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Abstract

Approximate message passing (AMP) algorithms are a family of iterative algorithms
based on large random matrices with the special property of tracking the statistical
properties of their iterates. They are used in various fields such as statistical physics,
machine learning, communication systems, theoretical ecology, etc. In this article
we consider AMP algorithms based on non-symmetric random matrices with a gen-
eral variance profile, possibly sparse, a general covariance profile, and non-Gaussian
entries. We hence substantially extend the results on elliptic random matrices that
we developed in Gueddari et al. (Random Matrices: Theory Appl. 14, 2025). From a
technical point of view, we enhance the combinatorial techniques developed in Bayati
et al. (Ann. Appl. Prob. 25:753-822, 2015) and in Hachem (Stoch. Process. Appl.
170:104276, 2024). Our main motivation is the understanding of equilibria of large
food-webs described by Lotka—Volterra systems of ordinary differential equations,
continuing the work of Hachem (Stoch. Process. Appl. 170:104276, 2024), Akjouj et
al. (J. Math. Biol. 89:61, 2024) and Gueddari et al. (Random Matrices: Theory Appl.
14, 2025), but the versatility of the model studied might be of interest beyond these
particular applications.
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1 Introduction

Approximate message passing (AMP) refers to a class of iterative algorithms that
are built around a large random matrix, producing at each step a high-dimensional
R"-valued random vector (n > 1) whose elements’ empirical distribution can be
identified as n goes to infinity. These algorithms take the following form

x'* = Wh;(x") — {corrective term},

where x’ = (x!) is the n x 1 vector at iteration #, W is a n x n random matrix, and
he(x") = (ht(xf)),- is a vector based on the so-called activation function h; : R — R.
The corrective term, known as the Onsager term, is carefully defined to facilitate the
description of the statistical properties of x” as n — oo.

In the fields of machine learning and statistical estimation, AMP algorithms were
originally developed for studying compressed sensing and sparse signal recovery
problems [8, 17]. They have since found applications across various fields, includ-
ing high-dimensional estimation [15, 25], communication theory [6, 29], statistical
physics [26], theoretical ecology [2, 19, 21], etc. AMP algorithms have undergone
extensive recent developments and the goal of this article is to extend the AMP frame-
work to general non-symmetric random matrices W.

In general, the random matrix model W may differ depending on the considered
application, and most of AMP algorithms focus on symmetric matrices. For instance,
in the problem of low-rank information extraction from noisy data matrix, the goal is
to estimate the n x 1 signal x* from noisy observations

Y = Vaxran) T +w, (1)

where W is a random matrix. In [16] and [27], the authors develop an AMP algo-
rithm involving a symmetric matrix W = \/LEG where G is drawn from the Gaussian

Orthogonal Ensemble (GOE(n)) to study the problem (1). More precisely, each entry
Gij ~ N(0, 1+ 1(=j)), where 1—;) equals one if i = j and zero else, and all the
entries on and above the diagonal are independent. The 1/./n normalization factor is
standard in Random Matrix Theory and has the effect to ensure that the spectral norm
of Wis O(1).

In [9, 20, 23, 28], the authors develop an AMP algorithm involving a symmetric
random matrix W with a block-wise variance profile S to study the problem (1) in the
case of an inhomogeneous noise. More precisely, W is now written as

1
W:ﬁs@l/zeG, 2

where G ~ GOE(n) and S is a symmetric, deterministic, block-constant matrix of
non-negative elements. Matrix S has a finite number of rectangular blocks which
dimensions scale with 7, the elements of S®!/2 are the square roots of those of S, and
© is the Hadamard or entry-wise product. In the recent paper [5], Bao et al. consider
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an AMP algorithm based on Gaussian matrices with a variance profile and provide
non-asymptotic results.

Our main motivation to develop AMP algorithms associated to new matrix mod-
els comes from theoretical ecology and the study of large Lotka—Volterra systems
of ODEs. In such models, the random matrix W is used to model the interactions
between n living species that coexist within an ecosystem, and the time evolution
of the abundances is described by the multi-dimensional Lotka—Volterra differential
equation. In [2], Akjouj et al. consider the GOE model for the matrix of interactions,
and use an AMP approach to describe the statistical properties of the equilibrium point
of the resulting Lotka—Volterra dynamical system when this equilibrium is globally
stable. Dealing with a more realistic interaction matrix model, [21] considers a sym-
metric random matrix with a variance profile as in (2), with the main difference that
the variance profile matrix S can be sparse. Including correlations between the ele-
ments of the interaction matrix is an important feature in theoretical ecology. In this
direction, a non-symmetric elliptic matrix W is considered in [19], where each entry
pair (/nW;j, «/nW;;) is a standard two-dimensional centered Gaussian vector with a
covariance p € [—1, 1], and where all the different pairs are independent.

All these cases are particular cases of the model we study in this article.

1.1 The Random Matrix Model

The model under investigation here combines an arbitrary variance profile, possibly
sparse, with a correlation profile. To this end, we first introduce the notion of a 7'-
correlated matrix. Let [n] = {1, --- , n}.

Definition 1.1 Let T = (7;j)1<i,j<n be a symmetric n x n matrix with entries in
[—1, 1]. The n x n random matrix X is T -correlated if

- Every entry X;; is centered random variable with variance 1.
- For (i, j) € [n]3,i < J» the covariance matrix of the pair (X;;, X ;) is

1 Tij
Tji 1 ’

- The random elements in the set {X;;, (X;;, X;;), (i, j) € [n)?, i < j} are inde-
pendent.

Remark 1.2 Notice that the diagonal elements of T are not specified in this definition.
A natural convention could be to set 7;; = 1, as it represents the correlation of X;; with
itself, but their exact values (as long as it is bounded) have no impact on the presented
results.

Let X be a R"*"—valued T-correlated matrix and S = (s;);, j[n] be a deterministic
n X n matrix with non-negative elements. The random matrix model considered in
this paper is
— ¢O1/2 — '
W=s"20x=( /—s,jx,,)lsl.’jsn. (3)
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Notice that the entries need not to be Gaussian and contrary to (2), the normalization
is embedded into matrix S. We refer to S as the variance profile of matrix W and
to T as its correlation profile. Such a model is fairly general as it encompasses most
of the classical random matrix models (Wigner, Elliptic, Circular models) and many
important features required in the applications (sparsity, variance profile, etc.).

1.2 A Primer to Approximate Message Passing

For a random matrix W such that /nW ~ GOE(n), an AMP algorithm starting at
x0 = (xg, -+ ,x0)" using a set of Lipschitz activation functions (%;);>¢ is given by
the following recursion equation; for all r > 0,

1 n
' = Wh,(x") — bh—; (x'™Y) where b, = — Zh;(xi’), 4
n

i=1

with the convention that 2_; = 0.

The crucial term in this recursion is the Onsager term, i.e. “ONS; := b;h;—1 (x!—h"
that we subtract from the power method iteration term at each step ¢. The effect of the
Onsager term is that for a fixed 7 and as n — o0, it “‘cancels” the dependence due to
the repeated use of matrix W at each iteration:

xt' = Wh,(Wh,_y(W--.) — ONS,_;) — ONS, .

With the correction of the Onsager term, the asymptotic behavior of x is similar to the
behavior of ¥’ generated with the “power method iteration" but with a new sampled
independent random matrix W' at each step ¢, i.e.

o win @) with  Jaw' X GOE®m).

Notice that in the latter case, it is easy to characterize the asymptotic behavior of the
empirical distribution Mxt of the entries of the vector ¥’ = (if),

o I
nt == by

i=1

Roughly speaking u* '~ u* "asn — oo. Beware however that the correlation between
consecutive iterations x’ and x’*! differs from the correlation between iterates ¥ and
%! which turn out to be asymptotically decorrelated.

Given the iterates x! = (xl.l), L xl = (xl? ) produced by (4), the main result
associated to AMP is the description of the limiting distribution of

1 n
eloxy 1 s
g = 230
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as n — oo in terms of a multivariate Gaussian vector whose covariance matrix is
described by the Density Evolution Equations.

1.3 Density Evolution Equations

Density Evolution (DE) equations are a set of recursive equations that define a sequence
of deterministic, symmetric, positive semi-definite matrices, which are central objects
in the analysis of AMP algorithms. These matrices are covariance matrices associated
to multivariate normal distributions which describe the asymptotic behavior of the
AMP iterates (and their correlations) as n goes to infinity.

Given a set of activation functions 42, : R — R and a initial constant vector
x" = xol, € R", the Density Evolution equations associated to the AMP (4) with
/nW ~ GOE(n) is a sequence of ¢ x ¢ matrices (R');cn+ defined recursively as
follows,

0

hy(x0)
1 2 +1 _ o | he(Z1)
R'=(h(x0))®> and R =FE "V [h(x0) he(Z1) - hi(Z))]
h:(Zy)
where (Z1, -+, Z;) ~ N;(0, R"). Notice that in particular, the variances o> = E Z?

satisfy a simple recursion equation given by:
of =h}(xo) and o2, =Eh* (o) where & ~N(0,1). 5)

With the family of covariance matrices (R") at hand, we can express the limiting statis-
. . 1 . . .
tical properties of measure p* ¥ ") which captures both the asymptotic properties

of the iterates x’ and the dependence between the iterates x R

[ weak, L2
(x",-,x") N

o N:(0, R")

n—oo
in probability (see [18] for sharper convergence results). Stated differently, for any
test functions ¢ : R’ — Rand ¥ : R — R,

1 n ]P’ 1 n IP
;Z(p(xil’_..,xi’)mﬂi(p(z],.u,Z,) and ;Zw(xi[)mEW(até), 6)

i=1 i=1

where & ~ N(0, 1), E) stands for the convergence in probability and (o;);>0 is a
sequence of positive numbers defined recursively by (5).

In [19], we show that the DE equations used to study an AMP with an elliptic
matrix do not depend on the correlation coefficient, the latter being included in the
formulation of the AMP recursion, and more specifically in the Onsager term. In [21],
the case of a symmetric random matrix with a general variance profile S is handled.
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In the case of a general variance profile, the description of the asymptotic behavior
of the iterates becomes more involved and instead of having a multivariate Gaussian
vector (Z1, - -+, Z;) we have a family of n-dimensional vectors VARTENY o)

In the following definition, we give a general description of the DE equations
associated to a variance profile matrix S. We now consider that the activation function
depend on an additional parameter 5 and we no longer express the dependence in ¢
using a subscript, it is now included in the arguments of function /.

Definition 1.3 Let x° = (x?) € R" and n = (n;) € R" be two deterministic vectors,
S = (Sif)l <ij<n @ matrix with non-negative elements and 7 : R> x N — R an
activation function.

a) Initialization. For any i € [n], define the non-negative numbers Hi0 and Ril as
n
HY =1 (x),ni,0) and R} =) s;H).
j=1

Let Zl.1 ~ N(O0, Ril), assume that for all i € [n], the Zi1 ’s are independent and set
Z' = (ZDietm -
b) Step 1. Let A (Zil)ie[n] be given and i € [n] be fixed. Let

n
Mh(x?,m,o),h(Zl-l,m,l)] and R} = s;H].
j=1

h(x?, i, 0)
h(Z!, ni, 1)

H' =E [
1
Notice that the 1 x 1 upper left corner of Ri2 coincides with Ril. Let Zi2 be such
that 212 = (Zl.l, Zl.z) ~ N> (0, Riz), and such that for all i € [n], the Zl.z’s are
independent. Set Z%> = (Ziz).
¢) Step t. Let the covariance matrix R} € R"*! and the R" vectors Z L., Z be
given, where

and where all the Zf ’s are independent for i € [n]. Let

h(x?, 1, 0)
nZzl i, 1)

H =FE '

[h(x. 0, 0) R(Z} i 1) -+ h(ZL i, 1)]

h(Z!, mi, 1)

and R! - > sij Hj’.. Notice that the 7 x ¢ upper left corner of matrix R} +1
coincides with R!. Let Zf *1 be such that

Z =2l 28, 2 ~ N (0, R

1
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‘o
zi oz |z
Z21 222 S Zé
@2 = | |
Z; Z; T Z; — ZteR?
zy  Zno | Z
——
!
Z'eR"™
Fig.1 The Gaussian matrix (Z!, - .- , Z'), the notations Z’ and Zl’ Rows Z; = (Zf, t > 1) are indepen-

dent. The correlations within each row are described by the DE equations: Zf ~ N¢ (0, R; ), see Definition
1.3.

and such that for all i € [n], the Zf“’s are independent. Set Z'*! = (Z;H).

Consider the sequence of n-dimensional Gaussian random vectors (Z ! ) reny- Wedenote
(Zl, e, Z’) ~ DE (S, h,x°, 9, t) .

We also define Z; = (Z;),Zl. The sequences {Z;};c[»] are centered, Gaussian, and
independent. The notations Z’ and Zl’ are described in Fig. 1.

1.4 Main Result (Informal)

As already mentioned, numerous studies [7, 19, 21, 28] have extended the AMP
algorithm to cover more complex random matrix models W. For each new matrix
model, two key questions must be addressed:

a) How to define a proper Onsager term?
b) What are the associated DE equations ?

In this paper, we answer both questions for the matrix model described in Sect. 1.1.
We show that the DE equations are given by Definition 1.3; in particular they only
depend on the variance profile and not on the correlation profile. Let W be given by
3),h: R? x N — R an activation function, x°, n € R" deterministic vectors and

o1/2
) or.

v:(sesT

where S and T are, respectively, the variance and correlation profiles of the random
matrix W, and (Zy, --- , Z,) be given by the DE equations. We identify a possible
Onsager term as

dh
ONS; = diag (vzaa—(zf, n. t)) hx='n =1,
X
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and consider the AMP
x* = Wh(x', 5, 1) — ONS; .

We shall prove that for any appropriate test function ¢ : R'*! — R and uniformly
bounded sequence (ﬁi("))ie[n] of real numbers, the following convergence holds true

n—o0

1 n R P
p Z {ﬂ,-(n)fp(ﬂi,xil, o xhy = B e, Z;)} — 0,
i=1

where the Zl’ ’s are defined in Definition 1.3. The formal assumptions and statement
are provided in Sect. 2.

Remark 1.4 As a consequence of the variance profile structure, each f-uple
(xil, e, xi’ ) needs to be compared to Zl? in the convergence above, a situation sub-
stantially more complex than in (6).

1.5 Motivation from Theoretical Ecology

The analysis of large ecological networks (foodwebs) and complex systems has gar-
nered significant attention in recent years, with numerous studies leveraging tools from
random matrix theory

[3, 11, 13]. In this perspective, large Lotka—Volterra (LV) models [1] describe the
dynamics of the vector of the species abundances x(s) = (x;(s));e[n) for s € [0, 00)
in a series of coupled differential equations where the interactions are encoded by a
random matrix A whose entries A;;’s represent the effect of species j on species i.
The more complex the matrix model A, the better the modeling of the network.

In a series of articles [2, 19, 21], AMP algorithms were designed in this context to
analyze the statistical properties of the globally stable equilibrium x* (when it exists)
of the vector x(s), depending on the random matrix model (symmetric models in
[2, 21], elliptic model in [19]). More specifically, let z € R" be the solution of the
fixed-point equation:

z=A-L)zt+1,, zt=zvo0,

which can be shown to be unique under a condition on A (see [2] for details), then
the equilibrium x* is given by x* = z ™. Extracting statistical information from x* is
a non-trivial task as the dependence of x* to A is highly nonlinear. However this task
can be performed by designing a specific AMP algorithm.

In a foodweb, the effect j — i of species j on species i is a priori different from the
effecti — j. Moreover, recent empirical evidence [10] has shown that in a foodweb
of size n a given species only interacts with a small number K,, < n of other species.
One may want to go one step further in modeling foodwebs, and for instance consider
block structures with subpopulations with homogeneous statistical features [12].

All these desirable features naturally motivate the study of non-Symmetric and
possibly sparse random matrices, with variance and correlation profiles. Such a model
is at the heart of the AMP developed in this article.
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In a forthcoming work, we intend to design improved matrix models for foodwebs
and to analyze via AMP techniques the equilibria of associated large LV models.

1.6 Outline of the Article

In Sect. 2 we formally state the assumptions and the main result of the article, namely
Theorem 2.1, together with examples, an extension to non-centered random matrices,
and open questions. The remaining sections are devoted to the proof of the main result
(see also Sect. 2.8 for a precise roadmap of the proof). In Sect. 3, we state a matrix
AMP for polynomial activation functions, see Theorem 3.3. Section 4 is the heart of
the proof of Theorem 3.3. It is based on combinatorial techniques which build upon
[7] and [21]. In Sect. 5 we generalize the previous AMP for more general functions,
and relax the assumption that matrix W should have null diagonal (an assumption
made to handle the combinatorics in the proof of Theorem 3.3).

1.7 Notations

Denote by |S] the cardinality of a set S. We often (but not systematically) use bold
letters for vectors @ = (a;)ie[n], b = (bj) jefx), etc. If @ = (ap) € R? andm = (my) €
N7 is a multi-index, we denote by a™ = er[q] azné.

Denote by 1, (or 1 if the context is obvious) the n x 1 vector of ones and by 1,
the matrix 1<, = 1, 1; where matrix AT stands for the transpose of A. Fora € R”,
diag(a) stands for the n x n diagonal matrix with diagonal elements the g;’s. If a € R”
is a vector, ||a|| stands for its Euclidian norm and ||a||,, := ||a||/+/7 for its normalized
Euclidian norm. If A is a matrix, ||A|| stands for its spectral norm.

If f:R — Randa = (a;)ie[n) a vector, denote by f(a) = (f(ai));e, With
obvious generalizations f(a, b) = (f(a;, b;)) fora,b € R". Let f(x,y,t) areal
function with (x, y,t) € R2 x N, denote bydf = % Leta € R" and I C [n], then

a'

(@)n = 5 i @ and (@) = ﬁ 3",c; @i The empirical measures ;i and @ -

of vector @ = (a;);¢[»] and vectors a',---,a' in R" stand for

1 1
== 38y and T = ST

i€ln] i€[n]

where 8y is the Dirac measure on R and 8,1 ... 1), the Dirac measure on R’. Conver-

gence in probability is denoted by E).

2 AMP for General Non-Symmetric Random Matrices
Assumptions are introduced in Sect. 2.2. The main result, Theorem 2.1, is stated in

Sect. 2.3. In Sect. 2.5, we provide two examples, one focusing on the correlation
profile, the second on a sparse variance profile. In Sect. 2.6, we extend the AMP result
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to a non-centered random matrix model. Finally, we provide in Sect. 2.8 a detailed
outline of the proof of the main theorem.

2.1 The General Framework of the AMP Recursions

Let X be an xn T -correlated matrix and S an x n matrix with non-negative coefficients.
Recall the definition of W = $©/2 © X in Eq. (3) and define matrix V as follows
o172

V= (Vi) = (S0ST)

orT. (7N
Notice that E [W © WT] =V.

Let & : R? x N — R be a measurable function such that for all (n,1) € R x N,
the derivative dh (-, 1, t) exists almost everywhere!. We denote as 3/ any measurable
function that coincides with this derivative almost everywhere. For x, n € R" and
t € N, denote h(x, 0, 1) = (h(xi, 0i,1))ie[n]-
Definition 2.1 Let X be a n x n T-correlated matrix following Definition 1.1, W, V
given by (3), (7), and x% p € R". Let h : R? x N — R a measurable function such
that 0k exists. Let Z!, .-, Z' be R"-valued Gaussian vectors defined in Def. 1.3.

Define the R"-valued random sequence (x”),>1 recursively as follows,

x' =Whix0 9,0,
xT = Wh(x', 9, 1) — diag (VEOA(Z', 9, 1)) h(x'"',n,t — 1) for t>1.
3)
The following notation will be used in the sequel:
(x),., = AMP-Z (X, S, h, x°, 77) , xV peRr". )

Remark 2.2 The parameter n € R which is fixed once for all in the recursions can be
seen as an extra degree of freedom in the design of the algorithm.

Remark 2.3 (versatility) Definition 2.1 generalizes many frameworks found in the
literature.
a) For a symmetric matrix X where T = 1,,x, and § = %, one gets the AMP in

[7].

b) By taking a sparse symmetric matrix S, one recovers the AMP in [21].

c) The elliptic AMP studied in [19] is obtained by taking S = 1”}% and T = pl,«,
for p € [—1, 1]. In the latter, the AMP recursion writes

X =Wh(x' n,1)—p(dh (xt,n,t))nh(x’”,n,t— 1) )

One can notice that the Onsager term is slightly different. We will come back to
this later in Sect. 2.4.

1 Notice that if / is Lipschitz with respect to the first variable, then it is differentiable almost everywhere
by Rademacher’s theorem.
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2.2 Assumptions

We present hereafter the assumptions that will be used in the sequel, some of which
already appeared in [21].

Assumption A-1 (moments) Let T = (7;j)1<i, j<n be a symmetric matrix with t;; €
[—1, 1] and X a random T -correlated matrix following Definition 1.1. For everyk > 1
there exists a positive real number Cpom(k) > 0 such that for every n > 1 and all
i,j€ln]
i\ L/k
<E|Xij| ) < Cimom(k) .

Assumption A- 2 (variance profile) Let (K,) a sequence of positive integers diverging
to +00 and satisfying K, < n. The deterministic n x n matrix S = (s;j)1<i,j<n
has non-negative elements and satisfies the following: there exist positive constants
Ccara, Cs, cs > 0 such that for everyn > 1 and all i, j € [n],

C n
|{j € [n] : sij > 0}| < CearaKn, sij < K—S and ZSHZ > cs.
n =1

Remark 2.4 (on Assumption A-2)

(a) This assumption describes the sparsity of the variance profile S € R™"*". It
consists of three sub-assumptions: there exists a sequence (K,), with K, < n and
K, — 00, and positive constants Ccard, Cs, s such that for every n > 1 and all
i, j € [n]: (i) the number of nonzero elements in the i-th row of S is at most Ccarqd K
(ii) each variance satisfies s;; < CsK, 1. and (iii) the row sums of S are bounded
below by cg.

(b) Although these three conditions are grouped under a single assumption A-2,
they are not all used with the same frequency or importance. For instance, in all com-
binatorial arguments, A-2-(iii) is not required, and we expect that this sub-assumption
is mainly a limitation of our proof technique. Indeed, A-2-(iii) becomes unnecessary
when the AMP is built using only polynomial activation functions; it is therefore a
technicality to ensure that we can approximate general activation functions by poly-
nomial ones.

Remark 2.5 In the works [5] and [22], the authors study AMP-type algorithms with
symmetric random matrices equipped with a variance profile. In [5], the analysis
focuses on the classical AMP with a Gaussian matrix, while [22] investigates a broader
class of generalized first-order methods, of which AMP is a particular case (see the
canonical examples in Sect. 2.1). Both works provide non-asymptotic analyses of the
corresponding algorithms.

For comparison, the random matrix models considered in [5], [22], and in our work
are, respectively

1 1 1
—sVog, —5sPeA, and —S?Pox,
Jn N V4

n
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where K,, — 400 controls the sparsity level. While one could mimic sparsity in
[5] and [22] by setting many entries of the variance profiles to zero, the normal-
ization factor 1/4/n in those works does not depend on sparsity and thus does not
yield the correct scaling in the genuinely sparse regime. In contrast, our framework
explicitly models sparsity through both a structural condition on the variance profile
S (= K,i/ 2go1/ 2) (at most CK,, nonzero entries per row) and the normalization
factor 1/4/K,,, which scales appropriately with the sparsity level. In particular, if one
considers a sparse matrix normalized by 1/,/n with K,,/n — 0, the density-evolution
equations degenerate to a trivial limit.

The following technical assumption ensures that the spectral norm of the matrix W
is almost surely bounded by a constant as n goes to infinity.

Assumption A- 3 (lower bound on the sparsity level) Let A-1 and A-2 hold for the
random matrix X and the variance profile S, and consider associated C o and (K ).
There exist positive real numbers v, C > 0 such that for every k,n > 1

Crom(k) < CKk"?  and K, > C log"Vn).

Remark 2.6 (on Assumption A-3)

(a) The moment condition Crom (k) < C k"/? is standard. For example, it is fulfilled
with v = 1 for subGaussian entries.

(b) Assumptions A-2 and A-3 describe the sparsity level one can expect for matrix
W. The sequence K, is an upper bound of the number of non-vanishing elements of
W per row. It must be at least logarithmic in n (up to the power v Vv 1) but can be much
smaller than n.

(c) As will appear later in Proposition 5.5, the logarithmic lower bound on K, and
the upper bound for the moments of X’s entries are technical conditions needed for
bounding the spectral norm of the random matrix W.

We also consider initial conditions for the initial vector x° and for the parameter
vector n € R”.

Assumption A- 4 (initial and parameter vectors) Let x° = (x?) eRYp=() e R"
be deterministic vectors and consider the sequences (x°), and (n),. There exist two
compact sets Q, C R and Q, C R such that

{x?,ie[n],nzl}CQx and {ni,ielnl,n>=1} C Q,.

Remark 2.7 (on Assumption A-4) This assumption requires the AMP initialization to
lie in a compact set Q,, which facilitates uniform bounds throughout the proofs, for
instance, in controlling the covariance matrices in Lemma 5.2 and some quantities in
the combinatorial arguments used for example in Proposition 4.2 (see Equation (27)
in Theorem 3.3). This assumption is mainly technical and simplifies several bounds;
we believe the results should still hold for non-compact initializations (e.g., Gaussian
vectors), at the cost of more involved arguments. An interesting alternative to explore

@ Springer



Journal of Theoretical Probability (2026) 39:19 Page130f69 19

could be the following condition
n
> “exp(lx)[*/C) < Cn  with probability tending to 1,
i=1
found in (C, d)-regular sequence condition of [7] (see assumption 3 in Definition 4).

Assumption A-5 (Regularity of the activation functions) Let h : R* x N — R be a
measurable function. For every t € N, there exists a positive number L such that for
everyx,y,n € R,

lh(x,n,0) —h(y,n,0)] = Llx—yl.

For every t € N, there exists a continuous non-decreasing function k : Ry — R4
with k (0) = 0 and a compact set Q, C R such that for every x € Rand n,n' € Q,,

|hGe,n.0) =h@x, ', 0| <« (In—n']) A+ IxD.

Assumption A- 6 (non-degeneracy condition over h) Let h : R> x N — R be a
measurable function. There exist two compact sets Q; C R and Q, C R with the
following properties:

(1) There exists a constant ¢ > 0 such that

inf h2(x,77,0) > c.

xEQ;J’]GQn

(2) Foreveryt > 1, there exist two positive real numbers cy(t), Dp(t) > 0 such that

Dy (1)
inf / W (x,n,0dx > cp(t).
1€y J—Dy (1)

There are tight links between the assumptions. In particular, the parameter v of A-3

controls the moments bounds (Cj;, o, (k)) given by A-1 and the sparsity level K;, given
by A-2, the compact sets Q, and Q, of A-5 and A-6 will be given by A-4.

2.3 Main Result
Recall the definition of a pseudo-Lipschitz function. A function f : RY — R is said

to be pseudo-Lipschitz (PL) if there exists a constant L such that for all x, y € R? the
following inequality is satisfied:

lfx)— S = Lllx =yl A+ llxll + [yl .
We are now in position to state our main result.

@ Springer



19 Page 14 0f 69 Journal of Theoretical Probability (2026) 39:19

Theorem 2.1 Let Assumptions A-1 to A-6 hold true, with associated v, Q, and Q.
Consider the AMP
()1 = AMPZ (X, S, h,x, )

as defined in Definition 2.1, and the sequence of n-dimensional Gaussian random
vectors (Zt ) ;e defined by the DE equations in Definition 1.3:

(Z',---,Z") ~DE(S, h,x°, 5, 1).

Lett > 1and B = (ﬂi(")) € R" uniformly bounded, i.e. sup, max;e[n) |ﬂlF")| < 0.
For any pseudo-Lipschitz test function ¢ : R'T! — R, it holds that

1 P
- E lgi(n){§0<77i’xil»"'»x;>_E|:§0<77iaZil7"',Z;>i| — 0.
n n—o00

i€n]

2.4 Alternative Onsager Terms

Recall the introduction of AMP-Z in Definition 2.1. It might be convenient to con-
sider alternative Onsager terms in the AMP recursion and replace the diagonal matrix
diag(VIEQh(Z', 3, 1)) by one of the two following terms

diag (Voh(x',7,1)) or diag (W oWl anx!, 1, t)) , (10)

depending on the context.

For example, the Onsager term built upon diag (W © W ah(x, ,1)) is better
suited for the combinatorial arguments developed in Sect. 4 as it directly involves
the entries of matrix W, and the loss with respect to the original recursion should
be asymptotically negligible since E(W © W) = V. The Onsager term built upon
diag (Vah(x’, n, t)) naturally appears in [2, 19].

In this perspective we introduce new notations. Denote by

(x),_, := AMP-W (X, S, h. x°, n) , (11)

t>1"

the recursive procedure defined by

xt =whx09,0),
't = Whx, g, 1) — diag (W@wTah(xf,n,z))h(xH,n,z— 1) for 1>1.

Similarly, denote by
>1"

(x'),., := AMP <X, S, h, x°, n) , (12)
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the recursive procedure defined by

x! = Whx%,0),
x T = Whx', g, 1) — diag (Voh(x', g, )) h(x'" 1, g, = 1) for t>1.

We believe that none of these three Onsager terms should change the general asymp-
totics of the AMP. However, a complete proof of this fact is not established. We only
prove the AMP result for the AMP-Z formulation, see Theorem 2.1.

In conclusion, there are three possible formulations of the Onsager term, leading
to the AMP-Z, AMP, and AMP-W algorithms depending on whether the correction
involves an expectation over Gaussian variables, the current iterate, or the random
matrix itself. Among these, the “AMP” formulation appears to be the most natural, as
it yields a deterministic Onsager term depending only on the variance profile and the
iterates, making it straightforward to implement. However, our proof relies on combi-
natorial arguments and polynomial approximations of the activation function, which
are more conveniently handled within the “AMP-Z” formulation. Consequently, we
establish our main AMP-type result for the “AMP-Z" version. Lemma 5.3 provides a
comparison between the “AMP” and “AMP-W” formulations, but only for polynomial
activations.

2.5 Examples of AMP

We provide hereafter three examples of matrix models where we work out the specific
AMP recursion and DE equations. All three matrix models are of practical interest, with
applications in fields such as theoretical ecology, where random matrices represent
species interaction matrices in large ecological systems (see [1]).

Example 1: Elliptic Matrix Model

Let o > 0, and consider an nn x n random matrix X = (X;;) j=1 whose entries satisfy
the following properties:

o The random variables X;; are centered with variance 1.

1
e Foreachi < j, the pair (X;;, X ;) has covariance matrix < T)
P

o The collection {X;;, (X;j, X;;) : (i,]) € (n?, i < J} consists of independent
random elements.

A particular instance of this model is the Elliptic Ensemble, in which the entries are
Gaussian (the diagonal entries may have a different variance, but this can be handled
without difficulty).

Consider the following matrix model:

W=—X.
Jn
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For a uniform variance profile the Density Evolution equations (1.3) become asymp-
totic and do not depend on the dimension #, i.e.

S (x0)

R'= Pap e R, R [TV [rg) £(z0) - p(z0] e ROFDXCHD - (13)
f(Z)

where (Z1, -+, Z;) ~ N;(0, R"). The following is a corollary of our main theorem.

Corollary 2.2 Let Assumption A-1 and A-3 hold for the above matrix model W. Let x°
be a constant an initialization vector x° = xol, and let h be an activation function
satisfying Assumption A-5. Assume further that oh is continuous A-almost everywhere,
where A denotes the Lebesgue measure. Consider the AMP sequence (x'), defined

recursively as
= Wh(x') = p (9 h(x'™")

Foreacht > 1, consider the t-dimensional centered Gaussian vector (Z1, ..., Z;)
whose covariance matrix R' is defined recursively by the (asymptotic) Density Evo-
lution equations.

Then, for any pseudo-Lipschitz test function ¢ : R — R, we have

1 n
—Zgo(xil,...,xi’) LN E[(p(Zl,...,Zt)].
n n—00

i=1
The proof of this corollary is in Appendix 1.

Remark 2.8 (1) The Onsager term considered in this corollary differs from the one
used in the main theorem. A detailed discussion on the possible variants of the
Onsager term is provided in Sect. 2.4.

(2) This result extends the work of [19], where the matrix model was assumed to be
Gaussian. Here, the Gaussian assumption is relaxed, but we obtain convergence
in probability rather than almost sure convergence.

(3) To establish the result under this modified Onsager term, we require an additional
assumption on the activation function, namely that its derivative d% is continuous
almost everywhere. This assumption is also present in [18, 19].

(4) Inthis corollary, we assume a constant initialization vector for simplicity. However,
the result can be extended to more general initializations under additional mild
regularity conditions.

Example 2: Blockwise Correlated Random Matrix
This example generalizes the elliptic matrix model characterized by a single correlation

coefficient p. Here, the matrix is allowed to have different correlation coefficients for
eachblock. Letn = nj+ny, X an x n matrix partitioned into four submatrices: X an
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X2 xCD and X2 of respective sizes ny X ny, ny X ny, ny X ny, and ny x ny:
(D x(12)
X={xen y)-

Let XD and X ®? be (independent) elliptic random matrices with correlation coeffi-
cient p1, while each entry in X (1?) is correlated with its symmetrically corresponding
entry in XD with a coefficient p,. All the entries of the random matrix X have
variance 1 and satisfy A-1. Consider the normalized version of X,

W:W.

With our previous formalism, this model corresponds to choosing X as a T'-correlated
matrix and W = § © X where S (variance profile) and T (correlation profile) are

defined by
S = Lixn and T = P11a xny 210 xny ]
n p21n2xn1 p]lnzxnz
Letr, := =L, Iy ={1,--- ,n1} and I = [n] \ I1, assume that r, — r € (0, 1) and

consider the following framework: x9 = xp1,,, the activation function f:R— Ris
Lipschitz. Notice that f satisfies A-5, neither depends on 7 nor on some extra parameter

n.
Consider the recursion (x);en = AMP (X, S, f, x°). In particular,

Xt = Wi - diag (VD) £,
where V = T /n. The Onsager term can be simplified here by writing V f’(x?) as

o rnmf’(x’)),.lm+<1—rn>pz<f’(xf>>121m)
Vi) = (rn,oz(f’(x’))u Loy + (1= )1 (F ) o Ly

_ (rnpllnl (1 _rn)p21n1> ((f/(xt»h)
rnp21n2 (1- rn);ollnz (f/(xt»lz ’
Thus

1 _ P11y, (1 —rn)p21, (f/(xt»I -1
X =Wreh - |:<rn/021n; a _rn)mlnl) <<f’(x’))1;>] O 760,

Notice that the Onsager term generalizes here the one obtained in the elliptic case (see
Remark 2.3).

Not surprisingly (and as mentioned in [19] in the elliptic case), the DE equations
do not depend on the correlation structure of X and reduce to
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S (x0)

R'= PPagy e R =BT PD [fag) £z - 2] e REFDXCHD,
f(Z)

where (Z1,---, Z;) ~ N;(0, R"). In this case, Theorem 2.1 implies that for any PL

test function ¢ : R’ € R ur main theorem implies in this case that

1 P
=Y ol x) —— Bp(Z1, - Z).
n n—o00

ie[n]

Remark 2.9 This example can easily be generalized to K x K blocks and K correlation
coefficients pg, - - - , pk.

Example 3: d-Regular Random Matrix

In this example, we consider a symmetric matrix X where X;; are independent centered
random variables with variance 1 up to the symmetry, i.e. X is a T -correlated random
matrix where T = 1,,«,. Let Assumption 1 hold, letd = d,, = |C 10g<”V1)(n)J where
v > 01is given by Assumption 3. Let A be the n x n adjacency matrix of a d-regular
non oriented graph, in particular

{jeml|Aj=1)|=d and |{ielnl|A;=1)|=d,

and consider the variance profile matrix S = [llA. Let f : R — R aLipschitz function
(hence satisfying Assumption 5) and set

1
W=S0X=_40X, x%=x1, and (xt)teN:AMP<X,S,f,x0).

Introducing the sets Iy := {j € [n] | Ay; = 1} and the n x 1 vector v =
((f’(x’))lk, ke [n]), the recursion writes

xt+1 — Wf(xl) —v @ f(xl‘—l) .

Let us now simplify the Density Evolution equations defined 1.3 for this par-
ticular case. We notice that Hl.o = (h(x9))* =: HY does not depend on i, so
Rl = Y 1H? = H® := R' which is also independent of i and n. By
induction, we can reduce DE equations to “asymptotic” DE equations, meaning
that they do not depend on n. In fact, if Rf € R™ is independent of i, consider
(Zil, cee, Zf ) ~ N; (O, Rl? ), these n t-dimensional random vectors have the same law.
Now let i € [n] and consider the value of Rf +1,
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7o) £ (xo)

1 ;

R =Y Sw A o) pizh - rap] = | TP a0 @0 - @)
AR P75 1z

where (Zy,---, Z;) ~ N;(0, R"), thus R;H is also independent of i and n and we

recover the “asymptotic" DE equations. Our main theorem implies in this case that

xlooxt P

ptt —— L(Zy, -, Zy).
n— 00

Remark 2.10 1In this setting, the matrix sparsity is governed by the parameter d, which
also serves as the normalization factor, corresponding to the sparsity level K, in
Assumption 2 (i.e., K, = d). While extending the analysis to constant-degree (d
finite) matrices would be interesting, we believe it is outside the scope of AMP theory,
which typically requires d — o0o. The current lower bound d > log®V' (n) is mainly
a technical limitation of our proof, needed to control the spectral norm of the sparse
matrix (Proposition 5.5), and could likely be relaxed with sharper arguments.

2.6 Extension to Non-centered Random Matrices

We have considered so far an AMP algorithm with a centered random matrix. We
extend our AMP result to consider a non-centered matrix model. More precisely, we
add to our centered random matrix model a deterministic rank-one perturbation - notice
that our result could easily be generalized to any finite-rank perturbation.

Let W be a random matrix model as in Theorem 2.1, with variance profile S and
correlation profile T'. Let u, v € R" two deterministic vectors satisfying ||u/||, ||v] =
O(n~"). Consider the following matrix model,

A :AuvT+W. (14)

Before stating the AMP recursion based on matrix A, we adapt the Density Evolution
equations introduced in Definition 1.3. In this section, we shall use the notation 4, (x, n)
instead of /1 (x, n, t) as simplification of the notations.

Definition 2.11 Let x° = (x?) eRYp=) e R, u=(u;) e R"and v = (v;) €

R” be deterministic vectors, S = (sij),_; j<n @ Matrix with non-negative elements

and h : R? x N — R an activation function.

a) Initialization. For any i € [n], define the positive numbers Hio, Ri1 and 1 as
2 n
HY = (ho(x?, ﬂi)) . Rl:= Zsin,(-) and  pp = A<v, ho(x°, 17)> :
j=1
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Let Zl.1 ~ N0, Ri]), assume that for all i € [n], the Zi1 ’s are independent and set
= (Zil)ie[n] .
b) Step 1. Leti € [n] be fixed. Given Z/, let

1_ ho (<2, ;) 0 .. 1 .
Ho=F |:h] (z} +l,u0ui, ni):| Uro () o (27 sous. m)|

n

R12 = ZSUH]-I and Mo = LE |:<‘U, hy (Zl + piu, ”)>] .
j=1

Let(Z Z2) ~ N> (0, R2) denote by 22 (Z Z?).Assume that forall i € [n],
the 22 s are independent. Set Z? = (ZZ)

c) Stept. Leti € [n] be fixed. Given (Z!,--- , Z') and Z’ (Z}, -, Z), let
ho(x?, ;)
oM@ o | .
H =E . (oG, mi) hi(Z] + prwg, mi) -+ he(ZE + pewi, )] -

Denote

n
Rf“ = Zsinj’. and  pp1 = AE[(v, b (2" + pou, )]

Let(Z), 22, --- ZM1) ~ Nis1(0, R, denote by 24! = (Z), 22, -, ZI*).
Assume that for all i € [n], the Z’+1’s are independent. Set Z'+! = (Zt“)

Consider the sequence of n-dimensional Gaussian random vectors (Z ) reny- Wedenote
(2. 2") ~ BE (hx, 5. 1,0, 0) .
We are now in position to state the AMP recursion.

+1 = Ah,(xt, 77) — dlag (VEah[(Zt + e, 77)) ht—l(xtil ) ")9 (15)

where Z! and ! are defined as in Definition 2.11.
The following theorem describes the asymptotic behavior of (x’ ) rey When n goes
to infinity.

Theorem 2.3 Let Assumptions A-1 to A-6 hold true, with associated v, Q, and
Q,. Consider the AMP sequence (x'); defined in (15). Consider the sequence n-
dimensional Gaussian random vectors (Z’ ) (N and the scalars (ju;); defined by the
DE equations in Definition 2.11.
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Lett > land B = (,Bl.(")) € R" uniformly bounded, i.e. sup, max;c[n] |,Bl.(”)| < 0.
For any pseudo-Lipschitz test function ¢ : R'T! — R, it holds that

1 P
;Zﬂ,-(n){§0<77i,xil,"'sxf)—E[él’(’?iyZ,'l'i‘Ml“i»"',Z,l"‘i‘llt”i)] — 0.

. n— 00
i€[n]

This theorem can be seen as a corollary to Theorem 2.1, the proof is provided in
Appendix 1.

2.7 Open Questions

(1) Currently, the sparsity level is of order log”"! (). Would it be possible to lower
this level, and to dissociate the sparsity assumption from the parameter v which is
associated to the moments of the matrix entries?

(2) In Sect. 2.5 (Example 3), we discussed the example of an AMP algorithm for
sparse d-regular matrices and noted that the AMP theory requires d — oo for such
matrices. An interesting open question is whether these results can be extended
to the constant-degree regime, i.e., to d-regular matrices with finite d, although
it would be unlikely to get Gaussian limits in this case (the limit might not be
universal and may depend upon d). More generally, one may ask whether it is
possible to design AMP algorithms for sparse matrices with a constant level of
sparsity. A promising direction could be to rely on non-asymptotic AMP results
(cf. [5, 22]), and establish bounds explicitly depending on d.

(3) Would it be possible to improve the convergence in probability in Theorem 2.1 to
an almost sure convergence?

(4) Our current assumptions over the entries of the matrix necessitate all the moments.
Would it be possible by truncation techniques to lower this assumption?

(5) Would it be possible to establish the counterpart of Theorem 2.1 for AMP schemes
(11) or (12)?

2.8 Outline of the Proof

Building on the methods developed in [7] and [21], we start by analyzing a particular
case of the approximate message passing (AMP) algorithm with polynomial activa-
tion functions (Sect. 3.1), which motivates the adoption of combinatorial techniques.
In our setting, the variance profile is non-symmetric, and the matrix contains corre-
lations between symmetric entries, necessitating modifications to the combinatorial
approaches used in both [7] and [21] to fit our case. The combinatorial heart of the
proof is presented in Sect. 4. We then use density arguments to extend the results to
non-polynomial activation functions that exhibit at most polynomial growth (Sect. 5.1).

It should be noted that the combinatorial methods in [7] and [21] rely on the assump-
tion of a zero-diagonal variance profile, i.e., S;; = O for all i € [n], which simplifies
the derivations. We adopt this assumption in Sects. 3.1, 3.2 and 5.1 and then lift it via
a perturbation argument in Sect. 5.2. Unless otherwise specified, we assume that the
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From polynomial to gen-
eral test functions with at
most polynomial growth.

[Lemma 3.2].
Matrix AMP-W
Polynomial activation Polynomial AMP-W
and test functions. Polynomial activation
Combinatorial argu- functions.
ments. Zero-diagonal assumption
Zero-diagonal assumption (A-T).
(A-7). [Section 3.1].
[Section 3.2]. Diagonal perturbation
technique to lift (A-7).
[Section 5.2].
AMP-Z
General activation func-
AMP-Z tions approximation by
Main theorem. polynomials.
[Theorem 2.1]. Full diagonal - we lift (A-
7).
[Section 5.1].

Fig.2 Proof steps.

matrix S has a zero-diagonal, implying, without loss of generality, that the random
matrix X also has a zero diagonal X;; = 0 (Fig. 2).

3 AMP and Matrix AMP for Polynomial Activation Functions

We present hereafter the AMP algorithm for polynomial activation functions, a suitable
framework to establish the proof by combinatorial techniques, see [7, 21]. In Sect. 3.1,
we state Theorem 3.1 for iterates that are R”-valued.

In Sect. 3.2, we state a result for iterates that are R"*9-valued, a more general result
that will imply Theorem 3.1. The extension to general pseudo-Lipschitz functions will
be performed in Sect. 5.1.

The following technical assumption (to be lifted in Sect. 5.2) will be used hereafter.

Assumption A- 7 (variance profile with vanishing diagonal) The deterministic n X n
matrix § = (5;j)1<i, j<n has non-negative elements with null elements on the diagonal:

Sii =0 for ie€l[n].

Remark 3.1 Assumption A-7 is very convenient to establish the statistical properties of
the AMP iterates for polynomial activation functions, as the proof relies on combinato-
rial techniques. The fact that the diagonal of the variance profile S is zero substantially
simplifies the combinatorics. This assumption is relaxed in Theorem 2.1 by means of
perturbation arguments (see Sect. 5.2).
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3.1 AMP for Polynomial Activation Functions

Let d > 1 be a fixed positive integer independent from n. For every integer t > 1,
consider a uniformly bounded triangular array of real coefficients
(ag(i,t,n), {<d,ieln], nzl) with supr@na;cmaxmg(z t,n)| < oo.
< €l
(16)

The following function will play a key role in the sequel:

p:Rx[n]xN-—R, an

d
i t) > pui.t)=Y ali.t.nu.

=1

Function p is a polynomial in u# with degree bounded by d. It depends on n via the

coefficients ay (i, t, n). To lighten the notations, we drop the dependence of ¢ (i, ¢, n)

in n and simply write o (i, t) and do not indicate the dependence of p in n.
Following Definition (11), let ¥ € R” be deterministic and define

(¥),., = AMP-W (X S, p, fo) . Pere,
that is
P = wp@, 1) - diag(W owlapi, ., t))p(gffl, =1, (18)

where p(x, -, 1) = [p(x;,i,0)]}_;and dp(x, -, 1) = [0p(x;,i,1)]7_, forany x € R".
We now present the AMP result for polynomial activation functions.

Theorem 3.1 Let A-1, A-2 and A-7 hold true. Let d > 1 be fixed, (a¢) and p given by
(16) and (17). Let ¥ = (i?) € R". Assume that there exists a compact set Qy C R
such that )?? € Qy. Consider

(¥),., = AMP-W (X, 5, p, &) .

51 h4 v ~ . .
Let(Z ,---, Zt) ~ DE(S, p, xo, t) and denote by Rf the covariance matrix of vector
(Zil, e, Zf) Then forall t,m > 1

sup max ||I\€/f|| <oo and  supmax E|x " < o00. 19)
n i€[n] n i€[n]

Givent > 1, let d' > 1 be fixed and consider function ¥, : R' x [n] - R, a
multivariate polynomial with bounded degree:

Vo, = Y Baldr - di0) [ 2

di+-+d; <d' i€l]
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with
sup sup sup |ﬂﬂ(d11"' 1dl3g)| < 00.
n>1 €eln] dy-+-+ds <d

Let S™ C [n] be such that |S™| < CK, where K, is given by A-2. Then,

1 » |1/,n()z},...,)z;,i)—Ewn(ii‘,... l)} and  (20a)
K S5t S
- Z {wn( LD —Byn(Z). . Z 1)} — (20b)

lE [n]

Remark 3.2 In this theorem, both the activation function and the test function used
in the convergence formulation are polynomials. The general case for the activation
function will be addressed later in Sect. 5.1. Regarding the test functions, we extend this
result in the following lemma to encompass general continuous functions that grow at
most polynomially near infinity. Notice also that Assumption A-3 is not needed when
dealing with AMP sequences having polynomial activation functions, this assumption
is purely technical and is used when a comparison between two AMP sequences is
provided.

Remark 3.3 The interesting regime in (20a) is |S™| ~ K. If |S™| « K, then (20a)
is trivial in the sense that one can easily prove that both terms

— Z I//n<i, . z) and — Z E[%( Zfz)]
" iesm miesm

converge to ZeI’O2 .

Lemma3.2 Let ° and 0 satisfy A-4. Let (¥');en and (Zt),eN as in Theorem 3.1. Let
t,m > 0 be fixed integers and let ¢ : Q, x R" — R be a continuous function such
that

lp(a,ur, -+ u)| < C (14 ug™ + -+ Jug ™) .

For any sequence (,Bi(") € R, i € [n], n > 1) such that sup, max,;c[n] |ﬁl.(")| < 00,
the following convergence holds:

. 7 -
1 Z ﬂ(")ﬁﬂ('h» i3 - Z ﬂi(”)E‘p("i’ Z\ ... 7ZhH —o.

: n— 00
ze[n i€[n]

Proof Define the two t + 2 dimensional random measures u,, and v, as follows

1 S
- ; Z 8(/3’-’77[-’)("[_1’.4.’}5;) and Un = L (/397 no, ZH’ IR Zé) )

2 By |S™| ~ K,,, we mean that there exist ¢, C > 0 suchthatcK,, < |S™| < CK, and by ISM| « K,
we mean that |S™|/K, — 0.
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where 8 ~ U ([n]) is independent. Consider the function ¥ (8, n, x1, -+ ,x;) =

By (n,x1,---,x:), and recall that (8;), (;) and the covariance matrices (Rf) are

bounded, thus by some slight modification to Lemma B.1 we get the desired result.
O

3.2 Matrix AMP for Polynomial Activation Functions

In order to prove Theorem 3.1, we need to study a matrix version of the AMP algorithm
where the iterates ¥ are R"*?—valued matrices, ¢ > 1 being a fixed integer. Using
this framework, we only need to express the convergence result in Theorem 3.1 using
test functions acting only on the " iterates instead of all previous iterates. Consider
the function

fi(w, 1, 1)
f:R? x[n]xN— RY?, fu,l,t)= : , 2D

fo, 1, 1)

where each component f; is a polynomial in u € RY, with degree bounded by d,
written as .
L en= " Y (b nu,

i=(i1, - ig)eNY
i14tig<d

(recall the notation u! = I1 ] u? ). Given a deterministic n-uple (x(l), ey xg) where

s€lq
x? is a g-dimensional vector, the AMP iterates are recursively defined for ¢+ > 1 as

follows:

iy i)
Ay =) Wafr e 60 =) S i =1 ) WieWa Lt e, 1),

d9x(s)
Leln] s€lq] Le[n]
(22)
forr € [¢g] and f (-, -, —1) = 0. We denote such a sequence by

(xt)r>1 = AMP-W, (X, S, f, xO) s x0 e R"X

DE Equations for Matrix AMP

Similarly to the DE equations for standard AMP introduced in Definition 1.3, we
introduce here a (R?)"-valued sequence of Gaussian random vectors (U”),n+ defined
by
wp’
U' = : ,
o’
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where {Ul.’ }ieln) are R9-valued independent Gaussian random vectors, Ul.’ ~
N (0, 0) and the g x g matrices Q" are defined recursively in 7 by

O = > " suEfWy, 6.0 WU €.0)7  for i€ ln], (23)

Le[n]
with the convention that U° := x0. We denote
U' ~ DE, (S, £, x0, t) . (24)

The following Theorem is the key component to the proof of Theorem 3.1.

Theorem 3.3 Let Assumptions A-1 and A-2 hold true and q > 1 be fixed. Let f be
defined by (21) and x° € R"*4. Assume that for each t > 1, there exists a constant
C = C(t) > 0 such that

i,(r.1,H| <C,  and  supmax |x?

n i€ln]

< 00. (25)

.....

Consider the iterative algorithm (x’)t>1 = AMP-W, (X S, f, xo), and let QE and
U' be defined by (23)—(24). Then we have,

Vi >0, supmax|Q!| < oco. (26)
n i€[n]

Moreover,
V>0, Vm e N7, supmﬁ]E|(xf)m| < oo0. 27
n i€ln

Let ¢ : R x[n] — R be suchthat (-, 1) is a multivariate polynomial with a bounded
degree and bounded coefficients as functions of (I, n). Let S™ C [n] be a non-empty
set such that |S™| < CK,,. Then,

1
— 3 Yhi) —Ey UL i) —— 0 and (28a)
K, n—o0

iesm
1
~ 3" yli) —Ey (UL i) —— 0. (28b)
n i n—o00

Remark 3.4 In this theorem, and particularly in the convergence described in (28b),
the result is not explicitly stated for all iterations from 1 to ¢, as was done in (20b).
Consequently, Matrix AMP can be interpreted as a more compact formulation of the
“standard" AMP. This distinction is further elucidated in the subsequent proof.

Proof of Theorem 3.1 Theorem 3.1 can be deduced from Theorem 3.3 by adequately
choosing g as well as a precise construction of the activation function f using the
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R-valued polynomials p. Define the sequence (il) ;> as follows,

(¥),, = AMP-W (X, p, ¥, 5) . (29)

We shall establish the convergence (20b) for each ¢ and prove that for all multivariate
polynomials ¢ we have

%Z {I/I(fil,...,i;,i)—Elp(Z},...,Zf,i)} 0.

n— o0
i€[n]
~1 ~ v .

where (Z ,-- -, Zt) ~ DE(S, p, xo, t). To this end, let T > 0 be fixed and chose
q = t, construct the sequence (x)|<;<; of R**7-valued matrices such that

xl=@Eo0--0",

2 vl 2 T
Xi Z(Xi X O) )

Now using the polynomials p, we construct the function f : R* x [n] x N — R?
such that forall i € [n]and 0 < £ < 7 — 1 we have

F@ i 0 = (pa,i,0) pxi(1),i, 1) - p(xi(€),i,0)0---0)" .

For ¢ > 1, we set
fx,i,&)=@© ---0).

In order to apply Theorem 3.3, we show that the sequence (x") is given by
(x)iz1 = AMP-W- (X, S, f,x°). (30)
Let ¢t € [t — 1]. By definition, for r € [tr] and i € [n] we have

i1, Jxifr <t41,
i (r)_{Oifr>t+1.

In addition, by Eq. (29) we know that

o= Wup@E T br = 1) = Y WuWudp@E) L — Dp( 2 ir —2),
Le[n] Le[n]

which implies that forr <t + 1,

@ Springer



19  Page280f69 Journal of Theoretical Probability (2026) 39:19

) = WiepGfr = 1. 6r = 1)
Leln]

— > Wi WeidpGef r = 1. 6r = DpGf L =200, r = 2),
Le[n]
=Y WupGi(r—1,Lr—1)
Le(n]

=3 pa T s = D = 1) Y WigWeidp(ef (r — 1), & — Doy
s€(t] Le(n]

= D Wil GE ) = D0 feGf T = 1) Y WigWei o LA TRRIE

Len] se(t] Len]

which is precisely the recursion in (30).
We can now apply the result of Theorem 3.3 to the sequence (x!), which implies
that for all polynomial test functions ¥/ (., £) : R* — R we have

1
— Y Yl i) —Ey (U, i) —— 0, VreN,
e oo

which yields

—Zw( L EL ) —EY (U, i) —— 0, VreN, 31)

i€[n]

where the U" is (n x 7)-dimensional random matrix with law DE, (S, f, x0, 1), the
latter is defined in (24). Denote the columns of UT by Z!, ..., ZT € R”, then it is
clear that (Zl, -+, Z%) ~DE(p, X0, s, 7). The convergence in (31) becomes

_Zl/,( "7xv[r’l)_Ew(lev"7Z[Tal)loo)07 VTGN
n—

i€[n]

with (Z!,---, Z%) ~ DE(S, p, x°, 7). Convergence (20b) is established. One can
prove similarly (20a), which concludes the proof of Theorem 3.1.

4 Proof of Theorem 3.3: A Combinatorial Approach

Taking polynomial activation functions in Theorem 3.3 is fundamental, as all iterations
x' can be written as multinomials on the entries of the matrix W and the initial
point’s coordinates x? (s). This makes the analysis purely combinatorial. At the first
and second iterations + = 1,2, and given simple polynomial activation functions
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frw,€,1) = fr(u, £,0) = u(1)™, one can write

X )= Wix()™,

Leln]

m
xi2(r) = Z WieWig, -+ - Wig, (xgl 1)-- -xgm(l)) — {Onsager}.
£,81, Lm€ln]

We already notice that by the second iteration ¢+ = 2, the exact expression for x,.2 as
a multinomial expansion in terms of the entries of matrix W becomes increasingly
complex. We hence need to find an alternative indexation scheme for the summation
above, properly suited to extract the desired information and establish Theorem 3.3.
We follow the combinatorial approach initiated in [7]. This approach is based on the
introduction of “non-backtracking" trees associated to “non-backtracking" iterations.

4.1 Strategy of Proof

To prove that the AMP iterations have the simple deterministic equivalent described
in Theorem 3.3 we first approximate the moments of x’ € R"*4 with the moments of
simpler objects z called the “non-backtracking” iterations, these are generated with
the same matrix W used in the recursion (8), with a slightly different recursion scheme
where the Onsager term is removed.

E@)™ ~ E@D™, Vm e N,
this is done in (Proposition 4.5) sect. 4.5. We then show a universality property of
the iterations z’ in (Proposition 4.2) sect. 4.3. More specifically, we show that if Z'

is another non-backtracking iteration sequence generated using another matrix w
satisfying the same assumptions as W but does not have the same distribution, then

E(z)™ ~E@EZ)™, Vm e N’
This means that we can reduce our problem to an AMP constructed using a Gaus-
sian matrix. Hence, without loss of generality we can suppose that W is Gaussian.

Moreover, we approximate the non-backtracking iterations z’ with another non-
backtracking iterations y’, but this time, in the recursion formula of y?, at each step ¢

we independently pick a new random matrix W’ £ W which is Gaussian,
EGH™ ~ E(yH)™, Vm e N,

this is done in (Proposition 4.4) sect. 4.4. x’ is now reduced to its simplest form y’.
Finally, we show in (Proposition 4.7) sect. 4.6 that

E(y)™ ~ EU)™, Ym e N,
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which is relatively easy given that y’ are Gaussian. This finishes the proof of Theo-
rem 3.3.

The proof of all these steps follows the combinatorial approach described in both
[7] and [21] and thus we begin by presenting the framework of “non-backtracking”
trees in sect. 4.2. Notice that that the key difference between prior research and our
approach is that the matrix W is no longer symmetric, and exhibits some correlations
between its entries.

4.2 Description of the Tree Structure

The proof of Theorem 3.3 follows a combinatorial approach which aims at studying
the moments of the AMP iterates. In order to simplify the expression of these moments,
we use planted and labeled trees to index the sums in these expressions. We first define
planted trees and then describe its labeling.

Definition 4.1 (Planted trees) We recall the following definition from graph theory.

e Arootedtree T = (V(T), E(T)) at o € V(T), where V(T) and E(T) denote
respectively the set of vertices and edges, is said to be panted if the root o has
degree 1.

e We consider that all the edges are oriented toward the root, we say that v € V(T')
is the parent of u if the edge (u — v) is in E(T), in this case, we use the notation
m(u) = v, we also say that u is a child of v.

e We denote by L(T) the set of leaves of T, i.e. vertices v € V(T') with no children.

e Given a vertex v € V(T), we denote by |v| its distance to the root o.

e Finally, we define a path starting at v| and ending at v; as a sequence of vertices
(v1,v2, -+, vg) such that v; = w(v;41) foralli € [k — 1].

We fix ainteger d, ¢t € N, throughout this proof we consider the class of planted trees
(T, o) of depth at most 7 such that for each vertex v, v can have at most d children.
We denote

NI ={(ar, -, a) eN?, aj +---+a, <dj,

where g is also a fixed integer.

Definition 4.2 (Labeled and planted trees) We now describe the labeling of the trees.
A labeling of a tree T, is a triplet of functions (¢, r, ¢) such that

€:V(T) = [nl, r:V(T)\{o} > I[g]l, c¢:L(T)— NZ,

e For each vertex u € V(T), £(u) is called the type of u.

e For each vertex u € V(T') except the root, r(u) is called the mark of u.

e For each vertex u € V(T) which is not a leaf, we denote by u[i] the number of
children of u that have mark i € [¢g]. We use the same notation to describe c¢(u)
foru € L(T); c(u) = (u[1],---,ulql]) € de. In what follows, this notation is
used instead of c(u).
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e For a non-maximal leaf u € L(T), i.e. such that |u| is less than the depth of 7', we
setu[l] =---ul[q] =0.

We denote by T the set of planted and labeled trees, with depth ¢ at most.

Non-backtracking Trees

One class of planted and labeled trees that is particularly adapted to our specific
study, is the class of trees satisfying the non-backtracking condition, we recall here the
definition that can be found in [7]. A non-backtracking tree is a planted and labeled tree
T such that for each path (u; = o, up - - - , uy) in T the types (£(u;), £(ui+1), £(1i4+2))
are distinct for each i € [k — 2]. We denote the class of these trees as 7. In addition,
we introduce the following classes of trees, for given integers i, j and r, we denote
by,

. ’Tl;] (r) C T" the subset of trees in 7" for which the type of the root is i, the type
of the child v of the root satisfies £(v) ¢ {i, j}, and the mark of v is r(v) = r.

e T!(r) C T' the subset of trees in 7" for which the type of the root is i, the type
of the child v of the root satisfies £(v) # i, and the mark of vis r(v) = r.

We can already use these trees to create the following objects. For a matrix W €
R a vector x € R" and a family of real numbers

o= [otl(r,ﬁ,s) RS Ngd, (r,€,s) € [q] x [n] x [t]}, we define,

W(T) := H Wewyew) »
(u—v)eE(T)
P(T.o ) =[] cwttutq) (r), €@), t = ul)
(u—v)eE(T)

(M= [ [] Cew®)™ .

veL(T) s€lq]

To better illustrate the concepts previously defined, we present a simple example
of a tree and demonstrate how it indexes the tree quantities W, I", and x (Fig. 3).

4.3 Non-backtracking Iterations

The non-backtracking iterations (z');, are defined recursively similarly to (x!), but
minus the Onsager term and with a slight change in the contributing terms from the
previous iteration. Recall that the purpose of having the Onsager term is to eliminate
components that induce non-Gaussian behavior in the iterates in the high-dimensional
regime. Basically, non-backtracking iterations evolve purposefully getting rid of parts
that are source non-Gaussian behavior. In particular we do not need to have a corrective
term.
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a {2}
W(T) = Wor WiaWi3 W1 W32 W,
b {1}1] (T, ,3) = apa(1,1,2)a0,0(2, 2, 1)a21(2 3,1)
x a31(2,1,0)a0,4(1,2,0)a1 3(1,6,0),
2)(210,0) ¢ /ef{a}m #(T) = (2(1)*@2(2) (a1 (1) (0 (2 >>
mEey o F e es) x (2(1))°(22(2))" (6 (1)) (w6(2))*.

{23[11(0,4)

. =3 ;
Fig. 3 Example of atree T € 7~ for parameters ¢ = 2, d = 4,t = 3 and n = 6. The types are written
between braces, the marks are between brackets and leafs info is between parentheses. In this example, T
is not a non-backtracking tree because of the two paths (@ <— b < ¢) and (b < d < e).

Givenany i, j € [n] withi # j, we initialize the non-backtracking sequence with

z?_> = xo We then define recursively z us1ng the previous iterations as follows
filj(’) Z Wie fr(Z)_;, £, 1), Vrelql, (32)
Leln\{j}

the case [ = i is excluded because W;; = 0. In addition, we also define the vectors
(z"); by
G )= )] Wiefr @ 1), Vr €lql. (33)
te[n]
We provide here a non-recursive formulation of zl_) i and zl’. described as sums

indexed by trees in 7;" | i and 7. (r).

Lemma 4.1 (Lemma 1 of [7]) Forall integerst € N, i, j € [n]andr € [q], we have,

o= Y WIIT,a nx(T),
TeT! .(r)

i—j

dry= > W, e t)x(T).
TE'];’(r)

Here x(T) := x°(T), we drop the superscript from this notation.

Note that this lemma is purely structural, the proof is not impacted by our specific

variance and correlation profiles.
To simplify the notations in the following proofs we introduce the following sets,

={@,j) enlx[n], sij >0} and C={G,j)€[n]xnl, 7;#0}.
34)

We also define the row and column sections of /C,

Ki={jelnl, sij>0} and K/ ={ielnl, s;>0}. (35)
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The next proposition shows that in the large dimensional regime, the moments of
a vector z/ issued from the non-backtracking iterations depend for large n only on the
first two moments of the elements of W.

Proposition 4.2 (adaptation of Proposition 1 of [7]) Let X be a random matrix
satisfying A-1, with distribution not necessarily identical to its analogue X. Assume
that W fulfills A-2. Let W be the matrix constructed similarly to W, but with the
X;j replaced with the X,] Startmg with the set of R9—valued vectors {zl_”, i,je
[n], i # j} given as z?_” = xi, define the vectors zl € RY? by the recursion (32)
and the equation (33), where W is replaced with w. Then, for each t > 1 and each

m e N9,
EGH™ —EE@)H™| =0 ( ! ) :
VK

Proof For simplicity and clarity of the arguments presented we restrict the proof to
the case where the multi-index m satisfies

0 ifs #r,

mifs =r,

m(s) = {

for some integer m > 0. The proof for a general multi-index m € N7 is very similar
to that of the single-valued case as long as ¢ is finite, and is thus omitted.
By Lemma 4.1, we have

E(Z ()" = Z (1_[ L(T, «, t)) |:1_[ W(Tk):| 1_[ x(Ti).
k=1

Ty, Tn€T (r) k=1
Foratree T and j, £ € [n], define
@ej(T) = {(u — v) € E(T), (t(), £(v)) = (j, O}

Based on the definition of W(T'), ¢;;(T) counts the number of edges in the tree T
that represent the (¢, j) matrix entry Wy ;. We also define ¢, for j < £ as

@je(T) = @jo(T) + ¢¢j(T),
this quantity represents the total number of edges in the tree 7 that represent either

W¢ or Wy ;. We know that there is an integer constant Cg = Cg(d, t, m) that bounds
the total number of edges in the trees 71, ..., T, € 7;’ (r), thus

DY 9 < C = md—_ll

ke[m] j<t
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CE is simply the maximum number of edges in the m-tuple of trees 71, - - - , T;,,. Given
an integer u € [Cg], recall that /C is introduced in (34), define

Ai(u) = {(Tl, . Tw). Ty € T/ () forall k € [m],

Vj<d, Z wje(Ty) #1,

ke[m]

Vil Y $ie(T) >0 = (j.D) ek,
[m]

ke
> D eiemo = uf.

ke[m] j<t

Since the elements of W beneath the diagonal are centered and independent, then,

Cg m n m
E(zj(r)" =Y > (H ['(Tx, a, f)) (Hx(Tk)) E [l_[ W(T"):| '
k=1

p=1 (T, T eAi(p) k=1 k=1
(36)

Notice that the contributions of the m—uples of trees in the set

(Ti, - Tw) € Ai(), Vi < €, Y o(Tjec{0,2) ¢,
ke[m]

are the same for IE(zl’. (r))™ and E(Zﬁ (r))™ by the assumptions on the matrices W and
W. Three cases can be considered for a couple of indices (j, £) where j < ¢ and
> ke P(T) je = 2,

e Wy is represented two times in the trees = contribution equal to s ¢,

e Wy is represented two times in the trees = contribution equal to sy,

e Wj; and Wy; are both represented in the trees = contribution equal to , /5j¢5¢; T je-

Notice that in all three cases the contributions do not depend on the distributions of
the entries of the matrix W but only on the first and second moments. Thus, defining
the set

A ={T... Ty e A 3j <& Y §T0e =3} G
ke[m]

the proposition can be proven if we prove that for all 4 € [Cg], the real number

£, = > <ﬁ T(Ty, a, t)) (ﬁ x(Tk)) E Lf[l W(Tk):|

(Tt T €A () =1 k=1

satisfies

|su|=0<\/;_n).
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Using the bounds (25) provided in the statement of Theorem 3.3, it is clear that
[Tie; T (Tx, e, ) and [ ]}, x(T)) are bounded as n goes to infinity.

Since there exists a constant C such that |EW/S[| <CK, $/2 for each integer s > 0
by A-1 and A-2, for each (T1, ..., Ty,) € ./Zi (), we have

El_[ W (T})
k=1

_ Yokt @ie(Ti) o 2k Pej (Tk)
= H‘EWJ'Z Wi;
j<t

(waezz;l @ATD) 12 (Eijzz;' b ‘T“) v

=11

j<t

=3 Xt Xk e (T)+6ej (Tx)
K,

<C CK, "2

To complete the proof, we shall show that
o u=t
| =0 (an ) . (38)

Given an m-uple (T1,...,T,) € ./T,- (un) of trees, we construct a graph G =
G(T1, ..., T,) by identifying the types of the vertices in all these trees (i.e., by merg-
ing the vertices of T1, ..., T, that have the same type). The marks as well as the
orientation of the edges are ignored. G is then a rooted and labeled graph whose root
is the vertex obtained by merging the roots of the trees 77, ..., T, (remember that
they all have the same type i).

The number of edges of G is

IE(G) =) 1y, o150
j<t

Remember that when ), ¢(Ti) je > 0, this sum is greater than 2, so

Vi<t D o(T)je = 21y, o1;0-0-
k

we also know that for some j < £ we have ) « 9(T) j¢ = 3. Consequently,

2AEG)I-D+3 < Y > oM,

j<t k=1

thus, |
w—

EG)| < ——.
[E(G)| < 7

Note that since G is connected, as being obtained through the merger of planted trees
with the same root’s type,
V(G| = |[E(G)] + 1,
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which gives
{veV(G), v#Eol < (u—1)/2.

Also, by construction, G satisfies the following property:
(u—v) € E(G) = £u) € Ky,

where K; is defined in (35). And by A-2, this implies that G satisfies the following
property: for any fixed labeled vertex v € V(G) if (u — v) € E(G) then u can be
labeled by at most C K, different values.

We shall denote as g;‘ the set of rooted, undirected and labeled graphs G such that

e G is connected,
e (o) =1i,|E(G)| = (n—1)/2,
e for any fixed labeled vertex v € V(G) if (u, v) € E(G) then u can be labeled by
at most C K, different values.
We denote as R* the set of all the elements of g;‘ but without the labels. Given a
graph G € g{‘ ,let us denote as G = U (G) € RH* the unlabeled version of G. With
these notations, we have

L= > @t e A, 6. T =G| 39)
GeRH Gegi“:_
U(G)=G

For each graph G, it is clear that
H(Tl,...,Tm) e A, G(T],...,Tm)zG” < c, (40)
where C = C(d, t, m) is independent of G. Our goal now is to show that
G eg", UG) =G} <cki V2, (41)

which is simply the number of all possible labelings of a graph G under the constraints
described above. To see this, consider a breadth first search ordering of the vertices of
the graph vg = o < v| < -+ < Yy (G)—; that begins at the root o, this ordering has
the property of visiting each vertex once and that each new vertex is connected to an
already visited vertex, i.e.

i {UO =0,V1, -, v‘v((_;)‘fl} = V(G)7
e Vj=1,--- 3k < jsuchthat (v; — ) € E(G).

Now, starting with v{ and by induction, after fixing the label of v;_1, one can see that
v; can only be labeled in at most C K, possible ways. So the number of all possible

labelings of G is bounded by CK Y @1~ < cx (=172,
Furthermore, it is easy to check that

|R*| <C.
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Getting back to equality (39), and using this last inequality along with inequali-
ties (41) and (40), we obtain inequality (38), and the proposition is proved. O

Notice that for a tuple of trees (71, - - - , T;,,) satisfying the following condition

Vi<t > e €{0.2),
ke[m]

if there exists a pair (j, £) such that Zke[m] éjg(Tk) =1land (j,¢) €C,ie tjp #0,
then E [[ Ty, W(Tx)] = 0. Consider the following subset A;i () of A; () defined

A = {1 T € A,
Vi<t Y gi(T) € {0,2},

ke[m]
Vit Y GuTo=1=(.0ecl “2)
ke[m]
If(1y,---,Ty) € A (u) then the graph G = G(Ty, - - - , T,;,) constructed by merging

the trees has exactly ©/2 edges, and that can be seen by writing

m
D00 =21xn -0
k=1

1 m
EG) =) 15y, guan=0= D5 2 ¢i(T) = /2.

J<l j<l 7 k=1

Define the set of graphs QNI" analogously to Q;‘ with the difference that we replace the
requirement |E(G)| < (u — 1)/2 with |[E(G)| = n/2. We can then write

Cg Cg
Bz ()" =Y Xu+ Y &u (43)
n=1 n=1

where

= >, > > (]m_[ (T, a, z)) (lm_[x(Tk)) E {f[ W(Tk):| :

GeRM GegGl': (1, T)edi(u): \k=1 k=1

(44)
Recalling that |£,| = O(K,, 1/ 2), we focus on the x,. To that end, we further decom-
pose the first sum on the unlabeled graphs G € R* above into a sum on the graphs
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which are trees and a sum on the graphs which are not trees, i.e., those that contain a
cycle. Let us denote, respectively, the corresponding sums by X,T and X}:IT, and write

T NT
XMZXM—i_XM .

We show in the following lemma that the contribution of the term X}fT is negligible.

Lemma 4.3 Consider the same framework as in Proposition 4.2. We have

xI=00) and XM =0 (K—) .

Proof In the proof of Proposition 4.2, we have already got that |E [[T;_, W (T)] | is
bounded by CK,, w/ 2, so we only need to study the quantity

)

{cedr v =6}

in the case where G is a tree and where G in not a tree. Recall that for a given G € éf‘
the graph G is connected and we have |E(G)| = /2 s0 |V(G) \ {o}| < n/2 with the
equality if and only if G is a tree. So repeating the same argument as in Proposition 4.2
we find that

f{eedt ve)=6)|=ckl? ama ||ced v©G) =G| =k,

in the case of G being a tree and not a tree respectively. Multiplying by CK,, * 2 yields
to the desired result. O

4.4 Approximation of the Non-backtracking Iterations

For each n, let us now consider an i.i.d. sequence (W'),—¢,;.... of n X n matrices such

L . . ..
that W/ = W. We define the vectors y!_ j and y! recursively in ¢ similarly to what
we did for the vectors zg_) j and z§ , with the difference that we now replace the matrix
0

W with the matrix W' at step ¢. More precisely, we set y = x? foreachi, j € [n]

i—j
withi # j. Given {yﬁ_)j | i,j e[n], i #j}, weset
VL = YT WAL 6D, i # ] (45)
Le[n]\{j}
Also,
e =Y WAL L. (46)
tLe[n]
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We introduce here a similar quantity to W(7') for a given labeled tree which is adapted
to the computations related to the iterations y!. We define W (T, 1) by

W _ 1—|ul
W(T,t) = | | Wy wyew)
(u—v)eE(T)

where we recall that |u| denotes the distance of the vertex u to the root o in the tree T'.
We can prove similar structural identities for yl-’ and yl-’_) jas what we did with the

iterates z! and z!_, ;- In fact, we have

VL= Y W(T,nI(T, e« n0x(T),
TeT! .(r)

i—j

Yy = Y W(T.OU(T, e, 0)x(T).
TE']?(r)

Proposition 4.4 Let (') and (y") two sequences defined in (33) and (46) respectively,
then for each t > 1 and each m € N4, we have that for each i € [n],

1
E(z)™ —E ’-"’:(9( )
|E(z)) ™| Ve
Proof We follow the same strategy of proof as in Proposition 4.2. For simplicity let
us fix m(r) = m for a certain r € [g]. We have

E[y/(n™"] = Z > (]'[ I (T}, @, r)) (1'[ x(Tk)) E {]‘[ W (T, t)} :
k=1

u=1(T1, - Tp)eA; (1) k=1

As in the case of (zﬁ), we can also decompose this sum into a sum over trees

(T, -+, T;p) in the set /TI- () (defined in (37)) and trees that are in the set A; (1)
(defined in (42)). The contribution of m-tuples of trees in .%T,- () is of order K, I 2, SO
we may focus on m-tuples of trees in Ai (). Recall the definition of a graph G € g{*
as the merger of trees (71, - - - , T;;,) where we identify vertices u that have the same
label £(u). As in the previous proof, we further partition these graphs into trees and
graphs that contain at least a cycle. The latter have a contribution of order K- !'so we
may focus on the contribution of graphs G that are trees. Write

3

=y ¥ 3 (lﬁm,a,z)) (ﬁx@))x@{nwm)]

GER! GGl Ty, TweAin): k=1
GlsatreeU(G) G G(T| ,Tm)=G

The proof of this proposition will be completed if we can show that x /{ =X /f .
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First, notice that the terms [[;_, I'(Tx, e, ) and [[;_, x(T}) are the same in
the expressions of le (defined in (44)) and )"(Z . So it suffices study the term

E []_[Z’:1 W(Tk)]. Two cases can be studied, whether this term is zero or nonzero.
Consider any m-tuple of trees (11, --- , Tpy) € .,Zl,- (n), if

E []‘[ W(m} #0,

k=1

then for every matrix entry (i, j) which is represented in the trees Ty, - - - , T,, there
exist exactly two edges (@ — b) and (¢ — d) such that {£(a), £(D)} = {€(c), €(d)} =
{i, j}, in addition |a| = |c| otherwise E []_[21:1 W(Tk)] = 0, we then obtain a second
moment of W which means that

E []‘[ W(Tk):| =E []‘[ W(Tk):| .
k=1 k=1

Now suppose for the sake of contradiction that

E []’[ W(Tk)] =0 and E []‘[ W(Tk):| £0,

k=1 k=1

we show that in this case the graph G = G(Ty,---, T,;) is not a tree which is a
contradiction. There exists a matrix entry (i, j) with i < j which is represented in
the trees (71, - - - , T,) by two edges (a — b) and (¢ — d) such that vertices a and ¢
do not have the same distance to the root o, i.e. |a| > |c| for example. This is because
E [[Ti=; W(Tx)] = 0 and because 7;; # 0, s;j # 0 and sj; # 0. Three possible cases
can be considered:

e (a — b) and (¢ — d) exist on the same path of a certain tree: by the non-
backtracking condition, these edges should be separated by at least one vertex say
eoflabel k ¢ {i, j},i.e.

o> a—>b—se—---—>c—>d---— o.

As for the graph G, this means that starting from a vertex of label i we should pass
through a vertex of label k ¢ {i, j} and then return to the vertex of label i which
creates a cycle.

e (a — b) and (¢ — d) exist in two different trees say 77 and 7> respectively:

> a—>b—> .- > ... >0 (T

>k —>c—> d—---—> o0 (Tp)
First notice that the labels of the vertices in each of these two paths are different:

if two vertices on the same path have the same label say k then due to the non-
backtracking condition they should be separated by at least two other vertices which
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result in a cycle in the graph G. Recall that the roots o7, and oz, are identified in
the graph G which means that in G there exist a path from the vertex £(b) to o
and another path from £(d) to o, these two paths are distinct as they have different
lengths which is a consequence of the condition |a| < |c|. In addition £(b) and
£(d) are either equal or linked in G, this creates a cycle in the graph.

e (a — D) and (¢ — d) exist in two different paths of the same tree: similar to the
previous case.

O

4.5 Approximation of the AMP Iterations

Let us now establish the relationship between AMP iterates (x’), and the non-
backtracking iterations (z'),. We see in the following proposition that the moments of
x! can be approximated by the moments of z.

Recall that we denote by 75 the set of planted and labeled trees of depth at most ¢,
such that the type of the root is equal to i. Analogously, 7;" denotes the subset of trees
satisfying, in addition, the non-backtracking condition (see Sect. 4.2).

Proposition 4.5 For eacht > 1 and each m € N4, we have that for each i € [n],

tNm tm| _ !
[E(xH™ — E(z}) }_O<m>.

In order to prove this proposition we need the following structural lemma that connects
x{(r)tozi(r)fori € [n],r € [q]land? € N. Considerl/_{it (resp. U!) the set of unmarked
trees of the set ’fit (resp. ’Tl.t ). We can consider that these sets are constructed by
identifying the trees with the same structure and labels. Denote also by ¢/ the map that
assigns to a tree 7 its unmarked version T := U(T). The two equations in Lemma 4.1
can be reformulated as:

g =Y WIrd,r,nxD),
Tel!

i—j

dry =Y W, r.0x(T),

Teu!
where W (T') and x(T') are invariant with respect to the marking of the tree, and

O(T,r,t):= > (T, a, 1), VT €lU.
TeT!(r) : UT)=T

Consider B! C U' to be the set of trees T such that for each (u — v) € E(T) we
have ¢(u) # £(v), in addition at least one of the following conditions holds,

e there exists a backtracking path of length 3: a patha — b — ¢ — d such that
£(a) = £(c) and £(b) = £(d),
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e there exists a backtracking star: a — b — c and a’ — b — ¢ such that £(a) =
L(a’) = £(c).

Lemma 4.6 For eacht,r,i there exists a f’(., t,r) such that f’(T, r,t) = O(1) uni-
formly in T and

X)) =)+ Y WL, r.0x(T).

TeB!

Proof We prove this lemma by induction on 7. The cases ¢t = 0, 1 are simple, suppose
that + > 2, and that the equation is valid for ¢. Recall the AMP recursion given by,

n q n
) =) Wi () = D0 WieWei £ (xf ™ dgs) £ (x)).

=1 s=1¢=1

Here we omit the dependence of f on £ and ¢, i.e. f,(x}, £,1) = f,(x}). Recall that
fr is a multivariate polynomial, so by Taylor’s expansion at zj,_ ;, we can write

FGD =[G+ Y (%) = 25(9)) ais) fr ()

s€lql

q Teey — of ()
o L s P

k:ki+etkg>2 Ls=1

(47)

where for k € N7 and x € R? we denote by D)’C‘ the following differential operator

8k1+---+kqg(x)

k _
D%g(x) = (DR x (@

Let 62 (r) = ZTEB,@ W(T)I(T, r, H)x(T), by the induction hypothesis we have

X0) = 24() + ¢} 0)
=2y () +24,;(r) + € (),

where we use the notation zz () = Wy fy (zlf;lz). Plugging this equation into (47)
gives

FGD =[G+ Y (2h8) + () deo (@)

s€lql

q (zz l(s) + ee(s)> (48)

+ Y I1 DX f(zemi),

k:kittkg>2 [ s=1
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Now, multiplying by W;; on both sides and summing over £ gives the following

oW =T+ Y Wi (2h,() + €4(9)) B ()
Le[n] Leln],selgl
ks
N CHORAD)
+ Z Wi l_[ Tl DX £ (zoi)-

Leln], ky+--+kg>2 s=1

(49)

The first term is obtained by the definition of szH (r), see Eq (33). The second term
can be decomposed into the two following sums,

Y WaWu @S L)+ D Wieeh(9)d fr(&hL,).
telnl,selq] teln],selq]

Now subtracting the Onsager term from both sides of Eq (49) gives the following

Ay =M - 3T wwy (ﬂ(x,?‘l)ax(s)fr(xg)—fr<z§;lz>ax(s>fr<zzﬁ,->)
leln],selql

+ D Wiy () (&) (50)
Leln],selq]

q (z%,i(s) + ef (s))ks

+ > wie | T1 o

telnl, ki+-tkg>2 s=1

Dkfr(zéﬁi)-

Denote by S1, S> and S3, respectively, the three terms in the right-hand side of the

previous equation except zﬁ“(r). One wants to prove that these three terms can be

written as sums over trees in 7' € Bf“ of terms having the form,
WD, r, 0)x(T),

where f‘(T, r, t) is obtained by construction, the exact form of this term is not impor-
tant, we only need it to be bounded as n goes to infinity.

The term S,

The second term is given by the following formula,

S = Z Wiéeé(s)ax(s)fr(zztgqi)-
Leln], selql
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The terms in this sum are given by

ef(s) =Y W(II(T.s,0x(T),
TeB,

ks—1
Ox(s) Jr(ze—i) = Z Oy, kg (r, €, t)ks (ZZ—N‘(S)) (Zz—n’(”)) ’
ki+-+kg<d uelg\{s}

with
2 () = Z W(T)I(T, u, )x(T).
Tel!

{—i
S> can thus be interpreted as a sum over trees 7 € Blf *+1 constructed as follows:

e The root o has a type equal to i, and o has a child, say [, of type £. This is due to
Wiy

e The vertex [J is the root of a tree in /3}. This is due to the term ¢} (s).

o The root’s child [J is also the root of ky + - -+ + (kg — 1) + - - - + k, additional
trees in U, __ .. This is due to the term dy(s) f(z¢—i). Note that in total, [J has at

—i

mostd > ky +---+ (ks — 1) +--- + k4 + 1 children.

By construction, we can easily see that 7 is in Bl{ 1

The term S

The first term is given by the following formula,

Si= 3 WieWa (f 600 D) = D0 L))

telnl,selql

Doing a Taylor expansion of the polynomial g : (x, x") > f(x)dx(s) fr(x') around
(2 5pr Z4sy) gives

S1 = Z WieWei Z

Lelnlselq] [Jl+1k[=1

11[ (27w + e,f‘l(u))j" EHNORTAD)

u=1

ky

i,k t—1 _t
G + k! DI 2

S1 can be seen as a sum, up to multiplication factors, of the following terms

WieWer [T (25" @0 + e @)™ (a0 + eh @)™ (2,w) ™ (&l )™

u=1
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with the constraint that ZZ: 1(u + ky) = 1. To show that S| can be seen a sum of

trees T belonging to Bf“, two cases should be considered, either it exists a u# such
that j, > lork, > 1.

o If there exists a u such that j, > 1, we construct a tree in 3’ +1 ag follows:

The root o has a type equal to i, and o has a child, say [, of type £. This is due

to Wiy.
— The vertex [J is the root of trees in 4, _, ;, which is due to the multiplication by
Z%—ﬁ (u)

The vertex [ has a child, say O, of type i, which is due to Wy;.

The vertex ¢ is the root of trees in Z/{l.:le, which is due to zﬁ;le (u).

Now because j, > 1, at least one of the following holds:

— The vertex ¢ is the root of trees in Bf 71, which obviously results in a tree
T e Bt
— The vertex ¢ is has a child of type ¢, which creates a backtracking path of

length 3 of types £ — i — £ — i which also resultsinatree T € B;H. This

child is the root of a tree in L{f:)lz. And this is due to the term zﬁl.

o If there exists a u such that k, > 1, we repeat the same argument. This time, the
multiplication by zz ;(u) gives a backtracking star [i, i — ¢ — i], which results

inatree T € Bf + Otherwise, the multiplication by 32 (1) adds a tree in B; which
obviously results in a final tree 7 belonging to B; +

The term S

The third term is given by the following formula,

ks
4q Zti(S)—i—elt.(S) l
s= Y W 1‘[(6’ O ) D fr(zemi).

telnl, kit-tkg=2 s=1

Similarly to the interpretation of S, as a sum of trees in Bf +1 we can repeat the same
arguments for S3. The terms that have ef (s) as a multiplication factor naturally results

in trees belonging to Bf +1 In the other case, notice that the constraints k1 +- - - +k,; > 2
implies that a term of the form W;, Zé i(s)z% l.(s/ ) always exists, this term produces a

backtracking star and thus the final tree T belongs to B;‘H.
By studying the tree terms, we proved the existence of a I'(T', , r + 1) such that

Iy = A Z W(TT(T, r,t+ D)x(T).
TeB! !
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Where f‘(T, t,t+1)isa funct~ion of f‘(T, t, t) and the activation functions’ coeffi-
cients. It remains to check that I'(7, ¢, t + 1) = O(1). This can be easily verified, and
its proof will be omitted. O

Remark 4.3 The previous proof is a non-Symmetric adaptation of the techniques devel-
opedin [7] and [21] in the symmetric case. Instead of terms Wl.ze in the symmetric case,
we handle their counterparts W;, Wy; in the non-Symmetric case and properly interpret
them as edges of a tree. Accordingly, we rely on an Onsager term based on matrix
W © WT instead of WO2.

Finally, we can prove Proposition 4.5 by repeating the same arguments used in the
proof of Proposition 4.2.

Proof of Proposition 4.5 We can restrict ourselves to the case of m(r) = m and m(s) =
0 for s # r. The m-th power of x! (r) is given by

E(x/@)" —E(Z@)" =E[zi¢) + Z W(L(T,r,)x(T) | —E(zH()"
TeB!

ey %

TieB! To, - T eBIUT (1)

E[Tw@)

i=1

The key observation here is to notice that the graph obtained by merging the trees
(T1, - - -, T;p) has an edge which is the result of the fusion of at least three edges, and
this is because 77 has a backtracking path or a backtracking star. This implies a bound
on the number of edges of the resulting graph.

4.6 End of Proof of Theorem 3.3

We now show that the sequence of Gaussian vectors (U") defined in (24) by the Density
Evolution equations approximate the iterations (y’) defined in (45) and (46) where
the matrices (W'),c are independent and Gaussian.

Proposition 4.7 Let W be a random matrix defined in (3) and satisfying assumptions
A-1 and A-2, suppose in addition that W is gaussian. Let (W'),cN be a sequence of
independent copies of W. Then for each multi-index m € N? and each integer t > 0
we have

max |E[(y)™] - E[W)H™]| — o.

ie[n]

Remark 4.4 Recall that the random matrix (U{, - - - , U,ﬁ)—r e R"*4 is defined such that
(U})ie[n) are independent and such that U/ ~ N'(0, QF) where (Q}); is a sequence of
k x k covariance matrices defined recursively by

0 = Y suE [f(U;,z,t)f(U;,z,t)T] .

Leln]
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In particular, the law of U does not depend on our correlation profile.
We also recall that the iterations y’ are defined by ylp_> = x? and

1
=) WOt
Leln\{j}

which implies that the conditional distribution of yfilj given F; 1= O’{WO’ e, Wil
is Vg (0, Hl.’j+1> where (H i’j), is a sequence of g x g covariance matrices defined for

each t € N* by the following recursion

Hi' = Y seB[f0l 60f Gl 60T].
Leln\{j}

t+1
i—>~j
we replace the matrix W with a random symmetric matrix W having the same variance
profile as W. By doing so, we can directly apply the result in [21, Proposition 15].

We therefore notice that the conditional distribution of y given F; is unchanged if

Combining the previous results we get the following convergence for each multi-
index m
max |E [(x)™"] —E[(U)H™]| — O.
i€[n]
We can then use the triangular inequality to get this same result for any multivariate
polynomial with bounded coefficients instead considering only the monomial X™.

Proposition 4.8 Let v : R? x [n] — R such that (., £) is a multivariate polynomial
with bounded degree and bounded coefficients. Then for each subset S™ of [n] with
|S™| — o0, it holds that

t . t
S0 > E[val. D] -E[y . )] — 0.
ieS™
Finally, in order to get the convergence in probability stated in Theorem 3.3, we
only need to show that the following variance

1 .
Var K_n.zs(:)w(x;’l) — 0 51
ieSn

converges to zero. The proof of this convergence is similar to the proof of [21, Propo-
sition 17] and thus is be omitted.

The proof of Theorem 3.3 follows then from Proposition 4.8 and the convergence
in (51).
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5 AMP with General Activation Functions and Nonzero Diagonal
Matrix

5.1 AMP for General Activation Functions

Now that we have proved the AMP convergence result for polynomial activation
functions in Theorem 3.1, we can generalize this result for non-polynomial activation
functions by approximation arguments. In other words we complete the proof of our
main Theorem 2.1 still assuming that the matrix model has a zero diagonal (X;; = 0).

We start this section with an approximation of the activation function 4 by polyno-
mials in order to use the convergence results of polynomial AMP.

Lemma 5.1 Let h be an activation function satisfying A-5 and let (Zl, Sl Zt) ~
DE (S, h, x9, t). Let e > 0 be a (small) real number, then there exists a set of functions
(pe(-s -, t))i‘z‘f such that for each n € Qy, p.(., n, t) is a polynomial and

E (h(Z!, 0 0) = pe(ZL, i, 1))* < e and [E(dh(Z!,ni, ) — dpe(Z, mi, 1))] <ee,

fort =0, .-, tmax With the convention that 79 = xO deterministic. In addition, let
e . . . ~1 ~t
Rf‘““‘ be the covariance matrix of the i-th row of (Z oo L ) ~ DE (pe, x0, 8, t),
then there exists §(e) such that 5(e) — 0 when e — 0 and

IR™ — R{™ || < 8(e), Vi € [n].

In order to prove this lemma, we need to show that the variances of Zf are bounded
away from zero. To that end, we use Assumptions A-4, A-5 and A-6.

Lemma5.2 Let S be a matrix satisfying A-2, x° an n-dimensional vector satisfying
A-4, h a function satisfying A-5 and A-6. Following the notations of Definition 1.3 let
(Zl, SR Z’) ~ DE (h x0, s, t) and recall the definition of the covariance matrix
R! € R™. Then for every t € N there exist two constant C = C(t) > 0 and
¢ = c(t) > 0 such that

(1) The spectral norms of the covariance matrices are bounded
VneN, Vien], |RI|<C.
(2) The variances of Zf are bounded away from zero
Vn e N, Vi € [n], Rf(t, t) > c.
The proof of this technical lemma is given in Appendix 1. The proof of the first part of
Lemma 5.1 relies on the polynomial density Lemma C.1 and the fact that the variances

of Z! are bounded from above and also bounded away from zero which is detailed in
Lemma 5.2. The second part uses the same proof technique described in the proof of
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Lemma 5.6. An immediate consequence of this approximation is that the covariance
. Xt
matrices R;"™ are also bounded.

Let (¥') the AMP sequence considered in Theorem 3.1. The following lemma
allows us to replace the “random" formulation of the Onsager term by a deterministic
equivalent, i.e.

diag(W@WTape(Sét,-,t)) with diag(vape(ff,-,z)).

Lemma 5.3 Foreacht € N there exists a constant C that does not depend on n such
that:

E| | Y (WijWji = Vij) dpe(®.nj.0) < C/K? foralli € [n].
jeln

where Vij = 1 /5ij5;i = E[W;; Wi ].

The proof of this lemma is provided in Appendix 1.
The following lemma gives the desired comparison of two sequences (x') and (¥')
defined by

(x’):AMP-Z(X,S,h,xO,r;) and (i’):AMP—W(X,S,pE,xO,n), (52)

where p, is the polynomial approximation of the function / by an error margin e in
the sense of Lemma 5.1.

Lemma5.4 Fix tmax > 0. Let (x') and (J‘Et) be two AMP sequences defined as in
Eq. (52), then there exists §(e) — 0 as e — 0 such that the following holds for each

t=1,-, thmax
[x" = X' [la < 8(e) +op(1) and [h(x") — pe(X)|ln < 8(e) + op(1),

where op(1) L 0.
n—>oo

Using this Lemma, we are now able to prove the AMP convergence result for
general activation functions.

Proof of Theorem 2.1 in the zero-diagonal case Let ¢ : Rm» — TR be a pseudo-

. . . T . . . T
Lipschitz function and denote x; = (x},---,x™*) and X; = (¥/,.--,x™) ,
without loss of generality we omit the scalars §; and the parameters n; by considering

that ¢ depends also on the index i. We have

1 1 . 1 . ~ 1 .
— Do) = - 3 (o) —e@ED)+— D @E)—eZ)+~ D (9(Zi) —¢(Z:).
i€[n] i€[n] i€[n] i€[n]
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The pseudo-Lipschitz property of ¢ implies that

1 . C . 5
n ,Z[]‘p(x") AT Dl — &l (14 il + 1)
Leln

i€ln]
tmax fmax tmax

<C (anf - ifnn) <1 + ) llx Zufﬂm) :
t=1 t=1 =1

By Lemma 5.4 we have Y} ™= |x’ — ¥'||, < 8(e) + op(1), and by Theorem 3.1
applied to the test function x — x2 we get ||¥'||, < C + op(1) which also implies
that ||x||, < C + op(1), finally we have

1 5
~| D2 g — 9| < 8(e) +op(D).

ie[n]

By Theorem 3.1, we have that

1 w ~
o Z(‘P(xi) —o(Z)) = op(1).

ie[n]

And finally by using Lemma 5.1 we get

1 o
— |22 0(Z) —¢(Zi)| = 8(),

i€[n]
which concludes the proof of our main theorem.

In order to provide a comparison between the two AMP sequences in (52), we need
the boundedness of the spectral norm of W, a technical yet very important condition.
This condition is enforced by A-3 that controls the sparsity level of the random matrix.

Proposition 5.5 Let A-1, A-2 and A-3 hold true. Then the following bound holds true
with probability one,

sup||W|| < oo.

n>1
The proof of this proposition is due to a result of [4] and is provided in Appendix 1.
In the following paragraph we give the sketch of proof of Lemma 5.4.

Proof of Lemma 5.4 The proof is basically an induction argument in which we use

Lemma 5.1, Lemma 5.3 and the AMP convergence result for polynomial activation
functions. The base case (¢ = 1) is easy. Suppose now that the result is valid for
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all s = 1,---,¢ and let us prove that it also holds for s = 7 + 1. By the triangular
inequality, we can write

vi+1 X
e+ — L, < IWIIAGD = peED)l,

+ lldiag (VE9A(Z") h(x'~") — diag (W © W pe) ) peE' .

The first term is directly handled by the induction hypothesis as well as the bound on
the spectral norm of W (see Proposition 5.5 ). Let us now show that the second term,
which corresponds to the normalized distance between the two Onsager terms, can
also be bounded by §(e) + op(1). Using the triangular inequality, this term is less than
IAD I A@ [+ AP |+ AD ., where

AW — diag (V (Eah(zf) . Eape(i’))) hx'h,

A® = diag (VEdpo(Z) (h(x'™) = pe@ ),

A® = diag (V (Eope(Z') = 9pe&)) ) pe@ ™,

AW = diag (V= W © WD pe)) e ).
For |AM||,,. We bound |[V (Edh(Z!) — Eape(it))]ﬂ by

[VE8h(Z') — VEIW(Z')];

+|VEaRZ) - VEap. (2| = cete),

(53)
where the last inequality is due to Lemma 5.1. The normalized norm of 4 (x’~!) can
be controlled using the Lipschitz property of & and the result of Lemma 3.2.

For ||A@||,,. We bound the real numbers [VE pe(zt)]i using inequality (53) and
we conclude using the induction hypothesis.

For |A®|,. We use Theorem 3.1-(20a) to show that [V(Edpe(Z')

—BpE(il))]i L 0 for any sequence (i) less than (n). We then use the bounds
n—oo

(19) to show that E||A®)|,, —— 0.
n—0o0

For || A®|,,. Finally, we use Lemma 5.3 to show that | A®||,, .o
n—odo
Using all these bounds we finally get

e =2, < 80 +om(1). (54)
Now, it remains to show that
1A = peE DI, = 8(e) +op(D).
Using Lipschitz property of & as well as the bound (54), we get

IR = pe DI < 8(e) + op(1) + [RE ™) — pe ] .
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Let ¢(x) = (h(x) — pe(x))? a continuous function with at most polynomial growth
at infinity, we write

. . 1 . ~ st+1 St+1
IR — peEFhIE =~ 3 (q)(x;“)—E«p(z;“))HEnh(z )= pe(Z I3,
i€[n]

by Lemma 3.2 the first term converges to 0 in probability, and by Lemma 5.1 the
second term is bounded by e.

5.2 The Nonzero Diagonal Matrix Model

We have been working so far with a matrix S with vanishing diagonal (S;; = 0), under
A-7.1In [21] and [7], this assumption simplifies the combinatorial derivations since it
prevents the appearance of loops in the combinatorial structures.

In this section, we lift Assumption A-7 and prove that Theorem 2.1 holds for random
matrices with nonzero diagonal elements. We proceed with a perturbation argument.

Consider a matrix X that satisfies A-1. Let § = (s;;)1<;, j<u be the variance profile
matrix satisfying A-2 where the diagonal entries s;; are non-necessarily zero. Finally,
define the matrix W as in Eq. 3, i.e.

Wij = sijXij -

Let x° and 5 two n dimensional vectors satisfying A-4, and /& a function satisfying
A-5 and A-6. Consider the sequence defined by

() e = AMPZ (X, 5,1, 5% ) .
We remind below the iteration expression:
xt = wh (x',n, 1) — diag (VE [0h(Z', 3, 1)]) hx'= gt —1),
where V = (v;j) = (tij./5i;8;7) and (Z', -+, Z") ~ DE (h, x°, S, 1).

In order to proceed, define S to be equal to S except the diagonal elements that we
set to zero;

Eij =(1- Sij)sij .

Define matrix W by VT/i i = +/5ijXij, and the R"-valued sequences (;}’ )teN by

(%), = AMP-Z (X, 3.1 x%, 1)

where the iterations are given by

= Wh (&, 9.1) — diag (VE [8h(2’, 7, t)]) RGE gt —1).
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Here V = (S0 8T)°"?0T = ((1 — 8;j)vi;)and (Z!, - , Z') ~ DE (h PUNS z).

Since this sequence is generated using a matrix model with vanishing diagonal, we
can apply the AMP result proven so far, i.e. for every uniformly bounded sequence
(Bi)icrn) and every PL test function ¢ : Rimaxtl 5 R we have

1 -1 ~fmax =1 5 fmax P
=D o T E = B, 2L 20— 0.

. n—o0
i€[n]

In order to prove the same convergence result for (x’);cn, we prove that x! is a
small perturbation of ¥ as n grows to infinity.

Lemma 5.6 Foreachi € [n]andt < tmax recall that R! (respectively Rf )is the covari-

ance matrix onf = 1[Z}, .-, Z17 (respectively Z~l’) Then || R} — I§f|| converges to
0 as n grows to infinity.

Proof We prove this result by induction on ¢. For r = 1 we write:

RE- R = Y s (h6one 0) = s (om0 = s (G 0))
teln] Leln] : L0

Hence

‘RJ_RJ

c
I_Rll < — — o.

- K, n— 00

Suppose now that for all s < ¢ the quantity || R} — Rf || converges to zero and let us
now prove that this convergence also holds at iteration step ¢ + 1. To this end, we must
study the (¢ + 1, s 4+ 1)-th entry of the ( + 1) x (¢ + 1) of the covariance matrices
Rf“ and Iélf‘H. We have

R+ 1s+ ) =R+ 1Ls+1)

teln] : £#£i
+ s E [(Z], ni, DR(Z] i 5)] - (55)
Using the fact that E [h(Z?, Ni, s)2] is bounded by a constant that depends only on ¢

1
and using Cauchy-Schwartz inequality, we have

C
|si B [h(ZE, nis OR(Z]  miy9)]| < — .
Ky
In order to bound the first term of the right-hand side of Eq. (55), first notice that
since h is Lipschitz then H : (x1, x2) — h(x1)h(x2) is PL, i.e. there exists C > 0

such that

Vi,y e R |H(x)— HO)| < Clx —yla 1+ Ixl2 + Iyl2) -
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Let ©2 € R?*2 and £2 € R?*2 be the covariance matrices of the vectors Zé’s =
(Z,,Z}) and Zé’s = (Z!, Zj), respectively. Then given & ~ N3 (0, I,) we can write

’E [H(ZZ"Y) — H(Zé"‘)]) = ‘IEI [H(Eg) - H(ig)]‘

< ClIz = SIE[ gl (1+ 12 12+ 12°1b) ] -

Using Lemma 5.2 it is easy to see that the factor

E (1l (1+ 127" 12 +12;°12) ]

is bounded by a constant depending only on #,5x. Now using the induction hypothesis
we obtain the following inequality:

1= -2 < 12?2 - E2'2 < IR, - RV —— 0
n—oo

Here we used the fact that the matrix squared root is 1/2-Ho6lder continuous on the
set of symmetric positive matrices, the proof in in Appendix 1. Note that by A-2 we
have s;; < CsK, !, plugging this into (55) gives the desired result. O

Remark 5.1 Notice that we can also specify the convergence rate of ||Rf — ﬁf || to 0.
In fact we can show that

t pt
IR, — R;Il < W

Proof of Theorem 2.1 in the General Case

We begin by proving the following convergence by induction on ¢,
1 =t P
x* =X, —— 0. (56)
n—o00

For t = 1, knowing that the xlo ’s live on a compact Q, we get

n

- 1 & c (YL X3
212 0y)12 2 042 =1
e =217 = W =WhGO = — D s Xih()? < — < S L 6T)

i=1

~ P .
thus ||lx! — %! ||ﬁ —— 0. Now assume that this holds for all s € {1, ---, ¢} and let
n— o0
us show that it is also satisfied for r + 1, i.e.
t+1 _ =+l P
”x —X ”n — 0.
n—>oo
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Let us write the difference between x'*! and ¥* +1,

xl-‘rl _j_l+1 — Wh(xt) _ Wh(.it)
+ diag (VE[9h(z")]) hx'™") - diag (VE [an(Z))]) n@ ™ ,
We first show that
IWh(x") — Wh(E)|,, —— 0.
n—00

We have

IWh(x") = WhE) |x <IHW — WAE)la+IW (h(x") — k&)l (58)

Using the fact that the %/ are bounded by a constant C = C(r) independent of n we
can directly see that the first term of (58) converges to zero. For the second term, we
use the bound on || W|| (see Proposition 5.5) as well as the Lipschitz property of & and
the induction hypothesis.

Now let us study the term

diag (VE [0h(Z")]) h(x'~") — diag (VE [ah(Z’)]) hGEY. (59)
This term can be decomposed as follows

diag ((V = V)E[9h(Z)]) hx' ™)
+ diag (VJE [ah(z’) - ah(z’)]) hx')
+ diag (V]E [ah(Z’)]) (h(x”l) - h(i”l))

= A1+ Ay + A3z

Using the Lipschitz property of & we can bound || A3 ||% as follows:

18], = |diag (VE [90(Z)]) (hx' =) = n& )|
< |aiag (VE [0rZ" ]) [ 1ne=1) = @D

< cmax [E[on(Z) |} e = &7,
j€ln]

Recall that ma)(] IE ‘ oh (th) ‘ } isbounded by C = C(¢), using the induction hypothesis

Jjeln

P
we prove that || Az, —— 0.
n— oo
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In order to bound the first term || A1 ||,,, notice that V — V is a diagonal matrix whose
entries are bounded by C/K,,, thus

Jog (v = 98 [on ) | < cmax (ElonzD]) =0 ()

where the last equality is by the boundness of max {E [0h(Z!)|}. Now write

i€ln

B = (h' ™) = @) +hE,

by the induction hypothesis we clearly see that A=Y — h(E _1)||,1 L 0,
n—oo

N 2
in addition we know that (¥ ")|2 — E Hh(Zt_l) L 050 by bounding
n n—>0oo

- 2
E H h(Z'=1 H we get that the probability of ||/ (x’ ~|I, not being bounded converges
n

t0 0. Finally [|Af [l ——> 0.
n—oo
For ||As |, we use Lemma 5.6 to bound Hdiag (V]E [ah(zf) - ah(Zt)])H by

C/K, and finally get || Az |, L 0. To sum up, we have proved that the difference
n—0oo

between the two Onsager terms (59) has a normalized norm converging to 0. Finally,
we have proved (57) by induction, i.e. ¥’ asymptotically approximates x’ in terms of
normalized norm. Now we are able to use the convergence result of the sequence (¥'),
to prove the convergence of X’ as n grows to co. Let ¢ : R'mx — R be a pseudo-

. . . o\ T - - max) T
Lipschitz function and denote x; = (x!, -, x/™) and%; = (¥},---,%™) ,and
without loss of generality we omit the scalars B; and the parameters n; by considering

that ¢ depends also on the index i. We have

] n o
— 20w —e(Z))

i=1

D o) — e

i=1

1
< —
T n

1| 2
+ Do 0@ — ez
i=1

1 n 2 N
+= D eZh — ezh
i=1

=01+ 0, +03.
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Using the pseudo-Lipschitz property of ¢ we get the following

C < 3 s
O1< — Y llei = &l (1+ x| + i)
i=1
1

C Imax % n 2
— (Zux’ —ifnZ) (Z(l + il + ||,~c,.||)2)
t=1

i=1

IA

IA

iRy

1
tmux tmux j
(an’ - ffn) (n + ) IR+ ||fc’||2>
=1 t=1
Tmax Tmax Tmax
o (an’ - i’nn) (1 + ) Il + Zni’m) :
t=1 t=1 t=1

IA

Then, by using (57) we get ® LN 0. The term ®;, converges to 0 in probability by
n—o0

Theorem 2.1 applied with zero diagonal matrix model. As for ®3 we use the pseudo-
Lipschitz property of ¢ as well as Lemma 5.6. This ends the proof for Theorem 2.1.

Appendix A. Proof of Theorem 2.3
We prove here the AMP result for non-centered matrices described in Theorem 2.3.
We follow the general idea described in [18], which is to reduce the problem to an

AMP with centered random matrix model and apply Theorem 2.1. To this end, write
the following,

X = (o, by T ) u + Whe(x', ) — diag (VEBA(Z' + pu, ) hy—1 (6", )

= Wi+1U + Wht(xta ) — diag (VEBh,(Zt + weu, 77)) ht—l(xtil, n) + &1,
where 6; := A <v, By (71, 17)) — p¢. One should think of §;4ju as an error term,
we will show later that this term has a negligible effect. Define now the following

sequence (}’) ren @S follows,

7=x" and 3 :=x' —pu fort>1,
this sequence satisfies the following recursion,
1 = We (5, v, ) — diag (VEdg(Z', v, ) g1 (5"~ ", v. 1) + 8510, (60)
where the function g; (x, v, n) with parameters v and 7 is given by,

gx,v,n) =h(x+xr,n VxekR
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One can clearly see that this function satisfies the same assumptions as ;. Now define
the following AMP algorithm (y*);cn by

O =x0
’ . - (61)
yr =W (y', v, n) — diag (VEdg(Z', v, ) g—1 (¥, v.m) .

where —~
(Zl,... ,Z’) ~DE(h,x0, S,t,u,v) )

in the sense of Definition 2.11. A key observation is that
(zl,--- ,Z’) ~ DE (g,xo, s t) .
Hence Theorem 2.1 applies for the recursion (61) and yields that for any pseudo-

Lipschitz test function ¢ : R*! — R it holds that

n

n
%X;ﬂﬂp (m,yil,"' yf) — BiE [(p (m, zl, - Zf)] %) 0. (62
i=

In order to prove our result, it suffices to show that the error term &, u in Eq. (60)
is negligible and that for all # one has y’ &~ y'. To this end, we want to prove by
induction on ¢ that,

5 —— 0 and |5 —y'll, —— 0, forall £ > I. (63)
n—oo n—oo

Fort = 1, we have §; = 0 and _91 = yl. Suppose that (63) is true for ¢, and let us
prove that this remains true for # 4+ 1 as well. Let us begin with §,41. We have the
following

81 =2 Y vi (&) — Eei(Z)))

i€n]

=1 ) i (&G —aOD) +r Y vi(ab) —Ee(2)
ien] i€ln]

=TT +T.

Using the Lipschitz property of the function g; as well as the induction hypothesis,

~ P . P
namely, || — y'|l» — 0 we directly get that T} — 0. As for the second term,

T, L 0 is a direct application of Theorem 2.1, i.e. Eq. (62).

n—oo

. ~ P . . ..
It remains to show that || y*+1 — y+1||, —— 0. Using the recursive definition of
n—oo

('), and (y"), in (60) and (61) we can write the following;
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FH — Yy =W (¢:(5) — & (y")) — diag (VEdg (Z"))
(gtfl (it_l) — 8r—1 (y’"l)) + 11

The normalized norm of the first term can be easily handled using the Lipschitz prop-
erty of the function g; as well as the induction hypothesis, we also use Proposition 5.5
which ensures the boundness of the spectral norm || W||. As for the second term, we
similarly show that the quantity || g;—1 (j}t_l) — 213" ~YH ||, vanishes, in probability.
It remains to show that ||diag (V]EBg,(Z’ ))|| is bounded as n goes to infinity, this
clearly holds as dg; is the derivative of a Lipschitz function and thus is bounded.

Finally, we have proved that || 5+ — y'*1||, L, 0 which ends the induction
n—oo

argument. Using (63) and the AMP result of the sequence ( y! ) , we directly deduce
an AMP result of the sequence ('),

Appendix B. Elements of Proof of Lemma 3.2

LemmaB.1 Let (m,) and (a,%) be two bounded sequences and let (vy,) be the sequence
of Gaussian measures with means m, and variances anz. Let () be any sequence of
probability measures such that the following holds for each k € N,

/xkdu,, — /xkdvn — 0. (64)

n—oo

Then for any continuous function ¥ : R — R such that |p(x)| < C(1 + |x|™) for
some constant C > 0 and some integer m we have

/W(X)dun —/lﬂ(X)dvn —= 0. (65)

Proof First, it is sufficient to show that from any subsequence of (n) we can extract a
further subsequence such that the convergence in (65) holds along this subsequence.
So without loss of generality we only prove that if (64) holds along the sequence (n)
then there exists a subsequence of (n) along which (65) holds.

The sequence of probability measures (v,) is tight because (m,) and (anz) are
bounded, thus we can extract a subsequence of (n), which also be denoted as (), such
that (v,) converges weakly to a probability measure v. Consider now the moment
generating function ®,, of v, defined on R as follows,

®,, (1) = /e”fdu,,(x) = exp(mpt +0212/2), teR.

This function can be viewed as a restriction to the real line of the following holomorphic
function

®,,(z) = /e”du,,(x) = exp(mpz + 0722%/2), z€C.
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Notice that the sequence (®,, ) is uniformly bounded on compact sets of C, thus there
exists a holomorphic function ® and a subsequence of (n) such that ($,, ) converges
uniformly to ® on compact sets. This implies the pointwise convergence of the moment
generating function (&, (¢)) to ®(¢) so by a convergence result in [14, Theorem 3]
and the uniqueness of the weak limit, we get ®(r) = &, (¢). The convergence of
(P, (1)) to @, (¢) implies the convergence of the moments, and by (64) we get

/xkdu,, — /xkdv, (66)
n—oo

we also know that &, characterizes v [14, Theorem 1], thus v is determined by its
moments, so (i,) converges weakly to v. Let ¢ be afunction as in the lemma and let X,
and X be random variables with distributions p,, and v, respectively, we want to prove
that E[vy (X,,)] m E[¥(X)], this follows from the convergence in distribution

of (¥ (X,)) to ¥(X) and the uniform integrability of (1 (X})). The latter is due the
following observation

supE | (¥ (X,))?| = C?supE[ (1 + 1X,")? | = €% sup / (I ]x ™) 2djn (x) < 0.
neN neN neN

The last inequality is due to the convergence of the moments (66). O

Remark B.1 Results of Lemma B.1 can be extended to probability measures i on R?
by Cramér-Wold theorem, i.e. considering the push-forward probability measure u;
by the map x — (x, t) for each r € R%.

Remark B.2 We can also extend Lemma B.1 to the case where (u;) and (v,) are
sequences of random probability measure and where we replace both two convergence
statements by convergence in probability formulations. The proof follows from the
subsequence criterion [24, Lemma 3.2].

Appendix C. Polynomial Approximation

The following lemma states a basic density result of polynomial functions in the Hilbert
space L* (i) where y is a Gaussian measure. The polynomial approximation is shown
to hold uniformly on certain sets of Gaussian measures (¢ )ges-

Lemma C.1 [2]] Let Q C Racompact setand h : R x Q — R a function satisfying
the following properties. (i) There exists a fixed number L > 0 such that uniformly in

nego,
lh(x,n) —h(y,m| < Llx—yl, ¥,y eR>.

(ii) There exists a continuous non-decreasing function k : Rt — RT with k(0) =0
such that

e, ) —h(e, ) < wnp—n'D(A+1xl),  VxeR, Vi,1)e Q.
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Let 0 < 0min < Omax and & > 0 be fixed, and &€ ~ N (0, 1).
There exists a function g : R x Q — R such that for every n € Q, x > g.(x, n)
is a polynomial, and uniformly in n € Q and o € [Omin, Omax),

E(h(o&,n) — g:(c&,m))* <& and |Edh(o€,n) —Edrge(ok, | <e¢.

Proof Let § > 0 and consider a §-covering of the compact set Q with balls centered
in {nk}kerk]- Fix k € [K] and consider the function x — h(x, ng). By the density of
polynomials in the space L2(N(0, or%m)), there exists a polynomial x — g.(x, nx)
such that

IS

E (h(omaxé, nk) — ge(Omaxé, nk))z =

Let n € Q and ny such that |n — ng| < § and put g (x, n) := g (x, ng) for such n. By
the properties of function %, we have

E (7(0max&s 1) — e (Omax, M)* < 2E (h(0max&, 1) — h(0maxE, 7))*
+2E (7 (0maxé s 1) — ge (OmaxE, 1))

&
< 2L%(8)°E (1 + omax|E])? + 5

Using the properties of k we can choose 6 > 0 small enough so that
E (h(omax€. 1) — 8¢ (Omax§, m)* < €.
Let o € [Omin, Omax], denote p(x) := h(x, n) — g (x, ). A change of variable yields

Omax Omax

Ep(c§)* <

i Eﬁo(amaxé)z =<

min Omin

By Stein’s integration by parts lemma we also have

] 1 max
[B¢'@e)| = —Elsps)] = VEpe)? < [-Im /e

Omin (omin) 3

which concludes the proof. O

Appendix D Proof of Lemma 5.3
Proof of Lemma 5.3 In this proof, we use the framework introduced in Sect. 4.2. Let

usput pj ;=9 p(i;, n;j,t) as a simplification of the notations, the expectation can be
developed as follows,
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4
E (Z (Wi Wi — Vi')Pj)

J€ln]
4
= > E[{TTWyWii=Vij) | pispiapispia
J1,J2:J3,ja€lnl =1
= ) EeG j2 j3 0.
J1,J2+J3,Ja€lnl

with p; having the following form

d—1

pi= Y (+ 0.0 (¥)

£=0

14

notice now that by using Lemma 4.6, we can easily see p; as a sum over unmarked
trees with root type j, with depth at most ¢ and with each vertex having at most d — 1
children, the weight of the trees (i.e. the terms W (T), f(T) and x(T)) are the same
as in Lemma 4.6.

pj= Y W@DI(T)x(T).

TeL_l;.

Thus, the quantity ¢ (j1, j2, j3, j4) above can be written as a sum over trees as follows:

(1, 2, J3, Ja) = > W (T1, Ts, Ty, Ty),
(N, 1,13, Ty)e.
t t t t
u.fl Xu.fz Xuja XZ'11'4 (67)
4
V(T T2, T3, Ta) o= 1_[ (Wije Wjsi — Vij,) W(T)T (To)x(Ty) .
=1

In the case where ji, j2, j3 and js are distinct, the above sum can interpreted as a sum
over trees having the structure described in Figure 4.

these are trees having a root of type i, this root has four children of types ji, j2, j3
and j4, each one of these four vertices has a child of type i and is also the planted root
of a tree of length # — 1. Let us denote by S; the set of all these trees. Let T € S; atree
parameterized by (T1, T», T3, Ty) € L_{}I X Z/_{j’.z X Z/_{;g X 5{;4 and let p be the number
of edges of T', i.e.

4
p=8+) |ET).

=1
Following the proof of Proposition 4.2, we know that

By (T1, T, Ts, Tp)| < CK, "%, (68)
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Fig.4 Tree structure.

Let us now compute the number of non-vanishing contributions in ¢(j1, j2, j3, ja).
A term Eyr(Ty, T, T3, Ty) vanishes if there exists an £ = 1, 2, 3, 4 such that neither
the edge (i — j¢) nor (j; — i) belongs to set of edges of the trees T, --- , T4 or
if there exists another edge in Ty, - - - , T4 which occurs once, in other words, if we
consider the graph G obtained by identifying the vertices of the same type in T then
T has a non-vanishing contribution if all the edges are covered in G at least twice and
the edges {(i, j¢) | £ = 1, --- , 4} at least three times, then:

w=>2(EG) —4)+3x4=2|E(G)| + 4.
Notice that G is a connected graph (there exists a path from any vertex of G to i), then
VGO =IEG|+1=pn/2-1

The vertices except {i, ji, j2, j3, j4} can have arbitrary types from a set of at most
CK,, types, so we get

. . . . —u/2 2—1-5 _
[E@(ir, jos j3. ja)| < CKy "2 K1 = CK,°,

Ky
4
elements, this means that

In addition, we have < ) < CK, 3 choices for quadruples (ji, j2, j3, j4) withdistinct

> B, o 3 il < CK2.

J1:J2,J3,ja€ln)
distinct

A similar argument can be used to analyze the other cases where ji, j2, j3, ja are not
necessarily distinct.
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Appendix E. Proof of Proposition 5.5

We begin by decoupling the entries of our random matrix W using triangular inequality
twice

EIWI7)? < BAUI+1LD?)? < ®IU1P)? + EILIP)"?

where U and L are n X n triangular matrices corresponding to the upper part (including
diagonal) and lower part of W, respectively. Notice that U can be seen as an n X n
random matrix with independent entries having the following variance profile

u _ )siifi <j
ij =

s .
0 otherwise.

Following the notations of [4] we define
1/2 1/2
0] = max Sii , 02 = max Sii , Oy = max ./s;;.
1 ; Z ij 2 ; Z ij * 114’ ij

1<
Jj=i i<j =/

Now using the results of [4] we get

< 01 4 02 + o, (log(n)) PV

(l()g(J l)) vl
<
~ 1 h/n *

Using assumption A-2 we get (]E|| U ||21°g(”)) 1/210g(n) < C and with a similar treatment
to L we finally get (IE|| W||21°g(”))1/2 log(m) < C. Using Markov’s inequality,

1/21og(n)

1
PIW| > Cel < —.
n

Finally, using Borel-Cantelli’s lemma we get

}P’[supHWH < oo] =1.
n

Appendix F. Proof of Lemma 5.2

We prove both results by induction on z. The proof of the firstitem is very similar to [21,
Lemma 1] and thus will be omitted. Let us now prove the second item. For t = 1 we

2 . . 2
haVe Rl‘l(la 1) = ZZ:] Sie (h(x?a ne, 0)) 2 lnf}’lEN mfie[n] (h(xlov Ni, 0)) ZZ:] Sit,
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using assumptions A-2, A-4 and A-6-(1) we get the result. Suppose now that that exists

¢ > 0 such that
Vn e N,Vi € [n], 0; :=,/Ri(t,1) > c.

Let £ ~ N(0, 1), we can write

RV G+1,141) = ZME (Zy. ne.n)* ZszelE(h(Gzé ne, 1)
=1 =1

> B (h(0u&, 1 0)2 ) sie,

=1

where (0, 17,) is such that E (h(0,&, 14, 1))? = mingep,) E (h(0¢, ne, 1)) Let D > 0
be as in A-6-(2), using the induction hypothesis and the previous result we can see
that 0 < ¢ < o, < C, using this gives the following

E (h(04&, 0w, 1))* = )% exp(—x2/202)dx

(h(x, e, 1))? exp(—x? /20 )dx

z;/
C2 D,D]

2 2
. exp( D /2‘7 )/ (h(x, 0., 1) dx

—D2 2¢2
L KD 2T / (h(x, n, 1)) dx .
C\2n n€Qy JI-D,D]

Finally assumption A-6-(2) gives the result.

Appendix G. Holder Continuity of the Squared Root

Lemma G.1 The function X +— X'/2 is %-Hdlder continuous on S (the set of sym-
metric positive matrices).

Proof Let A, B € S}, it suffices to show the following inequality,
IA — BI* < 4> — B?|.
Let A be an eigenvalue of A — B such that [A\| = ||A — B]|, then there exists u € R”

of norm 1 such that
(A— B)u = \u.

We can write the following
A> - B>=(A—-B)>+ B(A—B)+ (A — B)B,
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taking the quadratic form of this matrix at u# gives
IA2 — B2 > u" (A2 — B®)u = 22 +27u Bu.
We can assume without loss of generality that A > 0, having that u " Bu > 0 gives

IA2 — B?|| = 22 4+ 2iu" Bu > 2% = |A — B|>.

This result is used in the proof of Lemma 5.6.

Appendix H. Proof of Corollary 2.2
Consider the two AMP sequences (x) and (') defined recursively by

X = Whx') — p (dh(x)a h(x'™1),
T = WhE) — pEh(ZY) h(x' Y,

with x0 = )EO, and where (Z1, ..., Z;) satisfies the “asymptotic” Density Evolution
equations (13).

We present here only the proof of the convergence of the empirical measure of
the last iterate u* . The proof of the convergence of the empirical measure of the
first 7 iterates (x!, ..., x") follows by the same argument. To prove Corollary 2.2, it
therefore suffices to show, by induction, that for all # > 0,

- P
Ix' = &|l, —— 0, (69)
n—oo
P, W,
=, (70)
n—oo

where we denote by i, the law of Z; and we use the notation of Wasserstein conver-
gence W. The statements clearly hold for + = 0, 1. Assume now that (69) and (70)
hold for # and ¢ — 1, and let us prove that they also hold for # + 1.

Step 1. Proof of (69) for r + 1. We decompose

xl+] _ il+1 — W(h(xt) _ h(il))
— ph(x'"H[(0h(x")y — EdR(Z")]
— pEdn(Z") [n(x""") — h(x'™h]
=: A1+ Ay + As.
Term A1. We have ||Aq]l, < L||W|| |lx" —%"|,. Using the spectral norm bound on

W (see Proposition 5.5) and the induction hypothesis (69), we conclude that || A1 ||, —
0 in probability.
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Term Aj. By the induction hypothesis (70), ,ux[ => [, in probability. Let (n)
be a subsequence along which this convergence holds almost surely. Since dh is
bounded (as % is Lipschitz) and continuous u-a.e., we have by [18, Lemma 7.14]
that (3h(x")), — Edh(Z") — 0 a.s. along (n). It remains to show that ||z(x'~1)]|, is
bounded. We can write

1"l < 1A ™Y = RGE ™D + 1hGE D

The first term converges to zero in probability by (69), and the second is bounded
almost surely (see Theorem 2.1). By the subsequence criterion [24, Lemma 3.2], we

P
conclude that ||Az]l, —— O.
n—>oo

Term Az. This term vanishes in probability directly from the induction hypothe-
sis (69) fort — 1.
Step 2. Proof of (70) for ¢+ + 1. Let ¢ be a bounded Lipschitz test function. Then

t+1 141 ~1+1 ~1+1
'/fpdu’“ —/wdum < ‘/wdu" —/(pdu"’ ‘+‘/¢du" —/wdum

The second term vanishes in probability by Theorem 2.1, and the first is bounded
by [x/+! — ! I, (up multiplication by the Lipschitz constant), which vanishes in
probability as established above.

To obtain convergence in W, it remains to show that the difference between the

1 . . -
second moments of /Lxl+ and p;41 vanishes in probability:

‘/xzdu«xm —/xzdum
/x2 det+l _ /x2 d,lLiH—I‘ + ‘/xz d/,LiH—l _ /xz d/j,t_H

The second term again vanishes by Theorem 2.1. For the first term,

=<

n

1 N 1 o N g
’_l E (xit+1)2 _ (xil+1)2 — ; E (‘xl‘t+1 _ xl‘l+1)(xf+l +x;+1)
i=1 i=1
1 ~t+1 1 ~t+1
< [l = E L 4 2,

t+1 ~1+1 t+1 ~t+1 ~t+1
< e =T (e = F T 4 20 ).

The quantity [|%'7!|, is bounded (Theorem 2.1), while [|x'*! — &1, —>n_I>POO 0,

completing the induction.
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