑t
k=1 |uk,j |2 = 1

(becauseU is unitary), we have

log2





1
∑t

k=1
|uk,j |2

1+δ(D)dk



 ≤
t
∑

k=1

|uk,j |2 log2(1 + δ(D)dk)

Summing overj, and using that
∑t

k=1 |uk,j |2 = 1, we get
that

Cmmse(C) ≤
t
∑

k=1

log2(1 + δ(D)dk) = Cmmse(D)

This result implies that the maximum ofCmmse(C) over the
set of all possible correlation matrices for which1

t Tr(C) =
1 is reached for a diagonal correlation matrix.

3.2. Structure of linear precoders.

Proposition 1 suggests that the use of a linear precoder at
the transmitter side may be fruitfull. LetK be at× t matrix
satisfying1

t Tr(KKH) = 1, and assume that vectorKsn is
transmitted instead of vectorsn at each timen. The capac-
ity Cmmse of this precoded system equiped with the MMSE
receiver is of course obtained by replacing covariance ma-
trix C by matrixKHCK. More precisely,Cmmse is given
by (4), but in which matrixQ(e2iπf ) is now defined by

Q(e2iπf ) =
σ2

p

(

KHC1/2H̃(e2iπf )HH̃(e2iπf )C1/2K +
σ2

p

)−1

j,j

whereH̃(e2iπf ) is a zero mean i.i.d. Gaussian random ma-
trix with 1

t variance entries. In order to design the precoder
K, it is quite natural to optimizeCmmse over the set of all
precoding matricesK for which 1

t Tr(KKH) = 1. As the
expression ofCmmse is quite complicated, we propose to
study the maximization of the large system approximation
Cmmse versusK. We thus denoteCmmse by Cmmse(K) in
the following.Cmmse(K) is given by

Cmmse(K) =

t
∑

j=1

log2

(

1

(I + δ(KHCK)KHCK)−1
j,j

)

(8)
whereδ(KHCK) is the unique positive solution of the equa-
tion (5) in which matrixC is replaced by matrixKHCK.
The main result of this paper is the following theorem.

Theorem 2 LetC = UDUH be the eigenvalues/eigenvectors
decomposition of matrixC. LetKopt be the precoding ma-
trix Kopt defined by

Kopt = UD−1/2Γ
1/2
opt (9)

whereΓopt = Diag(γ1,opt, . . . , γt,opt) is a positive diago-
nal matrix solution of the optimization problem



Problem 1 Maximize
∑t

j=1 log2 (1 + γj δ(Γ)) under the con-
straints

Γ = Diag(γ1, . . . , γt) ≥ 0,
1

t
Tr(D−1Γ) = 1 (10)

whereδ(Γ) is the unique positive solution of the equation
(5) in whichC is replaced byΓ.

Proof. In order to prove Theorem 2, we consider a precod-
ing matrixK such that1t Tr(KKH) = 1, and the eigenval-
ues/ eigenvectors decompositionKHCK = WΓWH of
matrix KHCK. Then, the precoding matrixKd = KW

satisfies1
t Tr(KdK

H
d ) = 1 and is such thatKH

d CKd is di-
agonal. More importantly, we have

Cmmse(K) ≤ Cmmse(Kd). (11)

(11) can be shown as Proposition 1. This discussion im-
plies that it is sufficient to look for precoding matricesK

for which KHCK is a positive diagonal matrixΓ. This
condition is satisfied if and only ifK can be written as
K = UD−1/2ΘΓ1/2 whereΘ is a unitary matrix. As
1
t Tr(KKH) is supposed to be equal to 1, matricesΓ andΘ

moreover satisfy1t TrD−1ΘΓΘH = 1. Each precoderK
defined above can thus be parameterized by the unitary ma-
trix Θ and the positive diagonal matrixΓ, or equivalently by
the hermitian matrixR = ΘΓΘH because matrixΘΓ1/2

is uniquely defined fromR. Cmmse(K) is equal to
∑t

j=1 log2(1 + δ(Γ) γl), or equivalently tolog2 det(I +
δ(R)R) because the eigenvalues ofR coincide with the en-
tries of matrixΓ, which in particular imply thatδ(Γ) =
δ(R). Hence, the optimization ofCmmse(K) is equivalent
to the following problem

Problem 2 Maximizelog2 det (I+δ(R)R) under the con-
straints

R ≥ 0,
1

t
TrD−1R = 1, (12)

In order to complete the proof of Theorem 2, it is sufficient
to prove that it exists diagonal matrices which are solutions
of Problem 2. This is established in the Appendix.

3.3. Study of Problem 1.

Theorem 2 shows that the determination of an optimal pre-
coderKopt needs to solve the optimization Problem 1. This
problem cannot be solved in closed form, except ifD = I.
In this context, the results of [1] imply that the solutions
of Problem 1 are the vectorsγopt = (γ1,opt, . . . , γt,opt)

whoses largest components coincide withts , and whose
t− s smallest ones are 0. The value ofs ≤ t depends on the
signal to noise ratio. Ifs < t, Problem 1 has therefore mul-
tiple solutions. This in particular implies that forD = I,
the function

∑t
j=1 log2(1 + γjδ(Λ)) is not concave on the

convex set defined by the constraints (10).

If D 6= I, it seems difficult to characterize analytically
the solutions of Problem 1. We have thus to use numeri-
cal technics. We propose to parameterizeγj by γj = β2

j

in order to get rid of the constraintγj ≥ 0, and to use
a standard gradient algorithm with projection on the con-

straint 1
t

∑t
j=1

β2

j

dj
= 1 at each iteration. Note that the con-

vergence of this algorithm torwards a global maximum of
∑t

j=1 log2(1 + γjδ(Λ)) is not guaranteed because, as ex-
plained above, this last function is in general not concave.
However, we have checked ifD = I, then the gradient algo-
rithm always converges towards one of the above mentioned
global maximum.

3.4. Numerical illustration of the precoder optimization.

In order to illustrate the impact of the precoder optimization
on Cmmse andCmmse in a realistic context, we follow the
propagation model introduced in [2] in which each path cor-
responds to a scatterer cluster characterized by a mean angle
of departure and an angle spread. We refer the reader to [2]
for more details on the corresponding correlation matrix.

In the following numerical experiment,r = t = 4, the
number of paths isL = 5, they share the same power, and
their mean departure angles and angle spreads, expressed in
Radians, are equal to0.72, 1.3, 0.93, 2.1, 2.9 and 0.1, 0.17,
0.03, 0.05, 0.08 respectively. In Figure 2, we have repre-
sentedCmmse(I) (without precoding) as well asCmmse(Kopt)
whereKopt is the optimal precoder. We have also repre-
sented the true ergodic capacitiesCmmse(I) andCmmse(Kopt)
evaluated by Monte Carlo simulations. Figure 2 confirms
thatCmmse andCmmse are reasonably close one from each
other in both cases. In particular, optimizingCmmse over
the precoder also allows to improve a lot the true capacity
Cmmse.

4. CONCLUDING REMARKS.

We summarize the advantages of our asymptotic analysis of
Cmmse. It first allows to prove the relevance of precoders
K = UD−1/2Γ1/2, whereΓ is a positive diagonal matrix.
Second, the entries of the optimum matrixΓ are solution
of an optimization problem that can be solved by a compu-
tationally attractive gradient algorithm. If in contrast,ma-
trix Γ was designed to maximize the true ergodic capacity
Cmmse(UD−1/2Γ), the corresponding gradient algorithm
would have a high computational cost. This is because this
function ofΓ, as well as its derivatives w.r.t. the entries of
Γ, cannot be expressed in closed form. They have to be
evaluated by Monte Carlo simulations, thus complicating a
lot the maximization algorithm.

APPENDIX
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We prove that there exists diagonal matrices which are
solutions of Problem 2. For this, we introduce a simplifica-
tion of Problem 2 based on the observation that there exists
a one-to-one correspondence between the set of matricesR

satisfying the constraints (12) and the set of positive matri-
cesS verifying

S ≥ 0,
σ2

p

1

t
TrD−1S +

1

t
TrS(I + S)−1 =

r

t
(13)

In effect, if R satisfies (12), thenS = δ(R)R verifies
1
t TrD−1S = δ(R) 1

t TrD−1R = δ(R). The equation (13)
follows immediately from the definition (5) ofδ(R). Con-
versely, ifS is a positive matrix for which (13) holds, then
R = 1

1

t
TrD−1S

S satisfies (12) andδ(R) = 1
t TrD−1S.

Problem 2 is eventually equivalent to

Problem 3 Maximizelog det (I + S) under the constraints
(13).

and we have to establish that there exists diagonal matrices
that are solutions of Problem 3. LetS be a matrix verify-
ing the constraints (13), and letS = VΛVH be the eigen-
values/ eigenvectors decomposition of matrixS, where the
eigenvalues(λj)j=1,...,t (the diagonal entries of diagonal
matrixΛ) are arranged in decreasing order. Then, we claim
that it existsµd ≥ 1 such thatµdΛ verifies the constraints
(13), and

log2 det (I + S) = log2 det (I + Λ) ≤ log2 det (I + µdΛ)
(14)

To prove this, we first note that1t TrS(I+S)−1 = 1
t TrΛ(I+

Λ)−1. We recall that the eigenvalues(dj)j=1,...,t are ar-
ranged in decreasing order. We can therefore use the useful

inequality

1

t
TrD−1VΛVH ≥ 1

t
TrD−1Λ (15)

which is extensively used in [5] (see the Appendix of [5]).
(15) implies that

σ2

p

1

t
TrD−1Λ +

1

t
TrΛ(I + Λ)−1 ≤ r

t

The functionφ(µ) defined by

φ(µ) =
σ2

p

1

t
TrD−1µΛ +

1

t
TrµΛ(I + µΛ)−1

is an increasing function such thatφ(1) ≤ r
t . Therefore, it

exists a uniqueµd ≥ 1 for which φ(µd) = 1. This means
that matrixµdΛ satisfies (13). Finally, equality (14) holds
becauseµd ≥ 1. We denote bySd the matrixSd = µdΛ.
(14) implies that for each matrixS satisfying (13), then the
diagonal matrixSd verifies (13) andlog2 det(I + S) ≤
log2 det(I + Sd). This, in turn, establishes that there ex-
ists diagonal matrices which are solutions of Problem 3, and
therefore of Problem 2.
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