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Abstract

In this paper, we address the performance of downlink CDMA receivers that consist in a reduced

rank Wiener chip-rate equalizer followed by a despreading operation. In particular, we tackle the question

of whether a performance close to the optimum can be achieved for small values of the rank. To answer

this question, it is standard to consider the output Signal to Interference plus Noise Ratio (SINR), and

to study its convergence speed versus the rank of the receiver. Unfortunately, this task is difficult due

to the fact that the SINR expressions depend on the spreading codes allocated to the various users in a

rather complicated way. To be able to obtain positive results, we assume that the spreading factor and

the number of users tend to infinity while their ratio remains finite. As in the 3rd generation UMTS

systems, the spreading codes we consider coincide with orthogonal Walsh Hadamard codes scrambled

by an independent identically distributed sequence. In this context, we show that the SINR of each

reduced-rank receiver converges towards a deterministic limit which depends only of the rank of the

receiver, and not of the spreading codes given to the various users. Using some previous results, we prove

that the asymptotic SINRs converge exponentially to the SINR of the plain Wiener receiver when the

rank of the receiver increases. We obtain the corresponding convergence rate, and exhibit the parameters

that influence the convergence speed. We finally compare our asymptotic performance expressions with

the results of numerical simulations. We observe a good agreement for spreading factors as low as 16.
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I. INTRODUCTION

Reduced-rank filtering has been considered in many areas of signal processing such as space-

time coding, array processing, radar, and channel equalization [18], [22], [10]. Recently, reduced-

rank filtering has been applied to interference cancellation for Direct Sequence Code Division

Multiple Access (DS-CDMA) communication systems. In the case of short-code CDMA, conven-

tional adaptive filtering algorithms can be applied. However, the Minimum Mean Squared Error

(MMSE) filter calculation requires the inversion of the (estimated) received signal covariance

matrix after each update. This represents a huge computational burden, especially when the

spreading factor is large. Furthermore, for fast varying channels, one needs to estimate the

MMSE filter from a small number of training data over which the channel can be reasonably

considered as stationary. Trying to adapt a large number of coefficients slows down the speed

of convergence of the filter and its tracking ability. Reduced-rank filtering allows to reduce the

number of coefficients to be updated, provides a satisfying trade off between performance and

complexity, and offers a better tracking ability when a small number of samples are used.

Performance analysis of existing CDMA receivers has attracted a lot of attention recently. It

is usual to use the Signal to Interference plus Noise Ratio (SINR) as a measure of performance.

Most frequently, the SINR analytical expressions are difficult to interpret because they depend

in a complex manner on the spreading codes allocated to the various users. To overcome this

difficulty, it was proposed in [24] to model the code matrix as a realization of a random matrix

with independent identically distributed (i.i.d) entries and to evaluate the limit SINR in a certain

large system regime. The large-system (asymptotic) regime is obtained by letting the spreading

factor N and the number of users K both tend to infinity, while their ratio remains constant.

Under these conditions, the SINR of the optimum MMSE receiver for unfaded CDMA was

shown to converge to a deterministic limit β independent of the particular entries of the code

matrix [24]. In the same context, the reduced-rank optimum MMSE receiver was analyzed in

[11] where it was shown that the convergence of the reduced-rank SINR βn (where n represents

the rank of the filter) to the full rank SINR β is very fast, i.e., βn ' β for small values of n.

In a more general context, the influence of the rank n on the performance of a reduced-
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rank MMSE receiver was analyzed in [19]. Under the hypothesis that successive powers of the

covariance matrix post multiplied by the desired user signature and premultiplied by its conjugate

tend to a finite limit sk when N and K tend to +∞ with constant ratio, it was shown there

that finite size SINRs converge to finite limits β and βn respectively. More importantly, the

convergence speed of βn towards β can be evaluated using the properties of certain orthogonal

polynomials.

In long spreading code downlink CDMA systems the covariance matrix of the observation

is unknown. Due to the presence of long codes, the covariance matrix is time-varying, and

therefore cannot be estimated at the receiver side. This prevents the use of conventional MMSE

receivers in this context. Chip-rate MMSE equalization followed by despreading was proposed as

an alternative ([7], [15], [16], [13]). The corresponding receiver is usually called the suboptimum

Wiener receiver because it has no knowledge of the interfering users codes, unlike the optimum

Wiener receiver. As in the short code case, and for the same reasons, a reduced rank version of

the chip rate MMSE equalizer can be implemented here.

Since the suboptimum Wiener receivers are more recent (in both their full rank and reduced

rank versions) than their optimum counterparts, their large system asymptotic performance anal-

ysis has received much less attention. The suboptimum full-rank MMSE receiver was analyzed

in [4] in the context of certain random orthogonal code matrices. However, to our knowledge,

the asymptotic performance of reduced-rank suboptimum receivers has not been studied yet.

In this paper, we consider the asymptotic performance of suboptimum reduced rank receivers

based on reduced rank chip rate Wiener equalizers followed by a despreading. Motivated by the

specifications of the UMTS system, we model the code matrices as Walsh-Hadamard matrices

scrambled by a realization of an i.i.d sequence. The code matrices can thus be interpreted as

realizations of particular random matrices. We prove that when the number of users and the

spreading factor grow without bound while their ratio remains constant, the SINR of full and

reduced-rank suboptimum receivers tend to deterministic limits, and these are independent of

the particular realization of the scrambling code. Using the results of [19], we characterize the

convergence speed of the reduced-rank receiver SINR towards the full rank receiver SINR and
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draw some conclusions about the effect of the channel and the load factor on the convergence

speed.

The rest of the paper is organized as follows. We first summarize some previous contri-

butions in section II. In section III, we present the main results of [19]. In section IV, we

present the downlink CDMA system model as well as the reduced-rank Wiener equalizers under

consideration. In section V, we study the performance of the aforementioned receivers in the

asymptotic regime. We show that the hypotheses formulated in section III are valid, and deduce

the convergence speed of the reduced-rank chip-rate equalizer receivers. Finally, we compare in

section VI our asymptotic predictions with the empirical performance obtained through numerical

simulations. The asymptotic and empirical performance are quite close to each other for both

the standard Vehicular A channel (short delay spread) and the Vehicular B channel (long delay

spread) even for short spreading factors.

Frequently used notations.

N : spreading factor, K : number of users

n : order of the reduced rank receiver

m : time symbol index, i : time chip index

b(m) = (b1(m), . . . , bK(m))T : vector of transmitted symbols at time m, (d(i))i∈Z : chip

sequence

S(m) : diagonal N × N matrix whose entries represent the scrambling code, C = (c1,C2) :

N × K Walsh-Hadamard matrix

W(m) = S(m)C : N × K code matrix allocated to the various users

h(z) : transfer function of the channel, H : 2N × 3N Toeplitz matrix associated with h(z)

gn(z) : transfer function of the rank n Wiener filter, Gn : N × 3N Toeplitz matrix associated

with gn(z)

fn(z) = gn(z)h(z), Fn : N × 4N Toeplitz matrix associated with fn(z)

II. BACKGROUND ON REDUCED-RANK WIENER FILTERS.

To fix our ideas, let us begin with the general signal model

y = hb + x (1)
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where y is the N × 1 received signal, b is a unit-variance scalar signal to be estimated and x is

a signal uncorrelated with b that accounts for interference and/or noise. The N × N covariance

matrix of x is denoted RI and will be assumed invertible.

We consider the problem of estimating the scalar b from the received signal y using a 1 × N

linear receiver g. The soft estimate b̃ is given by:

b̃ = gy (2)

The MMSE (Wiener) receiver minimizes the Mean-Squared estimation Error (MSE), and is of

course given by:

gR = hH (3)

where R = hhH + RI is the received signal y covariance matrix. This receiver will be called

in the sequel the full rank MMSE receiver. Its output SINR that we index by the number of

dimensions of the received signal is given by the standard expression:

β(N) =
η(N)

1 − η(N)
(4)

where η(N) is defined by

η(N) = hHR−1h . (5)

In the context of reduced-rank methods considered in this paper, filter g is constrained to lie in

the n–dimensional Krylov subspace associated with the pair (R,h), i.e. the subspace generated

by the n-columns of the Krylov matrix

Kn = [h,Rh, . . . ,Rn−1h]

The motivation behind choosing the Krylov subspaces and the implementation of the subsequent

filters are discussed in a number of works (see e.g. [2], [11] and [9]). The corresponding reduced-

rank Wiener filter gn is defined by gn = fnK
H
n where the n-dimensional vector fn is solution

of the linear system:

fnK
H
n RKn = hHKn. (6)

Contrary to (3), (6) is a system of n linear equations. Therefore, confining the filtering operation

to a low-dimensional subspace leads to a substantial gain in complexity when n � N .

The output SINR β
(N)
n of the n-th order reduced-rank Wiener filter is given by

β(N)
n =

η
(N)
n

1 − η
(N)
n

(7)
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where η
(N)
n is now defined by

η(N)
n = hHKn

(

KH
n RKn

)−1
KH

n h (8)

Confining the Wiener filter to a low-dimensional subspace is of course not optimal. Therefore,

this operation should decrease the SINR at the receiver output:

β(N) ≥ β(N)
n (9)

However, the use of reduced-rank Wiener filters is of course attractive if a performance close

to the optimum can be achieved for small values of n. In order to make it clear in which contexts

this nice condition holds, the convergence speed of β
(N)
n to β(N), or equivalently, of η

(N)
n to η(N)

when n increases has to be studied. This problem has been successfully addressed in recent

works in the context of the following simple CDMA transmission model

y = Wb + v (10)

where b = [b1, . . . , bK ]T is the K×1 symbol vector, K is the number of users, N is the spreading

factor, W is the N × K spreading code matrix, and v is the classical noise with covariance

matrix σ2I. The purpose is to estimate the symbol b1. We denote by w the first column of W

(i.e. the code vector of the user of interest: user 1), and by U the N × (K − 1) matrix such that

W = [w,U]

similarly,

b = [b1 bT
I ]T

where bI is the vector of the interferers symbols. By replacing h by w and letting

x = UbI + v

model (10) shows to be a particular case of (1).

It is in general very difficult to study the convergence of β
(N)
n to β(N), because both SINRs

(reduced-rank and full-rank) depend in a complex way on the spreading codes. A noticeable

exception is given by the case where W is obtained using the same length Gold code [8]. In

this context, the authors of [8] showed that a performance equal to the full-rank MMSE receiver
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is obtained for n as small as 2 if the Gold code is well chosen.

In order to address more general situations, Honig and Xiao [11] followed the attractive

approach introduced for the first time in [24]. They modelled the code matrix W as a realization

of a random matrix with centered i.i.d. elements with variance 1/N and studied the performance

of the reduced-rank filter in the ”large system” regime where N and K tend to infinity in such a

way that K/N converges towards a constant α. They established that β
(N)
n and β(N) converge to

finite limits βn and β independent of the particular realizations of the code matrix. Therefore, at

least for N and K large enough, it is possible to replace the study of the speed of convergence

of β
(N)
n towards β(N) by that of βn towards β, which is a much simpler problem. They were

able to show that β is a continued fraction expansion whose order n truncation coincides with

βn. They obtained the following recurrence equation :

βn+1 =
1

σ2 + α 1
1+βn

(11)

From this expression, they concluded for the rapid convergence of this SINR towards the full

rank SINR using some numerical results.

Partial results have been obtained in the large system regime for models more general than

(10) (see e.g. [5] and [17]). In these works, the convergence of β
(N)
n towards βn is established.

However, the convergence speed of βn towards β is not addressed.

In [19], the influence of n on the performance of the receiver in the asymptotic regime when

N → +∞ was studied in the much more general context defined by model (1). Under the

hypothesis that for each integer k, s
(N)
k = hHRk

Ih converges when N → +∞ to a finite limit

sk, it was shown in this contribution that β(N) and β
(N)
n also converge to certain finite limits β

and βn respectively. More importantly, the convergence speed of βn towards β can be evaluated

using properties of certain orthogonal polynomials. We give here a brief review of the main

results of [19] that will be used later to derive the asymptotic performance of reduced-rank

equalization.
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III. REVIEW OF THE MAIN RESULTS OF [19]

We still consider the general model (1). It will be more convenient work on the asymptotic

behaviour of η
(N)
n and η(N). The reader may check that if one replaces matrix RI by matrix

R in [19], then all the results of sections 2 and 3 of [19] that concern β
(N)
n and β(N) can be

adapted to η
(N)
n and η(N). In this section, we review the corresponding results.

Assumption 1: We assume that for each k, s
(N)
k = hHRkh converges when N → +∞ to a

finite limit sk, and that s0 = 1.

It is easily seen that η
(N)
n is equal to

(s
(N)
0 , . . . , s

(N)
n−1)















s
(N)
1 s

(N)
2 . . . s

(N)
n

s
(N)
2 s

(N)
3 . . . s

(N)
n+1

...
...

...
...

s
(N)
n s

(N)
n+1 . . . s

(N)
2n−1















−1










s
(N)
0

...

s
(N)
n−1











(12)

Assumption 1 thus implies that for each n, η
(N)
n converges to the quantity ηn obtained by

replacing (s
(N)
k )k=0,2n−1 in (12) by sequence (sk)k=0,2n−1. Moreover, KH

n Kn (recall that Kn

represents the n-th order Krylov matrix of (R,h)) and KH
n RKn are positive Hankel matrices

converging to the Hankel matrices (sk+l)(k,l)=0,...,n−1 and (sk+l+1)(k,l)=0,...,n−1. Therefore, matrices

(sk+l)(k,l)=0,...,n−1 and (sk+l+1)(k,l)=0,...,n−1 are also positive. Using well known results (see e.g.

[1]), there exists a probability measure ν such that

sk =

∫ ∞

0

λkdν(λ)

Assumption 2: Measure ν is carried by an interval [δ1, δ2], δ1 > 0, δ2 < +∞, and is thus

uniquely defined ([1]). Moreover, ν is absolutely continuous, and its probability density is almost

surely strictly positive on [δ1, δ2].

Assumption 3: there exist A > 0 and B > 0 such that supN ‖R−1‖ ≤ A and supN ‖R‖ ≤ B.

Under the above assumptions, η(N) = hR−1h can be shown to converge to η =
∫ δ2

δ1
1
λ
dν(λ).

Therefore, if N is large enough, it is relevant to study the convergence speed of ηn towards η,

a simpler problem. For this, we have to evaluate the convergence speed of

ηn = (s0, . . . , sn−1)















s1 s2 . . . sn

s2 s3 . . . sn+1

...
...

...
...

sn sn+1 . . . s2n−1















−1










s0

...

sn−1










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towards η =
∫ δ2

δ1
1
λ
dν(λ). The main result of [19] is the following theorem.

Theorem 1: Let µ > 1 and φ < 1 be defined by µ =
1+

δ1
δ2

1− δ1
δ2

and φ = 1

µ+
√

µ2−1
. Then, there

exist two strictly positive constants C and D such that

Cφ2n ≤ (η − ηn) ≤ Dφ2n (13)

for n large enough.

This result implies that the convergence of ηn towards η is locally exponential, and that its rate

only depends on the ratio δ1
δ2

, and not on the particular form of measure ν. In particular,if δ1
δ2

is

close to 0, then µ is close to 1, and the convergence is slow. If however δ1
δ2

is close to 1, then

µ is large, and the convergence is fast.

IV. REDUCED-RANK EQUALIZATION FOR CDMA DOWNLINK

From now on, we consider a downlink CDMA system. A base station transmits K symbol

sequences (bk)k=1,...,K to K mobile units of the corresponding cell. It is assumed that the number

of users K is smaller than the spreading factor N . Motivated by the specifications of the downlink

of the Third Generation (3G) mobile communication systems (UMTS) [6], we assume that the

spreading codes change from one symbol to another, and that code matrix W(m) at time m is

given by

W(m) = S(m)C (14)

where:

• C is a time-invariant orthogonal N × K matrix obtained by extracting K columns from a

N × N Walsh-Hadamard matrix (this implies that each entry of C is equal to ± 1√
N

),

• S(m) = diag(s1(m), . . . , sN(m)) is a time-varying diagonal matrix whose entries (sl(m))l=1,...,N

are QAM4 distributed (sl(m) ∈ {± 1√
2
+±i 1√

2
}) and represent the long scrambling code of

the cell under consideration.

We notice that W(m)HW(m) = I for each m. Of course, we take into account the effect of

the propagation channel between the base station and the mobile of interest (say mobile 1), and

we denote by

h(z) =
L−1
∑

l=0

hlz
−l

July 6, 2006 DRAFT
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its chip rate discrete-time equivalent transfer function. h(z) is assumed to be known at the

receiver side, and is normalized in such a way that
∑L−1

l=0 |hl|2 = 1. (d(i))i∈Z represents the chip

sequence transmitted by the base station. Therefore, the received signal (y(i))i∈Z sampled at the

chip rate can be written as

y(i) =

L−1
∑

l=0

hld(i − l) + v(i) (15)

where v is an additive white noise of variance σ2. It is more convenient to express this in a

matrix form. Let

d(m) =
(

d(mN), d(mN + 1), ..., d(mN + N − 1)
)T

be the transmitted chip-vector sequence at symbol instant m. d(m) is of course given by

d(m) = W(m)b(m) (16)

where b(m) = (b1(m), . . . , bK(m))T represents the K symbols transmitted at time m by the

base station. We put y(m) =
(

y(mN), y(mN+1), ..., y(mN+N−1)
)T

. Then, (15) is equivalent

to

y(m) = H0d(m) + H1d(m − 1) + v(m) (17)

where

H0 =



























h[0] 0 0
... h[0]

h[L − 1]
. . . . . .

0 h[L − 1] h[0]



























and

H1 =















h[L − 1] . . . h[1]
. . .

...

h[L − 1]

0















In this paper, we study the performance of chip-rate equalizers followed by despreading. We

consider non causal FIR chip rate (reduced-rank) MMSE equalizers with transfer functions

July 6, 2006 DRAFT



11

g(z) =
∑N

k=−(N−1) gkz
−k, the coefficients of which are designed as if the chip sequence (d(i))i∈Z

were a decorrelated sequence with variance K
N

. This property is of course not verified because

(16) implies that the covariance matrix of d(m) is rank deficient. The variance K
N

is justified

by the fact that as W(m)HW(m) = I, then E‖d(m)‖2 = E‖b(m)‖2 = K. If (d(i))i∈Z were

an i.i.d. sequence, its variance would therefore be equal to K
N

. In the following, we collect

the coefficients of any of the above equalizers g(z) into the 2N–dimensional row vector g =

(gN , . . . , g0, g−1, . . . , g−(N−1)). The plain MMSE chip rate equalizer thus corresponds to row

vector g2N given by

g2N = hH

(

HHH +
σ2

K/N
I

)−1

(18)

where h is the 2N–dimensional vector defined by h = (0, . . . , 0, h0, . . . , hL, 0, . . . , 0)T and

where H is the 2N × 3N Sylvester matrix given by

H =





H1 H0 0

0 H1 H0



 (19)

In the following, we denote by R the 2N × 2N matrix

R = HHH +
σ2

K/N
I (20)

and by Kn the n × 2N Krylov matrix associated with the pair (R,h), i.e.

Kn =
[

h,Rh, . . . ,Rn−1h
]

The n-th stage reduced-rank Wiener equalizer corresponds to vector gn given by

gn = hHKH
n

(

KH
n RKn

)−1
KH

n (21)

We denote by gn(z) the transfer function associated with vector gn and define d̂n(i) as the

corresponding estimated chip sequence d̂n(i) = [gn(z)]y(i). We propose to study the effect of n

on the performance of the estimator of symbol b1(m) defined by

b̂1,n(m) = wH
1 (m)d̂n(m) (22)

where d̂n(m) = (d̂n(mN), . . . , d̂n(mN +N−1))T and where w1(m) represents the first column

of W(m), i.e. the code allocated to the users of interest.
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V. ASYMPTOTIC ANALYSIS OF REDUCED-RANK EQUALIZERS.

From now on, we formulate the following realistic assumption:

Assumption 4: The long code sequence is a realization of a QAM4 i.i.d. sequence.

Therefore, due to the presence of the matrix S(m), matrix W(m) can be seen as the realization

of a quite particular random matrix. In the following, we study the performance of the above

reduced-rank receivers in the asymptotic regime N and K tend to +∞ in such a way that
K
N

→ α where 0 < α < 1. For the sake of simplicity, we also assume that the length L of the

impulse response of the channel is assumed to be kept constant. However, we conjecture that

our results can be extended if L also converges to ∞ in such a way that L < N provided that

supN

∑L−1
l=0 |hl| < +∞. As the proofs of the main results are more technical in this context, we

do not address this case. However, some simulations are given to support this claim.

As K
N

→ α, we replace factor K
N

by α in definition (20) of matrix R in order to simplify the

exposition. This, of course, modifies the expressions of matrices Kn and of vectors gn.

In order to characterize the performance of receiver (22), we first evaluate its output SINR.

For this, we consider the filter fn(z) =
∑N+L

l=−(N−1) fn,lz
−l = gn(z)h(z), and notice that the

estimated chip sequence d̂n(i) is given by

d̂n(i) = [fn(z)]d(i) + [gn(z)]v(i) (23)

Vector d̂n(m) can thus be written as

d̂n(m) = Fn















d(m − 2)

d(m − 1)

d(m)

d(m + 1)















+ Gn











v(m − 1)

v(m)

v(m + 1)











(24)

Here, matrix Gn is the N × 3N Sylvester matrix associated with the filter gn(z), i.e.

Gn =

















gn,N . . . gn,0 . . . gn,−(N−1) 0 . . . . . . 0

0 gn,N . . . gn,0 . . . gn,−(N−1) 0
. . . 0

...
. . . . . . . . . . . . . . . . . . . . .

...

0 . . . 0 gn,N . . . gn,0 . . . gn,−(N−1) 0
















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and Fn is the N×4N Sylvester matrix associated with fn(z) defined as Gn from 3N–dimensional

vector fn = (0, . . . , 0, fn,N+L, . . . , fn,0, fn,−1, . . . , fn,−(N−1))
T . As fn(z) = gn(z)h(z), vector fn

is equal to gnH and matrix Fn can be written as

Fn = GnH3N

where H3N is the 3N×4N Sylvester matrix defined in the same way that matrix H (see eq. (19)).

For convenience, we partition Fn as Fn = (Fn,2,Fn,1,Fn,0,Fn,−1) where the 4 blocks are N×N .

From now on, c1 represents the first column of matrix C, and C is partitioned as C = (c1,C2).

In order to express the output SINR provided by receiver (22), it is necessary to identify

in (22) the contribution of symbol b1(m), of symbols (bj(m))j=2,...,K and symbols (bj(m −
k))j=1,...,K,k=−1,1,2, and of the noise. After some straightforward calculations, we get that the

output SINR at time m, denoted β̃
(N)
n (m), is given by

β̃(N)
n (m) =

|cH
1 S(m)HFn,0S(m)c1|2

∑2
k=−1 Tn,k + σ2cH

1 S(m)HGnGH
n S(m)c1

(25)

where the terms (Tn,k)k=−1,...,2 are defined by

Tn,0 = cH
1 S(m)HFn,0S(m)C2C

H
2 S(m)HFH

n,0S(m)c1 (26)

Tn,k = cH
1 S(m)HFn,kS(m − k)CCHS(m − k)HFH

n,kS(m)c1 for k 6= 0 (27)

In order to simplify the notations, the SINR β̃
(N)
N (m) of the plain MMSE receiver (i.e. n = N )

is denoted β̃(N)(m).

The expression (25) is quite complicated, and does not allow to obtain any insight on the

performance of the reduced-rank receivers, and in particular on the influence of n on the SINR.

We also note that, considered as symbol rate receivers, the chip rate (reduced-rank) Wiener

equalizers followed by a despreading are not Wiener filters in the classical sense. This explains

why β̃(N)(m) and β̃
(N)
n (m) are not given by expressions similar to (4) and (7). Therefore, some

work is needed in order to be able to use the results of [19].

β̃
(N)
n (m) depends on the values of the scrambling code. It can thus be interpreted as a random

variable. The key point of this paper is the following result, which states that as N and K

converge to +∞ in such a way that K
N

→ α, then β̃
(N)
n (m) has the same behaviour as a certain
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deterministic quantity which does not depend on the entries of the code matrix W(m). Neither

the particular values of the scrambling code, nor the entries of the Walsh-Hadamard part C of

W(m) have an influence on this deterministic limit. Before stating our main result, we introduce

the following notation:

Definition 1: For each n ≤ N , we define η
(N)
n as

η(N)
n = hHKn(K

H
n RKn)

−1KH
n h (28)

and denote η
(N)
N = hHR−1h by η(N) in order to simplify the notations.

Remark 1: We notice that the term η
(N)
n coincides with the coefficient fn,0 of the transfer

function fn(z) = gn(z)h(z) =
∑n,N+L

l=−(N−1) fn,lz
−l. In fact, fn,0 is equal to fn,0 = gnh. The

expression (21) provides immediately fn,0 = η
(N)
n .

We are now in a position to state the main result of this paper.

Theorem 2: For any fixed n,

lim
N→+∞,K/N→α

β̃(N)
n (m) − 1

α

η
(N)
n

(1 − η
(N)
n )

= 0 (29)

where the convergence stands for the convergence in probability.

Moreover,

lim
N→+∞,K/N→α

(

β̃(N)(m) − 1

α

η(N)

(1 − η(N))

)

= 0 (30)

The proof of Theorem 2 is somewhat technical, and is given in the appendix.

Remark 2: Expressions at the right hand side of(29) and (30) have a simple interpretation. In

fact, it is easy to check that 1
α

η
(N)
n

(1−η
(N)
n )

coincides with the SINR provided by the rank n Wiener

filter gn(z) (23) if the chip sequence (d(i))i∈Z in (23) were an i.i.d. sequence of variance α.

(30) can be interpreted similarly. We now explain roughly the reason for which this surprising

result holds. We first remark that (24) can be written as

d̂(m) = η(N)
n d(m) + u(m) (31)

where the actual analytical expression of u(m) is not important at this stage. It is easy to check

that if (d(i))i∈Z were an i.i.d. sequence of variance α, then, the covariance matrix Γu,iid of u(m)
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would be Toeplitz with main diagonal term αη
(N)
n (1 − η

(N)
n ). This would imply that the SINR

associated with each component of d̂(m) would coincide with 1
α

η
(N)
n

(1−η
(N)
n )

.

However, (d(i))i∈Z is not an i.i.d. sequence of variance α. In particular, d(m) is given by

d(m) = S(m)Cb(m), and the covariance matrix Γu(m) of u(m) (which depends of m via

matrix S(m)) does not coincides with Γu,iid. Plugging d(m) = S(m)Cb(m) in (31), we get

immediately that

b̂1(m) = cH
1 S(m)H d̂(m) = η(N)

n b1(m) + cH
1 S(m)Hu(m) (32)

The variance of the interference + noise term cH
1 S(m)Hu(m) is equal to cH

1 S(m)HΓu(m)S(m)c1.

(29) holds because if N → +∞ and K
N

→ α, it is possible to replace Γu(m) by Γu,iid in the

variance of the interference + noise term without modifying its asymptotic behaviour. As the com-

ponents of vector S(m)c1 are i.i.d. with variance 1
N

, it is easily seen that cH
1 S(m)HΓu,iidS(m)c1

has the same behaviour as 1
N

Tr(Γu,iid) = αη
(N)
n (1− η

(N)
n ) (see Lemma 1 in Appendix for more

details). This, in turn, explains (29). We stress on the fact that the replacement of Γu(m) by

Γu,iid is not obvious. In the appendix, we implicitly justify this replacement.

Remark 3: It is interesting to notice that (30) coincides with the asymptotic SINR found in

[4] in the case where the code matrix W is obtained by extracting K columns from a Haar

distributed random unitary matrix 1. This is a rather surprising result because our actual code

matrix model ((14) and assumption 4) looks very different from a Haar distributed matrix.

Theorem 2 is important in that it allows us to use the results of [19] (see section III) in order to

obtain insights on the convergence speed of β̃
(N)
n towards β̃(N) when N and K are large enough.

Relation (29) implies that it is sufficient to evaluate the convergence speed of η
(N)
n towards η(N)

when N → +∞, K/N → α, a simpler problem. For this, it is possible to use the results of [19]

recalled in section III. Formula (28) coincides with (8) when N is exchanged with 2N . In our

context, matrix R is R = HHH + σ2

α
I while vector h is h = (0, . . . , 0, h0, . . . , hL, 0, . . . , 0)T .

We have thus only to check that Assumptions 1, 2, 3 hold.

1A random unitary matrix U is said to be Haar distributed if for each deterministic unitary matrix Q, the distribution of U

coincides with the distribution of UQ
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As R is a Toeplitz matrix associated with the spectral density |h(e2iπf )|2 + σ2

α
, the term

s
(2N)
k = hHRkh defined in Assumption 1 is easily seen to converge towards sk defined by

sk =

∫ 1

0

|h(e2iπf)|2(|h(e2iπf )|2 +
σ2

α
)k df

when N → +∞. We put δ1 = |hmin|2 + σ2

α
and δ2 = |hmax|2+ σ2

α
where |hmin| = minf |h(e2iπf)|

and |hmax| = maxf |h(e2iπf)|. Then, it is easy to check that sk can be written as

sk =

∫ δ2

δ1

λk dν(λ)

where ν is the probability measure supported by [δ1, δ2] defined by
∫ δ2

δ1

φ(λ) dν(λ) =

∫ 1

0

|h(e2iπf )|2 φ
(

|h(e2iπf )|2 +
σ2

α

)

df

for each continuous function φ. Measure ν is easily seen to be absolutely continuous and to

have a strictly positive density on [δ1, δ2]. Thus Assumptions 1 and 2 hold. As for Assumption

3, we remark that as R is a Toeplitz matrix associated with the spectral density |h(e2iπf)|2 + σ2

α
,

then,

||R|| ≤ max
f

(|h(e2iπf )|2 +
σ2

α
) = δ2

||R−1|| ≤
(

min
f

(|h(e2iπf)|2 +
σ2

α
)

)−1

=
1

δ1

(33)

Theorem 1 thus shows that η
(N)
n and η(N) converge towards ηn and η defined in section III.

Hence, β
(N)
n and β(N) converge towards βn and β defined by

βn =
1

α

ηn

1 − ηn
(34)

β =
1

α

η

1 − η

Moreover, the convergence speed of ηn and βn towards η and β is locally exponential, and the

rate of convergence essentially depends on the ratio µ =
1+

δ1
δ2

1− δ1
δ2

. If µ is close to 1, or equivalently

if δ1
δ2

<< 1, the convergence speed is small. Using standard results on Toeplitz matrices, the

smallest and the largest eigenvalue of R converge to δ1 and δ2 respectively when N → ∞.

Therefore, the ratio δ1
δ2

is for N large enough nearly equal to the condition number of matrix R.

Thus, it can be seen that for N large enough the convergence rate is poor if R is ill conditioned
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and vice versa. Our result also allows to evaluate the influence of the load of the cell, i.e.

parameter α. Indeed, δ1
δ2

can be written as

δ1

δ2
=

σ2 + α|hmin|2
σ2 + α|hmax|2

Therefore, the smaller α is, the better the convergence rate is.

VI. SIMULATION RESULTS

In this section, we first verify that our asymptotic SINR evaluations allow us to predict the

empirical performance of the studied receivers. We have implemented the physical layer of the

downlink of the UMTS-FDD and have compared the measured bit error rate with its asymptotic

evaluation given by Q(
√

βn). The results are presented in Figure 1. Here, the propagation channel

is the so-called Vehicular A. The profile of the Vehicular A channel (i.e. the location of each

path with the corresponding path average power) is given in Table 1 (on each frame, a different

realization of the channel is generated). Note that the chip period Tc is equal to Tc = 260nsec.

The Signal to Noise Ratio (for each user) Eb

N0
is equal to 10 dB and the load factor α is equal to 1

2
.

Figure 1 shows that our asymptotic evaluations allow to predict rather accurately the performance

of the true system even for spreading factors as low as N = 16. 2

Vehicular A channel Vehicular B channel

Path Delay (nsec) Path average Power (dB)

0 0

310 -1

710 -9

1090 -10

1730 -15

2510 -20

Path Delay (nsec) Path average Power (dB)

0 -2.5

300 0

8900 -12.8

12900 -10

17100 -25.2

20000 -16

Table 1. The Vehicular A and Vehicular B channel profiles.

2This means that this asymptotic analysis can be used to study the reduced-rank equalizer raw BER performance in the context

of the very recent High-Speed Downlink Packet Access (HSDPA) mode of the UMTS in which many spreading codes of length

16 are allocated to the same user.
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N=32,K=16
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Asymptotic BER

Fig. 1. Comparison of empirical and theoretical BER for the Vehicular A channel.

In section V, we claimed that the results remain valid even for channels with very long delay

spread (comparable to N ). To verify this, we consider the Vehicular B channel (see Table 1).

The delay spread in this case is roughly equal to 80Tc. We consider the case N = 128 and

α = 1
2
. The SNR Eb

N0
is equal to 10 dB. The results are given in Figure 2. We notice that the

fit is as good as in the Vehicular A case. Thus the results remain valid for channels with delay

spreads growing with the spreading factor (provided that L < N ). As we have verified that βn

and β allow to predict accurately the performance of the above practical system, we next study

the influence of various parameters on the convergence speed of βn towards β. For this, we

represent in the following figures the relative SINR defined as the ratioβn

β
as a function of the

rank n. In Figure 3, we first study the influence of α on the convergence speed of the relative

SINR towards 1. Here, the propagation channel is the Vehicular A channel, and the ratio Eb

N0
is

equal to 7 dB. This figure confirms that the convergence speed of the reduced rank receivers

depends crucially on the load factor.

In Figure 4, we study the effect of the channel on the convergence speed of βn towards β. For

this, we consider a 2 taps channel with transfer function h(z) = h0 + h1z
−1. In this case, the

ratio δ1
δ2

is minimum if |h0| = |h1| and is equal to σ2/α
2+σ2/α

: h(z) has a zero on the unit circle, so

that |hmin| = 0, while |hmax| = 2|h0| =
√

2 (because |h0|2 + |h1|2 = 1). Therefore, if |h0| = |h1|,
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Fig. 2. Comparison of empirical and theoretical BER for the Vehicular B channel
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Fig. 3. Influence of α on the convergence of the relative SINR

the convergence speed of βn towards β is expected to be minimum. This is confirmed by Figure

4 obtained for α = 1
2

and Eb

N0
= 7dB.
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Fig. 4. Influence of the channel on the convergence of the relative SINR

VII. CONCLUSION

In this paper, we have addressed the performance of downlink CDMA receivers consisting

of reduced rank Wiener equalizers followed by despreading. We have studied the convergence

speed of their SINR versus their order in the asymptotic regime N → +∞, K/N → α. In this

context, we have shown that for each n, the SINR provided by the rank n receiver converges to

a deterministic term βn, and that the convergence of βn when n increases is locally exponential.

We have evaluated the corresponding rate which only depends on the condition number of the

covariance matrix to be inverted in order to calculate the full rank receiver. Simulation results

have shown that our asymptotic results allow to predict the performance of finite dimension

CDMA system even for very short spreading factors.

APPENDIX I

OUTLINE OF THE PROOF.

The proof of Theorem 2 is quite technical. In order to improve its readability, we first outline

the main steps of (29) and provide more details in the next sections of the appendix. We finally

briefly justify (30).

In order to study the asymptotic behaviour of β̃
(N)
n (m), it is necessary to study separately the
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various terms of the right hand side of (25).

First step: study of |cH
1 S(m)HFn,0S(m)c1|2 and cH

1 S(m)HGnGH
n S(m)c1.

The above terms can be studied by using the following useful lemma.

Lemma 1: Let BN be a deterministic N×N uniformly bounded matrix, that is supN ‖BN‖ <

+∞. Then,

lim
N→+∞

E

∣

∣

∣

∣

cH
1 S(m)HBNS(m)c1 −

1

N
Trace(BN)

∣

∣

∣

∣

2

= 0 (35)

This result is an immediate consequence of a classical result extensively used in the performance

evaluation of large dimension communication system (see [24]).

In order to be able to use Lemma 1, we need to verify that matrices Fn,0 and GnGH
n , or

equivalently Gn, are uniformly bounded.

Lemma 2: For each n fixed, matrix Gn is uniformly bounded, i.e. supN ‖Gn‖ < +∞.

The proof is given in Appendix II. Matrix Fn is given by Fn = GnH3N . Matrix H3N is a Toeplitz

matrix associated with the filter h(z) =
∑L

l=0 hlz
−L. Therefore, for each N , ‖H3N‖ ≤ ‖h‖∞ =

supf |h(e2iπf)|. This shows that H3N is uniformly bounded. As ‖Fn‖ ≤ ‖Gn‖‖H3N‖, Lemma 2

implies that Fn, and thus matrices (Fn,k)k=−1,...,2 are uniformly bounded.

Lemma 1 and the above discussion imply the following corollary:

Corollary 1:

cH
1 S(m)HFn,0S(m)c1 − η(N)

n → 0 (36)

cH
1 S(m)HGnGH

n S(m)c1 − ‖gn‖2 → 0 (37)

where the convergence stands for the convergence in probability.

Proof. In order to prove the first statement of Corollary 1, we remark that Lemma 1 and Fn,0

uniformly bounded imply that

cH
1 S(m)HFn,0S(m)c1 −

1

N
Trace(Fn,0)

converges in the mean-square sense, and thus in probability, to 0. As Fn,0 is a Toeplitz matrix,

its normalized trace coincides with the constant term fn,0 of transfer function fn(z) = gn(z)h(z),

which is equal to fn,0 = gnh = η
(N)
n . The second statement of Corollary 1 follows directly from
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Lemmas 1 and 2 and from the observation that 1
N

Trace(GnGH
n ) = ‖gn‖2.

Second step: study of Tn,0.

The asymptotic behaviour of Tn,0 = cH
1 S(m)HFn,0S(m)C2C

H
2 S(m)HFH

n,0S(m)c1 is a straight-

forward consequence of the following Lemma.

Lemma 3: Let BN be a N × N uniformly bounded Toeplitz matrix, i.e. supN ‖BN‖ < +∞.

Then,

lim
N→+∞, K

N
→α

E

∣

∣

∣

∣

c
H
1 S(m)H

BNS(m)C2C
H
2 S(m)H

B
H
NS(m)c1 − α

(

1

N
Trace(BNB

H
N ) − | 1

N
Trace(BN )|2

)∣

∣

∣

∣

2

= 0

(38)

Proof. See Appendix III.

Lemma 2 implies that matrix Fn,0 is uniformly bounded. As the mean-square convergence

implies the convergence in probability, Lemma 3 shows that Tn,0 converges in probability to

α
(

1
N

Trace(Fn,0F
H
n,0) − | 1

N
Trace(Fn,0)|2

)

. As 1
N

Trace(Fn,0) = η
(N)
n , we get immediately the

following Corollary.

Corollary 2:

Tn,0 → α

(

1

N
(Trace(Fn,0F

H
n,0) − (η(N)

n )2

)

(39)

where the convergence stands for the convergence in probability.

Third step: study of Tn,k for k = −1, 1, 2.

The following lemma allows to precise the behaviour of Tn,k for k = −1, 1, 2.

Lemma 4: Let BN be a uniformly bounded N × N matrix. Then, for k = −1, 1, 2,

lim
N→+∞, K

N
→α

E

∣

∣

∣

∣

cH
1 S(m)HBNS(m − k)CCHS(m − k)HBH

NS(m)c1 − α
1

N
Trace(BNBH

N)

∣

∣

∣

∣

2

= 0

(40)

Proof. See Appendix IV for a sketch of the proof.

Lemma 2 implies that matrices Fn,k are bounded. As the mean-square convergence implies
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the convergence in probability, Lemma 4 shows that

Tn,k → α
1

N
Trace(Fn,kF

H
n,k) (41)

where the convergence stands for the convergence in probability.

Fourth step: proof of (29)

We are now in position to complete the proof of (29). From the above discussions, we get

that

β̃(N)
n − (η

(N)
n )2

α
(

∑2
k=−1

1
N

Trace(Fn,kF
H
n,k) − (η

(N)
n )2

)

+ σ2‖gn‖2

converges to 0 in probability. We remark that
2
∑

k=−1

1

N
Trace(Fn,kF

H
n,k) =

1

N
Trace(FnFH

n )

As FnFH
n is a N × N Toeplitz matrix, its normalized trace coincides with its diagonal term

which is equal to ‖fn‖2. As fn = gnH, we get that

1

N
Trace(FnFH

n ) = gnHHHgH
n

and that

α

2
∑

k=−1

1

N
Trace(Fn,kF

H
n,k) + σ2‖gn‖2 = αgn

(

HHH +
σ2

α
I2N

)

gH
n = αgnRgH

n

But, as gn is given by (21), gnRgH
n coincides with hHKH

n

(

KnRKH
n

)−1
Knh, i.e. with η

(N)
n .

Putting all pieces together, we get that

(η
(N)
n )2

α
(

∑2
k=−1

1
N

Trace(Fn,kF
H
n,k) − (η

(N)
n )2

)

+ σ2‖gn‖2
=

1

α

η
(N)
n

1 − η
(N)
n

which, eventually, proves (29).

We finally justify (30). For this, we just mention that, as the full rank Wiener filter gN(z)

converges when N → +∞ to the usual non causal filter g∞(z) = h∗(z−1

h(z)h∗(z−1)+ σ2

α

, which verifies

‖g∞‖∞ < +∞, then supN ‖gN‖∞ < +∞. Therefore, matrices GN and FN are uniformly

bounded. The reader may check that this allows to generalize the above arguments to the case

where n = N .
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APPENDIX II

PROOF OF LEMMA 2

We show that supN ‖Gn‖ < +∞. For this, we note that matrix Gn is a Toeplitz matrix associ-

ated with the transfer function gn(z). Therefore, for each N , ‖Gn‖ < ‖gn‖∞ = supf |gn(e2iπf)|.
Hence,

sup
N

‖Gn‖ < sup
N

‖gn‖∞

We now prove that supN ‖gn‖∞ < +∞. As h(z) is a degree L FIR filter, we claim that if N

is large enough, then the number of non zero coefficients of gn(z) is less than (2n − 1)L, and

thus remains finite when N → +∞. In fact, row vector gn is a linear combination of the rows

(hH ,hHR, . . . ,hHRn−1) of matrix KH
n . If N is large enough, for each 1 ≤ k ≤ (n− 1), Rk is

a band matrix whose entries (Rk)i,j are zero if |i − j| > kL. It is therefore easy to check that

components 1 to N −kL−1 and N +(k+1)L+1 to 2N of vector hHRk are zero. This implies

that components 1 to N − (n− 1)L− 1 and N +nL+1 to 2N of any linear combination of the

rows of KH
n are zero if N is large enough. In order to establish that supN ‖gn‖∞ < +∞, it is

therefore sufficient to show that the Euclidean norm ‖gn‖ of vector gn remains bounded when

N increases. For this, we remark that

‖gn‖2 = hHKn(K
H
n RKn)

−1KH
n Kn(K

H
n RKn)−1KH

n h.

As R ≥ σ2

α
I, it is clear that (KH

n RKn)
−1 ≤ ασ−2(KH

n Kn)−1, and that

Kn(KH
n RKn)

−1KH
n ≤ ασ−2Kn(KH

n Kn)−1KH
n , which is itself less than ασ−2I. This, in turn,

shows that ‖gn‖2 ≤ α‖h‖2

σ2 , and that the norm ‖gn‖ remains bounded when N increases.

APPENDIX III

PROOF OF LEMMA 3.

The proof of Lemma 3 needs some work. In order to make the proof easier to follow, we

simplify the notations: As the parameter m is irrelevant here, S(m) is denoted S. Matrix BN

is denoted B. We denote by b0 the diagonal term of B (we recall that B is Toeplitz), and put

A = B − b0I and

TN = cH
1 SHBSC2C

H
2 SHBHSc1

We remark that, as the entries of matrix C are equal to ± 1√
N

, then, the diagonal entries of

C2C
H
2 are equal to K−1

N
. We denote by D the matrix D = C2C

H
2 − K−1

N
I. The diagonal entries

July 6, 2006 DRAFT



25

of A and D are of course zero. The main steps of the proof of Lemma 3 TN are the following:

First step. Observe that TN can be written as

TN =
K − 1

N
cH

1 SHAAHSc1 + cH
1 SHASDSHAHSc1 (42)

Proof of the first step. TN is given by

TN = cH
1 SH(A + b0I)SC2C

H
2 SH(A + b0I)

HSc1

As cH
1 C2 = 0 and S is unitary, this reduces to

TN = cH
1 SHASC2C

H
2 SHAHSc1

Writing C2C
H
2 as D + K−1

N
I, we get immediately that TN is given by (42).

Second step. Establish that

lim
N→+∞, K

N
→α

K − 1

N
cH

1 SHAAHSc1 − α

(

1

N
Trace(BBH) −

∣

∣

∣

∣

1

N
Trace(B)

∣

∣

∣

∣

2
)

= 0 (43)

where the convergence stands for the convergence in probability.

Proof of step 2. B uniformly bounded implies that AAH is uniformly bounded. Therefore,

Lemma 1 implies that K−1
N

cH
1 SHAAHSc1 converges in quadratic mean to α 1

N
Trace(AAH).

But, it is easy to check that

1

N
Trace(AAH) =

1

N
Trace(BBH) −

∣

∣

∣

∣

1

N
Trace(B)

∣

∣

∣

∣

2

(43) thus follows from the fact that K−1
N

converges to α.

Third step. Establish that εN = cH
1 SHASDSHAHSc1 converges in the least-squares sense

to 0, i.e. that

lim
N→+∞, K

N
→α

E(ε2
N ) = 0 (44)

because εN is real.

Proof of step 3. In order to establish (44), we express E(ε2
N ) by taking benefit that the entries

(si)i=1,...,N of S are independent QAM4 sequences and that the diagonal entries of D and A
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are zero. A straightforward, but quite tedious, analysis of the various terms of the corresponding

expression gives (44). εN can be written as

εN =
∑

i1,j1,i2,j2

ci1,1s
∗
i1
Ai1,j1sj1Dj1,i2s

∗
i2
(AH)i2,j2sj2cj2,1

Hence, E(ε2
N ) is equal to

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1E(s∗i1sj1s
∗
i2
sj2s

∗
i3
sj3s

∗
i4
sj4)

As (si)i=1,...,N is an independent QAM4 sequence, the term E(s∗i1sj1s
∗
i2
sj2s

∗
i3
sj3s

∗
i4
sj4) is non zero

if and only if it exists a permutation π (depending on the multi-index (i1, i2, i3, i4)) from the set

{1, 2, 3, 4} for which jk = iπ(k) for each k ∈ {1, 2, 3, 4}. In this case, E(s∗i1sj1s
∗
i2sj2s

∗
i3sj3s

∗
i4sj4)

is equal to 1. As the diagonal entries of A and D are zero, coefficient

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1

is possibly non zero only if jk 6= ik for k ∈ {1, 2, 3, 4} and jk−1 6= ik for k ∈ {2, 4}, that is if

π(1) 6= 1, π(1) 6= 2, π(2) 6= 2, π(3) 6= 3, π(3) 6= 4, π(4) 6= 4

Therefore, a permutation π corresponds to a possibly non zero term if

π(1) ∈ {3, 4}, π(2) ∈ {1, 3, 4}, π(3) ∈ {1, 2}, π(4) ∈ {1, 2, 3}

This corresponds to the following 5 possible permutations:

• π(1) = 3, π(3) = 1, π(2) = 4, π(4) = 2, permutation π1,

• π(1) = 3, π(3) = 2, π(2) = 4, π(4) = 1, permutation π2,

• π(1) = 4, π(3) = 1, π(2) = 3, π(4) = 2, permutation π3,

• π(1) = 4, π(3) = 2, π(2) = 1, π(4) = 3, permutation π4,

• π(1) = 4, π(3) = 2, π(2) = 3, π(4) = 1, permutation π5.

In the following, we denote by i = (i1, i2, i3, i4) a four-dimensional multi-index, and for each

k = 1, . . . , 5, by πk(i) the multi-index (iπk(1), iπk(2), iπk(3), iπk(4)). We will show below that for

each k = 1, 2, . . . , 5, then,

∑

i

∑

j=πk(i)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1 → 0 (45)
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Unfortunately, this does not show that E(ε2
N ) converges to 0 because

E(ε2
N ) 6=

5
∑

k=1

∑

i

∑

j=πk(i)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1 (46)

This is because, for certain multi indices i having identical components, it may exist k 6= l

for which πk(i) = πl(i). For example, if i1 = i2, then π1(i) = π2(i). These multi indices are

thus taken into account at least two times in the right hand side of equation (46). In order to

show that E(ε2
N ) converges towards 0, the reader may check that it is sufficient to prove (45)

for k = 1, . . . , 5, as well as (45) but in which the summation over i is restricted to indices for

which (i1 = i2), (i1 = i3), (i3 = i4), (i1 = i2) and (i3 = i4).

We now prove (45) for k = 1, i.e. that
∑

i

ci1,1Ai1,i3Di3,i2(A
H)i2,i4ci4,1ci3,1Ai3,i1Di1,i4(A

H)i4,i2ci2,1 → 0 (47)

For this, we replace D by C2C
H
2 − K−1

N
I, and verify that

∑

i

ci1,1Ai1,i3(C2C
H
2 )i3,i2(A

H)i2,i4ci4,1ci3,1Ai3,i1(C2C
H
2 )i1,i4(A

H)i4,i2ci2,1 → 0, (48)

and
∑

i ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1(C2C

H
2 )i1,i4(A

H)i4,i2ci2,1 → 0
∑

i ci1,1Ai1,i3(C2C
H
2 )i3,i2(A

H)i2,i4ci4,1ci3,1Ai3,i1δi1−i4(A
H)i4,i2ci2,1 → 0

(49)

as well as
∑

i

ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1δi1−i4(A

H)i4,i2ci2,1 → 0 (50)

We first check (48). We recall that matrix (Ci,k)i=1,...,N,k=1,...,K is obtained by extracting K

columns from a N ×N (unitary) Walsh-Hadamard matrix. In order to simplify the notations, we

denote by (ck)k=1,...,N the columns of this unitary matrix, and by (ci,k)i=1,...,N the components

of vector ck. In particular, matrix C2 is equal to C2 = (c2, . . . , cK). The term to be studied,

denoted u1,N , is equal to

u1,N =
K
∑

k=2

K
∑

l=2

∑

(i1,i2,i3,i4)

ci1,1Ai1,i3ci3,kci2,k(A
H)i2,i4ci4,1ci3,1Ai3,i1ci1,lci4,l(A

H)i4,i2ci2,1

It can also be written as

u1,N =

K
∑

k=2

K
∑

l=2

∣

∣

∣

∣

∣

∑

i1,i3

ci1,1ci3,1ci1,lci3,kAi1,i3Ai3,i1

∣

∣

∣

∣

∣

2
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It is clear that u1,N is smaller than the term v1,N defined by

v1,N =
N
∑

k=1

N
∑

l=1

∣

∣

∣

∣

∣

∑

i1,i3

ci1,1ci3,1ci1,lci3,kAi1,i3Ai3,i1

∣

∣

∣

∣

∣

2

v1,N is equal to

v1,N =
∑

i

N
∑

k=1

N
∑

l=1

ci1,1ci3,1ci2,1ci4,1ci1,lci2,lci3,kci4,kAi1,i3Ai3,i1A
∗
i2,i4

A∗
i4,i2

As
∑N

l=1 ci1,lci2,l = δi1−i2 and
∑N

k=1 ci3,kci4,k = δi3−i4 , we get that

v1,N =
∑

i1,i3

(ci1,1)
2(ci3,1)

2|Ai1,i3|2|Ai3,i1 |2 =
1

N2

∑

i1,i3

|Ai1,i3|2|Ai3,i1 |2

because the entries of C are equal to ± 1√
N

. We finally show that v1,N → 0, which in turn,

implies that u1,N → 0. For this, we have to check that 1
N

∑

i1,i3
|Ai1,i3|2|Ai3,i1|2 is bounded. If

E and F are N × N matrices, we denote by E • F the Schur-Hadamard product of E and F

defined by (E • F)k,l = Ek,lFk,l. It is easily seen that ‖E • F‖ ≤ ‖E‖‖F‖. We remark that

1

N

∑

i1,i3

|Ai1,i3|2|Ai3,i1 |2 =
1

N
Trace(A • AT )(A • AT )H

and is thus upper bounded by ‖A • AT‖2 ≤ ‖A‖4. As A is uniformly bounded,

sup
N

1

N
Trace(A • AT )(A • AT )H < +∞

This shows that v1,N , and thus u1,N converges to 0.

We now prove the first part of (49). We put

u2,N =
∑

i

ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1(C2C

H
2 )i1,i4(A

H)i4,i2ci2,1

Using that (ci3,1)
2 = 1

N
, we get immediately that

u2,N =
1

N

∑

i1,i4

ci1,1ci4,1(C2C
H
2 )i1,i4Ei1,i4

where E is the N × N matrix defined by

Ei1,i4 =
∑

i3

Ai1,i3Ai3,i1(A
H)i3,i4(A

H)i4,i3

It is easy to check that E = (A • AT )(A • AT )H . Therefore, u2,N can be rewritten as

u2,N =
1

N
cH

1

(

(C2C
H
2 ) • E

)

c1
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As A and C2C
H
2 are uniformly bounded, matrix (C2C

H
2 )•E is uniformly bounded. As ‖c1‖ = 1,

this implies that

sup
N

cH
1

(

(C2C
H
2 ) • E

)

c1 < +∞

thus showing that u2,N → 0.

The second part of (49) and (50) are obtained similarly. This establishes (45) for k = 1.

The proof of (45) for k ∈ {2, 3, 4, 5}, and of (45), k ∈ {1, 2, 3, 4, 5} restricted to multi indices

satisfying i1 = i2, i1 = i3, i3 = i4, i1 = i2 and i3 = i4 are similar, and thus omitted.

APPENDIX IV

PROOF OF LEMMA 4.

As in the proof of Lemma 3, we simplify the notations. We put BN = B, S(m) = S,

S(m−k) = S
′

, and denote (si)i=1,...,N and (s
′

i)i=1,...,N their diagonal entries. The diagonal terms

of matrix CCH all coincide with K
N

, and we denote by D the matrix D = CCH − K
N
I. Finally,

we denote by TN the term to be studied, i.e.

TN = cH
1 SHBS

′

CCHS
′HBHSc1 − α

1

N
Trace(BBH)

Writing CCH as D + K
N
I and using that S

′

is unitary, we get that

TN = εN +
K

N
cH

1 SHBBHSc1 − α
1

N
Trace(BBH)

where

εN = cH
1 SHBS

′

DS
′HBHSc1

As BBH is uniformly bounded, Lemma 1 implies that

cH
1 SHBBHSc1 −

1

N
Trace(BBH)

converges to 0 in the mean square sense. As K
N

→ α, E(ε2
N ) → 0 implies that E(T 2

N ) → 0. In

the following, we therefore prove that E(ε2
N ) → 0. For this, we expand E(ε2

N ) as

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Bi1,j1Dj1,i2(B
H)i2,j2cj2,1ci3,1Bi3,j3Dj3,i4(B

H)i4,j4cj4,1E(s∗i1s
′

j1
s
′∗
i2
sj2s

∗
i3
s
′

j3
s
′∗
i4
sj4)

As sequences (si)i=1,...,N and (s
′

i)i=1,...,N are independent, it is clear that

E(s∗i1s
′

j1
s
′∗
i2
sj2s

∗
i3
s
′

j3
s
′∗
i4
sj4) = E(s∗i1sj2s

∗
i3
sj4)E(s

′

j1
s
′∗
i2
s
′

j3
s
′∗
i4
)
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But,

E(s∗i1sj2s
∗
i3
sj4) = δi1−j2δi3−j4 + δi1−j4δj2−i3 − δi1−j2δi3−j4δi1−j4δj2−i3

E(s
′

j1s
′∗
i2s

′

j3s
′∗
i4) = δj1−i2δj3−j4 + δj1−i4δi2−j3 − δj1−i2δj3−j4δj1−i4δi2−j3

As the diagonal terms of D are 0, the terms for which j1 = i2 or j3 = i4 do not contribute to

E(ε2
N ). Therefore, E(ε2

N ) reduces to

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Bi1,j1Dj1,i2(B
H)i2,j2cj2,1ci3,1Bi3,j3Dj3,i4(B

H)i4,j4cj4,1E(s∗i1sj2s
∗
i3
sj4)δj1−i4δi2−j3

Starting from this expression, it is easy to check that E(ε2
N ) → 0.
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