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Abstract
Ecosystems with a large number of species are often modelled as Lotka–Volterra
dynamical systems built around a large interaction matrix with random part. Under
some known conditions, a global equilibrium exists and is unique. In this article, we
rigorously study its statistical properties in the large dimensional regime. Such an
equilibrium vector is known to be the solution of a so-called Linear Complementarity
Problem. We describe its statistical properties by designing an Approximate Message
Passing (AMP) algorithm, a technique that has recently aroused an intense research
effort in the fields of statistical physics, machine learning, or communication the-
ory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a
Wishart distribution are considered. Beyond these models, the AMP approach devel-
oped in this article has the potential to describe the statistical properties of equilibria
associated to more involved interaction matrix models.

Mathematics Subject Classification Primary 15B52 · 37H30; Secondary 60B20 ·
92D40

1 Introduction

Equilibrium of a large Lotka–Volterra system

In the field of mathematical ecology, Lotka–Volterra (LV) systems of coupled differ-
ential equations are widely used to model the time evolution of the abundances of N
interacting species within an ecosystem Takeuchi (1996). Such systems take the form
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dxN

dt
(t) = xN (t)� (rN − (IN − �N ) xN (t)) , xN (0) ∈ (0,∞)N , (1)

where the vector function xN : [0,∞) → R
N+ = [0,∞)N represents the abundances

of the N species, � is the componentwise product, rN ∈ R
N+ is the so-called vector

of intrinsic growth rates of the species, and −IN + �N = (−1(i= j) + �i j ) ∈ R
N×N

represents the interaction matrix. More precisely �i j represents the effect of species
j on the growth of species i for i �= j and −1 + �i i represents the intraspecific
interaction. Equivalently, (1) can be written as a series of coupled ordinary differential
equations:

dxi

dt
(t) = xi (t)

(
ri − xi (t)+

∑
k

�ik xk(t)

)
, xi (0) > 0 , 1 ≤ i ≤ N ,

where �N = (�i j ), xN = (xi ) and rN = (ri ).
In theoretical ecology, the matrix �N and the vector rN are often modelled as

random when the number N of species is large, turning the ecological system into a
large disordered system. Such systems have aroused an important amount of research
in the fields of mathematical ecology, borrowing tools from statistical physics, high
dimensional probability, or random matrix theory Akjouj et al. (2024).

In this paper, we shall be interested in the situation where the LV dynamical system
is well-defined for all t ∈ R+ and possesses an unique globally stable equilibrium
vector:

x�
N = (x�

i

)N
i=1 with xN (t) −−−→

t→∞ x�
N

for all initial conditions xN (0) = (xi (0))i lying in the interior of the first orthant, that
is xi (0) > 0 for all i ∈ {1, . . . , N }.

In general there does not exist a globally stable equilibrium. Even a single equi-
librium might not exist. There are however various conditions ensuring the existence
of such an equilibrium, see Hofbauer and Sigmund Hofbauer and Sigmund (1998),
Takeuchi Takeuchi (1996), etc. In the present work, we will rely on Takeuchi’s condi-
tion (cf. Proposition 2) and will assume the existence of an equilibrium x�

N for large
N .

It is well-known that the property xN (0) ∈ (0,∞)N is maintained for all t > 0
and xN (t) ∈ (0,∞)N . However, in general, the equilibrium vector x�

N may lie at the
boundary of RN+ , i.e. may have vanishing components. Moreover, assuming that �N

and rN are random, the vector x�
N is random as well.

When N becomes large, it is of interest to understand the statistical properties of
x�

N such as for example its proportion of non-zero components, or the distribution of
x�

N ’s components, etc. Many interesting features and properties of the equilibrium are
encoded in the empirical measure of the abundances

μx�
N = 1

N

N∑
i=1

δx�
i

,
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where δa stands for the Dirac measure at a. For instance, the proportion of surviving
species at equilibrium is given by

# surviving species

N
=
∫

1(0,∞)(t)d μx�
N (dt) .

Mathematically speaking, the measure μx�
N is a random probability measure on R,

defined on the same probability space � as rN and �N .
Note that, if rN is exchangeable, the distribution of the first (and in fact any)

component [x�
N ]1 of the equilibrium vector should resemble1 μx�

N .
In the literature devoted to large LV systems, standard choices for the matrix�N are

classical random matrix models such as the Gaussian Orthogonal Ensemble (GOE)
model, the real Ginibremodel (i.i.d. centeredGaussian entries for�N ), or the so-called
elliptical model, that can be seen as an interpolation between the GOE and the real
Ginibre models Allesina and Tang (2012). For these models, feasible equilibria where
x�

i > 0 for 1 ≤ i ≤ N are studied in Bizeul and Najim (2021); Clenet et al. (2022);
Akjouj and Najim (2022); Clenet et al. (2023).

The large-N properties of x�
N were recently considered in the theoretical ecology

literature. In Bunin (Apr 2017), Bunin considered a non-centered elliptical model
with the help of the dynamical cavity method. A similar result was obtained by Galla
in Galla (2018) by means of generating functionals techniques, see also Opper and
Diederich (1992); Tokita (Oct 2004). Many insights are provided by these techniques
from a physicist point of view. However, up to our knowledge, no rigorous method to
describe the asymptotic properties of x�

N can be found in the literature so far.
The purpose of this paper is to address this question in the case where matrix �N

is either taken from the GOE or follows a Wishart distribution. Our results on the
asymptotics of μx�

N mathematically confirm Bunin and Galla’s works.

Linear complementarity problem

When it exists, the globally stable equilibrium x�
N = (x�

i ) of the LV equation above
is known to be the solution of a so-called Linear Complementarity Problem (LCP),
see for instance (Takeuchi 1996, Chap. 3), which consists in finding a vector with real
entries that satisfies a system of inequalities involving matrix �N and vector rN :⎧⎪⎨

⎪⎩
x�

i ≥ 0,

x�
i

(
ri −
[
(IN − �N )x�

N

]
i

) = 0,

ri −
[
(IN − �N )x�

N

]
i ≤ 0,

for all i ∈ {1, . . . , N } . (2)

In the context of theoretical ecology, a vector satisfying (2) is often referred to as a
saturated equilibrium or saturated rest point, see for instance Hofbauer and Sigmund
(Hofbauer and Sigmund 1988, Section 19.4) and (Hofbauer and Sigmund 1998,Sec-
tion 13.4).

1 A thorough and rigorous study of this fact has been recently done in (Gueddari et al. 2024, Section 3.4).
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The two first conditions are natural for an equilibrium to system (1): the abundances
are necessarily non-negative and the equilibrium should be a critical point of the
dynamics. The third one is more subtle, it is called uninvadability and its ecological
interpretation is the following: the quantity ri −

[
(IN − �N )x�

N

]
i is the net growth

rate (aka invasion fitness), that is the rate of exponential growth or decay of a small
population xi ≈ 0 in an environment where the other species are at equilibrium x�

N ;
these rates being all nonpositive is a stability requirement. Sufficient conditions on
�N to ensure existence and uniqueness of the solution x�

N are known. The problem
boils down to the following question: how can we asymptotically extract statistical
information on x�

N , solution to the highly non-linear problem (2), given that �N and
rN are random?

The reader is referred to Sect. 4.2 below for a quick overview of the LCP theory,
and to Cottle et al. (2009); Murty and Yu (1988) for complete and comprehensive
expositions.

Approximatemessage passing

The idea we develop in this paper is that the distribution μx�
N can be estimated for

large N by designing a proper Approximate Message Passing (AMP) algorithm.
Approximate Message Passing (AMP) is a technique that has recently aroused

an intense research effort in the fields of statistical physics, machine learning, high-
dimensional statistics and communication theory. Among the many landmark articles,
we can cite Donoho et al. (2009), Bayati and Montanari (2011), Bolthausen (2014).
More references can be found in the recent tutorial Feng et al. (2022).

An AMP algorithm produces a sequence of RN–valued random vectors, say ξ k =
(ξ k

i ), which are iteratively built around a N × N random matrix, sometimes called
the measurement matrix. This algorithm is conceived in such a way that for any finite
collection ξ1, . . . , ξ k of these vectors, the following joint empirical distribution:

1

N

N∑
i=1

δ(ξ1i ,...,ξ k
i )

converges as N → ∞ to a Gaussian distribution on R
k whose parameters can be

fully characterized by the so-called Density Evolution (DE) equations. In the context
of our LV equilibrium problem, it turns out that an AMP algorithm can be designed
in such a way that the AMP iterates approximate our LCP solution after an adequate
transformation. Thanks to this approximation, the asymptotic properties of μx�

N can
be deduced from the DE equations.

Randommatrix models and perspectives

Regarding the statistical model for �N , we shall consider in this paper the GOEmodel
Allesina and Tang (2012), and the Wishart model. The latter has been introduced to
ecology in the context of resource-competition, see for instance the influential articles
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by MacArthur MacArthur (1970). Wishart models are also particular cases of a kernel
matrix, which is considered when the interaction between two species depends on a
distance between the values of some functional traits attached to these species, see
(Akjouj et al. 2024, §4.6) and the references therein, or the recent paper Rozas et al.
(2023). Both models are first studied under a Gaussianity assumption for the entries,
see Assumptions 2-4. This assumption which might not seem biologically relevant
is relaxed later and we provide similar results without the Gaussian requirement, see
Assumptions 8-9.

We believe that this LCP/AMP approach for studying μx�
N can be generalized

and applied to more complex models for matrix �N , see for instance Hachem (2024)
(symmetricmatrix, sparse variance profile) andGueddari et al. (2024) (non-symmetric
matrix, elliptical models). The recent results of Fan Fan (2022) might be used to cover
the general rotationally invariant case; more general models are also considered in
Bayati et al. (2015); Wang et al. (2022).

Outline of the article

The problem statement, the main results and simulations are presented in Sect. 2. In
Sect. 2.2 (resp. Section 2.3) Theorem 1 (resp. Theorem 2) describes the statistical
properties of the equilibrium for a matrix �N drawn from the GOE (resp. from the
Wishart ensemble). In Sect. 2.4, we extend these results to matrix ensembles based on
non-Gaussian entries. Section 4 is devoted to the proof of Theorem 1, starting with an
outline of the proof in Sect. 4.1, while elements of proof of Theorem 2 are provided
in Sect. 5.

Main notations

For x ∈ R, let x+ = max(x, 0), x− = max(−x, 0) and [N ] = {1, . . . , N }. For a
given set S denote by |S| its cardinality. Vectors will be denoted by lowercase bold
letters a = (ai ), b = (bi ), etc. If f : R → R is a real function, vector f (a) is
defined componentwise by f (a) = ( f (ai ))i∈[N ]. For vectors of same dimensions,
a � b = (ai bi ) denotes the componentwise (Hadamard) product. Vector 1N is the
N × 1 vector of ones and x 
→ 1S(x) is the indicator function of set S. Transpose of
matrix A is A� and its eigenvalues are λi (A).

For a = (ai ), a � 0 (resp. a � 0) refers to the componentwise inequalities ai ≥ 0
(resp. ai > 0) for all i ∈ [N ]. A positive (resp. negative) definite matrix A is denoted
by A > 0 (resp. A < 0).

Given a vector a and a matrix A, ‖a‖ denotes the Euclidian norm of a and ‖A‖ the
spectral norm of A. For a vector a, ‖a‖0 = |{i; ai �= 0}| is the number of its non-zero
elements and supp(a) is its support, that is the set of indices of non-zero elements.
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Given vectors a = (ai ), a1 = (a1
i ), . . . , ak = (ak

i ) of the same size N , we denote

as μa and μa1,...,ak
the probability measures

μa = 1

N

∑
i∈[N ]

δai and μa1,...,ak = 1

N

∑
i∈[N ]

δ(a1i ,...,ak
i ) .

We call μa the empirical distribution of the components of a and μa1,...,ak
the joint

empirical distribution of the components of a1, . . . , ak .
If μN , μ are probability measures over Rd then μN

w−−−−→
N→∞ μ stands for the

weak convergence of probability measures. The distribution of a random variable
X is denoted by L(X) and we express that two random variables X , Y have the same

distribution by X
L= Y . As usual, abbreviation a.s. stands for almost sure/surely.

2 Problem statement, assumptions, andmain results

2.1 Equilibria,Wasserstein space and pseudo-Lipschitz functions

Independently of the structure of �N , it is known that if ‖�N‖ < 1, then the ODE (1)
admits a unique solution (xN (t), t ≥ 0) with a bounded trajectory, for any arbitrary
initial value xN (0) � 0, see Li et al. (2009). Moreover the same condition ‖�N‖ < 1
guarantees, as we shall recall in more detail in Sect. 4, the existence of a globally
stable equilibrium point x�

N in the classical sense of the Lyapounov theory (Takeuchi
1996, Chapter 3).

Given k ≥ 1, the Wasserstein space Pk(R
d) is defined as the set of probability

measures μ over Rd with finite kth moment:
∫
Rd ‖x‖kμ(dx) < ∞. Given μ, ν ∈

Pk(R
d), we denote byMk(μ, ν) the set of probability measures inPk(R

d ×R
d)with

marginals μ and ν, i.e.

η ∈Mk(μ, ν) ⇒
{

η(A × R
d) = μ(A) ,

η(Rd × B) = ν(B) ,

for all A, B Borel sets in R
d . We can endow the space Pk(R

d) with the distance:

dk(μ, ν) = inf
η∈Mk (μ,ν)

{∫
Rd×Rd

‖x − y‖kη(dxd y)
}1/k

.

A function ϕ : Rd → R is pseudo-Lipschitz with constant L and degree k ≥ 2 if for
all x, y ∈ R

d , the following inequality holds:

|ϕ(x)− ϕ( y)| ≤ L‖x − y‖
(
1+ ‖x‖k−1 + ‖ y‖k−1

)
.
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We denote by P Lk(R
d) this set of functions. We will rely later on the following

classical lemma, see for instance (Feng et al. 2022, Sects. 1.1 and 7.4) and Villani
(2009).

Lemma 1 Let μN , μ ∈ Pk(R
d) for k ≥ 2. The following conditions are equivalent:

(i) dk(μN , μ) −−−−→
N→∞ 0,

(ii) For all ϕ ∈ P Lk(R
d),
∫

ϕdμN −−−−→
N→∞

∫
ϕdμ,

(iii) μN
w−−−−→

N→∞ μ and
∫
Rd ‖x‖kμN (dx) −−−−→

N→∞
∫
Rd ‖x‖kμ(dx).

If one of the equivalent conditions of Lemma 1 is satisfied, we say that the sequence
(μN ) converges in Pk(R

d) to μ and denote it by

μN
Pk (R

d )−−−−→
N→∞ μ .

If not misleading, we will occasionally drop Rd and simply write Pk, P Lk .
Let rN be a random vector of dimension N ×1 that satisfies the following assump-

tion.

Assumption 1 The following hold true.

(i) For all N ≥ 1, rN � 0 is defined on the same probability space as matrix �N and
is independent from �N .

(ii) There exists a probability measure μ̄ ∈ P2(R
+) such that μ̄ �= δ0 and

(a.s.) μrN
P2(R)−−−−→
N→∞ μ̄ .

2.2 The GOE case

We first define rigorously the symmetric matrix �N and express sufficient conditions
for the existence of a unique global equilibrium x�

N to (1).

Assumption 2 Let AN be a N × N matrix from the Gaussian Orthogonal Ensem-
ble. Namely, considering that X N is a real N × N matrix with independent N (0, 1)
elements,

AN
L= X N + X�

N√
2

.

Let κ be a positive real number. Then,

�N = AN

κ
√

N
. (3)

Remark 1 (biological interpretation of the interactions) The symmetric interactions
correspond to competitive interactions when negative and mutualistic interactions
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when positive. Predator-prey interactions are not accounted for in this model. Let O
be the standard "big O" notation then interspecific interactions�i j (i �= j) are of order

O
(
1/
√

N
)
while intraspecific interactions −1 + �i i are of order O(1). The scaling

1/
√

N ensures that asymptotically in N the interactionmatrix�N has a "macroscopic"
effect in the sense that ‖�N‖ = O(1) (see also the remark below for mathematical
details).

Remark 2 Denote by A(N )
i j the element (i, j) of AN , then A(N )

i j = A(N )
j i andL(A(N )

i j ) =
N (0, 1+δi j )where δi j is the Kronecker symbol with value 1 if i = j , zero else. Much
is known about this model, in particular the asymptotic behaviour of the spectral
measure of AN /

√
N (Wigner’s theorem) and its spectral norm, see for instance Bai

and Silverstein (2010); Pastur and Shcherbina (2011) and the references therein:

(a.s.)
1

N

∑
i∈[N ]

δ
λi

(
AN /

√
N
) w−−−−→

N→∞

√
(4− x2)+

2π
dx and

∥∥∥∥ AN√
N

∥∥∥∥ −−−−→
N→∞ 2 . (4)

We shall consider the following assumption:

Assumption 3 The normalizing factor κ in (3) satisfies κ > 2.

Note that non-optimality of this assumption is discussed at length in Remark 4
and Sect. 3.2. Before stating the main theorem, we recall its direct mathematical
consequences.

Combining Assumption 3 and the a.s. convergence of ‖AN /
√

N‖ toward 2, we get
that with probability one, eventually

‖�N‖ < 1 .

Formally, this property means that there exists a set �̃ with probability one such that

∀ω ∈ �̃ , ∃N �(ω) , ∀N ≥ N �(ω) , ‖�N‖ < 1 .

As a consequence, for every ω ∈ �̃, the existence and uniqueness of x�
N is granted

for N large enough.
We can now state the main result of this section : after justifying the existence of

a globally stable equilibrium x�
N , one can describe the asymptotic distribution of the

abundances at equilibrium, expressed mathematically through the convergence of the
empirical measure μx�

N as N →∞. The limiting distribution is expressed in terms of
a random variable r̄ , with law μ̄, the limiting distribution of the intrinsic growth rates
and three auxiliary parameters γ, σ and δ that will be defined as the solutions of a fixed
point equation. Biologically, γ represents the proportion of surviving species (more
details are given below the theorem), σ measures the diversity at equilibrium and δ is
a bit more subtle to interpret but can be linked to the sensitivity to the introduction of
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a new species when the system is near equilibrium.We now give the precise statement
in the GOE case:

Theorem 1 (i) (existence of equilibrium) Let rN � 0 and let Assumptions 2 and 3
hold true. Then, ‖�N‖ < 1 eventually with probability one. For such N’s, the
ODE (1) is defined for all t ∈ R+ and has a globally stable equilibrium x�

N . For
the other N’s, let x�

N = 0.
(ii) (asymptotic distribution of the abundances)

(a) Let r̄ ≥ 0 be a real valued random variable with finite second moment and
L(r̄) �= δ0. Let Z̄ be a N (0, 1) random variable independent of r̄ . Then, for
any κ >

√
2, the system of equations

κ = δ + γ

δ
, (5a)

σ 2 = 1

δ2
E
(
σ Z̄ + r̄

)2
+ , (5b)

γ = P

[
σ Z̄ + r̄ > 0

]
, (5c)

admits an unique solution (δ, σ, γ ) in (1/
√
2,∞)× (0,∞)× (0, 1).

(b) Let Assumptions 1, 2 and 3 hold. Define x�
N as previously. The distribution

μx�
N is a P2(R)–valued random variable on the probability space where AN

and rN are defined. Assume that r̄ is a r.v. with L(r̄) = μ̄, independent of
Z̄ ∼ N (0, 1). Then, the convergence

(a.s.) μx�
N

P2(R)−−−−→
N→∞ L

((
1+ γ /δ2

) (
σ Z̄ + r̄

)
+
)

(6)

holds true, where δ, σ, γ are defined as solutions of system (5).

This theorem, which proof is postponed to Sect. 4, calls for some remarks.

Remark 3 Equations (5a)-(5c) have already been obtained2 at a physical level of rigor
by Bunin Bunin (Apr 2017) and Galla Galla (2018). Up to our knowledge, Theorem 1
is the first rigorous statement to describe the asymptotic properties of the distribution
of the elements of x�

N .

Remark 4 Notice that system (5) admits an unique solution for κ >
√
2 while Conver-

gence (6) is only established for κ > 2. The range of solutions (κ >
√
2) to equations

(5a)–(5c) supports the fact that the true threshold should be κ >
√
2 instead of κ > 2

(as in Assumption 3), a fact already noticed in the theoretical ecology literature Bunin
(Apr 2017), see also Sect. 3.2.

2 Notice that in Bunin (Apr 2017); Galla (2018), the authors consider more general models such as the
elliptical model, which encompasses the Wigner model as a particular case.
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Ecological interpretations

Theorem 1 brings valuable ecological information on the equilibrium for large N .
Some important features, detailed hereafter, are illustrated in Fig. 1.

• Proportion of surviving species at equilibrium.

This is a key property of the equilibrium and Theorem 1 sheds some light on this
proportion for large N : by inspecting (5c) and (6), the parameter γ can be interpreted
as an approximation of the proportion of surviving species ‖x�

N‖0/N . Simulations in
Fig. 1a confirm this fact.

One can see from Eq. (5c) that γ > 1/2, which means that in this model, more
than half the species survive.

Furthermore, an easy calculation involving Eq. (5b) and (5c) shows that γ does not
change if we replace r̄ with Kr̄ where K > 0 is an arbitrary constant.

We should note however that rigorously speaking, Theorem 1 does not assert that
γ is the limit of ‖x�

N‖0/N . Indeed, one can only deduce from this theorem that

sup
ϕ

⎧⎨
⎩(a.s) lim

N→∞
1

N

∑
i∈[N ]

ϕ(x�
i )

⎫⎬
⎭ = γ,

where supϕ is taken on the set of functions {ϕ : R → [0, 1] continuous, ϕ(0) = 0}.
Since the function 1{x>0} is not continuous at zero, the convergence (6) does not imply
that ‖x�

N‖0/N converges to γ , for any type of convergence. Up to our knowledge, the
study of the asymptotic behavior of ‖x�

N‖0/N is an open question.

• Distribution of surviving species at equilibrium.

Denote by s(x�) the subvector of x� with the positive components of x�. Its dimen-
sion |s(x�)| is random and the distribution of the surviving species is given by:

μs(x�) = 1

|s(x�)|
∑

i∈[|s(x�)|]
δ[s(x�)]i .

For a similar reason as previously the convergence of μs(x�
n) is out of reach but a good

proxy for the limiting law should be:

L
((

1+ γ /δ2
) (

σ Z̄ + r̄
)
+

∣∣∣∣ σ Z̄ + r̄ > 0

)
,

the density of which is explicit and given by

fsurv(y) = δ

κ
fσ Z̄+r̄

(
δ y

κ

)
1(y>0)

γ
where fσ Z̄+r̄ (y) =

∫
R

e
− (y−r)2

2σ2√
2π σ

μ̄(dr) (7)

(recall that 1+ γ

δ2
= κ

δ
byEq.(5a)). Thematching betweenμs(x�) and fsurv is illustrated

in Fig. 1b.
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Fig. 1 Subplot 1a represents the proportion of surviving species, that is the proportion of positive compo-
nents of the equilibrium x� (star), versus the theoretical value of γ (solid line), given the parameter κ which
varies from 2 to 3.75. In the plot, N = 1000 and each point (star) is the mean of proportions obtained out
of 100 Monte-Carlo simulations. Subplot 1b represents the distribution of a surviving species (N = 1000
and 100 Monte-Carlo simulations). The solid line represents the theoretical value of the density fsurv, see
(7)

Notice that if the r.v. r̄ is constant then fsurv is the density of a truncated Gaussian
distribution.

2.3 TheWishart case

As pointed out in the introduction, Wishart matrices are also relevant in theoretical
ecology. They were introduced to ecology in the context of resource-competition, see
for instance the influential articles byMacArthur MacArthur (1970). Wishart matrices
model interactions between two species which depend on the distance between values
of some given functional traits, see for instance (Akjouj et al. 2024, § 4.6) or Rozas
et al. (2023).

Assumption 4 Let BN be a P × N matrix with i.i.d. Gaussian N (0, 1) entries. Let κ
be a real positive number and define the N × N matrix �N as:

�N = B�
N BN

κ P
. (8)

For this model, the i th column of matrix BN is a vector modelling the traits of species
i .

We will be interested in the specific regime where N , P go to infinity at the same
pace:

Assumption 5 Let N = N (P) and assume that

N

P
−−−−→
P→∞ c ∈ (0,∞) .

This regime will be denoted by N , P →∞ in the sequel.
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Model (8) has been thoroughly studied under Assumption 5. Marchenko-Pastur’s
theorem describes the asymptotic behaviour of the spectral limit of B�

N BN /P . The
limiting spectral norm has been studied by Bai and Yin, see for instance Bai and
Silverstein (2010); Pastur and Shcherbina (2011) and the references therein:

(a.s.)

∥∥∥∥∥ B�
N BN

P

∥∥∥∥∥ −−−−−→
N ,P→∞ (1+√

c)2 .

Assumption 6 The normalizing factor in (8) satisfies κ > (1+√
c)2.

For this model, a similar result as Theorem 1 can be stated, giving the existence of a
globally stable equilibrium and characterising the limiting behavior of the distribution
of the abundances. Again, three auxiliary parameters are necessary to describe the
limiting law, they obey a system of equations which slightly differes from (5a)-(5c).
The respective interpretation of the three parameters is the same as in the GOE case.

Theorem 2 (i) (existence of equilibrium) Let rN � 0 and let Assumptions 4, 5 and 6
hold. Then, ‖�N‖ < 1 eventually with probability one. For such N’s, the LV ODE
solution is defined for all t ∈ R+ and has a globally stable equilibrium x�

N . For
the other N, set x�

N = 0.
(ii) (asymptotic distribution of the abundances)

(a) Let r̄ ≥ 0 be a real valued r.v. with L(r̄) �= δ0. Let Z̄ be a N (0, 1) r.v.

independent from r̄ . Then, for every κ >
(
1+
√

c
2

)2
, the system of equations

κ = (δ + cγ )

(
1+ 1

δ

)
, (9a)

τ 2 = c

δ2
E

[(
τ Z̄ + r̄

)2
+
]
, (9b)

γ = P

[
τ Z̄ + r̄ > 0

]
, (9c)

admits an unique solution (δ, τ, γ ) in (
√

c/2,∞)× (0,∞)× (0, 1).
(b) Let Assumptions 1, 4, 5 and 6 hold. Define x�

N as previously. The distribution

μx�
N is a P2(R)–valued random variable on the probability space where AN

and rN are defined. Assume that r̄ is a r.v. with L(r̄) = μ̄, independent of
Z̄ ∼ N (0, 1). The following convergence holds true:

(a.s.) μx�
N

P2(R)−−−−−→
N ,P→∞ L

(
(1+ 1/δ)

(
τ Z̄ + r̄

)
+
)

, (10)

where δ, τ and γ are defined as solutions of system (9).

There is a strong matching between the parameters obtained by solving system (9)
and their empirical counterparts obtained by Monte-Carlo simulations, as illustrated
in Fig. 2.
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Fig. 2 Subplot 2a represents the proportion of surviving species, that is the proportion of positive com-
ponents of the equilibrium x� (star), versus the theoretical value of γ (solid line), given the parameter κ

which varies from 8 to 10 (in this case, c = 1000/300 and the threshold is (1+√
c)2 � 7.98). In the plot,

N = 1000, P = 300 and each point (star) is the mean of proportions obtained out of 100 Monte-Carlo
simulations. Subplot 2b represents the distribution of a surviving species (N = 1000, P = 300 and 100
Monte-Carlo simulations). The solid line represents the theoretical value of the density fZ |Z>0 where Z is

the random variable with limiting distribution of μ
x�

N given in (10) - cf. Theorem 2

Remark 5 There is again a gap between the range of values of the parameter κ for

which the system (9a)-(9c) has a unique solution, that is κ >
(
1+
√

c
2

)2
, and the

range of values for which we can prove the convergence (10).

The proof of this theorem relies on an asymmetric version of the AMP algorithm
and is otherwise very close to the proof of Theorem 1. We provide some details in
Sect. 5.

2.4 Toward universality

From the ecological point of view, there is no obvious reason why the interactions
between species should beGaussian. It is therefore natural towonder towhat extent one
should get rid of this Gaussianity assumption. This is the question we mathematically
address in this section. We mentioned in the introduction that AMP techniques have
been generalized to matrices with non-necessarily Gaussian entries, see Bayati et al.
(2015); Chen and Lam (2021); Dudeja et al. (2023); Wang et al. (2022). It is possible,
at low cost, to relax the Gaussiannity assumption of the entries in Assumptions 2 and
5.

We first strenghten Assumption 1 and replace it by the following stronger assump-
tion:

Assumption 7 The following holds true:

(i) For all N ≥ 1, rN � 0 is definedon the same space asmatrix�N and is independent
of �N .

(ii) There exists a probability measure μ̄ ∈ P(R+) such that μ̄ �= δ0, the moment
generating function of μ̄ is analytical near zero (which implies that μ̄ has all its
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moments finite), and

(a.s.) μrN
Pk (R)−−−−→
N→∞ μ̄ for all k ≥ 1 .

We now relax the GOE assumption (Assumption 2).

Assumption 8 Let AN =
(

A(N )
i j

)
be a N × N symmetric matrix where the A(N )

i j ’s are

centered independent random variables satisfying

E(A(N )
i j )2 = 1 (i < j) , sup

N
max

i
E(A(N )

i i )2 < C ,

and

max
i, j

N 1−k/2
E

∣∣∣A(N )
i j

∣∣∣k −−−−→
N→∞ 0 (k ≥ 3) .

Moreover, assume that the following holds true:∥∥∥∥ AN√
N

∥∥∥∥ a.s.−−−−→
N→∞ 2. (11)

Denote by �N = AN /(κ
√

N ).

Example 6 (Wigner matrices) The standard example of a matrix AN that generalizes
the GOE model and that complies with Assumption 8 corresponds to the case where

A(N )
i j

L= χ for i �= j and A(N )
i i

L= χ ′, where the centered random variables χ and χ ′

do not depend on N , Eχ2 = 1, and χ and χ ′ have all their moments finite. Note that
in this case, the convergence (11) is a standard result in Random Matrix theory Bai
and Silverstein (2010); Pastur and Shcherbina (2011).

Beyond the model described in Example 6, some sparse models can also be covered
by Assumption 8, as the following example shows.

Example 7 (Sparse models) Sparsity of the food interactions is often justified from an
ecological point of view, see Busiello et al. (2017). Let pN ∈ (0, 1), and

A(N )
i j =

⎧⎨
⎩

1/
√

pN with probability pN /2
−1/

√
pN with probability pN /2

0 with probability 1− pN .

Since E
∣∣A(N )

i j

∣∣k = p1−k/2
N , the moment condition in Assumption 8 is satisfied as soon

as N pN −−−−→
N→∞ ∞. Furthermore, the spectral norm convergence condition (11) is

satisfied when N pN
log N −−−−→

N→∞ ∞, as shown in Benaych-Georges et al. (2020), see also

Benaych-Georges et al. (2019). Therefore, according to this model, a species within
our LV system can interact with an average number of species much smaller than N
but of an order� log N .
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Fig. 3 In Subplot 3a, we consider aWignermatrix whose entries are uniform on [−√3,
√
3] (hence centered

with variance one) as in Example 6. The plot represents the proportion of surviving species in the equilibrium
x� (star), versus the theoretical value of γ (solid line), given the parameter κ which varies from 2 to 3.75.
In Subplot 3b, we consider entries as described in Example 7 with pN = √

N . The plot represents the
distribution of a surviving species. The solid line represents the theoretical value of the density fZ |Z>0

where Z is the random variable with limiting distribution fsurv of μ
x�

N , see Eq. (7). In both simulations,
we consider N = 1000 and 100 Monte-Carlo simulations

We are now in position to state a non-Gaussian version of Theorem 1:

Theorem 3 (Non-Gaussian symmetric matrix) All the conclusions of Theorem 1
remain true if Assumptions 1 and 2 in the statement of this theorem are replaced
with Assumptions 7 and 8 respectively.

Elements of proof are provided in Appendix 1. In Fig. 3, simulations illustrate the
matching between theoretical curves and simulated equilibria for Wigner matrices
with uniform entries and sparse matrices (cf. Example 7).

We now provide the proper assumption to state a non-Gaussian version of Theorem
2.

Assumption 9 • We have N = N (P), and there exists c > 0 such that

N (P)

N
−−−−→
P→∞ c.

• The P × N random matrix BN =
(

B(N )
i j

)P,N

i, j=1
is such that the random variables

B(N )
i j for i ∈ [P] and j ∈ [N ] are centered, independent, with variance one and

satisfy

max
i, j

P1−k/2
E
∣∣B(N )

i j

∣∣k −−−−→
N→∞ 0 , (k ≥ 3) .

We denote by

�N = B�
N BN

κ P
.
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• Finally, in this asymptotic regime, the convergence

∥∥∥∥∥ B�
N BN

P

∥∥∥∥∥ a.s.−−−−→
P→∞ (1+√

c)2 (12)

holds true.

Example 8 The standardmodel for amatrix BN satisfying this assumption is themodel

for which B(N )
i j

L= χ , where χ is a centered random variable with unit variance having
all its moments finite. In this case, the convergence (12) is a standard random matrix
theory result Bai and Silverstein (2010); Pastur and Shcherbina (2011).

With this assumption at hand,we are in position to provide a counterpart to Theorem
2.

Theorem 4 (Non-GaussianWishartmatrices) All the conclusions of Theorem 2 remain
true if Assumption 1 is replaced with Assumption 7 and Assumptions 4 and 5 are
replaced with Assumption 9 in the statement of this theorem.

Elements of proof are provided in Appendix B.

3 Discussion

We summarize hereafter our contributions, discuss its limitations and the open prob-
lems raised by the present work.

3.1 Main contribution of the present work

In this article we are interested in large Lotka–Volterra dynamical systems, popular
in theoretical ecology to model large foodwebs. In this context, the interaction matrix
writes −I + � where � is a large random matrix. We focus on symmetric models
for �, either based on Gaussian Orthogonal Ensemble or on Wishart matrices under
normalizations which yield the existence of a stable equilibrium. Symmetric matrices
account for competitive or mutualistic interactions but cannot model predator-prey
interactions.

We develop a new mathematical method to describe the statistical properties of the
equilibrium. We are able in particular to estimate the number of surviving species at
equilibrium.

We show that the distribution at equilibrium is completely characterized by a few
parameters of the model, in particular the limiting law of the intrinsic growth rates,
and three auxiliary parameters, the proportion of surviving species, the diversity at
equilibrium of the sensitivity to perturbations, that are shown to obey a simple 3× 3
system of equations.

Our work is based on the mathematical technique known as Approximate Message
Passing and developed this last decade by Montanari and many others Donoho et al.
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(2009); Bayati and Montanari (2011), etc. This rigorous method complements numer-
ous works on the subject Bunin (Apr 2017); Galla (2018); Clenet et al. (2023), etc.
based on replica methods and other non-rigorous heuristics. Our theoretical results are
illustrated by simulations which show a strong matching between the (theoretically)
predicted quantities and simulated quantities.

Up to our knowledge, the application of AMP to theoretical ecology is new and we
believe that this method is robust and could pave the way to a rigorous and systematic
study of large Lotka–Volterra systems beyond the specific randommatrix chosen here.

3.2 Further developments and open questions

Elliptic models. A natural question is to extend the present approach to non-symmetric
randommatrices, such as real Ginibre randommatrices (all the Ai j are i.i.d.) or elliptic
random matrices (there is a fixed correlation ρ between Ai j and A ji for i < j).
Contrary to theWigner case, no AMP results were readily available to cope with these
models. Some time after the release of the present work, an AMP algorithm has been
developed in Gueddari et al. (2024) for elliptic randommatrix and extends the present
strategy to the elliptic Gaussian context.

Optimal threshold. In Theorem 1, we assume that κ > 2 (see Assumption 3).
Extensive simulations and theoretical physicists’ results Bunin (Apr 2017); Galla
(2018) suggest that the right condition should be3 κ >

√
2. This is a very interesting

open problem, see also Remarks 3 and 4. In our proof, we need the condition κ > 2
to apply Takeuchi’s result (see Prop. 2) which asserts the existence and uniqueness of
the LV equilibrium. A similar gap occurs in the Wishart model, see Remark 5.

Consistent estimation of the number of surviving species. Given a LV system ful-
filling the assumptions of Theorem 1 there is a strong matching between the empirical
quantity 1

N

∑N
i=1 1(x�

i >0) and parameter γ defined in (5a)-(5c) as illustrated in Fig.1.
A rigorous proof of the convergence is currently out of reach, see the comments at the
end of Sect. 2.2.

4 Proof of theorem 1

4.1 Outline of the proof

There are four steps in the proof.

Step 1 In Sect. 4.2, we characterize the stable equilibrium x�
N of (1) as the solution

of a Linear Complementarity Problem (LCP). We give an equivalent formulation of
the solution of a LCP as the solution of a fixed-point equation, see Proposition 3.

Step 2 In Sect. 4.3, we establish the uniqueness and existence of parameters δ, σ and
γ , solutions to system (5). These parameters will play a crucial role to design an AMP

3 See for instance Bunin Bunin (Apr 2017), Fig. 5(a), yellow curve corresponding to γ = 1 and μ = 0
(GOE). In Bunin’s figure, σ = 1/κ . Bunin asserts that the system is stable below the yellow curve,
corresponding to σ = 1/

√
2 at μ = 0, which reads κ >

√
2.
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algorithm fitted for our purpose. Equations (5a)-(5c) will progressively appear during
the proof.

Step 3 In Sect. 4.4, we first recall some general facts about Approximate Message
Passing (AMP) algorithms and present a specific algorithm (20) whose output (ξ k

N )+
will converge toward x�

N , characterized as the solution of the fixed-point equation
associated to the corresponding LCP. The approximate fixed-point equation satisfied
by ξ k

N is given in (23), see also (25).

Step 4 The strength of the AMP procedure is that we can track down via the Density
Evolution (DE) equations the asymptotic distribution of (ξ k

N )+’s empiricalmeasure for
any k. We can then transfer it to x�

N by using a perturbation result by Chen and Xiang
in Chen and Xiang (2007), see (33). A central argument borrowed from Montanari
and Richard Montanari and Richard (2016) is that vectors ξ k

N tend to be aligned for
large k.

4.2 Characterization of x�
N through a LCP

In this section, we recall the connection between the possible stable equilibrium of
the ODE (1) and the solution of an underlying LCP in the theory of mathematical
programming. We mainly rely on chapter 3 of Takeuchi’s book Takeuchi (1996).

Given a matrix M ∈ R
N×N and a vector c ∈ R

N , the LCP problem, denoted as
LCP(M, c), consists in finding couples of vectors ( y,w) ∈ R

N × R
N satisfying

⎧⎨
⎩

w = M y + c � 0 ,

y � 0 ,

w� y = 0 .

(13)

Notice that the last condition can bewritten equivalently eitherwi yi = 0 for all i ∈ [N ]
or supp(w) ∩ supp( y) = ∅. When a solution ( y,w) exists we write y ∈ LCP(M, c).
If a solution exists and is unique, we write

y = LCP(M, c) .

A necessary and sufficient condition for the existence of a unique solution to the LCP
problem has been given by Murty Murty (1972), see also Cottle et al. (2009). For a
symmetric matrix, this condition is simply to be positive definite.

The following proposition establishes a connection between the solution of an LCP
problem and globally stable equilibrium for a LV system .

Proposition 2 (Lemma 3.2.2 and Theorem 3.2.1 of Takeuchi (1996)) Given a sym-
metric matrix B ∈ R

N×N and a vector c ∈ R
N , consider the following LV system of

ODE:

d y
dt

(t) = y(t)� (c+ B y(t)) , y(0) � 0 . (14)
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for all t ≥ 0. Then, the LCP problem LCP(−B,−c) has an unique solution for
each c ∈ R

N if and only if B < 0, i.e. B is negative definite. On the domain where
B < 0, c ∈ R

N , the function x = LCP(−B,−c) is measurable. Moreover, if B < 0,
then for every c ∈ R

N , the ODE (14) has a globally stable equilibrium y� given by
y� = LCP(−B,−c).

Indeed, the equilibrium is characterized by the conditions y� � 0 and for all
i ∈ [N ], y�

i (ci + (B y�)i ) = 0 whereas the condition−c− B y� � 0 (with the obvious
meaning of�) turns out to be a necessary condition for the equilibrium y� to be stable
in the classical sense of Lyapounov theory (see (Takeuchi 1996, Chapter 3) to recall
the different notions of stability, and (Takeuchi 1996, Theorem 3.2.5) for this result).

Going back to system (1), a potential equilibrium x�
N should satisfy

x�
N � 0 and x�

i

(
ri −
[
(IN − �N )x�

N

]
i

) = 0 for all i ∈ [N ]

and

rN + (�N − IN ) x�
N � 0,

which means that the couple (x�
N ,w�

N ) solves the problem LCP(IN − �N ,−rN ).
Applying the reminder (4) and Assumption 3, matrix IN −�N is eventually positive

definite with probability one. Define now the vector x�
N by

x�
N =
{
LCP(IN − �N ,−rN ) if ‖�N‖ < 1,
0 otherwise .

(15)

Then, from Proposition 2, we get that vector x�
N satisfies the statement of Theorem

1-(ii).
We end this section by providing an alternative expression of the LCP problem as

the solution of a fixed point equation.

Alternative expression for the LCP solution

This fact will be useful in Sect. 4.4.

Proposition 3 Let z = (zi ) ∈ R
N and consider the fixed-point equation:

z = ϒN z+ + ρN (16)

where z+ = ((zi )+). Then z is a solution of (16) iff z+ ∈ LCP(IN −ϒN ,−ρN ).

Proof Suppose that z is a solution of (16) and write z = z+ − z−. Then

z+, z− � 0 , (z+)�z− = 0 and z− = (IN −ϒN )z+ − ρN .

Hence z+ ∈ LCP(IN −ϒN ,−ρN ).
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To establish the converse, let ( y,w) a solution of LCP(IN − ϒN ,−ρN ). Define
z = y − w then{

z+ = y

z− = w
and w = (IN −ϒN ) y − ρN ⇒ z = ϒN z+ + ρN .

��

4.3 Existence and uniqueness of the solution of system (5)

We begin with the following technical lemma, the third part of which will be used in
Sect. 4.4. To avoid any ambiguity, we shall always refer to σ as the unique positive
root of σ 2 > 0.

Lemma 4 Let r̄ be a non negative r.v. with L(r̄) �= δ0.

(i) For a given δ > 0, Eq. (5b) admits a solution σ 2 if and only if δ > 1/
√
2. In this

case, this solution is unique, and is denoted by σ 2(δ).
(ii) Let δ > 1/

√
2 then

P{σ(δ)Z̄ + r̄ ≥ 0} < δ2 .

(ii) Assume δ > 1/
√
2. Starting with an arbitrary σ0 ≥ 0, consider the iterative

scheme:

σ 2
t+1 =

1

δ2
E
(
σt Z̄ + r̄

)2
+ , then σ 2

t −−−→
t→∞ σ 2(δ) .

Proof of Lemma 4 is postponed to Appendix 1.
We now establish that system (5) has a unique solution

(δ, σ, γ ) ∈ (1/
√
2,∞)× (0,∞)× (0, 1) .

Let δ > 1/
√
2, σ 2(δ) be defined by (5b), and γ (δ) by (5c). Setting f (σ 2) = E(σ Z̄ +

r̄)2+, we have established in the proof of Lemma 4-(i) that

γ (δ) = d f

dσ 2

∣∣∣∣
σ 2=σ 2(δ)

.

Moreover γ (δ) < δ2 by Lemma 4-(ii). All what remains to show is that the equation

κ = δ + γ (δ)

δ
(17)

has a unique solution δ > 1/
√
2. We thus need to study the behavior of γ (δ). In all

the remainder, differentiability issues can be easily checked and are skipped.
Recall that d f (σ 2)/dσ 2 decreases asymptotically to 1/2 as σ 2 increases from 0 to

∞, from which we can deduce that σ 2(δ) →∞ as δ ↓ 1/
√
2 by Lemma 4-(ii). Using

the fact that

σ 2(δ) = f (σ 2(δ))

δ2
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and taking the derivatives with respect to δ, we get that

dσ 2(δ)

dδ

(
1− 1

δ2

d f (σ 2)

dσ 2

∣∣∣∣
σ 2=σ 2(δ)

)
= −2 f (σ 2(δ))

δ3
,

which shows that σ 2(δ) is a decreasing function. Hence γ (δ) is increasing since
σ 
→ P{σ Z̄ + r̄ ≥ 0) is decreasing (cf. proof of Lemma 4).

We can now conclude. For δ ↓ 1/
√
2, σ 2(δ) →∞ by what precedes, thus, γ (δ) ↓

1/2, and δ + γ (δ)/δ → √
2 < κ . Near infinity, δ + γ (δ)/δ ∼ δ > κ . Consequently,

Eq. (17) has a solution by continuity. To establish uniqueness, we prove that the
function δ 
→ δ + γ (δ)/δ is increasing. Indeed,

d

dδ

(
δ + γ (δ)

δ

)
= 1+ γ ′(δ)

δ
− γ (δ)

δ2
≥ 1− γ (δ)

δ2
> 0

as shown by Lemma 4-(ii), and we are done. Proof of Theorem 1-1 is completed.

4.4 Design of an AMP algorithm to approximate the LCP solution

The AMP principles in a nutshell

We begin with some of the fundamental results of the AMP theory. The now classical
form of an AMP iterative algorithm, as formalized in the article Bayati and Montanari
(2011) of Bayati and Montanari based in part on a result of Bolthausen Bolthausen
(2014), can be presented as follows. Let (hk)k≥0 be a sequence of Lipschitz R2 → R

functions. By the Lipschitz assumption, the derivative

∂hk(u, a)

∂u

is defined almost everywhere and the function ∂1hk(u, a) is any function that coincides
with this derivative where it is defined. For x = (xi )i∈[N ], define by 〈x〉N the scalar
quantity:

〈x〉N := 1

N

∑
i∈[N ]

xi .

Let aN ∈ R
N be a random vector of so-called auxiliary information. Recall that

AN is the GOE matrix introduced in Assumption 2. Starting with a vector u0N ∈ R
N ,

the AMP recursion is written

uk+1
N = AN√

N
hk(uk

N , aN ) − 〈∂1hk(uk
N , aN )〉N hk−1(uk−1

N , aN ) , (18)

where hk(u, a) = (hk(ui , ai )
)

i∈[N ].
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From this recursion, it is possible to precisely evaluate the asymptotic behavior of
the empirical measures

μaN ,u1N ,...,uk
N

as N → ∞ for any k, and to prove that μaN ,u1N ,...,uk
N converges toward a centered

vector (ā, Z1, . . . , Zk)whose covariance structure is defined by the so-called Density
Evolution (DE). In particular ā ⊥⊥ (Z1, . . . , Zk) and (Z1, . . . , Zk) is a Gaussian
vector. The term

〈∂1hk(uk
N , aN )〉N hk−1(uk−1

N , aN )

(equal to zero for k = 0) is referred to as the Onsager term and plays a crucial role in
making possible this convergence. For a detailed exposition of the AMP theory, along
with the description of many of its applications, the reader is referred to the recent
tutorial Feng et al. (2022).

A specific AMP algorithm for the LCP

To establish Theorem 1, we design the following AMP algorithm and study its proper-
ties. For each N , let (u0N , aN ) ∈ R

N ×R
N be a couple of random vectors independent

of AN , with aN � 0. Assume that there exists a couple of L2 random variables (ū, ā)

such that

(a.s.) μu0N ,aN
P2(R

2)−−−−→
N→∞ L ((ū, ā)) , ā �= 0 . (19)

Vectors u0N and aN will be specified later, see (24). Notice that ā ≥ 0. By Assumption
3, κ is larger than

√
2 hence (5) admits an unique solution (δ, σ 2, γ ) by the first part

of the theorem. Let ht ≡ h for all k ≥ 0, where

h(u, a) = (u + a)+
δ

and ∂1h(u, a) = 1{u+a>0}
δ

.

The AMP iteration 18 now reads

uk+1
N = AN

δ
√

N

(
uk

N + aN

)
+ −

〈1{uk
N+aN >0}〉N

(
uk−1

N + aN

)
+

δ2
. (20)

TheDEequations for this algorithmare providedby the followingproposition,which is
a direct application of (Feng et al. 2022, Theorem 2.3) (see also (Bayati andMontanari
(2011), Theorem 4)):

Proposition 5 For N ≥ 1, Let AN be a GOE matrix and let (u0N , aN ) ∈ R
N × R

N

be a couple of random vectors independent of AN , with aN � 0. Assume (19) and
consider the recursion (20). Then, for every k ≥ 1,

(a.s.) μaN ,u1N ,...,uk
N

P2(R
k+1)−−−−−→

N→∞ L ((ā, Z1, . . . , Zk)) ,
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where
(
Z1, . . . , Zk

)
is a centered Gaussian vector, independent of (ū, ā). The k × k

covariance matrix Rk of the random vector
(
Z1, . . . , Zk

)
is defined recursively in k

as follows:

R1 = E(Z1)2 = 1

δ2
E(ū + ā)2+ ,

and given Rk, matrix Rk+1’s first principal submatrix is Rk,

[
Rk+1
]

i j
=
[

Rk
]

i j
for i, j ∈ [k] ,

whereas the last row and column of Rk+1 are defined via the equations:

[
Rk+1
]

k+1,�
= EZk+1Z� = 1

δ2

{
E(Zk + ā)+(Z�−1 + ā)+ if � ∈ {2, . . . , k + 1} ,
E(Zk + ā)+(ū + ā)+ if � = 1 .

Notice that by writing αk+1 = ((ū + ā)+, (Z1 + ā)+, . . . , (Zk + ā)+
)�

, we see
that Rk+1 = Eαk+1(αk+1)�, which immediately shows that Rk+1 is a positive
semidefinite matrix (actually, one can prove that it is definite, see Feng et al. (2022)).

Denote by
ξ k

N = uk
N + aN .

What is going to drive the following computations is the fact that the vectors ξ k
N and

ξ k+1
N will tend to be aligned as N → ∞ then k → ∞. This will be formalized and

proved in Lemma 6. Denote by γ k
N = 〈1{

ξ k
N >0
}〉

N and recall the expression of γ given

in (5c). With these notations at hand, the AMP recursion (20) reads:

ξ k+1
N = AN

δ
√

N

(
ξ k

N

)
+ −

γ k
N

δ2

(
ξ k−1

N

)
+ + aN ,

= AN

δ
√

N

(
ξ k

N

)
+ −

γ

δ2

(
ξ k−1

N

)
+ + aN + γ − γ k

N

δ2

(
ξ k−1

N

)
+ ,

= AN

δ
√

N

(
ξ k

N

)
+ −

γ

δ2

(
ξ k

N

)
+ + aN + γ − γ k

N

δ2

(
ξ k−1

N

)
+

+ γ

δ2

((
ξ k

N

)
+ −
(
ξ k−1

N

)
+
)

.

Replacing now ξ k+1
N by ξ k

N , we end up with:

ξ k
N = AN

δ
√

N

(
ξ k

N

)
+ −

γ

δ2

(
ξ k

N

)
+ + aN + εk

N , (21)

where

εk
N = γ − γ k

N

δ2

(
ξ k−1

N

)
+ + ξ k

N − ξ k+1
N + γ

δ2

((
ξ k

N

)
+ −
(
ξ k−1

N

)
+
)

. (22)

123



   61 Page 24 of 36 I. Akjouj et al.

Massaging (21) and relying on (5a) we obtain:

(
ξ k

N

)
+ −

(
ξ k

N

)
−

1+ γ /δ2
= AN

κ
√

N

(
ξ k

N

)
+ +

δ(aN + εk
N )

κ
. (23)

Denote by

z = (ξ k
N

)
+ −

(
ξ k

N

)
−

1+ γ /δ2
.

Notice that z+ = (ξ k
N

)
+ and set finally

u0N = 1N and aN = κ

δ
rN . (24)

With these notations, (23) is rewritten

z = �N z+ + rN + δ

κ
εk

N . (25)

Relying on Proposition 3 and on the fact that ‖�N‖ < 1 eventually, we conclude that
z+ = (ξ k

N

)
+ is the unique solution of

LCP

(
IN − �N ,−rN − δ

κ
εk

N

)

for N large enough, which is almost what is aimed, up to the term δ
κ
εk

N - see Eq. (15).

Remark 9 Retrospectively, notice thatwith the choice (24), assumptions of Proposition
5 are satisfied: (u0N , aN ) is independent of AN and (19) holds thanks to Assumption 1
with ā = κ

δ
r̄ .

Before bounding εk
N , let us first study the behavior ofμ

(
ξ k

N

)
+ . Applying Proposition

5, we get that for all k ≥ 2:

μuk
N

P2(R)−−−−→
N→∞ L (Zk) ,

where Zk L= θk Z̄ with Z̄
L= N (0, 1) and θk satisfying the following DE equation:

θ2k+1 =
1

δ2
E(θk Z̄ + ā)2+ . (26)

Since function ϕ(u, a) = (u + a)+ is Lipschitz, it is clear that

μ(ξ k
N )+ P2(R)−−−−→

N→∞ L
(
(θk Z̄ + ā)+

)
. (27)
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Furthermore, since the distribution function of θk Z̄ + ā has no discontinuity, the
following convergence holds:

(a.s.) γ k
N −−−−→

N→∞ P
(
θk Z̄ + ā > 0

)
where γ k

N = 〈1{
ξ k

N >0
}〉

N .

Introduce the quantity:

σk = δ

κ
θk . (28)

Following (26), the recursive equation satisfied by σk is

σ 2
k+1 =

1

δ2
E
(
σk Z̄ + r̄

)2
+

which is precisely the equation appearing in Lemma 4-(ii). As a conclusion, σk −−−→
k→∞

σ , where σ satisfies (5b). This convergence has two interesting consequences:

P
(
θk Z̄ + ā > 0

) = P
(
σk Z̄ + r̄ > 0

) −−−→
k→∞ P

(
σ Z̄ + r̄ > 0

) = γ,

where γ satisfies (5c), and

L ((θk Z̄ + ā)+
) = L

((
1+ γ /δ2

)
(σk Z̄ + r̄)+

) P2(R)−−−−→
k→∞ L

((
1+ γ /δ2

)
(σ Z̄ + r̄)+

)
,

the latter being the distribution appearing in Theorem 1-(iii).

Control of the error term "k
N

Recall the expression of εk
N given in (22):

εk
N = γ − γ k

N

δ2

(
ξ k−1

N

)
+ + ξ k

N − ξ k+1
N + γ

δ2

((
ξ k

N

)
+ −
(
ξ k−1

N

)
+
)

.

A direct consequence of (27) yields that

‖(ξ k−1
N )+‖2

N
a.s.−−−−→

N→∞ E
(
θk−1 Z̄ + ā

)2
+ = θ2k δ2 .

In particular, the sequence

(
‖(ξ k−1

N )+‖2
N

)
N
is bounded. Furthermore, limk(a.s.) limN (γ−

γ k
N ) = 0. We thus have

lim
k→∞(a.s.) lim

N→∞
(γ − γ k

N )2

δ4

‖(ξ k−1
N )+‖2

N
= 0 . (29)
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The main idea to control the two remaining terms ξ k
N −ξ k+1

N and
(
ξ k

N

)
+−
(
ξ k−1

N

)
+

is to establish that the correlation coefficient

Qk := EZk−1Zk

θk−1θk
(30)

converges to 1 as k → ∞. This can be interpreted as an alignement of vectors ξ k
N

and ξ k−1
N . This argument was developed in a similar context in Montanari and Richard

(2016), see also Donoho and Montanari (2016). For self-containedness, we state and
prove the following lemma:

Lemma 6 The sequence (Qk)k≥2 defined in (30) satisfies Qk −−−→
k→∞ 1.

Proof of Lemma 6 is postponed to Appendix 1.
We now conclude the proof of Theorem 1. Consider ϕ(x1, x2) = (x1 − x2)2 ∈

PL2(R
2). By Proposition 5, we have

(a.s.)
‖ξ k

N − ξ k+1
N ‖2

N
= 1

N

N∑
i=1

ϕ(uk
i , uk+1

i ) −−−−→
N→∞ E

(
Zk+1 − Zk

)2
= θ2k+1 + θ2k − 2θk+1θk Qk+1 .

Applying Lemma 6, we get that:

lim
k→∞(a.s.) lim

N→∞
‖ξ k

N − ξ k+1
N ‖2

N
= 0 . (31)

A similar argument applies to the last term.

1

N
‖(ξ k

N

)
+ −
(
ξ k−1

N

)
+‖2 =

1

N
‖(uk

N + aN
)
+ −
(
uk−1

N + aN
)
+‖2

a.s.−−−−→
N→∞ E

(
(Zk + ā)+ − (Zk−1 + ā)+

)2 = E

(
Zk+1 − Zk

)2
.

Finally, using that

‖εk
N‖2
N

≤ 3

N

(
(γ − γ k

N )2

δ4
‖(ξ k−1

N )+‖2 + ‖ξ k
N − ξ k+1

N ‖2

+γ 2

δ4
‖(ξ k

N

)
+ − (ξ k−1

N )+‖2
)

,

we conclude that

lim
k→∞(a.s.) lim

N→∞
‖εk

N‖2
N

= 0 . (32)
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Notice that the fact that the a.s. limN at the left hand side exists can be deduced again
from Proposition 5.

From the approximated LCP to the genuine LCP

Recall that whenever ‖�N‖ < 1, which happens eventually,

x�
N = LCP(IN − �N ,−rN ) and

(
ξ k

N

)
+ = LCP

(
IN − �N ,−rN − δ

κ
εk

N

)
.

Statistical properties have been established for
(
ξ k

N

)
+ via the AMP procedure, see for

instance (27). Using LCP perturbation results, we shall identify the limiting empirical
distribution of x�

N . Let us introduce:

μ� = L
(
(1+ γ /δ2)(σ Z̄ + r̄)+

)
= L
(κ

δ
(σ Z̄ + r̄)+

)

In (Chen and Xiang 2007, Th. 2.7, Th. 2.8), Chen and Xiang provide the following
bound:

‖x�
N − (ξ k

N )+‖ ≤
∥∥∥(IN − �N )−1

∥∥∥× κ

δ

∥∥∥εk
N

∥∥∥ = bN

∥∥∥εk
N

∥∥∥
where bN :=

∥∥∥(IN − �N )−1
∥∥∥× κ

δ
. (33)

Let ϕ : R → R be an arbitrary function in PL(R2) with Lipschitz constant Lϕ . For a
given positive integer k, we have

1

N

N∑
i=1

ϕ(x�
i )−
∫

ϕdμ� = 1

N

N∑
i=1

(
ϕ(x�

i )− ϕ((ξ k
i )+)
)
+ 1

N

N∑
i=1

ϕ((ξ k
i )+)−

∫
ϕdμ�

:= ε1N (k)+ ε2N (k).

We first handle ε2N (k). By Proposition 5, we have:

ε2N (k)
a.s.−−−−→

N→∞ Eϕ
(κ

δ
(σk Z̄ + r̄)+

)
− Eϕ

(κ
δ
(σ Z̄ + r̄)+

)
.

The r.h.s. is easily bounded by a constant C(k) which converges to zero as k → ∞,
using the fact that limk σk = σ .

We now turn to ε1N (k). By Cauchy-Schwarz inequality
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1

N

N∑
i=1

∣∣∣ϕ(x�
i )− ϕ((ξ k

i )+)

∣∣∣ ≤ Lϕ

N

∑
i∈[N ]

∣∣∣x�
i − (ξ k

i )+
∣∣∣ (1+ |x�

i | + |(ξ k
i )+|
)

≤ Lϕ

N

∥∥∥x�
N − (ξ k

N )+
∥∥∥
⎛
⎝∑

i∈[N ]
(1+ |x�

i | + |ξ k
i )+|)2

⎞
⎠

1/2

≤ 3Lϕ

∥∥∥x�
N − (ξ k

N )+
∥∥∥

√
N

(
1+ ‖x�

N‖√
N

+ ‖(ξ k
N )+‖√
N

)
.

Recall the bound (33) and the definition of bN , then

|ε1N (k)| ≤ 3LϕbN
‖εk

N‖√
N

(
1+ 2

‖(ξ k
N )+‖√
N

+ bN
‖εk

N‖√
N

)
.

By Assumption 3, bN a.s. converges to a positive constant. By Proposition 5, we
furthermore have

‖(ξ k
N )+‖√
N

a.s.−−−−→
N→∞

(
E(θk Z̄ + ā)2+

)1/2
,

which is bounded in k. Using (32), we obtain that lim supN |ε1N (k)| is bounded with
probability one by a constant C1(k) which converges to zero as k →∞. Finally,

(a.s.) lim sup
N

∣∣∣∣∣∣
1

N

∑
i∈[N ]

ϕ(x�
i )−
∫

ϕdμ�

∣∣∣∣∣∣ ≤ C(k)+ C1(k) .

Since C(k)+ C1(k) can be made arbitrarily small, we have

(a.s.)
1

N

N∑
i=1

ϕ(x�
i ) −−−−→

N→∞

∫
ϕdμ�,

which ends the proof of Theorem 1.

5 Elements of proof of Theorem 2

The strategy of proof is similar to that of Theorem 1. The Wishart model induces
differences for the design of the AMP algorithm that we describe hereafter. The full
mathematical proof is a matter of careful bookkeeping of Sect. 4. We provide the main
steps of the proof but skip many mathematical details which can be found in Akjouj
(2023).
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5.1 Existence and uniqueness of the solution of system (9)

This can be established as in the case of the GOEmodel with minor modifications and
is hence skipped.

5.2 Design of an AMP algorithm to approximate the LCP solution

We shall rely on the framework of asymmetric AMP as presented in (Feng et al. 2022,
Sect. 2.2). Suppose that for a given κ satisfying Assumption 6, (δ, τ 2, γ ) is the unique
solution of (9). Consider the following recursive system:

uk+1
N = B�

N√
P

vk
P −

(uk
N + aN )+

δ
(34a)

vk
P = BN

δ
√

P
(uk

N + aN )+ − N

P

〈1{uk
N+aN >0}〉N

δ
vk−1

P (34b)

where uk
N , uk+1

N are N × 1 vectors and and vk−1
P , vk

P , P × 1 vectors with initial
conditions

u0N = 1N and v0P = BN

δ
√

P
(u0N + aN )+ .

The following proposition is the counterpart of Proposition 5 for asymmetric AMP.

Proposition 7 (consequence of Theorem 2.5 of Feng et al. (2022)) For N , P ≥ 1, let
Assumptions 4, 5 and 6 hold true. Suppose that aN � 0 is a random vector independent
of AN satisfying

(a.s.) μaN N→∞−−−−→
P2(R)

L(ā)

and consider the recursions (34). Then for every fixed k ≥ 1,

(a.s.) μaN ,u1N ,...,uk
N

P2(R
k+1)−−−−−→

N ,P→∞ L
(
(ā, U 1, . . . , U k)

)
,

(a.s.) μv0N ,...,vk−1
N

P2(R
k)−−−−−→

N ,P→∞ L
(
(ā, V 0, . . . , V k−1)

)
,

where (U 1, . . . , U k) is a centered Gaussian random vector independent of ā with
covariance T [k], and (V 0, . . . , V k−1) is a centered Gaussian random vector with
covariance matrix �[k]. More precisely the covariance matrices

T [k] = (Ti j )i, j∈[k] ; Ti j = EUiU j ,

�[k] = (�i−1, j−1)i, j∈[k] ; �i−1, j−1 = EV i−1V j−1

are defined inductively. First, let Z̄ ∼ N (0, 1) and introduce τk, θk such that

V k L= θk Z̄ and U k L= τk Z̄ ,
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so that θ2k = �k,k and τ 2k = Tkk. We define these quantities by induction:

θ20 = E(1+ ā)2+ , τ 2k+1 = EV 2
k = θ2k , θ2k+1 =

c

δ2
E(Uk+1 + ā)2+ .

Now given �[k] = (�i−1, j−1), �[k+1] is defined by

��,k = c

δ2
E(U � + ā)+(U k + ā)+ for � ∈ [k] ,

�0,k = c

δ2
E(1+ ā)+(U k + ā)+ .

Given T [k] = (Ti j ), T [k+1] is defined by

T�,k+1 = EV �−1V k = ��−1,k for � ∈ [k + 1] .

From AMP recursions to an approximate LCP solution

We introduce the following notations:

ξ k
N = uk

N + aN , γ k
N = 〈1{ξ k

N >0}〉N .

Recall the definition of γ solution to (9). Performing similar computations as in Sect.
4.4, we obtain:

ξ k
N +
(
ξ k

N

)
+

δ
= B�

N BN(
1+ cγ

δ

)
δP

(ξ k
N )+ + aN + ε̃k

N (35)

where

ε̃k
N = B�

N(
1+ cγ

δ

)√
P

(
cγ − N/Pγ k

N

δ
vk−1

P + cγ

δ

(
vk

P − vk−1
P

))+ ξ k
N − ξ k+1

N .

We introduce the following notations:

z = (ξ k
N )+ − (ξ k

N )−
1+ 1/δ

, rN = aN

1+ 1/δ
, εk

N = ε̃k
N

1+ 1/δ
.

Then (35) can be rewritten as

z = �N z+ + rN + εk
N ,

where �N is given by (8). Applying Proposition 3, we finally obtain that

z+ = LC P
(

IN − �N ,−rN − εk
N

)
.
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The rest of the proof closely follows the corresponding part in the proof of Theorem
1 and is omitted.

Appendix A: Theorem 1: remaining proofs

A.1 Proof of Lemma 4

Consider the function f (σ 2) = E(σ Z̄ + r̄)2+. Then, Eq. (5b) is equivalent to the
fixed-point equation:

f (σ 2)

δ2
= σ 2. (36)

We can prove by elementary means that

d f

dσ 2 (σ 2) = 1

2σ

d f

dσ
(σ 2) = 1

σ
EZ̄(σ Z̄ + r̄)+ .

Moreover, conditioning on r̄ and applying the integration by parts formula for the
Gaussian r.v. Z̄ we get

1

σ
E
(
Z̄(σ Z̄ + r̄)+ | r̄

) = E

(
1{σ Z̄+r̄≥0} | r̄

)
.

Hence
d f

dσ 2 (σ 2) = P{σ Z̄ + r̄ ≥ 0} = P{Z̄ + r̄/σ ≥ 0} .

Notice that d f
dσ 2 is a decreasing function since

σ < σ ′ ⇒ {Z̄ + r̄/σ ′ ≥ 0} ⊂ {Z̄ + r̄/σ ≥ 0} ,

with

lim
σ 2→∞

d f

dσ 2 (σ 2) = 1

2
.

We now introduce function g(σ 2) = f (σ 2)

δ2
− σ 2. Notice that g(0) = Er̄2/δ2 > 0 and

that

dg

dσ 2 (σ 2) = P{Z̄ + r̄/σ ≥ 0}
δ2

− 1 >
1

2δ2
− 1 . (37)

If 1
2δ2

− 1 ≥ 0 which is equivalent to the condition δ < (
√
2)−1 then g’s derivative

is positive hence g is increasing with a positive starting point and never vanishes.
Suppose now that δ > 1/

√
2. We shall prove that g vanishes at a unique point

σ 2(δ):

g(σ 2(δ)) = 0 for σ 2(δ) > 0 . (38)
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Notice that the derivative dg/dσ 2 is decreasing with a negative limit at infinity

lim
σ 2→∞

dg

dσ 2 (σ 2) = 1

2δ2
− 1 < 0 .

Depending on the sign of the value of dg/dσ 2 at zero, either g is constantly decreas-
ing from the positive value g(0) or g is first increasing then eventually decreasing. We
now prove that

lim
σ 2→∞

g(σ 2) < 0 . (39)

This will yield (38).

g(σ 2)

σ 2 = E(σ Z̄ + r̄)2+
δ2σ 2 − 1 = E(Z̄ + r̄/σ)2+

δ2
− 1 −−−−→

σ 2→∞
1

2δ2
− 1 < 0 .

Hence g’s limit is −∞ at infinity. Eq. (39) is proved, so is (38). The first statement of
the lemma is proved.

We now address the second point of the lemma. Let δ > 1/
√
2 be fixed. From the

previous analysis, we know that

dg

dσ 2

∣∣∣∣
σ 2=σ 2(δ)

< 0.

From (37), one can compute

dg

dσ 2

∣∣∣∣
σ 2=σ 2(δ)

= P{σ(δ)Z̄ + r̄ ≥ 0}
δ2

− 1,

and this gives the second point :

P{σ(δ)Z̄ + r̄ ≥ 0} < δ2 .

We now address the third point of the lemma. Consider a sequence (σt ) such that

σ 2
0 > 0 and σ 2

p+1 =
1

δ2
f (σ 2

p) .

One can easily prove that σ 2
p ↑p σ 2(δ) (resp. σ 2

p ↓ σ 2(δ)) if σ 2
0 < σ 2(δ) (resp.

σ 2
0 > σ 2(δ)). The sequence remains constant if σ 2

0 = σ 2(δ). Lemma 4 is proved.
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Proof of Lemma 6

Proof Let (X1, X2) be a centered Gaussian vector with covariance matrix �(X1, X2)

given by

�(X1, X2) =
(
1 q
q 1

)
with q ∈ [0, 1] .

Let W be a (real) random variable independent of (X1, X2)with finite second moment
EW 2 < ∞. Consider the function H : [0, 1] → [0, 1] defined as

q 
−→ H(q) = E(X1 + W )+(X2 + W )+
E(X1 + W )2+

.

It is shown in (Montanari and Richard 2016, Lemma 38 and proof of Lemma 37) that
H is a continuous increasing function on [0, 1] such that

H(q) > q for all q < 1 and H(1) = 1 .

Let Zk be defined in Proposition 5, θk in (26) and Qk in (30). Writing Zk = θk Z̄ k

where L (Z̄ k
) = N (0, 1), notice that

Cov
(

Z̄ k, Z̄ k−1
)
= Qk .

We have

Qk+1 = EZk Zk+1

θkθk+1
= E(θk−1 Z̄ k−1 + ā)+(θk Z̄ k + ā)+√

E(θk−1 Z̄ k−1 + ā)2+E(θk Z̄ k + ā)2+
,

= E(Z̄ k−1 + ā/θk−1)+(Z̄ k + ā/θk)+√
E(Z̄ k−1 + ā/θk−1)

2+E(Z̄ k + ā/θk)
2+

.

Notice that the last expressiononlydepends on θk−1, θk and Qk , the covariancebetween
Z̄ k and Z̄ k−1. We thus introduce the following function

H(Qk, θk−1, θk) = E(Z̄ k−1 + ā/θk−1)+(Z̄ k + ā/θk)+√
E(Z̄ k−1 + ā/θk−1)

2+E(Z̄ k + ā/θk)
2+

.

The function H is continuous. Combining Eq. (28) and the convergence of σk , denote
by θ∞ = κ

δ
σ where σ satisfies (5b). If we set W = ā/θ∞ in the definition ofH above,

then
H(q) = H(q, θ∞, θ∞) .

The lemma is established if we prove that Q� := lim infk Qk satisfies Q� = 1. Let
us first show that lim infH(Qk) ≥ H(Q�). If Q� = 0, then Qk ≥ Q� and since H is
increasing we have lim infH(Qk) ≥ H(Q�). It is thus sufficient to assume that Q� >
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0. For each ε > 0, Qk ≥ Q�−ε for all k large enough. Thus,H(Qk) ≥ H(Q�−ε) for
all k large, which implies that lim infH(Qk) ≥ H(Q� − ε). Since ε > 0 is arbitrary,
we have lim infH(Qk) ≥ H(Q�). With this, we have

Q� = lim inf
k

H(Qk, θk−1, θk)
(a)= lim inf

k
H(Qk, θ∞, θ∞) = lim inf

k
H(Qk) ,

≥ H(Q�),

where (a) follows from the continuity of H . By H’s properties, this implies that
Q� = 1. ��

Appendix B: Elements of proof for Theorems 3 and 4 (universality)

We provide hereafter arguments to complete proofs of Theorems 3 and 4 based on
what has already been developed in the proofs of Theorems 1 and 2 and on various
results available in the literature.

Proof of Theorem 3 We just need to prove that Proposition 5 above remains true when
Assumptions 2 and 1 are replaced with Assumptions 8 and 7 respectively. This is a
direct application of (Wang et al. 2022, Theorem 2.4). ��
Proof of Theorem 2 We only need to prove that Proposition 7 remains true with the
assumptions of Theorem 4. To that end, it is enough to notice that (Feng et al. 2022,
Theorem 2.5), from which Proposition 7 follows directly, can in turn be cast in the
framework of the AMP algorithm for GOE matrices (18), thanks to the embedding
of Javanmard and Montanari described in Javanmard and Montanari (2013). Indeed,
Assumptions 9 and 7 used in conjuction with this embedding provide a version of
Algorithm (18) that enters the framework of (Wang et al. 2022, Theorem 2.4). This
leads to Proposition 7. ��
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