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Cooperative Spectrum Sensing Introduction

Cooperative spectrum sensing

Figure: Considered scenario for cooperative spectrum sensing



Cooperative Spectrum Sensing Introduction

Communication features

I A wireless network sparsely uses a certain bandwidth.

I A secondary wireless system wants to use this bandwidth
whenever it is available.

I The base stations of the secondary system share information
between them.

I The test does not require any prior knowledge on the signal
structure.

I The test needs to be performed on a real time basis.



Cooperative Spectrum Sensing Modelisation and Special features

Modelisation

Hypothesis (H0): No signal. Every secondary sensor k = 1 : N
receives a signal yk(`) at the sampling time units ` = 1 : n with

yk(`) = σwk(`) ,

where wk(`) is a white gaussian noise, and σ is its variance.

Hypothesis (H1): Presence of a signal. The signal has now the
form

yk(`) = hks(`) + σwk(`) ,

where s(`) is a gaussian primary signal at time ` and hk is the
fading coefficient associated to the secondary station k.



Cooperative Spectrum Sensing Modelisation and Special features

Features

Constraints:

I The number of secondary sensors N and the dimension of the
received signal n are of the same order.

I The noise variance σ and the fading coefficients hk are
unknown.

I Real-time processing.

Collaboration between secondary sensors:

I Data is stored in a matrix

Y =

(
yk(`)√

n

)
k=1:N, `=1:n

,

as all the signals are shared between the secondary sensors.
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Cooperative Spectrum Sensing Modelisation and Special features

A few remarks

I Quantities σ and hk are unknown. Therefore,
Neyman-Pearson test cannot be implemented.

I There might not exist a uniformly most powerful test: Type
II errors must be studied to compare statistical tests.



Cooperative Spectrum Sensing Presentation of the results

Presentation of the results

In the following, we shall:

I present the Generalized Maximum Likelihood statistical
test (GML Test),

I study its Type I and II errors,

I compare them to the reference test based on the extreme
eigenvalue ratio (EER test),

I establish that the GML test is uniformly most powerful than
the EER test.

These results are mainly based on:

I The asymptotic study of various regimes of extreme
eigenvalues of large random matrices.
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Hypothesis Testing and Random Matrices Large Random Matrices

A few facts about large random matrices

Consider a N × n matrix Zn with independent entries:

Zn =
σ√
n

(Zij)

where

 Z1j
...

ZNj

 ∼ CN(0,Σn) with Σn =


ρ 0 · · · 0

0 1 0
...

. . .

0 · · · 1


Of major interest is the spectrum (λ1, · · · , λN) of ZnZ∗n under the
asymptotic regime:

n,N →∞,
N

n
→ c ∈ (0, 1) .



Hypothesis Testing and Random Matrices Large Random Matrices

Global regime of the spectrum

Whatever the value of ρ, the spectral measure

Ln([a, b]) =
#{λi ∈ [a, b]}

N

converges towards Marčenko-Pastur distribution:

Ln([a, b]) → PM̌P([a, b]) a.s.

where

PM̌P([a, b]) =

∫ b

a
1(λ−,λ+)(x)

√
(λ+ − x)(x − λ−)

2πcx
dx .

with {
λ− = σ2(1−

√
c)2

λ+ = σ2(1 +
√

c)2
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Hypothesis Testing and Random Matrices Large Random Matrices

Extreme eigenvalues

In the case where 1 ≤ ρ ≤
√

c :
Convergence of λmax and λmin toward the endpoints of
Marčenko-Pastur distribution:

λmax → λ+ = σ2(1 +
√

c)2, λmin → λ− = σ2(1−
√

c)2 .

In the case where ρ >
√

c :
The eigenvalue λmax converges outside the bulk of MP
distribution!

λmax −→ σ2(1 + ρ)

(
1 +

c

ρ

)
> σ2(1 +

√
c)2 ,

while λmin → λ−.

In this case, we speak of a spiked model.
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Hypothesis Testing and Random Matrices Large Random Matrices

Back to our problem

Aim: To build a test statistics based on matrix:

R = YY∗ where Y =

(
yk(`)√

n

)
k=1:N, `=1:n

.

in the case where:

I the number N of secondary sensors is of the same order as
the number n of observations:

N →∞, n →∞, cn =
N

n
→ c ∈ (0, 1) .



Hypothesis Testing and Random Matrices Large Random Matrices

When there is no signal: Model with i.i.d. entries

The matrix model is: Y with i.i.d. entries CN(0, 1)

Y =
σ√
n

 w1(1) · · · w1(n)
...

...
wN(1) · · · wN(n)

 .

and we are interested in R̂ = YY∗.



Hypothesis Testing and Random Matrices Large Random Matrices

Asymptotics of the spectrum

I Convergence of the extreme eigenvalues:

λmax(R̂) −−−→
n→∞

λ+ 4
= σ2(1 +

√
c)2,

λmin(R̂) −−−→
n→∞

λ−
4
= σ2(1−

√
c)2,

I Convergence of the normalised trace:

1

N
Trace(R̂) → σ2.



Hypothesis Testing and Random Matrices Spiked model

When there is some signal

Matrix model:

Y̌ =
1√
n

 h1 σ 0
...

. . .

hN 0 σ




s(1) · · · s(n)
w1(1) · · · w1(n)

...
...

wN(1) · · · wN(n)


Let: Ř = Y̌Y̌∗



Hypothesis Testing and Random Matrices Spiked model

Equivalence with a spiked model
Performing a SVD yields: h1 σ 0

...
. . .

hN 0 σ

 = U


p
|h|2 + σ2 0 · · · 0

0 σ
. . . 0

...
. . .

. . . 0
0 · · · 0 σ

V

Thus Ř = Y̌Y̌∗ has the same spectrum as ỸỸ∗ with:

Ỹ =
1√
n


p
|h|2 + σ2 0 · · · 0

0 σ
. . . 0

...
. . .

. . . 0
0 · · · 0 σ


 X11 · · · X1n

...
...

XN1 · · · XNn

 ,

the Xij ’s being i.i.d. CN(0, 1).

⇒ spiked model!
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Hypothesis Testing and Random Matrices Spiked model

Asymptotics of the spectrum

Limit of the largest eigenvalue. If the Signal to noise ratio is
above the threshold:

ρ =

∑N
k=1 |hk |2

σ2
=

signal power
noise variance

>
√

c ,

then the limit of the largest eigenvalue is no longer the same:

λmax(Ř) −−−→
n→∞

σ2(1 + ρ)

(
1 +

c

ρ

)
> σ2(1 +

√
c)2 !

References:
I Baik, Ben Arous, Péché - Annals of Probab. (2005)

I Baik, Silverstein - J. Mult. Analysis (2006)



Hypothesis Testing and Random Matrices Spiked model

Other limits are not modified:

I smallest eigenvalue:

λmin(Ř) → λ− = σ2(1−
√

c)2;

I normalized trace:

1

N
Trace(Ř) → σ2.



Hypothesis Testing and Random Matrices Hypothesis test

Hypothesis Test

We shall thus test the hypotheses

I (H0) No primary signal, i.e.

R = R̂ (with i.i.d. entries),

versus

I (H1) Presence of a noticeable primary signal, i.e.

R = Ř (spiked model) with ρ >
√

c .
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The Generalized Maximum Likelihood Test Computing the test

The likelihood ratio

Consider the likelihood functions of the observation matrix Y
under hypotheses H0 and H1:

p0(Y;σ2) =
1

(πσ2)NK
exp

(
− N

σ2
TrR

)
p1(Y;σ2,h) =

1

πKdet(hh∗ + σ2IK )
exp

(
−NTrR(hh∗ + σ2IK )−1

)
Neyman-Pearson Lemma: If σ2 and h are known, then the test

LN =
p0(Y;σ2)

p1(Y;σ2,h)

is uniformly most powerful: For a given level of significance, its
error of second kind is minimum.



The Generalized Maximum Likelihood Test Computing the test

The Generalized maximum likelihood ratio test

Unfortunately, σ2 and h are unknown. A suboptimal but
classical approach consists in considering the test:

LN =
supσ2 p0(Y;σ2)

supσ2,h p1(Y;σ2,h)

which yields, in our case, to the test:

T1 =
λmax
1
N TrR

Limits of T1 depending on the hypotheses:

T1
(under H0)−−−−−−→

n→∞
(1 +

√
c)2 and T1

(under H1)−−−−−−→
n→∞

(1 + ρ)

(
1 +

c

ρ

)



The Generalized Maximum Likelihood Test Type I Error

Type I error

I Type I error represents the probability of choosing H1 while
the true hypothesis is H0.

I Describing the fluctuations of T1 enables us to compute the
threshold tα associated to an a priori fixed type I erro α.



The Generalized Maximum Likelihood Test Type I Error

Computation of the threshold

Fluctuations. Under (H0), R̂ = YY∗ with Y with i.i.d. gaussian
entries

I Fluctuations of λmax are of order N−2/3,

I Fluctuations of 1
N Trace R̂ are of order N−2.

Therefore,

T1 =
λmax

1
N Trace R̂

≈ λmax

σ2

Limit. When correctly centered and rescaled, T1 converges to a
Tracy-Widom distribution:

T̃1
4
= N2/3 T1 − (1 +

√
cn)

2

(1 +
√

cn)
(

1√
cn

+ 1
)1/3

L−−−−→
N→∞

TW .
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The Generalized Maximum Likelihood Test Type I Error

Computation of the threshold (followed)

I Knowing the quantiles of Tracy-Widom distribution enables
us to compute the threshold for a given level of significance α:

PTW {T̃1 > tα} = α .

I For the level α, decision will be:

choose (H0) if T̃1 ≤ tα,

choose (H1) if T̃1 > tα,



The Generalized Maximum Likelihood Test Type II Error and the Error Exponent

Type II Error

I The Type II Error is given by

PH1 (T1 ≤ sn) ,

which represents the probability of choosing H0 while H1 is
true.

I This probability goes to zero. Indeed:

sn (H1)−−→ (1 +
√

c)2 while T1
(H1)−−→ (1 + ρ)

(
1 +

c

ρ

)

I Therefore PH1 (T1 ≤ sn) is a large deviation: It goes
exponentially fast to zero

PH1 (T1 ≤ sn
1) �∞ e−NE .
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The Generalized Maximum Likelihood Test Type II Error and the Error Exponent

The Error Exponent

It is defined by:

E = − lim
n→∞

1

N
log PH1 (T1 ≤ sn

1)(
⇔ PH1 (T1 ≤ sn

1) �∞ e−NE
)

I As T1 = λmax
1
N

TrR
, the deviations can either come from λmax or

from 1
N TrR.

I It turns out that λmax drives the large deviations because the
deviations of 1

N TrR are far smaller:

PH1

(
1

N
TrR away from σ2

)
�∞ e−N2κ
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The Generalized Maximum Likelihood Test Type II Error and the Error Exponent

Large deviations of λmax

I By the previous discussion, the computation of the error
exponent relies on:

The study of the large deviations of λmax under H1.

I There exists a rate function Iρ which describes the large
deviations of λmax:

P (λmax ∈ A) �∞ exp (−infx∈A Iρ(x)) .



The Generalized Maximum Likelihood Test Type II Error and the Error Exponent

Computation of the Error Exponent

I The error exponent E is given by the rate function
associated to the large deviations of λmax under (H1):
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Figure: Rate function Iρ for c = 0.5, ρ = 1



The Generalized Maximum Likelihood Test Type II Error and the Error Exponent

Error Exponent - Neyman-Pearson bound
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Figure: Computation of the logarithm of the Error Exponent for different
values of c (ρ ≥

√
c), and comparison with the optimal bound

(Neyman-Pearson) obtained in the case where all the parameters are
perfectly known.



The Generalized Maximum Likelihood Test Beyond the Error Exponent

Beyond the Error Exponent: The Error Exponent curve

I The computation of the Error Exponent is performed with a
level of significance remaining constant

I We are interested in the regime where both the level of
significance and the type II error decrease to zero and
consider the pairs (E1,E2) which jointly satisfy:

PH0 (T1 ≥ sn
1) �∞ e−NE1

PH1 (T1 ≤ sn
1) �∞ e−NE2

I The set of these pairs (E1,E2) is the Error Exponent Curve.
It relies on:

I Large deviations of λmax under (H0) ⇒ E1,
I Large deviations of λmax under (H1) ⇒ E2.
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The Error Exponent curve for T1
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Figure: The Error Exponent curve: E2 versus E1.
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A Comparison with the Extreme Eigenvalue Ratio test The Extreme Eigenvalue Ratio test

The Extreme Eigenvalue Ratio test

Recall the following asymptotic results:

Under H0: Convergence of the extreme eigenvalues

λmax → σ2(1 +
√

c)2

λmin → σ2(1−
√

c)2

}
⇒ λmax

λmin
→ (1 +

√
c)2

(1−
√

c)2

Under H1: Convergence of the extreme eigenvalues

λmax → σ2(1 + ρ)(1 + c
ρ)

λmin → σ2(1−
√

c)2

}
⇒ λmax

λmin
→

(1 + ρ)(1 + c
ρ)

(1−
√

c)2

The EER statistics: Based on the previous remarks, the EER
statistics writes:

T2 =
λmax

λmin

.
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A Comparison with the Extreme Eigenvalue Ratio test The Extreme Eigenvalue Ratio test

The EER statistics

In the context of cooperative sensing, people have devoted a lot of
attention to the statistics T2 = λmax

λmin
.
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A Comparison with the Extreme Eigenvalue Ratio test The Extreme Eigenvalue Ratio test

Theoretical study of the EER statistics

Using the tools of Large Random Matrix theory (as developped
previously for the GMLR test) , one can:

I Study the fluctuations of λmax
λmin

and compute the threshold for
a given level of significance α,

I Compute the Error Exponent for a fixed level of
significance α,

I Plot the Error Exponent Curve associated to the test T2.

In particular, the latter allow us to compare performances of T2

and T1.
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The Error Exponent curve
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is uniformly more powerful than T2.
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Simulations: The type II error for a realistic scenario
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Figure: Type II Errors for T1 and T2 in the case where: N = 10, n = 50
et ρ = 1. Probabilities are computed via Monte-Carlo simulations (106

simulations).
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Conclusion

In this presentation, we introduced recent and new results from
Large Random Matrix Theory such as:

I Fluctuations of λmax in a i.i.d. model,

I Large deviations for λmax in a spiked model

and showed how to apply them in the context of Cooperative
Spectrum Sensing.

Large deviations in particular allowed us to give a clean, theoretical
study of the powers of the tests under investigation, and also to
compare these tests.



Conclusion

As often with Random Matrices, we believe that the methods
presented here will soon find other applications in wireless
communication, beyond the context of cooperative sensing.

References: All the results presented here are developed in the
forthcoming preprint:

I Bianchi, Debbah, Mäıda, Najim. Cooperative Sensing using
the Sampled Covariance matrix. soon to be posted.

Thank you for your attention!
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