
Journal of Theoretical Probability           (2026) 39:19 
https://doi.org/10.1007/s10959-025-01476-z

Approximate Message Passing for General Non-Symmetric
RandomMatrices

Mohammed-Younes Gueddari1 ·Walid Hachem1 · Jamal Najim1

Received: 10 March 2025 / Revised: 24 November 2025 / Accepted: 16 December 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2026

Abstract
Approximate message passing (AMP) algorithms are a family of iterative algorithms
based on large random matrices with the special property of tracking the statistical
properties of their iterates. They are used in various fields such as statistical physics,
machine learning, communication systems, theoretical ecology, etc. In this article
we consider AMP algorithms based on non-symmetric random matrices with a gen-
eral variance profile, possibly sparse, a general covariance profile, and non-Gaussian
entries. We hence substantially extend the results on elliptic random matrices that
we developed in Gueddari et al. (Random Matrices: Theory Appl. 14, 2025). From a
technical point of view, we enhance the combinatorial techniques developed in Bayati
et al. (Ann. Appl. Prob. 25:753–822, 2015) and in Hachem (Stoch. Process. Appl.
170:104276, 2024). Our main motivation is the understanding of equilibria of large
food-webs described by Lotka–Volterra systems of ordinary differential equations,
continuing the work of Hachem (Stoch. Process. Appl. 170:104276, 2024), Akjouj et
al. (J. Math. Biol. 89:61, 2024) and Gueddari et al. (Random Matrices: Theory Appl.
14, 2025), but the versatility of the model studied might be of interest beyond these
particular applications.
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1 Introduction

Approximate message passing (AMP) refers to a class of iterative algorithms that
are built around a large random matrix, producing at each step a high-dimensional
R
n-valued random vector (n � 1) whose elements’ empirical distribution can be

identified as n goes to infinity. These algorithms take the following form

xt+1 = Wht (xt )− {corrective term},

where xt = (xti ) is the n × 1 vector at iteration t , W is a n × n random matrix, and
ht (xt ) = (ht (xti ))i is a vector based on the so-called activation function ht : R→ R.
The corrective term, known as the Onsager term, is carefully defined to facilitate the
description of the statistical properties of xt as n→∞.

In the fields of machine learning and statistical estimation, AMP algorithms were
originally developed for studying compressed sensing and sparse signal recovery
problems [8, 17]. They have since found applications across various fields, includ-
ing high-dimensional estimation [15, 25], communication theory [6, 29], statistical
physics [26], theoretical ecology [2, 19, 21], etc. AMP algorithms have undergone
extensive recent developments and the goal of this article is to extend the AMP frame-
work to general non-symmetric random matrices W .

In general, the random matrix model W may differ depending on the considered
application, and most of AMP algorithms focus on symmetric matrices. For instance,
in the problem of low-rank information extraction from noisy data matrix, the goal is
to estimate the n × 1 signal x� from noisy observations

Y = √λx�(x�)� +W , (1)

where W is a random matrix. In [16] and [27], the authors develop an AMP algo-
rithm involving a symmetric matrix W = 1√

n
G where G is drawn from the Gaussian

Orthogonal Ensemble (GOE(n)) to study the problem (1). More precisely, each entry
Gi j ∼ N (0, 1 + 1(i= j)), where 1(i= j) equals one if i = j and zero else, and all the
entries on and above the diagonal are independent. The 1/

√
n normalization factor is

standard in RandomMatrix Theory and has the effect to ensure that the spectral norm
of W is O(1).

In [9, 20, 23, 28], the authors develop an AMP algorithm involving a symmetric
random matrixW with a block-wise variance profile S to study the problem (1) in the
case of an inhomogeneous noise. More precisely, W is now written as

W = 1√
n
S�1/2 � G , (2)

where G ∼ GOE(n) and S is a symmetric, deterministic, block-constant matrix of
non-negative elements. Matrix S has a finite number of rectangular blocks which
dimensions scale with n, the elements of S�1/2 are the square roots of those of S, and
� is the Hadamard or entry-wise product. In the recent paper [5], Bao et al. consider
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an AMP algorithm based on Gaussian matrices with a variance profile and provide
non-asymptotic results.

Our main motivation to develop AMP algorithms associated to new matrix mod-
els comes from theoretical ecology and the study of large Lotka–Volterra systems
of ODEs. In such models, the random matrix W is used to model the interactions
between n living species that coexist within an ecosystem, and the time evolution
of the abundances is described by the multi-dimensional Lotka–Volterra differential
equation. In [2], Akjouj et al. consider the GOE model for the matrix of interactions,
and use an AMP approach to describe the statistical properties of the equilibrium point
of the resulting Lotka–Volterra dynamical system when this equilibrium is globally
stable. Dealing with a more realistic interaction matrix model, [21] considers a sym-
metric random matrix with a variance profile as in (2), with the main difference that
the variance profile matrix S can be sparse. Including correlations between the ele-
ments of the interaction matrix is an important feature in theoretical ecology. In this
direction, a non-symmetric elliptic matrix W is considered in [19], where each entry
pair (
√
nWi j ,

√
nWji ) is a standard two-dimensional centered Gaussian vector with a

covariance ρ ∈ [−1, 1], and where all the different pairs are independent.
All these cases are particular cases of the model we study in this article.

1.1 The RandomMatrix Model

The model under investigation here combines an arbitrary variance profile, possibly
sparse, with a correlation profile. To this end, we first introduce the notion of a T -
correlated matrix. Let [n] = {1, · · · , n}.
Definition 1.1 Let T = (τi j )1≤i, j≤n be a symmetric n × n matrix with entries in
[−1, 1]. The n × n random matrix X is T -correlated if

- Every entry Xi j is centered random variable with variance 1.
- For (i, j) ∈ [n]2, i < j , the covariance matrix of the pair (Xi j , X ji ) is

(
1 τi j

τ j i 1

)
.

- The random elements in the set {Xii , (Xi j , X ji ), (i, j) ∈ [n]2, i < j} are inde-
pendent.

Remark 1.2 Notice that the diagonal elements of T are not specified in this definition.
A natural convention could be to set τi i = 1, as it represents the correlation of Xii with
itself, but their exact values (as long as it is bounded) have no impact on the presented
results.

Let X be aRn×n–valued T -correlated matrix and S = (si j )i, j∈[n] be a deterministic
n × n matrix with non-negative elements. The random matrix model considered in
this paper is

W = S�1/2 � X = (√si j Xi j
)
1≤i, j≤n . (3)

123



   19 Page 4 of 69 Journal of Theoretical Probability            (2026) 39:19 

Notice that the entries need not to be Gaussian and contrary to (2), the normalization
is embedded into matrix S. We refer to S as the variance profile of matrix W and
to T as its correlation profile. Such a model is fairly general as it encompasses most
of the classical random matrix models (Wigner, Elliptic, Circular models) and many
important features required in the applications (sparsity, variance profile, etc.).

1.2 A Primer to Approximate Message Passing

For a random matrix W such that
√
nW ∼ GOE(n), an AMP algorithm starting at

x0 = (x0, · · · , x0)� using a set of Lipschitz activation functions (ht )t≥0 is given by
the following recursion equation; for all t ≥ 0,

xt+1 = Wht (xt )− btht−1(xt−1) where bt = 1

n

n∑
i=1

h′t (xti ) , (4)

with the convention that h−1 ≡ 0.
The crucial term in this recursion is the Onsager term, i.e. “ONSt := btht−1(xt−1)"

that we subtract from the power method iteration term at each step t . The effect of the
Onsager term is that for a fixed t and as n →∞, it “cancels” the dependence due to
the repeated use of matrix W at each iteration:

xt+1 = Wht (Wht−1(W · · · )− ONSt−1)− ONSt .

With the correction of the Onsager term, the asymptotic behavior of xt is similar to the
behavior of x̃t generated with the “power method iteration" but with a new sampled
independent random matrix Wt at each step t , i.e.

x̃t+1 = Wtht (x̃
t ) with

√
nWt i .i .d.∼ GOE(n) .

Notice that in the latter case, it is easy to characterize the asymptotic behavior of the
empirical distribution μx̃t of the entries of the vector x̃t = (x̃ ti ),

μx̃t = 1

n

n∑
i=1

δx̃ ti
.

Roughly speakingμxt ≈ μx̃t as n→∞. Beware however that the correlation between
consecutive iterations xt and xt+1 differs from the correlation between iterates x̃t and
x̃t+1 which turn out to be asymptotically decorrelated.

Given the iterates x1 = (x1i ), · · · , xt = (xti ) produced by (4), the main result
associated to AMP is the description of the limiting distribution of

μ(x1,··· ,xt ) := 1

n

n∑
i=1

δ(x1i ,··· ,xti
)
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as n → ∞ in terms of a multivariate Gaussian vector whose covariance matrix is
described by the Density Evolution Equations.

1.3 Density Evolution Equations

DensityEvolution (DE) equations are a set of recursive equations that define a sequence
of deterministic, symmetric, positive semi-definite matrices, which are central objects
in the analysis of AMP algorithms. These matrices are covariance matrices associated
to multivariate normal distributions which describe the asymptotic behavior of the
AMP iterates (and their correlations) as n goes to infinity.

Given a set of activation functions ht : R → R and a initial constant vector
x0 = x01n ∈ R

n , the Density Evolution equations associated to the AMP (4) with√
nW ∼ GOE(n) is a sequence of t × t matrices (Rt )t∈N� defined recursively as

follows,

R1 = (h(x0))
2 and Rt+1 = E

⎡
⎢⎢⎣
ht (x0)
ht (Z1)

· · ·
ht (Zt )

⎤
⎥⎥⎦
[
ht (x0) ht (Z1) · · · ht (Zt )

]
,

where (Z1, · · · , Zt ) ∼ Nt (0, Rt ). Notice that in particular, the variances σ 2
t = E Z2

t
satisfy a simple recursion equation given by:

σ 2
0 = h20(x0) and σ 2

t+1 = E h2t (σtξ) where ξ ∼ N (0, 1) . (5)

With the family of covariancematrices (Rt ) at hand, we can express the limiting statis-
tical properties of measure μ(x1,··· ,xt ) which captures both the asymptotic properties
of the iterates xt and the dependence between the iterates x1, · · · , xt :

μ(x1,··· ,xt ) weak,L2−−−−−→
n→∞ Nt (0, R

t )

in probability (see [18] for sharper convergence results). Stated differently, for any
test functions ϕ : Rt → R and ψ : R→ R,

1

n

n∑
i=1

ϕ(x1i , · · · , xti )
P−−−−→

n→∞ Eϕ(Z1, · · · , Zt ) and
1

n

n∑
i=1

ψ(xti )
P−−−−→

n→∞ Eψ(σt ξ) , (6)

where ξ ∼ N (0, 1),
P−→ stands for the convergence in probability and (σt )t≥0 is a

sequence of positive numbers defined recursively by (5).
In [19], we show that the DE equations used to study an AMP with an elliptic

matrix do not depend on the correlation coefficient, the latter being included in the
formulation of the AMP recursion, and more specifically in the Onsager term. In [21],
the case of a symmetric random matrix with a general variance profile S is handled.
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In the case of a general variance profile, the description of the asymptotic behavior
of the iterates becomes more involved and instead of having a multivariate Gaussian
vector (Z1, · · · , Zt ) we have a family of n-dimensional vectors (Z1, · · · , Zt ).

In the following definition, we give a general description of the DE equations
associated to a variance profile matrix S. We now consider that the activation function
depend on an additional parameter η and we no longer express the dependence in t
using a subscript, it is now included in the arguments of function h.

Definition 1.3 Let x0 = (x0i ) ∈ R
n and η = (ηi ) ∈ R

n be two deterministic vectors,
S = (

si j
)
1≤i, j≤n a matrix with non-negative elements and h : R2 × N → R an

activation function.

a) Initialization. For any i ∈ [n], define the non-negative numbers H0
i and R1

i as

H0
i := h2(x0i , ηi , 0) and R1

i :=
n∑
j=1

si j H
0
j .

Let Z1
i ∼ N (0, R1

i ), assume that for all i ∈ [n], the Z1
i ’s are independent and set

Z1 = (Z1
i )i∈[n] .

b) Step 1. Let Z1 = (Z1
i )i∈[n] be given and i ∈ [n] be fixed. Let

H1
i = E

[
h(x0i , ηi , 0)
h(Z1

i , ηi , 1)

] [
h(x0i , ηi , 0) , h(Z1

i , ηi , 1)
]

and R2
i =

n∑
j=1

si j H
1
j .

Notice that the 1 × 1 upper left corner of R2
i coincides with R1

i . Let Z
2
i be such

that �Z2
i := (Z1

i , Z
2
i ) ∼ N2(0, R2

i ), and such that for all i ∈ [n], the �Z2
i ’s are

independent. Set Z2 = (Z2
i ).

c) Step t. Let the covariance matrix Rt
i ∈ R

t×t and the R
n vectors Z1, · · · , Zt be

given, where
�Zt
i := (Z1

i , · · · , Zt
i ) ∼ Nt (0, R

t
i ) ,

and where all the �Zt
i ’s are independent for i ∈ [n]. Let

Ht
i = E

⎡
⎢⎢⎢⎣
h(x0i , ηi , 0)
h(Z1

i , ηi , 1)
...

h(Zt
i , ηi , t)

⎤
⎥⎥⎥⎦
[
h(x0i , ηi , 0) h(Z1

i , ηi , 1) · · · h(Zt
i , ηi , t)

]

and Rt+1
i = ∑n

j=1 si j H t
j . Notice that the t × t upper left corner of matrix Rt+1

i

coincides with Rt
i . Let Z

t+1
i be such that

�Zt+1
i := (Z1

i , Z
2
i , · · · , Zt+1

i ) ∼ Nt+1(0, Rt+1
i )
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Fig. 1 The Gaussian matrix (Z1, · · · , Zt ), the notations Zt and �Zt
i . Rows Zi = (Zt

i , t ≥ 1) are indepen-

dent. The correlations within each row are described by the DE equations: �Zt
i ∼ Nt (0, Rt

i ), see Definition
1.3.

and such that for all i ∈ [n], the �Zt+1
i ’s are independent. Set Zt+1 = (Zt+1

i ).

Consider the sequence of n-dimensional Gaussian random vectors
(
Zt
)
t∈N.We denote

(
Z1, · · · , Zt

)
∼ DE

(
S, h, x0, η, t

)
.

We also define Zi = (Zt
i )t≥1. The sequences {Zi }i∈[n] are centered, Gaussian, and

independent. The notations Zt and �Zt
i are described in Fig. 1.

1.4 Main Result (Informal)

As already mentioned, numerous studies [7, 19, 21, 28] have extended the AMP
algorithm to cover more complex random matrix models W . For each new matrix
model, two key questions must be addressed:

a) How to define a proper Onsager term?
b) What are the associated DE equations ?

In this paper, we answer both questions for the matrix model described in Sect. 1.1.
We show that the DE equations are given by Definition 1.3; in particular they only
depend on the variance profile and not on the correlation profile. Let W be given by
(3), h : R2 × N→ R an activation function, x0, η ∈ R

n deterministic vectors and

V =
(
S � S�

)�1/2 � T ,

where S and T are, respectively, the variance and correlation profiles of the random
matrix W , and (Z1, · · · , Zt ) be given by the DE equations. We identify a possible
Onsager term as

ONSt = diag

(
VE

∂h

∂x
(Zt , η, t)

)
h(xt−1, η, t − 1) ,
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and consider the AMP
xt+1 = Wh(xt , η, t)− ONSt .

We shall prove that for any appropriate test function ϕ : Rt+1 → R and uniformly
bounded sequence (β

(n)
i )i∈[n] of real numbers, the following convergence holds true

1

n

n∑
i=1

{
β

(n)
i ϕ(ηi , x

1
i , · · · , xti )− β

(n)
i ϕ(ηi , �Zt

i )
}

P−−−→
n→∞ 0 ,

where the �Zt
i ’s are defined in Definition 1.3. The formal assumptions and statement

are provided in Sect. 2.

Remark 1.4 As a consequence of the variance profile structure, each t-uple
(x1i , · · · , xti ) needs to be compared to �Zt

i in the convergence above, a situation sub-
stantially more complex than in (6).

1.5 Motivation fromTheoretical Ecology

The analysis of large ecological networks (foodwebs) and complex systems has gar-
nered significant attention in recent years, with numerous studies leveraging tools from
random matrix theory

[3, 11, 13]. In this perspective, large Lotka–Volterra (LV) models [1] describe the
dynamics of the vector of the species abundances x(s) = (xi (s))i∈[n] for s ∈ [0,∞)

in a series of coupled differential equations where the interactions are encoded by a
random matrix A whose entries Ai j ’s represent the effect of species j on species i .
The more complex the matrix model A, the better the modeling of the network.

In a series of articles [2, 19, 21], AMP algorithms were designed in this context to
analyze the statistical properties of the globally stable equilibrium x� (when it exists)
of the vector x(s), depending on the random matrix model (symmetric models in
[2, 21], elliptic model in [19]). More specifically, let z ∈ R

n be the solution of the
fixed-point equation:

z = (A − In) z+ + 1n , z+ = z ∨ 0 ,

which can be shown to be unique under a condition on A (see [2] for details), then
the equilibrium x� is given by x� = z+. Extracting statistical information from x� is
a non-trivial task as the dependence of x� to A is highly nonlinear. However this task
can be performed by designing a specific AMP algorithm.

In a foodweb, the effect j → i of species j on species i is a priori different from the
effect i → j . Moreover, recent empirical evidence [10] has shown that in a foodweb
of size n a given species only interacts with a small number Kn � n of other species.
One may want to go one step further in modeling foodwebs, and for instance consider
block structures with subpopulations with homogeneous statistical features [12].

All these desirable features naturally motivate the study of non-Symmetric and
possibly sparse randommatrices, with variance and correlation profiles. Such a model
is at the heart of the AMP developed in this article.
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In a forthcoming work, we intend to design improved matrix models for foodwebs
and to analyze via AMP techniques the equilibria of associated large LV models.

1.6 Outline of the Article

In Sect. 2 we formally state the assumptions and the main result of the article, namely
Theorem 2.1, together with examples, an extension to non-centered random matrices,
and open questions. The remaining sections are devoted to the proof of the main result
(see also Sect. 2.8 for a precise roadmap of the proof). In Sect. 3, we state a matrix
AMP for polynomial activation functions, see Theorem 3.3. Section 4 is the heart of
the proof of Theorem 3.3. It is based on combinatorial techniques which build upon
[7] and [21]. In Sect. 5 we generalize the previous AMP for more general functions,
and relax the assumption that matrix W should have null diagonal (an assumption
made to handle the combinatorics in the proof of Theorem 3.3).

1.7 Notations

Denote by |S| the cardinality of a set S. We often (but not systematically) use bold
letters for vectors a = (ai )i∈[n], b = (b j ) j∈[k], etc. If a = (a�) ∈ R

q andm = (m�) ∈
N
q is a multi-index, we denote by am =∏�∈[q] a

m�

� .
Denote by 1n (or 1 if the context is obvious) the n × 1 vector of ones and by 1n×p

the matrix 1n×p = 1n1�p where matrix A� stands for the transpose of A. For a ∈ R
n ,

diag(a) stands for the n×n diagonal matrix with diagonal elements the ai ’s. If a ∈ R
n

is a vector, ‖a‖ stands for its Euclidian norm and ‖a‖n := ‖a‖/√n for its normalized
Euclidian norm. If A is a matrix, ‖A‖ stands for its spectral norm.

If f : R → R and a = (ai )i∈[n] a vector, denote by f (a) = ( f (ai ))i∈[n] with
obvious generalizations f (a, b) = ( f (ai , bi )) for a, b ∈ R

n . Let f (x, y, t) a real
function with (x, y, t) ∈ R

2 × N, denote by ∂ f = ∂ f
∂x . Let a ∈ R

n and I ⊂ [n], then
〈a〉n = 1

n

∑
i∈[n] ai and 〈a〉I = 1

|I |
∑

i∈I ai . The empirical measures μa and μa1,··· ,at

of vector a = (ai )i∈[n] and vectors a1, · · · , at in Rn stand for

μa = 1

n

∑
i∈[n]

δai and μa1,··· ,at = 1

n

∑
i∈[n]

δ(a1i ,··· ,ati ) ,

where δx is the Dirac measure on R and δ(x1,··· ,xt ), the Dirac measure on Rt . Conver-

gence in probability is denoted by
P−→.

2 AMP for General Non-Symmetric RandomMatrices

Assumptions are introduced in Sect. 2.2. The main result, Theorem 2.1, is stated in
Sect. 2.3. In Sect. 2.5, we provide two examples, one focusing on the correlation
profile, the second on a sparse variance profile. In Sect. 2.6, we extend the AMP result
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to a non-centered random matrix model. Finally, we provide in Sect. 2.8 a detailed
outline of the proof of the main theorem.

2.1 The General Framework of the AMP Recursions

Let X be an×n T -correlatedmatrix and S an×nmatrixwith non-negative coefficients.
Recall the definition of W = S�1/2 � X in Eq. (3) and define matrix V as follows

V = (Vi j )ni, j=1 = (S � S�
)�1/2 � T . (7)

Notice that E
[
W �W�

] = V .
Let h : R2 × N → R be a measurable function such that for all (η, t) ∈ R × N,

the derivative ∂h(·, η, t) exists almost everywhere1. We denote as ∂h any measurable
function that coincides with this derivative almost everywhere. For x, η ∈ R

n and
t ∈ N, denote h(x, η, t) = (h(xi , ηi , t))i∈[n].
Definition 2.1 Let X be a n × n T -correlated matrix following Definition 1.1, W , V
given by (3), (7), and x0, η ∈ R

n . Let h : R2 × N→ R a measurable function such
that ∂h exists. Let Z1, · · · , Zt be R

n-valued Gaussian vectors defined in Def. 1.3.
Define the Rn-valued random sequence (xt )t≥1 recursively as follows,

{
x1 = Wh(x0, η, 0) ,

xt+1 = Wh(xt , η, t)− diag
(
VE∂h(Zt , η, t)

)
h(xt−1, η, t − 1) for t ≥ 1 .

(8)
The following notation will be used in the sequel:

(
xt
)
t≥1 = AMP-Z

(
X , S, h, x0, η

)
, x0, η ∈ R

n . (9)

Remark 2.2 The parameter η ∈ R
n which is fixed once for all in the recursions can be

seen as an extra degree of freedom in the design of the algorithm.

Remark 2.3 (versatility) Definition 2.1 generalizes many frameworks found in the
literature.

a) For a symmetric matrix X where T = 1n×n and S = 1n×n
n , one gets the AMP in

[7].
b) By taking a sparse symmetric matrix S, one recovers the AMP in [21].
c) The elliptic AMP studied in [19] is obtained by taking S = 1n×n

n and T = ρ1n×n
for ρ ∈ [−1, 1]. In the latter, the AMP recursion writes

xt+1 = W h
(
xt , η, t

)− ρ
〈
∂h
(
xt , η, t

)〉
n h
(
xt−1, η, t − 1

)
.

One can notice that the Onsager term is slightly different. We will come back to
this later in Sect. 2.4.

1 Notice that if h is Lipschitz with respect to the first variable, then it is differentiable almost everywhere
by Rademacher’s theorem.
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2.2 Assumptions

We present hereafter the assumptions that will be used in the sequel, some of which
already appeared in [21].

Assumption A- 1 (moments) Let T = (τi j )1≤i, j≤n be a symmetric matrix with τi j ∈
[−1, 1] and X a random T -correlatedmatrix followingDefinition 1.1. For every k ≥ 1
there exists a positive real number Cmom(k) > 0 such that for every n ≥ 1 and all
i, j ∈ [n] (

E
∣∣Xi j

∣∣k)1/k ≤ Cmom(k) .

Assumption A- 2 (variance profile) Let (Kn) a sequence of positive integers diverging
to +∞ and satisfying Kn ≤ n. The deterministic n × n matrix S = (si j )1≤i, j≤n
has non-negative elements and satisfies the following: there exist positive constants
Ccard,CS, cS > 0 such that for every n ≥ 1 and all i, j ∈ [n],

∣∣{ j ∈ [n] : si j > 0
}∣∣ ≤ Ccard Kn , si j ≤ CS

Kn
and

n∑
�=1

si� ≥ cS .

Remark 2.4 (on Assumption A-2)
(a) This assumption describes the sparsity of the variance profile S ∈ R

n×n . It
consists of three sub-assumptions: there exists a sequence (Kn), with Kn ≤ n and
Kn → ∞, and positive constants Ccard,CS, cS such that for every n ≥ 1 and all
i, j ∈ [n]: (i) the number of nonzero elements in the i-th row of S is at most CcardKn ;
(ii) each variance satisfies si j ≤ CSK−1n ; and (iii) the row sums of S are bounded
below by cS .

(b) Although these three conditions are grouped under a single assumption A-2,
they are not all used with the same frequency or importance. For instance, in all com-
binatorial arguments, A-2-(iii) is not required, and we expect that this sub-assumption
is mainly a limitation of our proof technique. Indeed, A-2-(iii) becomes unnecessary
when the AMP is built using only polynomial activation functions; it is therefore a
technicality to ensure that we can approximate general activation functions by poly-
nomial ones.

Remark 2.5 In the works [5] and [22], the authors study AMP-type algorithms with
symmetric random matrices equipped with a variance profile. In [5], the analysis
focuses on the classical AMPwith a Gaussianmatrix, while [22] investigates a broader
class of generalized first-order methods, of which AMP is a particular case (see the
canonical examples in Sect. 2.1). Both works provide non-asymptotic analyses of the
corresponding algorithms.

For comparison, the randommatrix models considered in [5], [22], and in our work
are, respectively

1√
n
S(1) � G,

1√
n
S(2) � A, and

1√
Kn

S(3) � X ,
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where Kn → +∞ controls the sparsity level. While one could mimic sparsity in
[5] and [22] by setting many entries of the variance profiles to zero, the normal-
ization factor 1/

√
n in those works does not depend on sparsity and thus does not

yield the correct scaling in the genuinely sparse regime. In contrast, our framework
explicitly models sparsity through both a structural condition on the variance profile
S(3) (= K 1/2

n S�1/2) (at most CKn nonzero entries per row) and the normalization
factor 1/

√
Kn , which scales appropriately with the sparsity level. In particular, if one

considers a sparse matrix normalized by 1/
√
n with Kn/n→ 0, the density-evolution

equations degenerate to a trivial limit.

The following technical assumption ensures that the spectral norm of the matrixW
is almost surely bounded by a constant as n goes to infinity.

Assumption A- 3 (lower bound on the sparsity level) Let A-1 and A-2 hold for the
random matrix X and the variance profile S, and consider associated Cmom and (Kn).
There exist positive real numbers ν,C > 0 such that for every k, n ≥ 1

Cmom(k) ≤ C kν/2 and Kn ≥ C log(ν∨1)(n) .

Remark 2.6 (on Assumption A-3)
(a) Themoment conditionCmom(k) ≤ C kν/2 is standard. For example, it is fulfilled

with ν = 1 for subGaussian entries.
(b) Assumptions A-2 and A-3 describe the sparsity level one can expect for matrix

W . The sequence Kn is an upper bound of the number of non-vanishing elements of
W per row. It must be at least logarithmic in n (up to the power ν∨1) but can be much
smaller than n.

(c) As will appear later in Proposition 5.5, the logarithmic lower bound on Kn and
the upper bound for the moments of X ’s entries are technical conditions needed for
bounding the spectral norm of the random matrix W .

We also consider initial conditions for the initial vector x0 and for the parameter
vector η ∈ R

n .

Assumption A- 4 (initial and parameter vectors) Let x0 = (x0i ) ∈ R
n, η = (ηi ) ∈ R

n

be deterministic vectors and consider the sequences (x0)n and (η)n. There exist two
compact sets Qx ⊂ R and Qη ⊂ R such that

{x0i , i ∈ [n] , n ≥ 1} ⊂ Qx and {ηi , i ∈ [n] , n ≥ 1} ⊂ Qη .

Remark 2.7 (on Assumption A-4) This assumption requires the AMP initialization to
lie in a compact set Qx , which facilitates uniform bounds throughout the proofs, for
instance, in controlling the covariance matrices in Lemma 5.2 and some quantities in
the combinatorial arguments used for example in Proposition 4.2 (see Equation (27)
in Theorem 3.3). This assumption is mainly technical and simplifies several bounds;
we believe the results should still hold for non-compact initializations (e.g., Gaussian
vectors), at the cost of more involved arguments. An interesting alternative to explore
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could be the following condition

n∑
i=1

exp(‖x0i ‖2/C) ≤ Cn with probability tending to 1,

found in (C, d)-regular sequence condition of [7] (see assumption 3 in Definition 4).

Assumption A- 5 (Regularity of the activation functions) Let h : R2 × N→ R be a
measurable function. For every t ∈ N, there exists a positive number L such that for
every x, y, η ∈ R,

|h(x, η, t)− h(y, η, t)| ≤ L |x − y| .
For every t ∈ N, there exists a continuous non-decreasing function κ : R+ → R+
with κ(0) = 0 and a compact set Qη ⊂ R such that for every x ∈ R and η, η′ ∈ Qη,

∣∣h(x, η, t)− h(x, η′, t)
∣∣ ≤ κ

(∣∣η − η′
∣∣) (1+ |x |) .

Assumption A- 6 (non-degeneracy condition over h) Let h : R2 × N → R be a
measurable function. There exist two compact sets Qx ⊂ R and Qη ⊂ R with the
following properties:

(1) There exists a constant c > 0 such that

inf
x∈Qx ,η∈Qη

h2(x, η, 0) ≥ c .

(2) For every t ≥ 1, there exist two positive real numbers ch(t), Dh(t) > 0 such that

inf
η∈Qη

∫ Dh(t)

−Dh(t)
h2(x, η, t)dx ≥ ch(t) .

There are tight links between the assumptions. In particular, the parameter ν of A-3
controls the moments bounds (Cmom(k)) given by A-1 and the sparsity level Kn given
by A-2, the compact sets Qη and Qx of A-5 and A-6 will be given by A-4.

2.3 Main Result

Recall the definition of a pseudo-Lipschitz function. A function f : Rd → R is said
to be pseudo-Lipschitz (PL) if there exists a constant L such that for all x, y ∈ R

d the
following inequality is satisfied:

| f (x)− f ( y)| ≤ L ‖x − y‖ (1+ ‖x‖ + ‖ y‖) .

We are now in position to state our main result.
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Theorem 2.1 Let Assumptions A-1 to A-6 hold true, with associated ν, Qη and Qx .
Consider the AMP

(xt )t≥1 = AMP-Z
(
X , S, h, x0, η

)

as defined in Definition 2.1, and the sequence of n-dimensional Gaussian random
vectors

(
Zt
)
t∈N defined by the DE equations in Definition 1.3:

(Z1, · · · , Zt ) ∼ DE(S, h, x0, η, t) .

Let t ≥ 1 and β = (β
(n)
i ) ∈ R

n uniformly bounded, i.e. supn maxi∈[n] |β(n)
i | < ∞.

For any pseudo-Lipschitz test function ϕ : Rt+1→ R, it holds that

1

n

∑
i∈[n]

β
(n)
i

{
ϕ
(
ηi , x

1
i , · · · , xti

)
− E

[
ϕ
(
ηi , Z

1
i , · · · , Zt

i

)]}
P−−−→

n→∞ 0 .

2.4 Alternative Onsager Terms

Recall the introduction of AMP-Z in Definition 2.1. It might be convenient to con-
sider alternative Onsager terms in the AMP recursion and replace the diagonal matrix
diag(VE∂h(Zt , η, t)) by one of the two following terms

diag
(
V ∂h(xt , η, t)

)
or diag

(
W �W�∂h(xt , η, t)

)
, (10)

depending on the context.
For example, the Onsager term built upon diag

(
W �W�∂h(xt , η, t)

)
is better

suited for the combinatorial arguments developed in Sect. 4 as it directly involves
the entries of matrix W , and the loss with respect to the original recursion should
be asymptotically negligible since E(W � W�) = V . The Onsager term built upon
diag

(
V ∂h(xt , η, t)

)
naturally appears in [2, 19].

In this perspective we introduce new notations. Denote by

(
xt
)
t≥1 := AMP-W

(
X , S, h, x0, η

)
, (11)

the recursive procedure defined by

{
x1 = Wh(x0, η, 0) ,

xt+1 = Wh(xt , η, t)− diag
(
W �W�∂h(xt , η, t)

)
h(xt−1, η, t − 1) for t ≥ 1 .

Similarly, denote by

(
xt
)
t≥1 := AMP

(
X , S, h, x0, η

)
, (12)
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the recursive procedure defined by

{
x1 = Wh(x0, η, 0) ,

xt+1 = Wh(xt , η, t)− diag
(
V ∂h(xt , η, t)

)
h(xt−1, η, t − 1) for t ≥ 1 .

Webelieve that none of these threeOnsager terms should change the general asymp-
totics of the AMP. However, a complete proof of this fact is not established. We only
prove the AMP result for the AMP-Z formulation, see Theorem 2.1.

In conclusion, there are three possible formulations of the Onsager term, leading
to the AMP-Z, AMP, and AMP-W algorithms depending on whether the correction
involves an expectation over Gaussian variables, the current iterate, or the random
matrix itself. Among these, the “AMP” formulation appears to be the most natural, as
it yields a deterministic Onsager term depending only on the variance profile and the
iterates, making it straightforward to implement. However, our proof relies on combi-
natorial arguments and polynomial approximations of the activation function, which
are more conveniently handled within the “AMP-Z” formulation. Consequently, we
establish our main AMP-type result for the “AMP-Z” version. Lemma 5.3 provides a
comparison between the “AMP” and “AMP-W” formulations, but only for polynomial
activations.

2.5 Examples of AMP

We provide hereafter three examples of matrix models where we work out the specific
AMPrecursion andDEequations.All threematrixmodels are of practical interest,with
applications in fields such as theoretical ecology, where random matrices represent
species interaction matrices in large ecological systems (see [1]).

Example 1: Elliptic Matrix Model

Let ρ > 0, and consider an n×n randommatrix X = (Xi j )
n
i, j=1 whose entries satisfy

the following properties:

• The random variables Xi j are centered with variance 1.

• For each i < j , the pair (Xi j , X ji ) has covariance matrix

(
1 ρ

ρ 1

)

• The collection {Xii , (Xi j , X ji ) : (i, j) ∈ [n]2, i < j} consists of independent
random elements.

A particular instance of this model is the Elliptic Ensemble, in which the entries are
Gaussian (the diagonal entries may have a different variance, but this can be handled
without difficulty).

Consider the following matrix model:

W = 1√
n
X .
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For a uniformvariance profile theDensityEvolution equations (1.3) become asymp-
totic and do not depend on the dimension n, i.e.

R1 = f 2(x0) ∈ R
1×1 , Rt+1 = E

⎡
⎢⎢⎣

f (x0)
f (Z1)
· · ·
f (Zt )

⎤
⎥⎥⎦[ f (x0) f (Z1) · · · f (Zt )

] ∈ R
(t+1)×(t+1), (13)

where (Z1, · · · , Zt ) ∼ Nt (0, Rt ). The following is a corollary of our main theorem.

Corollary 2.2 Let Assumption A-1 and A-3 hold for the above matrix model W. Let x0

be a constant an initialization vector x0 = x01, and let h be an activation function
satisfying Assumption A-5. Assume further that ∂h is continuous λ-almost everywhere,
where λ denotes the Lebesgue measure. Consider the AMP sequence (xt )t defined
recursively as

xt+1 = Wh(xt )− ρ 〈∂h(xt )〉n h(xt−1)

For each t ≥ 1, consider the t-dimensional centered Gaussian vector (Z1, . . . , Zt )

whose covariance matrix Rt is defined recursively by the (asymptotic) Density Evo-
lution equations.

Then, for any pseudo-Lipschitz test function ϕ : Rt → R, we have

1

n

n∑
i=1

ϕ(x1i , . . . , x
t
i )

P−−−→
n→∞ E

[
ϕ(Z1, . . . , Zt )

]
.

The proof of this corollary is in Appendix 1.

Remark 2.8 (1) The Onsager term considered in this corollary differs from the one
used in the main theorem. A detailed discussion on the possible variants of the
Onsager term is provided in Sect. 2.4.

(2) This result extends the work of [19], where the matrix model was assumed to be
Gaussian. Here, the Gaussian assumption is relaxed, but we obtain convergence
in probability rather than almost sure convergence.

(3) To establish the result under this modified Onsager term, we require an additional
assumption on the activation function, namely that its derivative ∂h is continuous
almost everywhere. This assumption is also present in [18, 19].

(4) In this corollary,we assume a constant initialization vector for simplicity.However,
the result can be extended to more general initializations under additional mild
regularity conditions.

Example 2: Blockwise Correlated RandomMatrix

This example generalizes the ellipticmatrixmodel characterized by a single correlation
coefficient ρ. Here, the matrix is allowed to have different correlation coefficients for
each block. Let n = n1+n2, X a n×nmatrix partitioned into four submatrices: X (11),
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X (12), X (21), and X (22), of respective sizes n1 × n1, n1 × n2, n2 × n1, and n2 × n2:

X =
(
X (11) X (12)

X (21) X (22)

)
.

Let X (11) and X (22) be (independent) elliptic random matrices with correlation coeffi-
cient ρ1, while each entry in X (12) is correlated with its symmetrically corresponding
entry in X (21) with a coefficient ρ2. All the entries of the random matrix X have
variance 1 and satisfy A-1. Consider the normalized version of X ,

W = X√
n

.

With our previous formalism, this model corresponds to choosing X as a T -correlated
matrix and W = S � X where S (variance profile) and T (correlation profile) are
defined by

S = 1n×n
n

and T =
(

ρ11n1×n1 ρ21n1×n2
ρ21n2×n1 ρ11n2×n2

)
.

Let rn := n1
n , I1 = {1, · · · , n1} and I2 = [n] \ I1, assume that rn → r ∈ (0, 1) and

consider the following framework: x0 = x01n , the activation function f : R→ R is
Lipschitz. Notice that f satisfiesA-5, neither depends on t nor on some extra parameter
η.

Consider the recursion (xt )t∈N = AMP
(
X , S, f , x0

)
. In particular,

xt+1 = W f (xt )− diag
(
V f ′(xt )

)
f (xt−1),

where V = T /n. The Onsager term can be simplified here by writing V f ′(xt ) as

V f ′(xt ) =
(
rnρ1〈 f ′(xt )〉I11n1 + (1− rn)ρ2〈 f ′(xt )〉I21n1
rnρ2〈 f ′(xt )〉I11n2 + (1− rn)ρ1〈 f ′(xt )〉I21n2

)

=
(
rnρ11n1 (1− rn)ρ21n1
rnρ21n2 (1− rn)ρ11n2

)(〈 f ′(xt )〉I1
〈 f ′(xt )〉I2

)
.

Thus

xt+1 = W f (xt )−
[(

rnρ11n1 (1− rn)ρ21n1
rnρ21n2 (1− rn)ρ11n2

)(〈 f ′(xt )〉I1
〈 f ′(xt )〉I2

)]
� f (xt−1),

Notice that the Onsager term generalizes here the one obtained in the elliptic case (see
Remark 2.3).

Not surprisingly (and as mentioned in [19] in the elliptic case), the DE equations
do not depend on the correlation structure of X and reduce to
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R1 = f 2(x0) ∈ R
1×1 , Rt+1 = E

⎡
⎢⎢⎣

f (x0)
f (Z1)
· · ·
f (Zt )

⎤
⎥⎥⎦
[
f (x0) f (Z1) · · · f (Zt )

] ∈ R
(t+1)×(t+1),

where (Z1, · · · , Zt ) ∼ Nt (0, Rt ). In this case, Theorem 2.1 implies that for any PL
test function ϕ : Rt ∈ R ur main theorem implies in this case that

1

n

∑
i∈[n]

ϕ(x1i , · · · , xti ) P−−−→
n→∞ Eϕ(Z1, · · · , Zt ) .

Remark 2.9 This example can easily be generalized to K×K blocks and K correlation
coefficients ρ1, · · · , ρK .

Example 3: d-Regular RandomMatrix

In this example,we consider a symmetricmatrix X where Xi j are independent centered
random variables with variance 1 up to the symmetry, i.e. X is a T -correlated random
matrix where T = 1n×n . Let Assumption 1 hold, let d = dn = �C log(ν∨1)(n)�where
ν > 0 is given by Assumption 3. Let A be the n × n adjacency matrix of a d-regular
non oriented graph, in particular

∣∣{ j ∈ [n] | Ai j = 1}∣∣ = d and
∣∣{i ∈ [n] | Ai j = 1}∣∣ = d ,

and consider the variance profile matrix S = 1
d A. Let f : R→ R a Lipschitz function

(hence satisfying Assumption 5) and set

W = S � X = 1

d
A� X , x0 = x01n and (xt )t∈N = AMP

(
X , S, f , x0

)
.

Introducing the sets Ik := { j ∈ [n] | Akj = 1} and the n × 1 vector v =(〈 f ′(xt )〉Ik , k ∈ [n]), the recursion writes

xt+1 = W f (xt )− v � f (xt−1) .

Let us now simplify the Density Evolution equations defined 1.3 for this par-
ticular case. We notice that H0

i = (h(x0))2 =: H0 does not depend on i , so
R1
i =

∑
j∈Ii

1
d H

0
i = H0 := R1 which is also independent of i and n. By

induction, we can reduce DE equations to “asymptotic” DE equations, meaning
that they do not depend on n. In fact, if Rt

i ∈ R
t×t is independent of i , consider

(Z1
i , · · · , Zt

i ) ∼ Nt (0, Rt
i ), these n t-dimensional random vectors have the same law.

Now let i ∈ [n] and consider the value of Rt+1
i ,
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Rt+1
i =

∑
j∈Ii

1

d
E

⎡
⎢⎢⎣

f (x0)
f (Z1

i )

· · ·
f (Zt

i )

⎤
⎥⎥⎦[ f (x0) f (Z1

i ) · · · f (Zt
i )
] = E

⎡
⎢⎢⎣

f (x0)
f (Z1)
· · ·
f (Zt )

⎤
⎥⎥⎦[ f (x0) f (Z1) · · · f (Zt )

]

where (Z1, · · · , Zt ) ∼ Nt (0, Rt ), thus Rt+1
i is also independent of i and n and we

recover the “asymptotic" DE equations. Our main theorem implies in this case that

μx1,··· ,xt P−−−→
n→∞ L(Z1, · · · , Zt ).

Remark 2.10 In this setting, the matrix sparsity is governed by the parameter d, which
also serves as the normalization factor, corresponding to the sparsity level Kn in
Assumption 2 (i.e., Kn = d). While extending the analysis to constant-degree (d
finite) matrices would be interesting, we believe it is outside the scope of AMP theory,
which typically requires d →∞. The current lower bound d � log(ν∨1)(n) is mainly
a technical limitation of our proof, needed to control the spectral norm of the sparse
matrix (Proposition 5.5), and could likely be relaxed with sharper arguments.

2.6 Extension to Non-centered RandomMatrices

We have considered so far an AMP algorithm with a centered random matrix. We
extend our AMP result to consider a non-centered matrix model. More precisely, we
add to our centered randommatrixmodel a deterministic rank-one perturbation - notice
that our result could easily be generalized to any finite-rank perturbation.

Let W be a random matrix model as in Theorem 2.1, with variance profile S and
correlation profile T . Let u, v ∈ R

n two deterministic vectors satisfying ‖u‖, ‖v‖ =
O(n−1). Consider the following matrix model,

A = λuv� +W . (14)

Before stating the AMP recursion based on matrix A, we adapt the Density Evolution
equations introduced inDefinition 1.3. In this section,we shall use the notation ht (x, η)

instead of h(x, η, t) as simplification of the notations.

Definition 2.11 Let x0 = (x0i ) ∈ R
n , η = (ηi ) ∈ R

n , u = (ui ) ∈ R
n and v = (vi ) ∈

R
n be deterministic vectors, S = (

si j
)
1≤i, j≤n a matrix with non-negative elements

and h : R2 × N→ R an activation function.

a) Initialization. For any i ∈ [n], define the positive numbers H0
i , R

1
i and μ1 as

H0
i :=

(
h0(x

0
i , ηi )

)2
, R1

i :=
n∑
j=1

si j H
0
j and μ1 := λ

〈
v, h0(x0, η)

〉
.
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Let Z1
i ∼ N (0, R1

i ), assume that for all i ∈ [n], the Z1
i ’s are independent and set

Z1 = (Z1
i )i∈[n] .

b) Step 1. Let i ∈ [n] be fixed. Given Z1
i , let

H1
i = E

[
h0
(
x0i , ηi

)
h1
(
Z1
i + μ0ui , ηi

)
] [

h0
(
x0i , ηi

)
h1
(
Z1
i + μ0ui , ηi

)]

R2
i =

n∑
j=1

si j H
1
j and μ2 = λE

[〈
v, h1

(
Z1 + μ1u, η

)〉]
.

Let (Z1
i , Z

2
i ) ∼ N2(0, R2

i ), denote by �Z2
i = (Z1

i , Z
2
i ). Assume that for all i ∈ [n],

the �Z2
i ’s are independent. Set Z

2 = (Z2
i ).

c) Step t. Let i ∈ [n] be fixed. Given (Z1, · · · , Zt ) and �Zt
i = (Z1

i , · · · , Zt
i ), let

Ht
i = E

⎡
⎢⎢⎢⎣

h0(x
0
i , ηi )

h1(Z
1
i + μ1ui , ηi )

...

ht (Zt
i + μt ui , ηi )

⎤
⎥⎥⎥⎦
[
h0(x

0
i , ηi ) h1(Z

1
i + μ1ui , ηi ) · · · ht (Zt

i + μt ui , ηi )
]

.

Denote

Rt+1
i =

n∑
j=1

si j H
t
j and μt+1 = λE

[〈
v, ht

(
Zt + μtu, η

)〉]
.

Let (Z1
i , Z

2
i , · · · Zt+1

i ) ∼ Nt+1(0, Rt+1
i ), denote by �Zt+1

i = (Z1
i , Z

2
i , · · · , Zt+1

i ).
Assume that for all i ∈ [n], the �Zt+1

i ’s are independent. Set Zt+1 = (Zt+1
i ).

Consider the sequence of n-dimensional Gaussian random vectors
(
Zt
)
t∈N.We denote

(
Z1, · · · , Zt

)
∼ D̃E

(
h, x0, S, t, u, v

)
.

We are now in position to state the AMP recursion.

xt+1 = Aht (xt , η)− diag
(
VE∂ht (Zt + μtu, η)

)
ht−1(xt−1, η), (15)

where Zt and μt are defined as in Definition 2.11.
The following theorem describes the asymptotic behavior of

(
xt
)
t∈N when n goes

to infinity.

Theorem 2.3 Let Assumptions A-1 to A-6 hold true, with associated ν, Qη and
Qx . Consider the AMP sequence (xt )t defined in (15). Consider the sequence n-
dimensional Gaussian random vectors

(
Zt
)
t∈N and the scalars (μt )t defined by the

DE equations in Definition 2.11.
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Let t ≥ 1 and β = (β
(n)
i ) ∈ R

n uniformly bounded, i.e. supn maxi∈[n] |β(n)
i | <∞.

For any pseudo-Lipschitz test function ϕ : Rt+1→ R, it holds that

1

n

∑
i∈[n]

β
(n)
i

{
ϕ
(
ηi , x

1
i , · · · , xti

)
− E

[
ϕ
(
ηi , Z

1
i + μ1ui , · · · , Zt

i + μt ui
)]}

P−−−−→
n→∞ 0 .

This theorem can be seen as a corollary to Theorem 2.1, the proof is provided in
Appendix 1.

2.7 Open Questions

(1) Currently, the sparsity level is of order logν∨1(n). Would it be possible to lower
this level, and to dissociate the sparsity assumption from the parameter ν which is
associated to the moments of the matrix entries?

(2) In Sect. 2.5 (Example 3), we discussed the example of an AMP algorithm for
sparse d-regular matrices and noted that the AMP theory requires d →∞ for such
matrices. An interesting open question is whether these results can be extended
to the constant-degree regime, i.e., to d-regular matrices with finite d, although
it would be unlikely to get Gaussian limits in this case (the limit might not be
universal and may depend upon d). More generally, one may ask whether it is
possible to design AMP algorithms for sparse matrices with a constant level of
sparsity. A promising direction could be to rely on non-asymptotic AMP results
(cf. [5, 22]), and establish bounds explicitly depending on d.

(3) Would it be possible to improve the convergence in probability in Theorem 2.1 to
an almost sure convergence?

(4) Our current assumptions over the entries of the matrix necessitate all the moments.
Would it be possible by truncation techniques to lower this assumption?

(5) Would it be possible to establish the counterpart of Theorem 2.1 for AMP schemes
(11) or (12)?

2.8 Outline of the Proof

Building on the methods developed in [7] and [21], we start by analyzing a particular
case of the approximate message passing (AMP) algorithm with polynomial activa-
tion functions (Sect. 3.1), which motivates the adoption of combinatorial techniques.
In our setting, the variance profile is non-symmetric, and the matrix contains corre-
lations between symmetric entries, necessitating modifications to the combinatorial
approaches used in both [7] and [21] to fit our case. The combinatorial heart of the
proof is presented in Sect. 4. We then use density arguments to extend the results to
non-polynomial activation functions that exhibit atmost polynomial growth (Sect. 5.1).

It should be noted that the combinatorialmethods in [7] and [21] rely on the assump-
tion of a zero-diagonal variance profile, i.e., Sii = 0 for all i ∈ [n], which simplifies
the derivations. We adopt this assumption in Sects. 3.1, 3.2 and 5.1 and then lift it via
a perturbation argument in Sect. 5.2. Unless otherwise specified, we assume that the

123



   19 Page 22 of 69 Journal of Theoretical Probability            (2026) 39:19 

Fig. 2 Proof steps.

matrix S has a zero-diagonal, implying, without loss of generality, that the random
matrix X also has a zero diagonal Xii = 0 (Fig. 2).

3 AMP andMatrix AMP for Polynomial Activation Functions

Wepresent hereafter theAMPalgorithm for polynomial activation functions, a suitable
framework to establish the proof by combinatorial techniques, see [7, 21]. In Sect. 3.1,
we state Theorem 3.1 for iterates that are Rn-valued.

In Sect. 3.2, we state a result for iterates that areRn×q -valued, a more general result
that will imply Theorem 3.1. The extension to general pseudo-Lipschitz functions will
be performed in Sect. 5.1.

The following technical assumption (to be lifted in Sect. 5.2) will be used hereafter.

Assumption A- 7 (variance profile with vanishing diagonal) The deterministic n × n
matrix S = (si j )1≤i, j≤n has non-negative elements with null elements on the diagonal:

Sii = 0 for i ∈ [n] .

Remark 3.1 AssumptionA-7 is very convenient to establish the statistical properties of
theAMP iterates for polynomial activation functions, as the proof relies on combinato-
rial techniques. The fact that the diagonal of the variance profile S is zero substantially
simplifies the combinatorics. This assumption is relaxed in Theorem 2.1 by means of
perturbation arguments (see Sect. 5.2).

123



Journal of Theoretical Probability            (2026) 39:19 Page 23 of 69    19 

3.1 AMP for Polynomial Activation Functions

Let d ≥ 1 be a fixed positive integer independent from n. For every integer t ≥ 1,
consider a uniformly bounded triangular array of real coefficients

(
α�(i, t, n) , � ≤ d , i ∈ [n] , n ≥ 1

)
with sup

n
max
�≤d max

i∈[n] |α�(i, t, n)| <∞ .

(16)
The following function will play a key role in the sequel:

p : R× [n] × N→ R, (17)

(u, i, t) �→ p(u, i, t) =
d∑

�=1
α�(i, t, n)u�.

Function p is a polynomial in u with degree bounded by d. It depends on n via the
coefficients α�(i, t, n). To lighten the notations, we drop the dependence of α�(i, t, n)

in n and simply write α�(i, t) and do not indicate the dependence of p in n.
Following Definition (11), let x̌0 ∈ R

n be deterministic and define

(
x̌t
)
t≥1 = AMP-W

(
X , S, p, x̌0

)
, x̌0 ∈ R

n ,

that is

x̌t+1 = Wp(x̌t , ·, t)− diag
(
W �W�∂ p(x̌t , ·, t)

)
p(x̌t−1, ·, t − 1), (18)

where p(x, ·, t) = [p(xi , i, t)]ni=1 and ∂ p(x, ·, t) = [∂ p(xi , i, t)]ni=1 for any x ∈ R
n .

We now present the AMP result for polynomial activation functions.

Theorem 3.1 Let A-1, A-2 and A-7 hold true. Let d ≥ 1 be fixed, (α�) and p given by
(16) and (17). Let x̌0 = (x̌0i ) ∈ R

n. Assume that there exists a compact set Qx̌ ⊂ R

such that x̌0i ∈ Qx̌ . Consider

(
x̌t
)
t≥1 = AMP-W

(
X , S, p, x̌0

)
.

Let (qZ
1
, · · · , qZt

) ∼ DE(S, p, x̌0, t) and denote by qRt
i the covariance matrix of vector(

qZ1
i , · · · , qZt

i

)
. Then for all t,m ≥ 1

sup
n

max
i∈[n] ‖ qR

t
i ‖ <∞ and sup

n
max
i∈[n]E|x̌

t
i |m <∞ . (19)

Given t ≥ 1, let d ′ ≥ 1 be fixed and consider function ψn : Rt × [n] → R, a
multivariate polynomial with bounded degree:

ψn(x1, · · · , xt , �) =
∑

d1+···+dt≤d ′
βn(d1, · · · , dt , �)

∏
i∈[t]

xdii ,
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with
sup
n≥1

sup
�∈[n]

sup
d1+···+dt≤d ′

|βn(d1, · · · , dt , �)| <∞ .

Let S(n) ⊂ [n] be such that |S(n)| ≤ CKn where Kn is given by A-2. Then,

1

Kn

∑
i∈S(n)

{
ψn(x̌

1
i , . . . , x̌

t
i , i)− Eψn(qZ

1
i , . . . ,

qZt
i , i)

}
P−−−→

n→∞ 0 , and (20a)

1

n

∑
i∈[n]

{
ψn(x̌

1
i , . . . , x̌

t
i , i)− Eψn(qZ

1
i , . . . ,

qZt
i , i)

}
P−−−→

n→∞ 0 . (20b)

Remark 3.2 In this theorem, both the activation function and the test function used
in the convergence formulation are polynomials. The general case for the activation
functionwill be addressed later in Sect. 5.1.Regarding the test functions,we extend this
result in the following lemma to encompass general continuous functions that grow at
most polynomially near infinity. Notice also that Assumption A-3 is not needed when
dealing with AMP sequences having polynomial activation functions, this assumption
is purely technical and is used when a comparison between two AMP sequences is
provided.

Remark 3.3 The interesting regime in (20a) is |S(n)| ∼ Kn . If |S(n)| � Kn then (20a)
is trivial in the sense that one can easily prove that both terms

1

Kn

∑
i∈S(n)

ψn

(
x̌1i , · · · , x̌ ti , i

)
and

1

Kn

∑
i∈S(n)

E

[
ψn

(
qZ1
i , · · · , qZt

i , i
)]

converge to zero2.

Lemma 3.2 Let x̌0 and η satisfy A-4. Let (x̌t )t∈N and (qZ
t
)t∈N as in Theorem 3.1. Let

t,m ≥ 0 be fixed integers and let ϕ : Qη × R
t → R be a continuous function such

that
|ϕ(α, u1, · · · , ut )| ≤ C

(
1+ |u1|m + · · · + |ut |m

)
.

For any sequence (β
(n)
i ∈ R, i ∈ [n], n ≥ 1) such that supn maxi∈[n] |β(n)

i | < ∞,
the following convergence holds:

1

n

∑
i∈[n]

β
(n)
i ϕ(ηi , x̌

1
i , . . . , x̌

t
i )−

1

n

∑
i∈[n]

β
(n)
i Eϕ(ηi , qZ

1
i , . . . ,

qZt
i )

P−−−→
n→∞ 0.

Proof Define the two t + 2 dimensional random measures μn and νn as follows

μn = 1

n

∑
i∈[n]

δ(βi ,ηi ,x̌1i ,··· ,x̌ ti ) and νn = L
(
βθ , ηθ , qZ

1
θ , · · · , qZt

θ

)
,

2 By |S(n)| ∼ Kn , we mean that there exist c,C > 0 such that cKn ≤ |S(n)| ≤ CKn and by |S(n)| � Kn ,
we mean that |S(n)|/Kn → 0.
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where θ ∼ U ([n]) is independent. Consider the function ψ(β, η, x1, · · · , xt ) =
βϕ (η, x1, · · · , xt ), and recall that (βi ), (ηi ) and the covariance matrices (Rt

i ) are
bounded, thus by some slight modification to Lemma B.1 we get the desired result.

��

3.2 Matrix AMP for Polynomial Activation Functions

In order to prove Theorem 3.1, we need to study amatrix version of theAMP algorithm
where the iterates x̌t are Rn×q–valued matrices, q ≥ 1 being a fixed integer. Using
this framework, we only need to express the convergence result in Theorem 3.1 using
test functions acting only on the t th iterates instead of all previous iterates. Consider
the function

f : Rq × [n] × N −→ R
q , f (u, l, t) =

⎛
⎜⎝

f1(u, l, t)
...

fq(u, l, t)

⎞
⎟⎠ , (21)

where each component fr is a polynomial in u ∈ R
q , with degree bounded by d,

written as
fr (u, �, t) =

∑
i=(i1,··· ,iq )∈Nq

i1+···+iq≤d

αi (r , �, t)ui ,

(recall the notation ui =∏s∈[q] u
is
s ). Given a deterministic n-uple (x01, . . . , x

0
n)where

x0i is a q-dimensional vector, the AMP iterates are recursively defined for t ≥ 1 as
follows:

xt+1i (r) =
∑
�∈[n]

Wi� fr (xt�, �, t)−
∑
s∈[q]

fs(x
t−1
i , i, t−1)

∑
�∈[n]

Wi�W�i
∂ fr

∂x(s)
(xt�, �, t) ,

(22)
for r ∈ [q] and f (·, ·,−1) ≡ 0. We denote such a sequence by

(
xt
)
t≥1 = AMP-Wq

(
X , S, f , x0

)
, x0 ∈ R

n×q .

DE Equations for Matrix AMP

Similarly to the DE equations for standard AMP introduced in Definition 1.3, we
introduce here a (Rq)n-valued sequence of Gaussian random vectors (Ut )t∈N� defined
by

Ut =
⎡
⎢⎣

(Ut
1)
�

...

(Ut
n)
�

⎤
⎥⎦ ,
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where {Ut
i }i∈[n] are R

q -valued independent Gaussian random vectors, Ut
i ∼

N
(
0, Qt

i

)
and the q × q matrices Qt

i are defined recursively in t by

Qt+1
i =

∑
�∈[n]

si�E f (Ut
�, �, t) f (U

t
�, �, t)

� for i ∈ [n], (23)

with the convention that U 0 := x0. We denote

Ut ∼ DEq

(
S, f , x0, t

)
. (24)

The following Theorem is the key component to the proof of Theorem 3.1.

Theorem 3.3 Let Assumptions A-1 and A-2 hold true and q ≥ 1 be fixed. Let f be
defined by (21) and x0 ∈ R

n×q . Assume that for each t ≥ 1, there exists a constant
C = C(t) > 0 such that

∣∣αi1,...,iq (r , l, t)
∣∣ ≤ C, and sup

n
max
i∈[n]

∥∥∥x0i
∥∥∥ <∞ . (25)

Consider the iterative algorithm
(
xt
)
t≥1 = AMP-Wq

(
X , S, f , x0

)
, and let Qt

i and
Ut be defined by (23)–(24). Then we have,

∀t > 0 , sup
n

max
i∈[n] ‖Q

t
i‖ <∞. (26)

Moreover,
∀t > 0 , ∀m ∈ N

q , sup
n

max
i∈[n]E|(x

t
i )
m| <∞. (27)

Letψ : Rq×[n] → R be such thatψ(·, l) is a multivariate polynomial with a bounded
degree and bounded coefficients as functions of (l, n). Let S(n) ⊂ [n] be a non-empty
set such that |S(n)| ≤ CKn. Then,

1

Kn

∑
i∈S(n)

ψ(xti , i)− Eψ(Ut
i , i)

P−−−→
n→∞ 0 and (28a)

1

n

∑
i∈[n]

ψ(xti , i)− Eψ(Ut
i , i)

P−−−→
n→∞ 0 . (28b)

Remark 3.4 In this theorem, and particularly in the convergence described in (28b),
the result is not explicitly stated for all iterations from 1 to t , as was done in (20b).
Consequently, Matrix AMP can be interpreted as a more compact formulation of the
“standard" AMP. This distinction is further elucidated in the subsequent proof.

Proof of Theorem 3.1 Theorem 3.1 can be deduced from Theorem 3.3 by adequately
choosing q as well as a precise construction of the activation function f using the
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R-valued polynomials p. Define the sequence
(
x̌t
)
t≥1 as follows,

(
x̌t
)
t≥1 = AMP-W

(
X , p, x̌0, S

)
. (29)

We shall establish the convergence (20b) for each t and prove that for all multivariate
polynomials ψ we have

1

n

∑
i∈[n]

{
ψ(x̌1i , . . . , x̌

t
i , i)− Eψ(qZ1

i , . . . ,
qZt
i , i)

}
P−−−→

n→∞ 0 .

where (qZ
1
, · · · , qZt

) ∼ DE(S, p, x̌0, t). To this end, let τ > 0 be fixed and chose
q = τ , construct the sequence (xt )1≤t≤τ of Rτ×τ -valued matrices such that

x1i =
(
x̌1i 0 · · · 0)� ,

x2i =
(
x̌1i x̌2i · · · 0

)�
,

...

xτ
i =

(
x̌1i x̌2i · · · x̌τ

i

)�
.

Now using the polynomials p, we construct the function f : Rτ × [n] × N → R
τ

such that for all i ∈ [n] and 0 ≤ � ≤ τ − 1 we have

f (x, i, �) = (p(x0i , i, 0) p(xi (1), i, 1) · · · p(xi (�), i, �) 0 · · · 0
)�

.

For � ≥ τ , we set
f (x, i, �) = (0 · · · 0) .

In order to apply Theorem 3.3, we show that the sequence (xt ) is given by

(xt )t≥1 = AMP-Wτ

(
X , S, f , x0

)
. (30)

Let t ∈ [τ − 1]. By definition, for r ∈ [τ ] and i ∈ [n] we have

xt+1i (r) =
{
x̌ri if r ≤ t + 1 ,

0 if r > t + 1 .

In addition, by Eq. (29) we know that

x̌ri =
∑
�∈[n]

Wi� p(x̌
r−1
� , �, r − 1)−

∑
�∈[n]

Wi�W�i∂ p(x̌
r−1
� , �, r − 1)p(x̌r−2i , i, r − 2),

which implies that for r ≤ τ + 1,
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xτ+1
i (r) =

∑
�∈[n]

Wi� p(x
τ
� (r − 1), �, r − 1)

−
∑
�∈[n]

Wi�W�i ∂ p(x
τ
� (r − 1), �, r − 1)p(xτ−1

i (r − 2), i, r − 2) ,

=
∑
�∈[n]

Wi� p(x
τ
� (r − 1), �, r − 1)

−
∑
s∈[t]

p(xτ−1
i (s − 1), i, s − 1)

∑
�∈[n]

Wi�W�i ∂ p(x
τ
� (r − 1), �, r − 1)δs,r−1 ,

=
∑
�∈[n]

Wi� fr (x
τ
� , �, τ )−

∑
s∈[t]

fs(x
τ−1
i , i, τ − 1)

∑
�∈[n]

Wi�W�i
∂

∂x(s)
fr (x

τ
� , �, τ ) ,

which is precisely the recursion in (30).
We can now apply the result of Theorem 3.3 to the sequence (xt ), which implies

that for all polynomial test functions ψ(., �) : Rτ → R we have

1

n

∑
i∈[n]

ψ(xτ
i , i)− Eψ(U τ

i , i)
P−−−→

n→∞ 0, ∀τ ∈ N ,

which yields

1

n

∑
i∈[n]

ψ(x̌1i , · · · , x̌τ
i , i)− Eψ(U τ

i , i)
P−−−→

n→∞ 0, ∀τ ∈ N , (31)

where the U τ is (n × τ)-dimensional random matrix with law DEq(S, f , x0, τ ), the
latter is defined in (24). Denote the columns of U τ by Z1, · · · , Z τ ∈ R

n , then it is
clear that (Z1, · · · , Z τ ) ∼ DE(p, x̌0, S, τ ). The convergence in (31) becomes

1

n

∑
i∈[n]

ψ(x̌1i , · · · , x̌τ
i , i)− Eψ(Z1

i , · · · , Z τ
i , i)

P−−−→
n→∞ 0, ∀τ ∈ N .

with (Z1, · · · , Z τ ) ∼ DE(S, p, x̌0, τ ). Convergence (20b) is established. One can
prove similarly (20a), which concludes the proof of Theorem 3.1.

4 Proof of Theorem 3.3: A Combinatorial Approach

Taking polynomial activation functions in Theorem3.3 is fundamental, as all iterations
xt can be written as multinomials on the entries of the matrix W and the initial
point’s coordinates x0i (s). This makes the analysis purely combinatorial. At the first
and second iterations t = 1, 2, and given simple polynomial activation functions
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fr (u, �, 1) = fr (u, �, 0) = u(1)m , one can write

x1i (r) =
∑
�∈[n]

Wi�x
0
� (1)m,

x2i (r) =
∑

�,�1,··· ,�m∈[n]
Wi�Wi�1 · · ·Wi�m

(
x0�1(1) · · · x0�m (1)

)m − {Onsager}.

We already notice that by the second iteration t = 2, the exact expression for x2i as
a multinomial expansion in terms of the entries of matrix W becomes increasingly
complex. We hence need to find an alternative indexation scheme for the summation
above, properly suited to extract the desired information and establish Theorem 3.3.
We follow the combinatorial approach initiated in [7]. This approach is based on the
introduction of “non-backtracking" trees associated to “non-backtracking" iterations.

4.1 Strategy of Proof

To prove that the AMP iterations have the simple deterministic equivalent described
in Theorem 3.3 we first approximate the moments of xt ∈ R

n×q with the moments of
simpler objects zt called the “non-backtracking” iterations, these are generated with
the samematrixW used in the recursion (8), with a slightly different recursion scheme
where the Onsager term is removed.

E(xti )
m ≈ E(zti )

m, ∀m ∈ N
q ,

this is done in (Proposition 4.5) sect. 4.5. We then show a universality property of
the iterations zt in (Proposition 4.2) sect. 4.3. More specifically, we show that if z̃t

is another non-backtracking iteration sequence generated using another matrix W̃
satisfying the same assumptions as W but does not have the same distribution, then

E(zti )
m ≈ E( z̃ti )

m, ∀m ∈ N
q .

This means that we can reduce our problem to an AMP constructed using a Gaus-
sian matrix. Hence, without loss of generality we can suppose that W is Gaussian.
Moreover, we approximate the non-backtracking iterations zt with another non-
backtracking iterations yt , but this time, in the recursion formula of yt , at each step t

we independently pick a new random matrix Wt L= W which is Gaussian,

E( z̃ti )
m ≈ E( yti )

m, ∀m ∈ N
q .

this is done in (Proposition 4.4) sect. 4.4. xt is now reduced to its simplest form yt .
Finally, we show in (Proposition 4.7) sect. 4.6 that

E( yti )
m ≈ E(Ut

i )
m, ∀m ∈ N

q .
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which is relatively easy given that yt are Gaussian. This finishes the proof of Theo-
rem 3.3.

The proof of all these steps follows the combinatorial approach described in both
[7] and [21] and thus we begin by presenting the framework of “non-backtracking”
trees in sect. 4.2. Notice that that the key difference between prior research and our
approach is that the matrix W is no longer symmetric, and exhibits some correlations
between its entries.

4.2 Description of the Tree Structure

The proof of Theorem 3.3 follows a combinatorial approach which aims at studying
themoments of theAMP iterates. In order to simplify the expression of thesemoments,
we use planted and labeled trees to index the sums in these expressions.We first define
planted trees and then describe its labeling.

Definition 4.1 (Planted trees) We recall the following definition from graph theory.

• A rooted tree T = (V (T ), E(T )) at ◦ ∈ V (T ), where V (T ) and E(T ) denote
respectively the set of vertices and edges, is said to be panted if the root ◦ has
degree 1.
• We consider that all the edges are oriented toward the root, we say that v ∈ V (T )

is the parent of u if the edge (u → v) is in E(T ), in this case, we use the notation
π(u) = v, we also say that u is a child of v.
• We denote by L(T ) the set of leaves of T , i.e. vertices v ∈ V (T ) with no children.
• Given a vertex v ∈ V (T ), we denote by |v| its distance to the root ◦.
• Finally, we define a path starting at v1 and ending at vk as a sequence of vertices

(v1, v2, · · · , vk) such that vi = π(vi+1) for all i ∈ [k − 1].
We fix a integer d, t ∈ N, throughout this proof we consider the class of planted trees
(T , ◦) of depth at most t such that for each vertex v, v can have at most d children.

We denote

N
q
≤d := {(a1, · · · , aq) ∈ N

q , a1 + · · · + aq ≤ d} ,

where q is also a fixed integer.

Definition 4.2 (Labeled and planted trees) We now describe the labeling of the trees.
A labeling of a tree T , is a triplet of functions (�, r , c) such that

� : V (T )→ [n], r : V (T ) \ {◦} → [q], c : L(T )→ N
q
≤d .

• For each vertex u ∈ V (T ), �(u) is called the type of u.
• For each vertex u ∈ V (T ) except the root, r(u) is called the mark of u.
• For each vertex u ∈ V (T ) which is not a leaf, we denote by u[i] the number of
children of u that have mark i ∈ [q]. We use the same notation to describe c(u)

for u ∈ L(T ); c(u) = (u[1], · · · , u[q]) ∈ N
q
≤d . In what follows, this notation is

used instead of c(u).
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• For a non-maximal leaf u ∈ L(T ), i.e. such that |u| is less than the depth of T , we
set u[1] = · · · u[q] = 0.

We denote by T t
the set of planted and labeled trees, with depth t at most.

Non-backtracking Trees

One class of planted and labeled trees that is particularly adapted to our specific
study, is the class of trees satisfying the non-backtracking condition, we recall here the
definition that can be found in [7]. A non-backtracking tree is a planted and labeled tree
T such that for each path (u1 = ◦, u2 · · · , uk) in T the types (�(ui ), �(ui+1), �(ui+2))
are distinct for each i ∈ [k − 2]. We denote the class of these trees as T t . In addition,
we introduce the following classes of trees, for given integers i, j and r , we denote
by,

• T t
i→ j (r) ⊂ T t the subset of trees in T t for which the type of the root is i , the type

of the child v of the root satisfies �(v) /∈ {i, j}, and the mark of v is r(v) = r .
• T t

i (r) ⊂ T t the subset of trees in T t for which the type of the root is i , the type
of the child v of the root satisfies �(v) �= i , and the mark of v is r(v) = r .

We can already use these trees to create the following objects. For a matrix W ∈
R
n×n , a vector x ∈ R

n and a family of real numbers

α =
{
αι(r , �, s) | ι ∈ N

q
≤d , (r , �, s) ∈ [q] × [n] × [t]

}
, we define,

W (T ) :=
∏

(u→v)∈E(T )

W�(v)�(u) ,

�(T ,α, t) :=
∏

(u→v)∈E(T )

αu[1],...,u[q] (r(u), �(u), t − |u|) ,

x(T ) :=
∏

v∈L(T )

∏
s∈[q]

(
x�(v)(s)

)v[s]
.

To better illustrate the concepts previously defined, we present a simple example
of a tree and demonstrate how it indexes the tree quantities W , �, and x (Fig. 3).

4.3 Non-backtracking Iterations

The non-backtracking iterations (zt )t , are defined recursively similarly to (xt )t but
minus the Onsager term and with a slight change in the contributing terms from the
previous iteration. Recall that the purpose of having the Onsager term is to eliminate
components that induce non-Gaussian behavior in the iterates in the high-dimensional
regime. Basically, non-backtracking iterations evolve purposefully getting rid of parts
that are source non-Gaussian behavior. In particular we do not need to have a corrective
term.
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Fig. 3 Example of a tree T ∈ T 3
for parameters q = 2, d = 4, t = 3 and n = 6. The types are written

between braces, the marks are between brackets and leafs info is between parentheses. In this example, T
is not a non-backtracking tree because of the two paths (a← b← c) and (b← d ← e).

Given any i, j ∈ [n] with i �= j , we initialize the non-backtracking sequence with
z0i→ j := x0i . We then define recursively zt+1i→ j using the previous iterations as follows

zt+1i→ j (r) =
∑

�∈[n]\{ j}
Wi� fr (zt�→i , �, t), ∀r ∈ [q], (32)

the case l = i is excluded because Wii = 0. In addition, we also define the vectors
(zt )t by

zt+1i (r) =
∑
�∈[n]

Wi� fr (zt�→i , �, t), ∀r ∈ [q]. (33)

We provide here a non-recursive formulation of zti→ j and zti described as sums
indexed by trees in T t

i→ j (r) and T t
i (r).

Lemma 4.1 (Lemma 1 of [7]) For all integers t ∈ N, i, j ∈ [n] and r ∈ [q], we have,

zti→ j (r) =
∑

T∈T t
i→ j (r)

W (T )�(T ,α, t)x(T ),

zti (r) =
∑

T∈T t
i (r)

W (T )�(T ,α, t)x(T ).

Here x(T ) := x0(T ), we drop the superscript from this notation.

Note that this lemma is purely structural, the proof is not impacted by our specific
variance and correlation profiles.

To simplify the notations in the following proofs we introduce the following sets,

K = {(i, j) ∈ [n] × [n] , si j > 0
}

and C = {(i, j) ∈ [n] × [n] , τi j �= 0
}
.

(34)
We also define the row and column sections of K,

Ki =
{
j ∈ [n] , si j > 0

}
and K j = {i ∈ [n] , si j > 0

}
. (35)
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The next proposition shows that in the large dimensional regime, the moments of
a vector zti issued from the non-backtracking iterations depend for large n only on the
first two moments of the elements of W .

Proposition 4.2 (adaptation of Proposition 1 of [7]) Let X̃ be a random matrix
satisfying A-1, with distribution not necessarily identical to its analogue X. Assume
that W fulfills A-2. Let W̃ be the matrix constructed similarly to W, but with the
Xi j replaced with the X̃i j . Starting with the set of Rq–valued vectors { z̃0i→ j , i, j ∈
[n], i �= j} given as z̃0i→ j = x0i , define the vectors z̃ti ∈ R

q by the recursion (32)
and the equation (33), where W is replaced with W̃ . Then, for each t ≥ 1 and each
m ∈ N

q , ∣∣E(zti )
m − E( z̃ti )

m
∣∣ = O

(
1√
Kn

)
.

Proof For simplicity and clarity of the arguments presented we restrict the proof to
the case where the multi-index m satisfies

m(s) =
{
0 if s �= r ,
m if s = r ,

for some integer m > 0. The proof for a general multi-index m ∈ N
q is very similar

to that of the single-valued case as long as q is finite, and is thus omitted.
By Lemma 4.1, we have

E(zti (r))
m =

∑
T1,...,Tm∈T t

i (r)

(
m∏

k=1
�(Tk,α, t)

)
E

[
m∏

k=1
W (Tk)

]
m∏

k=1
x(Tk).

For a tree T and j, � ∈ [n], define

�ϕ� j (T ) = |{(u → v) ∈ E(T ), (�(u), �(v)) = ( j, �)}| .

Based on the definition of W (T ), �ϕ� j (T ) counts the number of edges in the tree T
that represent the (�, j) matrix entry W� j . We also define ϕ j� for j < � as

ϕ j�(T ) = �ϕ j�(T )+ �ϕ� j (T ),

this quantity represents the total number of edges in the tree T that represent either
Wj� orW� j . We know that there is an integer constant CE = CE (d, t,m) that bounds
the total number of edges in the trees T1, . . . , Tm ∈ T t

i (r), thus

∑
k∈[m]

∑
j<�

ϕ j�(Tk) ≤ CE = m
dt − 1

d − 1
.
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CE is simply the maximum number of edges in them-tuple of trees T1, · · · , Tm . Given
an integer μ ∈ [CE ], recall that K is introduced in (34), define

Ai (μ) :=
{
(T1, . . . , Tm) , Tk ∈ T t

i (r) for all k ∈ [m],
∀ j < �,

∑
k∈[m]

ϕ j�(Tk) �= 1,

∀ j, �,
∑
k∈[m]

�ϕ j�(Tk) > 0 ⇒ ( j, l) ∈ K,

∑
k∈[m]

∑
j<�

ϕ j�(Tk) = μ
}
.

Since the elements of W beneath the diagonal are centered and independent, then,

E(zti (r))
m =

CE∑
μ=1

∑
(T1,...,Tm )∈Ai (μ)

(
m∏

k=1
�(Tk,α, t)

)(
m∏

k=1
x(Tk)

)
E

[
m∏

k=1
W (Tk)

]
.

(36)
Notice that the contributions of the m–uples of trees in the set

⎧⎨
⎩(T1, · · · , Tm) ∈ Ai (μ) , ∀ j < �,

∑
k∈[m]

ϕ(Tk) j� ∈ {0, 2}
⎫⎬
⎭ ,

are the same for E(zti (r))
m and E(z̃ti (r))

m by the assumptions on the matrices W and
W̃ . Three cases can be considered for a couple of indices ( j, �) where j < � and∑

k∈[m] �ϕ(Tk) j� = 2,

• Wj� is represented two times in the trees⇒ contribution equal to s j�,
• W� j is represented two times in the trees⇒ contribution equal to s� j ,
• Wj� andW� j are both represented in the trees⇒ contribution equal to

√
s j�s� jτ j�.

Notice that in all three cases the contributions do not depend on the distributions of
the entries of the matrix W but only on the first and second moments. Thus, defining
the set

qAi (μ) =
{
(T1, . . . , Tm) ∈ Ai (μ) , ∃ j < �,

∑
k∈[m]

�ϕ(Tk) j� ≥ 3
}
, (37)

the proposition can be proven if we prove that for all μ ∈ [CE ], the real number

ξμ =
∑

(T1,...,Tm )∈ qAi (μ)

(
m∏

k=1
�(Tk,α, t)

)(
m∏

k=1
x(Tk)

)
E

[
m∏

k=1
W (Tk)

]

satisfies

|ξμ| = O
(

1√
Kn

)
.
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Using the bounds (25) provided in the statement of Theorem 3.3, it is clear that∏m
k=1 �(Tk,α, t) and

∏m
k=1 x(Tk) are bounded as n goes to infinity.

Since there exists a constant C such that |EWs
j�| ≤ CK−s/2n for each integer s > 0

by A-1 and A-2, for each (T1, . . . , Tm) ∈ qAi (μ), we have

∣∣∣∣∣E
m∏

k=1
W (Tk)

∣∣∣∣∣ =
∏
j<�

∣∣∣EW
∑m

k=1 �ϕ j�(Tk )
j� W

∑m
k=1 �ϕ� j (Tk )

� j

∣∣∣

≤
∏
j<�

∣∣∣(EW 2
∑m

k=1 �ϕ j�(Tk )
j�

)1/2 (
EW

2
∑m

k=1 �ϕ� j (Tk )
� j

)1/2

≤ CK
− 1

2

∑
j<�

∑
k �ϕ j�(Tk )+�ϕ� j (Tk )

n ≤ CK−μ/2
n .

To complete the proof, we shall show that

∣∣∣ qAi (μ)

∣∣∣ = O
(
K

μ−1
2

n

)
. (38)

Given an m–uple (T1, . . . , Tm) ∈ qAi (μ) of trees, we construct a graph G =
G(T1, . . . , Tm) by identifying the types of the vertices in all these trees (i.e., by merg-
ing the vertices of T1, . . . , Tm that have the same type). The marks as well as the
orientation of the edges are ignored. G is then a rooted and labeled graph whose root
is the vertex obtained by merging the roots of the trees T1, . . . , Tm (remember that
they all have the same type i).
The number of edges of G is

|E(G)| =
∑
j<�

1∑
k ϕ(Tk ) j�>0.

Remember that when
∑

k ϕ(Tk) j� > 0, this sum is greater than 2, so

∀ j < �,
∑
k

ϕ(Tk) j� ≥ 21∑
k ϕ(Tk ) j�>0,

we also know that for some j < � we have
∑

k ϕ(Tk) j� ≥ 3. Consequently,

2(|E(G)| − 1)+ 3 ≤
∑
j<�

m∑
k=1

ϕ(Tk) j� ,

thus,

|E(G)| ≤ μ− 1

2
.

Note that since G is connected, as being obtained through the merger of planted trees
with the same root’s type,

|V (G)| ≤ |E(G)| + 1,
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which gives
|{v ∈ V (G) , v �= ◦}| ≤ (μ− 1)/2.

Also, by construction, G satisfies the following property:

(u → v) ∈ E(G) ⇒ �(u) ∈ K�(v),

where Ki is defined in (35). And by A-2, this implies that G satisfies the following
property: for any fixed labeled vertex v ∈ V (G) if (u → v) ∈ E(G) then u can be
labeled by at most CKn different values.

We shall denote as Gμ
i the set of rooted, undirected and labeled graphs G such that

• G is connected,
• �(◦) = i , |E(G)| ≤ (μ− 1)/2,
• for any fixed labeled vertex v ∈ V (G) if (u, v) ∈ E(G) then u can be labeled by
at most CKn different values.

We denote as Rμ the set of all the elements of Gμ
i but without the labels. Given a

graph G ∈ Gμ
i , let us denote as Ḡ = U(G) ∈ Rμ the unlabeled version of G. With

these notations, we have

∣∣∣ qAi (μ)

∣∣∣ = ∑
Ḡ∈Rμ

∑
G∈Gμ

i :
U(G)=Ḡ

∣∣∣{(T1, . . . , Tm) ∈ qAi (μ) , G(T1, . . . , Tm) = G
}∣∣∣ . (39)

For each graph G, it is clear that

∣∣∣{(T1, . . . , Tm) ∈ qAi (μ) , G(T1, . . . , Tm) = G
}∣∣∣ ≤ C , (40)

where C = C(d, t,m) is independent of G. Our goal now is to show that

∣∣{G ∈ Gμ
i , U(G) = Ḡ

}∣∣ ≤ CK (μ−1)/2
n , (41)

which is simply the number of all possible labelings of a graph Ḡ under the constraints
described above. To see this, consider a breadth first search ordering of the vertices of
the graph v0 = ◦ < v1 < · · · < v|V (Ḡ)|−1 that begins at the root ◦, this ordering has
the property of visiting each vertex once and that each new vertex is connected to an
already visited vertex, i.e.

• {v0 = ◦, v1, · · · , v|V (Ḡ)|−1} = V (Ḡ),

• ∀ j = 1, · · · ∃k < j such that (v j → vk) ∈ E(Ḡ).

Now, starting with v1 and by induction, after fixing the label of v j−1, one can see that
v j can only be labeled in at most CKn possible ways. So the number of all possible

labelings of Ḡ is bounded by CK |V (Ḡ)|−1
n ≤ CK (μ−1)/2

n .
Furthermore, it is easy to check that

∣∣Rμ
∣∣ ≤ C .
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Getting back to equality (39), and using this last inequality along with inequali-
ties (41) and (40), we obtain inequality (38), and the proposition is proved. ��

Notice that for a tuple of trees (T1, · · · , Tm) satisfying the following condition

∀ j < �,
∑
k∈[m]

ϕ j�(Tk) ∈ {0, 2},

if there exists a pair ( j, �) such that
∑

k∈[m] �ϕ j�(Tk) = 1 and ( j, �) ∈ C, i.e. τ j� �= 0,

then E
[∏m

k=1 W (Tk)
] = 0. Consider the following subset Ãi (μ) of Ai (μ) defined

Ãi (μ) =
{
(T1, . . . , Tm) ∈ Ai (μ),

∀ j < �,
∑
k∈[m]

ϕ j�(Tk) ∈ {0, 2},

∀ j, �,
∑
k∈[m]

�ϕ j�(Tk) = 1 ⇒ ( j, �) ∈ C
}
. (42)

If (T1, · · · , Tm) ∈ Ãi (μ) then the graphG = G(T1, · · · , Tm) constructed by merging
the trees has exactly μ/2 edges, and that can be seen by writing

m∑
k=1

ϕ jl(Tk) = 2 1∑m
k=1 ϕ jl (Tk )>0 ,

|E(G)| =
∑
j<l

1∑m
k=1 ϕ jl (Tk )>0 =

∑
j<l

1

2

m∑
k=1

ϕ jl(Tk) = μ/2.

Define the set of graphs G̃μ
i analogously to Gμ

i with the difference that we replace the
requirement |E(G)| ≤ (μ− 1)/2 with |E(G)| = μ/2. We can then write

Ezti (r)
m =

CE∑
μ=1

χμ +
CE∑
μ=1

ξμ, (43)

where

χμ =
∑

Ḡ∈Rμ

∑
G∈G̃μ

i :
U(G)=Ḡ

∑
(T1,··· ,Tm )∈Ãi (μ) :
G(T1,··· ,Tm )=G

⎛
⎝ m∏
k=1

�(Tk , α, t)

⎞
⎠
⎛
⎝ m∏
k=1

x(Tk)

⎞
⎠E

⎡
⎣ m∏
k=1

W (Tk)

⎤
⎦ .

(44)
Recalling that |ξμ| = O(K−1/2n ), we focus on the χμ. To that end, we further decom-
pose the first sum on the unlabeled graphs Ḡ ∈ Rμ above into a sum on the graphs
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which are trees and a sum on the graphs which are not trees, i.e., those that contain a
cycle. Let us denote, respectively, the corresponding sums by χT

μ and χNT
μ , and write

χμ = χT
μ + χNT

μ .

We show in the following lemma that the contribution of the term χNT
μ is negligible.

Lemma 4.3 Consider the same framework as in Proposition 4.2. We have

χT
μ = O(1) and χNT

μ = O
(

1

Kn

)
.

Proof In the proof of Proposition 4.2, we have already got that |E [∏m
k=1 W (Tk)

] | is
bounded by CK−μ/2

n , so we only need to study the quantity

∣∣∣{G ∈ G̃μ
i , U(G) = Ḡ

}∣∣∣ ,

in the case where Ḡ is a tree and where Ḡ in not a tree. Recall that for a given G ∈ G̃μ
i

the graph G is connected and we have |E(G)| = μ/2 so |V (G) \ {◦}| ≤ μ/2 with the
equality if and only ifG is a tree. So repeating the same argument as in Proposition 4.2
we find that

∣∣∣{G ∈ G̃μ
i , U(G) = Ḡ

}∣∣∣ ≤ CKμ/2
n and

∣∣∣{G ∈ G̃μ
i , U(G) = Ḡ

}∣∣∣ ≤ CKμ/2−1
n ,

in the case of Ḡ being a tree and not a tree respectively. Multiplying byCK−μ/2
n yields

to the desired result. ��

4.4 Approximation of the Non-backtracking Iterations

For each n, let us now consider an i.i.d. sequence (Wt )t=0,1,... of n × n matrices such

that Wt L= W . We define the vectors yti→ j and yti recursively in t similarly to what
we did for the vectors zti→ j and zti , with the difference that we now replace the matrix

W with the matrix Wt at step t . More precisely, we set y0i→ j = x0i for each i, j ∈ [n]
with i �= j . Given { yti→ j | i, j ∈ [n], i �= j}, we set

yt+1i→ j (r) =
∑

�∈[n]\{ j}
Wt

i� fr ( y
t
�→i , �, t), i �= j . (45)

Also,
yt+1i (r) =

∑
�∈[n]

Wt
i� fr ( y

t
�→i , �, t). (46)
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We introduce here a similar quantity toW (T ) for a given labeled tree which is adapted
to the computations related to the iterations yti . We define W (T , t) by

W (T , t) =
∏

(u→v)∈E(T )

Wt−|u|
�(v)�(u),

where we recall that |u| denotes the distance of the vertex u to the root ◦ in the tree T .
We can prove similar structural identities for yti and yti→ j as what we did with the
iterates zti and zti→ j . In fact, we have

yti→ j (r) =
∑

T∈T t
i→ j (r)

W (T , t)�(T ,α, t)x(T ),

yti (r) =
∑

T∈T t
i (r)

W (T , t)�(T ,α, t)x(T ).

Proposition 4.4 Let (zt ) and ( yt ) two sequences defined in (33) and (46) respectively,
then for each t ≥ 1 and each m ∈ N

q , we have that for each i ∈ [n],
∣∣E(zti )

m − E( yti )
m
∣∣ = O

(
1√
Kn

)
.

Proof We follow the same strategy of proof as in Proposition 4.2. For simplicity let
us fix m(r) = m for a certain r ∈ [q]. We have

E
[
yti (r)

m] =
CE∑
μ=1

∑
(T1,··· ,Tm )∈Ai (μ)

⎛
⎝ m∏
k=1

�(Tk , α, t)

⎞
⎠
⎛
⎝ m∏
k=1

x(Tk)

⎞
⎠E

⎡
⎣ m∏
k=1

W (Tk , t)

⎤
⎦ .

As in the case of (zti ), we can also decompose this sum into a sum over trees

(T1, · · · , Tm) in the set qAi (μ) (defined in (37)) and trees that are in the set Ãi (μ)

(defined in (42)). The contribution of m-tuples of trees in qAi (μ) is of order K−1/2n , so
we may focus on m-tuples of trees in Ãi (μ). Recall the definition of a graph G ∈ Gμ

i
as the merger of trees (T1, · · · , Tm) where we identify vertices u that have the same
label �(u). As in the previous proof, we further partition these graphs into trees and
graphs that contain at least a cycle. The latter have a contribution of order K−1n so we
may focus on the contribution of graphs G that are trees. Write

χ̄T
μ =

∑
Ḡ∈Rμ

Ḡ is a tree

∑
G∈G̃μ

i :
U(G)=Ḡ

∑
(T1,··· ,Tm )∈Ãi (μ) :
G(T1,··· ,Tm )=G

⎛
⎝ m∏
k=1

�(Tk , α, t)

⎞
⎠
⎛
⎝ m∏
k=1

x(Tk)

⎞
⎠E

⎡
⎣ m∏
k=1

W (Tk)

⎤
⎦ .

The proof of this proposition will be completed if we can show that χT
μ = χ̄T

μ .
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First, notice that the terms
∏m

k=1 �(Tk,α, t) and
∏m

k=1 x(Tk) are the same in
the expressions of χT

μ (defined in (44)) and χ̄T
μ . So it suffices study the term

E
[∏m

k=1 W (Tk)
]
. Two cases can be studied, whether this term is zero or nonzero.

Consider any m-tuple of trees (T1, · · · , Tm) ∈ Ãi (μ), if

E

[
m∏

k=1
W (Tk)

]
�= 0 ,

then for every matrix entry (i, j) which is represented in the trees T1, · · · , Tm there
exist exactly two edges (a→ b) and (c→ d) such that {�(a), �(b)} = {�(c), �(d)} =
{i, j}, in addition |a| = |c| otherwise E [∏m

k=1 W (Tk)
] = 0, we then obtain a second

moment of W which means that

E

[
m∏

k=1
W (Tk)

]
= E

[
m∏

k=1
W (Tk)

]
.

Now suppose for the sake of contradiction that

E

[
m∏

k=1
W (Tk)

]
= 0 and E

[
m∏

k=1
W (Tk)

]
�= 0 ,

we show that in this case the graph G = G(T1, · · · , Tm) is not a tree which is a
contradiction. There exists a matrix entry (i, j) with i < j which is represented in
the trees (T1, · · · , Tm) by two edges (a→ b) and (c→ d) such that vertices a and c
do not have the same distance to the root ◦, i.e. |a| > |c| for example. This is because
E
[∏m

k=1 W (Tk)
] = 0 and because τi j �= 0, si j �= 0 and s ji �= 0. Three possible cases

can be considered:

• (a → b) and (c → d) exist on the same path of a certain tree: by the non-
backtracking condition, these edges should be separated by at least one vertex say
e of label k /∈ {i, j}, i.e.:

· · · → a→ b→ e→ · · · → c→ d · · · → ◦.

As for the graph G, this means that starting from a vertex of label i we should pass
through a vertex of label k /∈ {i, j} and then return to the vertex of label i which
creates a cycle.
• (a→ b) and (c→ d) exist in two different trees say T1 and T2 respectively:

· · · → a→ b→ · · · → · · · → ◦ (T1)

· · · → ∗ → c→ d → · · · → ◦ (T2)

First notice that the labels of the vertices in each of these two paths are different:
if two vertices on the same path have the same label say k then due to the non-
backtracking condition they shouldbe separatedbyat least twoother verticeswhich
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result in a cycle in the graph G. Recall that the roots ◦T1 and ◦T2 are identified in
the graph G which means that in G there exist a path from the vertex �(b) to ◦
and another path from �(d) to ◦, these two paths are distinct as they have different
lengths which is a consequence of the condition |a| < |c|. In addition �(b) and
�(d) are either equal or linked in G, this creates a cycle in the graph.
• (a → b) and (c→ d) exist in two different paths of the same tree: similar to the
previous case.

��

4.5 Approximation of the AMP Iterations

Let us now establish the relationship between AMP iterates (xt )t and the non-
backtracking iterations (zt )t . We see in the following proposition that the moments of
xt can be approximated by the moments of zt .

Recall that we denote by T t
i the set of planted and labeled trees of depth at most t ,

such that the type of the root is equal to i . Analogously, T t
i denotes the subset of trees

satisfying, in addition, the non-backtracking condition (see Sect. 4.2).

Proposition 4.5 For each t ≥ 1 and each m ∈ N
q , we have that for each i ∈ [n],

∣∣E(xti )
m − E(zti )

m
∣∣ = O

(
1√
Kn

)
.

In order to prove this propositionwe need the following structural lemma that connects
xti (r) to z

t
i (r) for i ∈ [n], r ∈ [q] and t ∈ N. Consider Ū t

i (resp.U t
i ) the set of unmarked

trees of the set T̄ t
i (resp. T t

i ). We can consider that these sets are constructed by
identifying the trees with the same structure and labels. Denote also by U the map that
assigns to a tree T its unmarked version T̂ := U(T ). The two equations in Lemma 4.1
can be reformulated as:

zti→ j (r) =
∑

T̂∈U t
i→ j

W (T̂ )�(T̂ , r , t)x(T̂ ),

zti (r) =
∑
T̂∈U t

i

W (T̂ )�(T̂ , r , t)x(T̂ ),

where W (T ) and x(T ) are invariant with respect to the marking of the tree, and

�(T̂ , r , t) :=
∑

T∈T t (r) : U(T )=T̂
�(T ,α, t), ∀T̂ ∈ U t

i .

Consider Bt ⊂ Ū t to be the set of trees T such that for each (u → v) ∈ E(T ) we
have �(u) �= �(v), in addition at least one of the following conditions holds,

• there exists a backtracking path of length 3: a path a → b → c → d such that
�(a) = �(c) and �(b) = �(d),
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• there exists a backtracking star: a → b → c and a′ → b → c such that �(a) =
�(a′) = �(c).

Lemma 4.6 For each t, r , i there exists a �̃(., t, r) such that �̃(T , r , t) = O(1) uni-
formly in T and

xti (r) = zti (r)+
∑
T∈Bt

i

W (T )�̃(T , r , t)x(T ).

Proof We prove this lemma by induction on t . The cases t = 0, 1 are simple, suppose
that t ≥ 2, and that the equation is valid for t . Recall the AMP recursion given by,

xt+1i (r) =
n∑

�=1
Wi� fr (x

t
�)−

q∑
s=1

n∑
�=1

Wi�W�i fs(x
t−1
i )∂x(s) fr (x

t
�).

Here we omit the dependence of f on � and t , i.e. fr (xt�, �, t) = fr (xt�). Recall that
fr is a multivariate polynomial, so by Taylor’s expansion at zt�→i , we can write

fr (x
t
�) = fr (z

t
�→i )+

∑
s∈[q]

(
xt�(s)− zt�→i (s)

)
∂x(s) fr (z

t
�→i )

+
∑

k : k1+···+kq≥2

[ q∏
s=1

(
xt�(s)− zt�→i (s)

)ks
ks !

]
Dk fr (z�→i ),

(47)

where for k ∈ N
q and x ∈ R

q we denote by Dk
x the following differential operator

Dkg(x) = ∂k1+···+kq g(x)
∂x(1)k1 · · · x(q)kq

.

Let et�(r) :=
∑

T∈Bt
�
W (T )�̃(T , r , t)x(T ), by the induction hypothesis we have

xt�(r) = zt�(r)+ et�(r)

= zt�→i (r)+ zt�,i (r)+ et�(r),

where we use the notation zt�,i (r) := W�i fr (z
t−1
i→�). Plugging this equation into (47)

gives

fr (x
t
�) = fr (z

t
�→i )+

∑
s∈[q]

(
zt�,i (s)+ et�(s)

)
∂x(s) fr (z

t
�→i )

+
∑

k : k1+···+kq≥2

⎡
⎢⎣

q∏
s=1

(
zt�,i (s)+ et�(s)

)ks
ks !

⎤
⎥⎦ Dk fr (z�→i ),

(48)
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Now, multiplying by Wi� on both sides and summing over � gives the following

∑
�∈[n]

Wi� fr (x
t
�) = zt+1i (r)+

∑
�∈[n],s∈[q]

Wi�
(
zt�,i (s)+ et�(s)

)
∂x(s) fr (z

t
�→i )

+
∑

�∈[n], k1+···+kq≥2
Wi�

⎡
⎢⎣

q∏
s=1

(
zt�,i (s)+ et�(s)

)ks
ks !

⎤
⎥⎦ Dk fr (z�→i ).

(49)

The first term is obtained by the definition of zt+1i (r), see Eq (33). The second term
can be decomposed into the two following sums,

∑
�∈[n],s∈[q]

Wi�W�i fr (z
t−1
i→�)∂x(s) fr (z

t
�→i )+

∑
�∈[n],s∈[q]

Wi�e
t
�(s)∂x(s) fr (z

t
�→i ).

Now subtracting the Onsager term from both sides of Eq (49) gives the following

xt+1i (r) = zt+1i (r)−
∑

�∈[n],s∈[q]
Wi�W�i

(
fr (x

t−1
i )∂x(s) fr (x

t
�)− fr (z

t−1
i→�

)∂x(s) fr (z
t
�→i )

)

+
∑

�∈[n],s∈[q]
Wi�e

t
�(s)∂x(s) fr (z

t
�→i ) (50)

+
∑

�∈[n], k1+···+kq≥2
Wi�

⎡
⎢⎣

q∏
s=1

(
zt
�,i (s)+ eti (s)

)ks
ks !

⎤
⎥⎦ Dk fr (z�→i ).

Denote by S1, S2 and S3, respectively, the three terms in the right-hand side of the
previous equation except zt+1i (r). One wants to prove that these three terms can be
written as sums over trees in T ∈ Bt+1

i of terms having the form,

W (T )�̃(T , r , t)x(T ),

where �̃(T , r , t) is obtained by construction, the exact form of this term is not impor-
tant, we only need it to be bounded as n goes to infinity.

The term S2

The second term is given by the following formula,

S2 =
∑

�∈[n], s∈[q]
Wi�e

t
�(s)∂x(s) fr (z

t
�→i ).
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The terms in this sum are given by

et�(s) =
∑
T∈Bt

�

W (T )�(T , s, t)x(T ),

∂x(s) fr (z�→i ) =
∑

k1+···+kq≤d
αk1,··· ,kq (r , �, t)ks

(
zt�→i (s)

)ks−1 ∏
u∈[q]\{s}

(
zt�→i (u)

)ku ,

with
zt�→i (u) =

∑
T∈U t

�→i

W (T )�(T , u, t)x(T ).

S2 can thus be interpreted as a sum over trees T ∈ Bt+1
i constructed as follows:

• The root ◦ has a type equal to i , and ◦ has a child, say �, of type �. This is due to
Wi�.
• The vertex � is the root of a tree in Bt

�. This is due to the term et�(s).• The root’s child � is also the root of k1 + · · · + (ks − 1) + · · · + kq additional
trees in U t

�→i . This is due to the term ∂x(s) fr (z�→i ). Note that in total, � has at
most d ≥ k1 + · · · + (ks − 1)+ · · · + kq + 1 children.

By construction, we can easily see that T is in Bt+1
i .

The term S1

The first term is given by the following formula,

S1 =
∑

�∈[n],s∈[q]
Wi�W�i

(
fr (x

t−1
i )∂x(s) fr (x

t
�)− fr (z

t−1
i→�)∂x(s) fr (z

t
�→i )

)
.

Doing a Taylor expansion of the polynomial g : (x, x ′) �→ fr (x)∂x(s) fr (x′) around
(zt−1i→�, z

t
�→i ) gives

S1 =
∑

�∈[n]s∈[q]
Wi�W�i

∑
| j |+|k|≥1⎡

⎢⎣
q∏

u=1

(
zt−1i,� (u)+ et−1i (u)

) ju (
zt
�,i (u)+ et

�
(u)
)ku

( ju + ku)!

⎤
⎥⎦ D( j,k)g(zt−1i→�

, zt�→i ).

S1 can be seen as a sum, up to multiplication factors, of the following terms

Wi�W�i

∏
u=1

(
zt−1i,� (u)+ et−1i (u)

) ju (
zt�,i (u)+ et�(u)

)ku (zt−1i→�(u)
)au (

zt�→i (u)
)bu ,
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with the constraint that
∑q

u=1( ju + ku) ≥ 1. To show that S1 can be seen a sum of
trees T belonging to Bt+1

i , two cases should be considered, either it exists a u such
that ju ≥ 1 or ku ≥ 1.

• If there exists a u such that ju ≥ 1, we construct a tree in Bt+1 as follows:

– The root ◦ has a type equal to i , and ◦ has a child, say �, of type �. This is due
to Wi�.

– The vertex � is the root of trees in U t
�→i , which is due to the multiplication by

zt�→i (u).
– The vertex � has a child, say ♦, of type i , which is due to W�i .
– The vertex ♦ is the root of trees in U t−1

i→�, which is due to zt−1i→�(u).

Now because ju ≥ 1, at least one of the following holds:

– The vertex ♦ is the root of trees in Bt−1
i , which obviously results in a tree

T ∈ Bt+1
i .

– The vertex ♦ is has a child of type �, which creates a backtracking path of
length 3 of types �→ i → �→ i which also results in a tree T ∈ Bt+1

i . This
child is the root of a tree in U t−1

i→�. And this is due to the term zt−1i,� .

• If there exists a u such that ku ≥ 1, we repeat the same argument. This time, the
multiplication by zt�,i (u) gives a backtracking star [i, i → �→ i], which results

in a tree T ∈ Bt+1
i . Otherwise, the multiplication by et�(u) adds a tree in Bt

� which
obviously results in a final tree T belonging to Bt+1

i .

The term S3

The third term is given by the following formula,

S3 =
∑

�∈[n], k1+···+kq≥2
Wi�

⎡
⎢⎣

q∏
s=1

(
zt�,i (s)+ eti (s)

)ks
ks !

⎤
⎥⎦ Dk fr (z�→i ).

Similarly to the interpretation of S2 as a sum of trees in Bt+1
i , we can repeat the same

arguments for S3. The terms that have eti (s) as a multiplication factor naturally results
in trees belonging toBt+1

i . In the other case, notice that the constraints k1+· · ·+kq ≥ 2
implies that a term of the form Wi�zt�,i (s)z

t
�,i (s

′) always exists, this term produces a

backtracking star and thus the final tree T belongs to Bt+1
i .

By studying the tree terms, we proved the existence of a �̃(T , t, t + 1) such that

xt+1i (r) = zt+1i +
∑

T∈Bt+1
i

W (T )�̃(T , r , t + 1)x(T ).
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Where �̃(T , t, t + 1) is a function of �̃(T , t, t) and the activation functions’ coeffi-
cients. It remains to check that �̃(T , t, t + 1) = O(1). This can be easily verified, and
its proof will be omitted. ��
Remark 4.3 The previous proof is a non-Symmetric adaptation of the techniques devel-
oped in [7] and [21] in the symmetric case. Instead of termsW 2

i� in the symmetric case,
we handle their counterpartsWi�W�i in the non-Symmetric case and properly interpret
them as edges of a tree. Accordingly, we rely on an Onsager term based on matrix
W �W� instead of W�2.

Finally, we can prove Proposition 4.5 by repeating the same arguments used in the
proof of Proposition 4.2.

Proof of Proposition 4.5 We can restrict ourselves to the case ofm(r) = m andm(s) =
0 for s �= r . The m-th power of xti (r) is given by

E
(
xti (r)

)m − E
(
zti (r)

)m = E

⎛
⎝zti (r)+

∑
T∈Bt

i

W (T )�̃(T , r , t)x(T )

⎞
⎠

m

− E
(
zti (r)

)m

≤ C
∑
T1∈Bt

i

∑
T2,··· ,Tm∈Bt

i∪T t
i (r)

∣∣∣∣∣E
m∏
i=1

W (Ti )

∣∣∣∣∣ .

The key observation here is to notice that the graph obtained by merging the trees
(T1, · · · , Tm) has an edge which is the result of the fusion of at least three edges, and
this is because T1 has a backtracking path or a backtracking star. This implies a bound
on the number of edges of the resulting graph.

4.6 End of Proof of Theorem 3.3

Wenow show that the sequence ofGaussian vectors (Ut ) defined in (24) by theDensity
Evolution equations approximate the iterations ( yt ) defined in (45) and (46) where
the matrices (Wt )t∈N are independent and Gaussian.

Proposition 4.7 Let W be a random matrix defined in (3) and satisfying assumptions
A-1 and A-2, suppose in addition that W is gaussian. Let (Wt )t∈N be a sequence of
independent copies of W. Then for each multi-index m ∈ N

q and each integer t > 0
we have

max
i∈[n]

∣∣E [( yti )m]− E
[
(Ut

i )
m]∣∣ −→ 0.

Remark 4.4 Recall that the randommatrix (Ut
1, · · · ,Ut

n)
� ∈ R

n×q is defined such that
(Ut

i )i∈[n] are independent and such thatU
t
i ∼ N (0, Qt

i ) where (Qt
i )t is a sequence of

k × k covariance matrices defined recursively by

Qt+1
i =

∑
�∈[n]

si�E
[
f (Ut

�, �, t) f (U
t
�, �, t)

�] .
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In particular, the law of U does not depend on our correlation profile.
We also recall that the iterations yt are defined by y0i→ j = x0i and

yt+1i→ j =
∑

�∈[n]\{ j}
Wt

i� f (y
t
�→i , �, t)

which implies that the conditional distribution of yt+1i→ j givenFt := σ {W 0, · · · ,Wt−1}
isNk

(
0, Ht+1

i j

)
where (Ht

i j )t is a sequence of q × q covariance matrices defined for

each t ∈ N
� by the following recursion

Ht+1
i j =

∑
�∈[n]\{ j}

si�E
[
f (yt�→i , �, t) f (y

t
�→i , �, t)

�] .

We therefore notice that the conditional distribution of yt+1i→ j given Ft is unchanged if

we replace thematrixW with a random symmetric matrix W̃ having the same variance
profile as W . By doing so, we can directly apply the result in [21, Proposition 15].

Combining the previous results we get the following convergence for each multi-
index m

max
i∈[n]

∣∣E [(xti )m]− E
[
(Ut

i )
m]∣∣ −→ 0.

We can then use the triangular inequality to get this same result for any multivariate
polynomial with bounded coefficients instead considering only the monomial Xm.

Proposition 4.8 Let ψ : Rq ×[n] → R such that ψ(., �) is a multivariate polynomial
with bounded degree and bounded coefficients. Then for each subset S(n) of [n] with
|S(n)| → ∞, it holds that

1

|S(n)|
∑
i∈S(n)

E
[
ψ(xti , i)

]− E
[
ψ(Ut

i , i)
] −→ 0.

Finally, in order to get the convergence in probability stated in Theorem 3.3, we
only need to show that the following variance

Var

⎡
⎣ 1

Kn

∑
i∈S(n)

ψ(xti , i)

⎤
⎦ −→ 0 (51)

converges to zero. The proof of this convergence is similar to the proof of [21, Propo-
sition 17] and thus is be omitted.

The proof of Theorem 3.3 follows then from Proposition 4.8 and the convergence
in (51).
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5 AMPwith General Activation Functions and Nonzero Diagonal
Matrix

5.1 AMP for General Activation Functions

Now that we have proved the AMP convergence result for polynomial activation
functions in Theorem 3.1, we can generalize this result for non-polynomial activation
functions by approximation arguments. In other words we complete the proof of our
main Theorem 2.1 still assuming that the matrix model has a zero diagonal (Xii = 0).

We start this section with an approximation of the activation function h by polyno-
mials in order to use the convergence results of polynomial AMP.

Lemma 5.1 Let h be an activation function satisfying A-5 and let
(
Z1, · · · , Zt

) ∼
DE

(
S, h, x0, t

)
. Let e > 0 be a (small) real number, then there exists a set of functions

(pe(·, ·, t))tmax
t=1 such that for each η ∈ Qη, pe(., η, t) is a polynomial and

E
(
h(Zt

i , ηi , t)− pe(Z
t
i , ηi , t)

)2 ≤ e and
∣∣E (∂h(Zt

i , ηi , t)− ∂ pe(Z
t
i , ηi , t)

)∣∣ ≤ e,

for t = 0, · · · , tmax with the convention that Z0 = x0 deterministic. In addition, let
qRtmax
i be the covariance matrix of the i-th row of

(
qZ
1
, · · · , qZt

)
∼ DE

(
pe, x0, S, t

)
,

then there exists δ(e) such that δ(e)→ 0 when e→ 0 and

‖Rtmax
i − qRtmax

i ‖ ≤ δ(e), ∀i ∈ [n].

In order to prove this lemma, we need to show that the variances of Zt
i are bounded

away from zero. To that end, we use Assumptions A-4, A-5 and A-6.

Lemma 5.2 Let S be a matrix satisfying A-2, x0 an n-dimensional vector satisfying
A-4, h a function satisfying A-5 and A-6. Following the notations of Definition 1.3 let(
Z1, · · · , Zt

) ∼ DE
(
h, x0, S, t

)
and recall the definition of the covariance matrix

Rt
i ∈ R

t×t . Then for every t ∈ N there exist two constant C = C(t) > 0 and
c = c(t) > 0 such that

(1) The spectral norms of the covariance matrices are bounded

∀n ∈ N, ∀i ∈ [n], ‖Rt
i ‖ ≤ C .

(2) The variances of Z t
i are bounded away from zero

∀n ∈ N, ∀i ∈ [n], Rt
i (t, t) ≥ c.

The proof of this technical lemma is given in Appendix 1. The proof of the first part of
Lemma 5.1 relies on the polynomial density Lemma C.1 and the fact that the variances
of Zt

i are bounded from above and also bounded away from zero which is detailed in
Lemma 5.2. The second part uses the same proof technique described in the proof of
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Lemma 5.6. An immediate consequence of this approximation is that the covariance
matrices qRtmax

i are also bounded.
Let (x̌t ) the AMP sequence considered in Theorem 3.1. The following lemma

allows us to replace the “random" formulation of the Onsager term by a deterministic
equivalent, i.e.

diag
(
W �W�∂ pe(x̌

t
, ·, t)

)
with diag

(
V ∂ pe(x̌

t
, ·, t)

)
.

Lemma 5.3 For each t ∈ N there exists a constant C that does not depend on n such
that:

E

⎡
⎢⎣
⎛
⎝∑

j∈[n]

(
Wi jW ji − Vi j

)
∂ pe(x̌

t
j , η j , t)

⎞
⎠

4
⎤
⎥⎦ ≤ C/K 2

n for all i ∈ [n].

where Vi j = τi j
√
si j s ji = E

[
Wi jW ji

]
.

The proof of this lemma is provided in Appendix 1.
The following lemma gives the desired comparison of two sequences (xt ) and (x̌t )

defined by

(xt ) = AMP-Z
(
X , S, h, x0, η

)
and (x̌t ) = AMP-W

(
X , S, pe, x0, η

)
, (52)

where pe is the polynomial approximation of the function h by an error margin e in
the sense of Lemma 5.1.

Lemma 5.4 Fix tmax > 0. Let (xt ) and (x̌t ) be two AMP sequences defined as in
Eq. (52), then there exists δ(e)→ 0 as e→ 0 such that the following holds for each
t = 1, · · · , tmax,

‖xt − x̌t‖n ≤ δ(e)+ oP(1) and ‖h(xt )− pe(x̌
t
)‖n ≤ δ(e)+ oP(1),

where oP(1)
P−−−→

n→∞ 0.

Using this Lemma, we are now able to prove the AMP convergence result for
general activation functions.

Proof of Theorem 2.1 in the zero-diagonal case Let ϕ : R
tmax → R be a pseudo-

Lipschitz function and denote xi =
(
x1i , · · · , xtmax

i

)�
and x̌i =

(
x̌1i , · · · , x̌ tmax

i

)�
,

without loss of generality we omit the scalars βi and the parameters ηi by considering
that ϕ depends also on the index i . We have

1

n

∑
i∈[n]

ϕ(xi ) = 1

n

∑
i∈[n]

(
ϕ(xi )− ϕ(x̌i )

)+ 1

n

∑
i∈[n]

(ϕ(x̌i )−ϕ(qZi ))+ 1

n

∑
i∈[n]

(ϕ(qZi )−ϕ(Zi )).
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The pseudo-Lipschitz property of ϕ implies that

1

n

∣∣∣∣∣∣
∑
i∈[n]

ϕ(xi )− ϕ(x̌i )

∣∣∣∣∣∣ ≤
C

n

∑
i∈[n]
‖xi − x̌i‖

(
1+ ‖xi‖ + ‖x̌i‖

)

≤ C

(
tmax∑
t=1
‖xt − x̌t‖n

)(
1+

tmax∑
t=1
‖xt‖n +

tmax∑
t=1
‖x̌t‖n

)
.

By Lemma 5.4 we have
∑tmax

t=1‖xt − x̌t‖n ≤ δ(e) + oP(1), and by Theorem 3.1
applied to the test function x �→ x2 we get ‖x̌t‖n ≤ C + oP(1) which also implies
that ‖xt‖n ≤ C + oP(1), finally we have

1

n

∣∣∣∣∣∣
∑
i∈[n]

ϕ(xi )− ϕ(x̌i )

∣∣∣∣∣∣ ≤ δ(e)+ oP(1).

By Theorem 3.1, we have that

1

n

∑
i∈[n]

(ϕ(x̌i )− ϕ(qZi )) = oP(1) .

And finally by using Lemma 5.1 we get

1

n

∣∣∣∣∣∣
∑
i∈[n]

ϕ(Zi )− ϕ(qZi )

∣∣∣∣∣∣ ≤ δ(e),

which concludes the proof of our main theorem.

In order to provide a comparison between the two AMP sequences in (52), we need
the boundedness of the spectral norm of W , a technical yet very important condition.
This condition is enforced by A-3 that controls the sparsity level of the randommatrix.

Proposition 5.5 Let A-1, A-2 and A-3 hold true. Then the following bound holds true
with probability one,

sup
n≥1
‖W‖ <∞.

The proof of this proposition is due to a result of [4] and is provided in Appendix 1.
In the following paragraph we give the sketch of proof of Lemma 5.4.

Proof of Lemma 5.4 The proof is basically an induction argument in which we use
Lemma 5.1, Lemma 5.3 and the AMP convergence result for polynomial activation
functions. The base case (t = 1) is easy. Suppose now that the result is valid for
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all s = 1, · · · , t and let us prove that it also holds for s = t + 1. By the triangular
inequality, we can write

‖xt+1 − x̌t+1‖n ≤ ‖W‖‖h(xt )− pe(x̌
t
)‖n

+ ‖diag (VE∂h(Zt )
)
h(xt−1)− diag

(
W �W�∂ pe(x̌

t
)
)
pe(x̌

t−1
)‖n .

The first term is directly handled by the induction hypothesis as well as the bound on
the spectral norm of W (see Proposition 5.5 ). Let us now show that the second term,
which corresponds to the normalized distance between the two Onsager terms, can
also be bounded by δ(e)+oP(1). Using the triangular inequality, this term is less than
‖�(1)‖n+‖�(2)‖n+‖�(3)‖n+‖�(4)‖n , where

�(1) = diag
(
V
(
E∂h(Zt )− E∂ pe(qZ

t
)
))

h(xt−1),

�(2) = diag
(
VE∂ pe(qZ

t
)
) (

h(xt−1)− pe(x̌
t−1

)
)

,

�(3) = diag
(
V
(
E∂ pe(qZ

t
)− ∂ pe(x̌

t
)
))

pe(x̌
t−1

),

�(4) = diag
(
(V −W �W�)∂ pe(x̌

t
)
)
pe(x̌

t−1
).

For ‖�(1)‖n . We bound |[V (E∂h(Zt )− E∂ pe(qZ
t
))]i | by

∣∣∣[VE∂h(Zt )− VE∂h(qZ
t
)]i
∣∣∣+

∣∣∣[VE∂h(qZ
t
)− VE∂ pe(qZ

t
)]i
∣∣∣ ≤ Ce + δ(e),

(53)
where the last inequality is due to Lemma 5.1. The normalized norm of h(xt−1) can
be controlled using the Lipschitz property of h and the result of Lemma 3.2.

For ‖�(2)‖n . We bound the real numbers [VE∂ pe(qZ
t
)]i using inequality (53) and

we conclude using the induction hypothesis.

For ‖�(3)‖n . We use Theorem 3.1-(20a) to show that [V (E∂ pe(qZ
t
)

−∂ pe(x̌
t
))]i P−−−→

n→∞ 0 for any sequence (i) less than (n). We then use the bounds

(19) to show that E‖�(3)‖n −−−→
n→∞ 0.

For ‖�(4)‖n . Finally, we use Lemma 5.3 to show that ‖�(4)‖n P−−−→
n→∞ 0.

Using all these bounds we finally get

‖xt+1 − x̌t+1‖n ≤ δ(e)+ oP(1). (54)

Now, it remains to show that

‖h(xt+1)− pe(x̌
t+1

)‖n ≤ δ(e)+ oP(1).

Using Lipschitz property of h as well as the bound (54), we get

‖h(xt+1)− pe(x̌
t+1

)‖n ≤ δ(e)+ oP(1)+ ‖h(x̌t+1)− pe(x̌
t+1

)‖n .
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Let ϕ(x) = (h(x) − pe(x))2 a continuous function with at most polynomial growth
at infinity, we write

‖h(x̌t+1)− pe(x̌
t+1

)‖2n =
1

n

∑
i∈[n]

(
ϕ(x̌ t+1i )− Eϕ(qZt+1

i )
)
+ E‖h(qZ

t+1
)− pe(qZ

t+1
)‖2n,

by Lemma 3.2 the first term converges to 0 in probability, and by Lemma 5.1 the
second term is bounded by e.

5.2 The Nonzero Diagonal Matrix Model

We have been working so far with a matrix S with vanishing diagonal (Sii = 0), under
A-7. In [21] and [7], this assumption simplifies the combinatorial derivations since it
prevents the appearance of loops in the combinatorial structures.

In this section,we lift AssumptionA-7 and prove that Theorem2.1 holds for random
matrices with nonzero diagonal elements. We proceed with a perturbation argument.

Consider a matrix X that satisfies A-1. Let S = (si j )1≤i, j≤n be the variance profile
matrix satisfying A-2 where the diagonal entries sii are non-necessarily zero. Finally,
define the matrix W as in Eq. 3, i.e.

Wi j = √si j Xi j .

Let x0 and η two n dimensional vectors satisfying A-4, and h a function satisfying
A-5 and A-6. Consider the sequence defined by

(
xt
)
t∈N := AMP-Z

(
X , S, h, x0, η

)
.

We remind below the iteration expression:

xt+1 = Wh
(
xt , η, t

)− diag
(
VE

[
∂h(Zt , η, t)

])
h(xt−1, η, t − 1) ,

where V = (vi j ) = (τi j
√
si j s ji ) and (Z1, · · · , Zt ) ∼ DE

(
h, x0, S, t

)
.

In order to proceed, define S̃ to be equal to S except the diagonal elements that we
set to zero;

s̃i j = (1− δi j )si j .

Define matrix W̃ by W̃i j =
√
s̃i j Xi j , and the Rn-valued sequences

(
x̃t
)
t∈N by

(
x̃t
)
t∈N := AMP-Z

(
X , S̃, h, x0, η

)
,

where the iterations are given by

x̃t+1 = W̃h
(
x̃t , η, t

)− diag
(
ṼE

[
∂h(Z̃ t , η, t)

])
h(x̃t−1, η, t − 1) .
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Here Ṽ = (S̃ � S̃�
)�1/2�T = ((1− δi j )vi j

)
and (Z̃1, · · · , Z̃ t ) ∼ DE

(
h, x0, S̃, t

)
.

Since this sequence is generated using a matrix model with vanishing diagonal, we
can apply the AMP result proven so far, i.e. for every uniformly bounded sequence
(βi )i∈[n] and every PL test function ϕ : Rtmax+1→ R, we have

1

n

∑
i∈[n]

βiϕ(ηi , x̃
1
i , · · · , x̃ tmax

i )− βiϕ(ηi , Z̃
1
i , · · · , Z̃ tmax

i )
P−−−→

n→∞ 0 .

In order to prove the same convergence result for (xt )t∈N, we prove that xt is a
small perturbation of x̃t as n grows to infinity.

Lemma 5.6 For each i ∈ [n] and t ≤ tmax recall that Rt
i (respectively R̃

t
i ) is the covari-

ance matrix of �Zt
i := [Z1

i , · · · , Zt
i ]� (respectively

�̃
Zt
i ). Then ‖Rt

i − R̃t
i ‖ converges to

0 as n grows to infinity.

Proof We prove this result by induction on t . For t = 1 we write:

R1
i − R̃1

i =
∑
�∈[n]

si�
(
h(x0� , η�, 0)

)2 − ∑
�∈[n] : � �=i

si�
(
h(x0� , η�, 0)

)2 = sii
(
h(x0i , ηi , 0)

)2
.

Hence ∣∣∣R1
i − R̃1

i

∣∣∣ ≤ C

Kn
−−−→
n→∞ 0 .

Suppose now that for all s ≤ t the quantity ‖Rs
i − R̃s

i ‖ converges to zero and let us
now prove that this convergence also holds at iteration step t+1. To this end, we must
study the (t + 1, s + 1)-th entry of the (t + 1) × (t + 1) of the covariance matrices
Rt+1
i and R̃t+1

i . We have

Rt+1
i (t + 1, s + 1)− R̃t+1

i (t + 1, s + 1)

=
∑

�∈[n] : � �=i
si�
(
E
[
h(Zt

�, η�, t)h(Zs
�, η�, s)

]− E

[
h(Z̃ t

�, η�, t)h(Z̃ s
�, η�, s)

])

+ siiE
[
h(Zt

i , ηi , t)h(Zs
i , ηi , s)

]
. (55)

Using the fact that E
[
h(Zs

i , ηi , s)
2
]
is bounded by a constant that depends only on t

and using Cauchy-Schwartz inequality, we have

∣∣siiE [h(Zt
i , ηi , t)h(Zs

i , ηi , s)
]∣∣ ≤ C

Kn
.

In order to bound the first term of the right-hand side of Eq. (55), first notice that
since h is Lipschitz then H : (x1, x2) �→ h(x1)h(x2) is PL, i.e. there exists C > 0
such that

∀x, y ∈ R
2 |H(x)− H(y)| ≤ C‖x − y‖2 (1+ ‖x‖2 + ‖y‖2) .
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Let �2 ∈ R
2×2 and �̃2 ∈ R

2×2 be the covariance matrices of the vectors Zt,s
� =

(Zt
�, Z

s
�) and Z̃ t,s

� = (Z̃ t
�, Z̃

s
�), respectively. Then given ξ ∼ N2(0, I2) we can write

∣∣∣E [H(Zt,s
� )− H(Z̃ t,s

� )
]∣∣∣ =

∣∣∣E [H(�ξ)− H(�̃ξ)
]∣∣∣

≤ C‖� − �̃‖E
[
‖ξ‖2

(
1+ ‖Zt,s

� ‖2 + ‖Z̃ t,s
� ‖2

)]
.

Using Lemma 5.2 it is easy to see that the factor

E

[
‖ξ‖2

(
1+ ‖Zt,s

� ‖2 + ‖Z̃ t,s
� ‖2

)]
.

is bounded by a constant depending only on tmax. Now using the induction hypothesis
we obtain the following inequality:

‖� − �̃‖ ≤ ‖�2 − �̃2‖1/2 ≤ ‖Rt
� − R̃t

�‖1/2 −−−→n→∞ 0

Here we used the fact that the matrix squared root is 1/2-Hölder continuous on the
set of symmetric positive matrices, the proof in in Appendix 1. Note that by A-2 we
have si j ≤ CSK−1n , plugging this into (55) gives the desired result. ��

Remark 5.1 Notice that we can also specify the convergence rate of ‖Rt
i − R̃t

i ‖ to 0.
In fact we can show that

‖Rt
i − R̃t

i ‖ ≤
C

K 1/2t
n

.

Proof of Theorem 2.1 in the General Case

We begin by proving the following convergence by induction on t ,

‖xt − x̃t‖n P−−−→
n→∞ 0 . (56)

For t = 1, knowing that the x0i ’s live on a compact Qx we get

‖x1− x̃1‖2n = ‖(W−W̃ )h(x0)‖2n =
1

n

n∑
i=1

sii X
2
i i h(x0i )

2 ≤ C

Kn

(∑n
i=1 X2

i i

n

)
, (57)

thus ‖x1 − x̃1‖2n P−−−→
n→∞ 0. Now assume that this holds for all s ∈ {1, · · · , t} and let

us show that it is also satisfied for t + 1, i.e.

‖xt+1 − x̃t+1‖n P−−−→
n→∞ 0 .
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Let us write the difference between xt+1 and x̃t+1,

xt+1 − x̃t+1 = Wh(xt )− W̃h(x̃t )

+ diag
(
VE

[
∂h(Zt )

])
h(xt−1)− diag

(
ṼE

[
∂h(Z̃

t
)
])

h(x̃t−1) ,

We first show that
‖Wh(xt )− W̃h(x̃t )‖n P−−−→

n→∞ 0 .

We have

‖Wh(xt )− W̃h(x̃t )‖n ≤‖(W − W̃ )h(x̃t )‖n+‖W (h(xt )− h(x̃t ))‖n (58)

Using the fact that the x̃ ti are bounded by a constant C = C(t) independent of n we
can directly see that the first term of (58) converges to zero. For the second term, we
use the bound on ‖W‖ (see Proposition 5.5) as well as the Lipschitz property of h and
the induction hypothesis.

Now let us study the term

diag
(
VE

[
∂h(Zt )

])
h(xt−1)− diag

(
ṼE

[
∂h(Z̃

t
)
])

h(x̃t−1) . (59)

This term can be decomposed as follows

diag
(
(V − Ṽ )E

[
∂h(Zt )

])
h(xt−1)

+ diag
(
ṼE

[
∂h(Zt )− ∂h(Z̃

t
)
])

h(xt−1)

+ diag
(
ṼE

[
∂h(Z̃

t
)
]) (

h(xt−1)− h(x̃t−1)
)

:= �1 +�2 +�3 .

Using the Lipschitz property of h we can bound ‖�3‖2n as follows:

‖�3‖n =
∥∥∥diag (ṼE

[
∂h(Z̃

t
)
]) (

h(xt−1)− h(x̃t−1)
)∥∥∥

n

≤
∥∥∥diag (ṼE

[
∂h(Z̃

t
)
])∥∥∥ ‖h(xt−1)− h(x̃t−1)‖n

≤ Cmax
j∈[n]

{
E

∣∣∣∂h(Z̃
t
j )

∣∣∣} ‖xt−1 − x̃t−1‖n .

Recall that max
j∈[n]

{
E

∣∣∣∂h(Z̃
t
j )

∣∣∣} is boundedbyC = C(t), using the induction hypothesis

we prove that ‖�3‖n P−−−→
n→∞ 0.
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In order to bound the first term ‖�1‖n , notice that V − Ṽ is a diagonal matrix whose
entries are bounded by C/Kn , thus

∥∥∥diag ((V − Ṽ )E
[
∂h(Zt )

])∥∥∥ ≤ C

Kn
max
i∈[n]

{
E
∣∣∂h(Zt

i )
∣∣} = O

(
1

Kn

)
,

where the last equality is by the boundness of max
i∈[n]

{
E
∣∣∂h(Zt

i )
∣∣}. Now write

h(xt−1) =
(
h(xt−1)− h(x̃t−1)

)
+ h(x̃t−1),

by the induction hypothesis we clearly see that ‖h(xt−1) − h(x̃t−1)‖n P−−−→
n→∞ 0,

in addition we know that ‖h(x̃t−1)‖2n − E

∥∥∥h(Z̃ t−1)
∥∥∥2
n

P−−−→
n→∞ 0 so by bounding

E

∥∥∥h(Z̃ t−1)
∥∥∥2
n
we get that the probability of ‖h(xt−1)‖n not being bounded converges

to 0. Finally ‖�1‖n P−−−→
n→∞ 0.

For ‖�2‖n , we use Lemma 5.6 to bound
∥∥∥diag (ṼE

[
∂h(Zt )− ∂h(Z̃

t
)
])∥∥∥ by

C/Kn and finally get ‖�2‖n P−−−→
n→∞ 0. To sum up, we have proved that the difference

between the two Onsager terms (59) has a normalized norm converging to 0. Finally,
we have proved (57) by induction, i.e. x̃t asymptotically approximates xt in terms of
normalized norm. Nowwe are able to use the convergence result of the sequence (x̃t )t
to prove the convergence of x̃t as n grows to ∞. Let ϕ : Rtmax → R be a pseudo-

Lipschitz function and denote xi =
(
x1i , · · · , xtmax

i

)�
and x̃i =

(
x̃1i , · · · , x̃ tmax

i

)�
, and

without loss of generality we omit the scalars βi and the parameters ηi by considering
that ϕ depends also on the index i . We have

1

n

∣∣∣∣∣∣
n∑

i=1
ϕ(xi )− ϕ( �Zt

i )

∣∣∣∣∣∣

≤ 1

n

∣∣∣∣∣∣
n∑

i=1
ϕ(xi )− ϕ(x̃i )

∣∣∣∣∣∣

+ 1

n

∣∣∣∣∣∣
n∑

i=1
ϕ(x̃i )− ϕ(

�̃
Zt
i )

∣∣∣∣∣∣

+ 1

n

∣∣∣∣∣∣
n∑

i=1
ϕ(
�̃
Zt
i )− ϕ( �Zt

i )

∣∣∣∣∣∣
=: �1 +�2 +�3 .

123



Journal of Theoretical Probability            (2026) 39:19 Page 57 of 69    19 

Using the pseudo-Lipschitz property of ϕ we get the following

�1 ≤ C

n

n∑
i=1
‖xi − x̃i‖ (1+ ‖xi‖ + ‖x̃i‖)

≤ C

n

(
tmax∑
t=1
‖xt − x̃t‖2

) 1
2
(

n∑
i=1

(1+ ‖xi‖ + ‖x̃i‖)2
) 1

2

≤ C

n

(
tmax∑
t=1
‖xt − x̃t‖

)(
n +

tmax∑
t=1
‖xt‖2 + ‖x̃t‖2

) 1
2

≤ C

(
tmax∑
t=1
‖xt − x̃t‖n

)(
1+

tmax∑
t=1
‖xt‖n +

tmax∑
t=1
‖x̃t‖n

)
.

Then, by using (57) we get �1
P−−−→

n→∞ 0. The term�2 converges to 0 in probability by

Theorem 2.1 applied with zero diagonal matrix model. As for �3 we use the pseudo-
Lipschitz property of ϕ as well as Lemma 5.6. This ends the proof for Theorem 2.1.

Appendix A. Proof of Theorem 2.3

We prove here the AMP result for non-centered matrices described in Theorem 2.3.
We follow the general idea described in [18], which is to reduce the problem to an

AMP with centered random matrix model and apply Theorem 2.1. To this end, write
the following,

xt+1 = λ
〈
v, ht (xt , η)

〉
u +Wht (xt , η)− diag

(
VE∂ht (Z

t + μtu, η)
)
ht−1(xt−1, η)

= μt+1u +Wht (xt , η)− diag
(
VE∂ht (Z

t + μtu, η)
)
ht−1(xt−1, η)+ δt+1u,

where δt := λ
〈
v, ht−1(xt−1, η)

〉 − μt . One should think of δt+1u as an error term,
we will show later that this term has a negligible effect. Define now the following
sequence

(
ỹt
)
t∈N as follows,

ỹ0 = x0 and ỹt := xt − μtu for t ≥ 1,

this sequence satisfies the following recursion,

ỹt+1 = Wgt ( ỹ
t , v, η)− diag

(
VE∂gt (Zt , v, η)

)
gt−1( ỹt−1, v, η)+ δt+1v, (60)

where the function gt (x, v, η) with parameters v and η is given by,

gt (x, v, η) := ht (x + λv, η) ∀x ∈ R.
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One can clearly see that this function satisfies the same assumptions as ht . Now define
the following AMP algorithm ( yt )t∈N by

{
y0 = x0,

yt+1 = Wgt ( yt , v, η)− diag
(
VE∂gt (Zt , v, η)

)
gt−1( yt−1, v, η) ,

(61)

where (
Z1, · · · , Zt

)
∼ D̃E

(
h, x0, S, t, u, v

)
,

in the sense of Definition 2.11. A key observation is that

(
Z1, · · · , Zt

)
∼ DE

(
g, x0, S, t

)
.

Hence Theorem 2.1 applies for the recursion (61) and yields that for any pseudo-
Lipschitz test function ϕ : Rt+1→ R it holds that

1

n

n∑
i=1

βiϕ
(
ηi , y

1
i , · · · , yti

)
− βiE

[
ϕ
(
ηi , Z

1
i , · · · , Zt

i

)]
P−−−→

n→∞ 0 . (62)

In order to prove our result, it suffices to show that the error term δt+1u in Eq. (60)
is negligible and that for all t one has yt ≈ ỹt . To this end, we want to prove by
induction on t that,

δt
P−−−→

n→∞ 0 and ‖ ỹt − yt‖n P−−−→
n→∞ 0, for all t ≥ 1. (63)

For t = 1, we have δ1 = 0 and ỹ1 = y1. Suppose that (63) is true for t , and let us
prove that this remains true for t + 1 as well. Let us begin with δt+1. We have the
following

δt+1 = λ
∑
i∈[n]

vi
(
gt (ỹ

t
i )− Egt (Z

t
i )
)

= λ
∑
i∈[n]

vi
(
gt (ỹ

t
i )− gt (y

t
i )
)+ λ

∑
i∈[n]

vi
(
gt (y

t
i )− Egt (Z

t
i )
)

:= T1 + T2 .

Using the Lipschitz property of the function gt as well as the induction hypothesis,

namely, ‖ ỹt − yt‖n P−−−→
n→∞ 0 we directly get that T1

P−−−→
n→∞ 0. As for the second term,

T2
P−−−→

n→∞ 0 is a direct application of Theorem 2.1, i.e. Eq. (62).

It remains to show that ‖ ỹt+1 − yt+1‖n P−−−→
n→∞ 0. Using the recursive definition of(

ỹt
)
t and

(
yt
)
t in (60) and (61) we can write the following;
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ỹt+1 − yt+1 =W
(
gt ( ỹ)− gt ( yt )

)− diag
(
VE∂gt (Zt )

)
(
gt−1( ỹt−1)− gt−1( yt−1)

)
+ δt+1u .

The normalized norm of the first term can be easily handled using the Lipschitz prop-
erty of the function gt as well as the induction hypothesis, we also use Proposition 5.5
which ensures the boundness of the spectral norm ‖W‖. As for the second term, we
similarly show that the quantity ‖gt−1( ỹt−1)− gt−1( yt−1)‖n vanishes, in probability.
It remains to show that ‖diag (VE∂gt (Zt )

)‖ is bounded as n goes to infinity, this
clearly holds as ∂gt is the derivative of a Lipschitz function and thus is bounded.

Finally, we have proved that ‖ ỹt+1 − yt+1‖n P−−−→
n→∞ 0 which ends the induction

argument. Using (63) and the AMP result of the sequence
(
yt
)
t we directly deduce

an AMP result of the sequence
(
ỹt
)
t .

Appendix B. Elements of Proof of Lemma 3.2

Lemma B.1 Let (mn) and (σ 2
n ) be two bounded sequences and let (νn) be the sequence

of Gaussian measures with means mn and variances σ 2
n . Let (μn) be any sequence of

probability measures such that the following holds for each k ∈ N,

∫
xkdμn −

∫
xkdνn −−−→

n→∞ 0 . (64)

Then for any continuous function ψ : R → R such that |ϕ(x)| ≤ C(1 + |x |m) for
some constant C > 0 and some integer m we have

∫
ψ(x)dμn −

∫
ψ(x)dνn −−−→

n→∞ 0 . (65)

Proof First, it is sufficient to show that from any subsequence of (n) we can extract a
further subsequence such that the convergence in (65) holds along this subsequence.
So without loss of generality we only prove that if (64) holds along the sequence (n)

then there exists a subsequence of (n) along which (65) holds.
The sequence of probability measures (νn) is tight because (mn) and (σ 2

n ) are
bounded, thus we can extract a subsequence of (n), which also be denoted as (n), such
that (νn) converges weakly to a probability measure ν. Consider now the moment
generating function �νn of νn defined on R as follows,

�νn (t) =
∫

etxdνn(x) = exp(mnt + σ 2
n t

2/2), t ∈ R.

This function canbe viewed as a restriction to the real line of the followingholomorphic
function

�νn (z) =
∫

ezxdνn(x) = exp(mnz + σ 2
n z

2/2), z ∈ C.
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Notice that the sequence (�νn ) is uniformly bounded on compact sets ofC, thus there
exists a holomorphic function � and a subsequence of (n) such that (�νn ) converges
uniformly to� on compact sets. This implies the pointwise convergence of themoment
generating function (�νn (t)) to �(t) so by a convergence result in [14, Theorem 3]
and the uniqueness of the weak limit, we get �(t) = �ν(t). The convergence of
(�νn (t)) to �ν(t) implies the convergence of the moments, and by (64) we get

∫
xkdμn −−−→

n→∞

∫
xkdν, (66)

we also know that �ν characterizes ν [14, Theorem 1], thus ν is determined by its
moments, so (μn) convergesweakly to ν. Letψ be a function as in the lemmaand let Xn

and X be random variables with distributionsμn and ν, respectively, we want to prove
that E[ψ(Xn)] −−−→

n→∞ E[ψ(X)], this follows from the convergence in distribution

of (ψ(Xn)) to ψ(X) and the uniform integrability of (ψ(Xn)). The latter is due the
following observation

sup
n∈N

E

[
(ψ(Xn))

2
]
≤ C2 sup

n∈N
E

[
(1+ |Xn|m)2

]
= C2 sup

n∈N

∫
(1+|x |m)2dμn(x) <∞ .

The last inequality is due to the convergence of the moments (66). ��
Remark B.1 Results of Lemma B.1 can be extended to probability measures μ on Rd

by Cramér-Wold theorem, i.e. considering the push-forward probability measure μt

by the map x �→ 〈x, t〉 for each t ∈ R
d .

Remark B.2 We can also extend Lemma B.1 to the case where (μn) and (νn) are
sequences of random probability measure and where we replace both two convergence
statements by convergence in probability formulations. The proof follows from the
subsequence criterion [24, Lemma 3.2].

Appendix C. Polynomial Approximation

The following lemma states a basic density result of polynomial functions in theHilbert
space L2(μ)whereμ is a Gaussian measure. The polynomial approximation is shown
to hold uniformly on certain sets of Gaussian measures (μσ )σ∈S .

Lemma C.1 [21] LetQ ⊂ R a compact set and h : R×Q→ R a function satisfying
the following properties. (i) There exists a fixed number L > 0 such that uniformly in
η ∈ Q,

|h(x, η)− h(y, η)| ≤ L|x − y| , ∀(x, y) ∈ R
2 .

(ii) There exists a continuous non-decreasing function κ : R+ → R
+ with κ(0) = 0

such that

|h(x, η)− h(x, η′)| ≤ κ(|η − η′|) (1+ |x |) , ∀x ∈ R , ∀(η, η′) ∈ Q2 .
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Let 0 < σmin ≤ σmax and ε > 0 be fixed, and ξ ∼ N (0, 1).
There exists a function gε : R×Q→ R such that for every η ∈ Q, x �→ gε(x, η)

is a polynomial, and uniformly in η ∈ Q and σ ∈ [σmin, σmax],

E (h(σξ, η)− gε(σξ, η))2 ≤ ε and |E ∂xh(σξ, η)− E ∂x gε(σξ, η)| ≤ ε .

Proof Let δ > 0 and consider a δ-covering of the compact set Q with balls centered
in {ηk}k∈[K ]. Fix k ∈ [K ] and consider the function x �→ h(x, ηk). By the density of
polynomials in the space L2(N (0, σ 2

max)), there exists a polynomial x �→ gε(x, ηk)
such that

E (h(σmaxξ, ηk)− gε(σmaxξ, ηk))
2 ≤ ε

4
.

Let η ∈ Q and ηk such that |η− ηk | ≤ δ and put gε(x, η) := gε(x, ηk) for such η. By
the properties of function h, we have

E (h(σmaxξ, η)− gε(σmaxξ, η))2 ≤ 2E (h(σmaxξ, η)− h(σmaxξ, ηk))
2

+2E (h(σmaxξ, ηk)− gε(σmaxξ, ηk))
2 ,

≤ 2L2κ(δ)2E (1+ σmax|ξ |)2 + ε

2
.

Using the properties of κ we can choose δ > 0 small enough so that

E (h(σmaxξ, η)− gε(σmaxξ, η))2 ≤ ε .

Let σ ∈ [σmin, σmax], denote ϕ(x) := h(x, η)− gε(x, η). A change of variable yields

Eϕ(σξ)2 ≤ σmax

σmin
Eϕ(σmaxξ)2 ≤ σmax

σmin
ε .

By Stein’s integration by parts lemma we also have

∣∣Eϕ′(σξ)
∣∣ = 1

σ
E[ξϕ(σξ)] ≤ 1

σmin

√
Eϕ(σξ)2 ≤

√
σmax

(σmin)3

√
ε ,

which concludes the proof. ��

Appendix D Proof of Lemma 5.3

Proof of Lemma 5.3 In this proof, we use the framework introduced in Sect. 4.2. Let
us put p j := ∂ p(x̌ tj , η j , t) as a simplification of the notations, the expectation can be
developed as follows,
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E

⎡
⎢⎣
⎛
⎝∑

j∈[n]

(
Wi jW ji − Vi j

)
p j

⎞
⎠
4
⎤
⎥⎦

=
∑

j1, j2, j3, j4∈[n]
E

⎡
⎣
⎛
⎝ 4∏

�=1

(
Wi j�Wj�i − Vi j�

)
⎞
⎠ p j1 p j2 p j3 p j4

⎤
⎦

:=
∑

j1, j2, j3, j4∈[n]
Eϕ( j1, j2, j3, j4) ,

with p j having the following form

p j =
d−1∑
�=0

(1+ �)α�( j, t)
(
x̌ tj

)�

,

notice now that by using Lemma 4.6, we can easily see p j as a sum over unmarked
trees with root type j , with depth at most t and with each vertex having at most d − 1
children, the weight of the trees (i.e. the terms W (T ), �̃(T ) and x(T )) are the same
as in Lemma 4.6.

p j =
∑
T∈Ū t

j

W (T )�̃(T )x(T ) .

Thus, the quantity ϕ( j1, j2, j3, j4) above can be written as a sum over trees as follows:

ϕ( j1, j2, j3, j4) =
∑

(T1,T2,T3,T4)∈
Ū t

j1
×Ū t

j2
×Ū t

j3
×Ū t

j4

ψ(T1, T2, T3, T4),

ψ(T1, T2, T3, T4) :=
4∏

�=1

(
Wi j�Wj�i − Vi j�

)
W (T�)�̃(T�)x(T�) .

(67)

In the case where j1, j2, j3 and j4 are distinct, the above sum can interpreted as a sum
over trees having the structure described in Figure 4.

these are trees having a root of type i , this root has four children of types j1, j2, j3
and j4, each one of these four vertices has a child of type i and is also the planted root
of a tree of length t −1. Let us denote by Si the set of all these trees. Let T ∈ Si a tree
parameterized by (T1, T2, T3, T4) ∈ Ū t

j1
× Ū t

j2
× Ū t

j3
× Ū t

j4
and let μ be the number

of edges of T , i.e.

μ = 8+
4∑

�=1
|E(T�)|.

Following the proof of Proposition 4.2, we know that

|Eψ(T1, T2, T3, T4)| ≤ CK−μ/2
n , (68)
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Fig. 4 Tree structure.

Let us now compute the number of non-vanishing contributions in ϕ( j1, j2, j3, j4).
A term Eψ(T1, T2, T3, T4) vanishes if there exists an � = 1, 2, 3, 4 such that neither
the edge (i → j�) nor ( j� → i) belongs to set of edges of the trees T1, · · · , T4 or
if there exists another edge in T1, · · · , T4 which occurs once, in other words, if we
consider the graph G obtained by identifying the vertices of the same type in T then
T has a non-vanishing contribution if all the edges are covered in G at least twice and
the edges {(i, j�) | � = 1, · · · , 4} at least three times, then:

μ ≥ 2 (|E(G)| − 4)+ 3× 4 = 2|E(G)| + 4.

Notice that G is a connected graph (there exists a path from any vertex of G to i), then

|V (G)| ≤ |E(G)| + 1 ≤ μ/2− 1.

The vertices except {i, j1, j2, j3, j4} can have arbitrary types from a set of at most
CKn types, so we get

|Eϕ( j1, j2, j3, j4)| ≤ CK−μ/2
n Kμ/2−1−5

n = CK−6n ,

In addition,we have

(
Kn

4

)
≤ CK 4

n choices for quadruples ( j1, j2, j3, j4)with distinct

elements, this means that

∑
j1, j2, j3, j4∈[n]

distinct

|Eϕ( j1, j2, j3, j4)| ≤ CK−2n .

A similar argument can be used to analyze the other cases where j1, j2, j3, j4 are not
necessarily distinct.
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Appendix E. Proof of Proposition 5.5

Webegin by decoupling the entries of our randommatrixW using triangular inequality
twice

(
E‖W‖p)1/p ≤ (E(‖U‖ + ‖L‖)p)1/p ≤ (E‖U‖p)1/p + (E‖L‖p)1/p ,

whereU and L are n×n triangular matrices corresponding to the upper part (including
diagonal) and lower part of W , respectively. Notice that U can be seen as an n × n
random matrix with independent entries having the following variance profile

sui j =
{
si j if i ≤ j
0 otherwise.

Following the notations of [4] we define

σ1 = max
i

⎛
⎝∑

j≥i
si j

⎞
⎠

1/2

, σ2 = max
j

⎛
⎝∑

i≤ j

si j

⎞
⎠

1/2

, σ∗ = max
i≤ j

√
si j .

Now using the results of [4] we get

(
E‖U‖2 log(n)

)1/2 log(n)

� σ1 + σ2 + σ∗(log(n))(ρ∨1)/2

� 1+
√

(log(n))ρ∨1
Kn

.

Using assumptionA-2we get
(
E‖U‖2 log(n)

)1/2 log(n) ≤ C andwith a similar treatment

to L we finally get
(
E‖W‖2 log(n)

)1/2 log(n) ≤ C . Using Markov’s inequality,

P [‖W‖ ≥ Ce] ≤ 1

n2
.

Finally, using Borel-Cantelli’s lemma we get

P

[
sup
n
‖W‖ <∞

]
= 1.

Appendix F. Proof of Lemma 5.2

Weprove both results by induction on t . The proof of the first item is very similar to [21,
Lemma 1] and thus will be omitted. Let us now prove the second item. For t = 1 we

have R1
i (1, 1) =

∑n
�=1 si�

(
h(x0� , η�, 0)

)2 ≥ infn∈N inf i∈[n]
(
h(x0i , ηi , 0)

)2∑n
�=1 si�,
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using assumptions A-2, A-4 andA-6-(1) we get the result. Suppose now that that exists
c > 0 such that

∀n ∈ N,∀i ∈ [n], σi :=
√
Rt
i (t, t) ≥ c.

Let ξ ∼ N (0, 1), we can write

Rt+1
i (t + 1, t + 1) =

n∑
�=1

si�E
(
h(Zt

�, η�, t)
)2 =

n∑
�=1

si�E (h(σ�ξ, η�, t))
2

≥ E (h(σ�ξ, η�, t))
2

n∑
�=1

si�,

where (σ�, η�) is such thatE (h(σ�ξ, η�, t))2 = min�∈[n] E (h(σ�ξ, η�, t))2. Let D > 0
be as in A-6-(2), using the induction hypothesis and the previous result we can see
that 0 < c ≤ σ� ≤ C , using this gives the following

E (h(σ�ξ, η�, t))
2 = 1

σ�

√
2π

∫
R

(h(x, η�, t))
2 exp(−x2/2σ 2

� )dx

≥ 1

C
√
2π

∫
[−D,D]

(h(x, η�, t))
2 exp(−x2/2σ 2

� )dx

≥ exp(−D2/2σ 2
� )

C
√
2π

∫
[−D,D]

(h(x, η�, t))
2 dx

≥ exp(−D2/2c2)

C
√
2π

inf
η∈Qη

∫
[−D,D]

(h(x, η, t))2 dx .

Finally assumption A-6-(2) gives the result.

Appendix G. Hölder Continuity of the Squared Root

Lemma G.1 The function X �→ X1/2 is 1
2 -Hölder continuous on Sn+ (the set of sym-

metric positive matrices).

Proof Let A, B ∈ Sn+, it suffices to show the following inequality,

‖A − B‖2 ≤ ‖A2 − B2‖.

Let λ be an eigenvalue of A − B such that |λ| = ‖A − B‖, then there exists u ∈ R
n

of norm 1 such that
(A − B)u = λu.

We can write the following

A2 − B2 = (A − B)2 + B(A − B)+ (A − B)B,

123



   19 Page 66 of 69 Journal of Theoretical Probability            (2026) 39:19 

taking the quadratic form of this matrix at u gives

‖A2 − B2‖ ≥ u�(A2 − B2)u = λ2 + 2λu�Bu .

We can assume without loss of generality that λ ≥ 0, having that u�Bu ≥ 0 gives

‖A2 − B2‖ ≥ λ2 + 2λu�Bu ≥ λ2 = ‖A − B‖2.

��
This result is used in the proof of Lemma 5.6.

Appendix H. Proof of Corollary 2.2

Consider the two AMP sequences (xt ) and (x̃t ) defined recursively by

xt+1 = Wh(xt )− ρ 〈∂h(xt )〉n h(xt−1),
x̃t+1 = Wh(x̃t )− ρ E ∂h(Zt ) h(x̃t−1),

with x0 = x̃0, and where (Z1, . . . , Zt ) satisfies the “asymptotic” Density Evolution
equations (13).

We present here only the proof of the convergence of the empirical measure of
the last iterate μxt . The proof of the convergence of the empirical measure of the
first t iterates (x1, . . . , xt ) follows by the same argument. To prove Corollary 2.2, it
therefore suffices to show, by induction, that for all t ≥ 0,

‖xt − x̃t‖n P−−−→
n→∞ 0, (69)

μxt P,W2−−−→
n→∞ μt , (70)

where we denote by μt the law of Zt and we use the notation of Wasserstein conver-
gence W2. The statements clearly hold for t = 0, 1. Assume now that (69) and (70)
hold for t and t − 1, and let us prove that they also hold for t + 1.

Step 1. Proof of (69) for t + 1. We decompose

xt+1 − x̃t+1 = W
(
h(xt )− h(x̃t )

)
− ρ h(xt−1)

[〈∂h(xt )〉n − E ∂h(Zt )
]

− ρ E ∂h(Zt )
[
h(xt−1)− h(x̃t−1)

]
=: �1 +�2 +�3.

Term �1.We have ‖�1‖n ≤ L‖W‖ ‖xt − x̃t‖n . Using the spectral norm bound on
W (see Proposition 5.5) and the induction hypothesis (69), we conclude that ‖�1‖n →
0 in probability.
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Term �2. By the induction hypothesis (70), μxt ⇒ μt in probability. Let (n)

be a subsequence along which this convergence holds almost surely. Since ∂h is
bounded (as h is Lipschitz) and continuous μt -a.e., we have by [18, Lemma 7.14]
that 〈∂h(xt )〉n − E ∂h(Zt )→ 0 a.s. along (n). It remains to show that ‖h(xt−1)‖n is
bounded. We can write

‖h(xt−1)‖n ≤ ‖h(xt−1)− h(x̃t−1)‖n + ‖h(x̃t−1)‖n .

The first term converges to zero in probability by (69), and the second is bounded
almost surely (see Theorem 2.1). By the subsequence criterion [24, Lemma 3.2], we

conclude that ‖�2‖n P−−−→
n→∞ 0.

Term �3. This term vanishes in probability directly from the induction hypothe-
sis (69) for t − 1.
Step 2. Proof of (70) for t + 1. Let ϕ be a bounded Lipschitz test function. Then

∣∣∣∣
∫

ϕ dμxt+1 −
∫

ϕ dμt+1
∣∣∣∣ ≤

∣∣∣∣
∫

ϕ dμxt+1 −
∫

ϕ dμx̃t+1
∣∣∣∣+

∣∣∣∣
∫

ϕ dμx̃t+1 −
∫

ϕ dμt+1
∣∣∣∣ .

The second term vanishes in probability by Theorem 2.1, and the first is bounded
by ‖xt+1 − x̃t+1‖n (up multiplication by the Lipschitz constant), which vanishes in
probability as established above.

To obtain convergence in W2, it remains to show that the difference between the
second moments of μxt+1 and μt+1 vanishes in probability:

∣∣∣∣
∫

x2 dμxt+1 −
∫

x2 dμt+1
∣∣∣∣

≤
∣∣∣∣
∫

x2 dμxt+1 −
∫

x2 dμx̃t+1
∣∣∣∣+

∣∣∣∣
∫

x2 dμx̃t+1 −
∫

x2 dμt+1
∣∣∣∣ .

The second term again vanishes by Theorem 2.1. For the first term,

1

n

n∑
i=1

(xt+1i )2 − (x̃ t+1i )2 = 1

n

n∑
i=1

(xt+1i − x̃ t+1i )(xt+1i + x̃ t+1i )

≤ ‖xt+1 − x̃t+1‖n‖xt+1 + x̃t+1‖n
≤ ‖xt+1 − x̃t+1‖n

(‖xt+1 − x̃t+1‖n + 2‖x̃t+1‖n
)
.

The quantity ‖x̃t+1‖n is bounded (Theorem 2.1), while ‖xt+1 − x̃t+1‖n P−−−→
n→∞ 0,

completing the induction.
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