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Abstract

In this contribution, the capacity-achieving input coeagée matrices for coherent block-
fading correlated MIMO Rician channels are determined. dntast with the Rayleigh and
uncorrelated Rician cases, no closed-form expressionshfreigenvectors of the optimum
input covariance matrix are available. Classically, bdth eigenvectors and eigenvalues are
computed by numerical techniques. As the correspondinignggztion algorithms are not very
attractive, an approximation of the average mutual infdiomais evaluated in this paper in the
asymptotic regime where the number of transmit and receienmas converge téoo at the
same rate. New results related to the accuracy of the camelipg large system approximation
are provided. An attractive optimization algorithm of tlapproximation is proposed and we
establish that it yields an effective way to compute the ciypachieving covariance matrix
for the average mutual information. Finally, numerical slation results show that, even for a
moderate number of transmit and receive antennas, the negmagh provides the same results
as direct maximization approaches of the average mutuatnivdtion, while being much more

computationally attractive.
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. INTRODUCTION

Since the seminal work of Telatar [39], the advantage of amrgig multiple antennas at the
transmitter and the receiver in terms of capacity, for Geusand fast Rayleigh fading single-
user channels, is well understood. In that paper, the figummeit chosen for characterizing
the performance of a coheréntommunication over a fading Multiple Input Multiple Output
(MIMO) channel is the Ergodic Mutual Information (EMI). This @be will be justified in
section II-C. Assuming the knowledge of the channel siasisit the transmitter, one important
issue is then to maximize the EMI with respect to the chanmitidistribution. Without loss of
optimality, the search for the optimal input distributioancbe restricted to circularly Gaussian
inputs. The problem then amounts to finding the optimum comagamatrix.

This optimization problem has been addressed extensivethencase of certain Rayleigh
channels. In the context of the so-called Kronecker motbkas been shown by various authors
(see e.g. [15] for a review) that the eigenvectors of theno@ltiinput covariance matrix must
coincide with the eigenvectors of the transmit correlatioatrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problerchvban be solved by using standard
optimization algorithms. Note that [40] extended this feso more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied fnisypbint of view. Let us mention
the work [19] devoted to the case of uncorrelated Rician ok where the authors proved that
the eigenvectors of the optimal input covariance matrixtheeright-singular vectors of the line
of sight component of the channel. As in the Rayleigh casegifpenvalues can then be evaluated
by standard routines. The case of correlated Rician chaimelisdoubtedly more complicated
because the eigenvectors of the optimum matrix have no alémen expressions. Moreover,
the exact expression of the EMI being complicated (see e2j),[Both the eigenvalues and the
eigenvectors have to be evaluated numerically. In [42] redydnterior-point method is proposed
and implemented to directly evaluate the EMI as an expectalibe corresponding algorithms
are however not very attractive because they rely on comipuotdly-intensive Monte-Carlo
simulations.

In this paper, we address the optimization of the input damae of Rician channels with a
two-sided (Kronecker) correlation. As the exact exprassibthe EMI is very complicated, we
propose to evaluate an approximation of the EMI, valid whennthmber of transmit and receive

antennas converge tpoo at the same rate, and then to optimize this asymptotic appegon.

!Instantaneous channel state information is assumed at the receiventmecessarily at the transmitter.



This will turn out to be a simpler problem. The results of thesgr contribution have been

presented in part in the short conference paper [12].

The asymptotic approximation of the mutual information hasrbobtained by various authors
in the case of MIMO Rayleigh channels, and has shown to bee geiiable even for a
moderate number of antennas. The general case of a Riciaelated channel has recently
been established in [17] using large random matrix theory @mpletes a number of previous
works among which [9], [41] and [30] (Rayleigh channels), #d [31] (Rician uncorrelated
channels), [10] (Rician receive correlated channel) aifd (Rician correlated channels). Notice
that the latest work (together with [30] and [31]) relies b powerful but non-rigorous replica
method. It also gives an expression for the variance of théuahunformation. We finally
mention the recent paper [38] in which the authors generadiar approach sketched in [12]
to the MIMO Rician channel with interference. The optimipatialgorithm of the large system

approximant of the EMI proposed in [38] is however differerdm our proposal.

In this paper, we rely on the results of [17] in which a closedn asymptotic approximation
for the mutual information is provided, and present new lteszoncerning its accuracy. We then
address the optimization of the large system approximation. the input covariance matrix
and propose a simple iterative maximization algorithm Wwhim some sense, can be seen as
a generalization to the Rician case of [44] devoted to theldXgly context : Each iteration
will be devoted to solve a system of two nonlinear equatiasvell as a standard waterfilling
problem. Among the convergence results that we provide (andontrast with [44]) : We
prove that the algorithm converges towards the optimum tirqmyariance matrix as long as
it converges. We also prove that the matrix which optimizZes large system approximation
asymptotically achieves the capacity. This result has aroitapt practical range as it asserts
that the optimization algorithm yields a procedure thatagtptically achieves thiue capacity.

Finally, simulation results confirm the relevance of our apgto

The paper is organized as follows. Section Il is devoted to tlesgntation of the channel
model and the underlying assumptions. The asymptotic appedion of the ergodic mutual
information is given in section Ill. In section IV, the striconcavity of the asymptotic
approximation as a function of the covariance matrix of thpui signal is established; it
is also proved that the resulting optimal argument asyrigatly achieves the true capacity.
The maximization problem of the EMI approximation is studiedsiection V. Validations,

interpretations and numerical results are provided inigec¥|.



Il. PROBLEM STATEMENT
A. General Notations

In this paper, the notations x, M stand for scalars, vectors and matrices, respectively. As
usual, ||x|| represents the Euclidian norm of vecterand || M|| stands for the spectral norm
of matrix M. The superscript$.)” and(.)” represent respectively the transpose and transpose
conjugate. The trace dM is denoted byTr(M). The mathematical expectation operator is
denoted byE(-) and the symbolst and & denote respectively the real and imaginary parts
of a given complex number. I is a possibly complex-valued random variab\ér(z) =
E|z|2 — [E(x)|* represents the variance of

All along this papery and¢ stand for the number of transmit and receive antennas. iGerta
quantities will be studied in the asymptotic regime— oo, r — oo in such a way that
; — ¢ € (0,+00). In order to simplify the notationg, — +oo should be understood from now
on ast — oo, r — 0o and; — ¢ € (0,400). A matrix M; whose size depends dnis said
to be uniformly bounded ifup, | M;|| < +oc.

Several variables used throughout this paper depend onugapiarameters, e.g. the number
of antennas, the noise level, the covariance matrix of thesmitter, etc. In order to simplify

the notations, we may not always mention all these depeiw®enc

B. Channel model

We consider a wireless MIMO link withtransmit and- receive antennas. In our analysis, the
channel matrix can possibly vary from symbol vector (or gptime codeword) to symbol vector.
The channel matrix is assumed to be perfectly known at thevexcevhereas the transmitter

has only access to the statistics of the channel. The recsigedl can be written as
y(7) = H(7)x(7) + 2(7) 1)

wherex(7) is thet x 1 vector of transmitted symbols at time H(7) is ther x ¢ channel
matrix (stationary and ergodic process) atid) is a complex white Gaussian noise distributed
as N(0,0%I,). For the sake of simplicity, we omit the time indexfrom our notations. The
channel input is subject to a power constralht[E(xxH)] < t. Matrix H has the following
structure :

K 1

H= A+ v, 2
K +1 VK +1 @

where matrixA is deterministic,V is a random matrix and constaff > 0 is the so-called

Rician factor which expresses the relative strength of tinect and scattered components of



the received signal. Matri satisfies: Tr(AA) = 1 while V is given by

1 o =1
V=_—_C:WC: , 3
i )

whereW = (W;;) is ar x t matrix whose entries are independent and identically idisted
(i.i.d.) complex circular Gaussian random variab&¥ (0, 1), i.e. W;; = RW;; +iSW;; where
RW;; andIW;; are independent centered real Gaussian random variallesaviance}. The
matricesC > 0 and C > 0 account for the transmit and receive antenna correlatifecesf
respectively and satisf%rTr(C) =1 and%”ﬁ(C) = 1. This correlation structure is often referred
to as a separable or Kronecker correlation model.

Remark 1:Note that no extra assumption related to the rank of the chétéstic component
A of the channel is done. Generally, it is often assumed fdias rank one ([15], [27], [18],
[26], etc..) because of the relatively small path loss exporof the direct path. Although the
rank-one assumption is often relevant, it becomes quedtienif one wants to address, for
instance, a multi-user setup and determine the sum-cgpaicih cooperative multiple access
or broadcast channel in the high cooperation regime. Cendam example a macro-diversity
situation in the downlink : Several base stations intercoted? through ideal wireline channels
cooperate to maximize the performance of a given multivamaereceiver. Here the matrix
is likely to have a rank higher than one or even to be of fullkrarAssume that the receive

array of antennas is linear and uniform. Then a typical stmecfor A is

1
A=—|a(#),....a(0;)] A, 4
\/Z[ (01) (01)] (4)
wherea(d) = (1,¢?,..., e~V and A is a diagonal matrix whose entries represent the

complex amplitudes of theline of sight (LOS) components.

C. Maximum ergodic mutual information

We denote byC the cone of nonnegative Hermitignx ¢ matrices and by; the subset of
all matricesQ of € for which %Tr(Q) = 1. Let Q be an element o€; and denote by (Q)

the ergodic mutual information (EMI) defined by :

1(Q) = Ex [log det <1T + ;HQHH)] . 5)

Maximizing the EMI with respect to the input covariance mat€) = E(xx") leads to the
channel Shannon capacity féast fading MIMO channels i.e. when the channel vary from

symbol to symbol. This capacity is achieved by averaging ahannel variations over time.

2For example in a cellular system the base stations are connected with dheraria a radio network controller.



We will denote byC'r the maximum value of the EMI over the st :

Cgp = sup 1(Q). (6)

Qely

The optimal input covariance matrix thus coincides with ttguanent of the above maximization
problem. Note that : Q — I(Q) is a strictly concave function on the convex $kt which
guarantees the existence of a unique maxin@nsee [28]). WherC = I,, C = I, [19] shows
that the eigenvectors of the optimal input covariance matdincide with the right-singular
vectors of A. By adapting the proof of [19], one can easily check that thsult also holds
whenC = I, andC andAA share a common eigenvector basis. Apart from these two simpl
cases, it seems difficult to find a closed-form expression ferdiyenvectors of the optimal
covariance matrix. Therefore the evaluation @f; requires the use of numerical techniques
(see e.g. [42]) which are very demanding since they rely anpgationally-intensive Monte-
Carlo simulations. This problem can be circumvented as the EM)) can be approximated
by a simple expression denoted byQ) (see section Ill) ag — oo which in turn will be
optimized with respect t&) (see section V).

Remark 2:Finding the optimum covariance matrix is useful in practiceparticular if the
channel input is assumed to be Gaussian. In fact, thereragisy practical space-time encoders
that produce near-Gaussian outputs (these outputs areassatputs for the linear precoder
Q'/2). See for instance [34].

D. Summary of the main results.

The main contributions of this paper can be summarized agwell:

1) We derive an accurate approximation Q) ast — +oo : I(Q) ~ I(Q) where

I(Q) =logdet |I, + G(6(Q,6(Q))Q| +1i(6(Q),5(Q)) (7)

where §(Q) and 4(Q) are two positive terms defined as the solutions of a system of 2
equations (see Eq. (33)). The functioBsand: depend on(6(Q),4(Q)), K, A, C, C,

and on the noise variane€. They are given in closed form.

The derivation ofl(Q) is based on the observation that the eigenvalue distributfo
random matrixHQH? becomes close to a deterministic distributiontas: +oc. This

in particular implies that if(\;)1<;<, represent the eigenvalues HIQH", then :

1 1 gl 1o i
;logdet [IT—FUQHQH ]— ;log <1+02>

T



has the same behaviour as a deterministic term, which twn®de equal tof(%). Taking
the mathematical expectation w.r.t. the distribution af tthannel, and multiplying by
givesI(Q) ~ 1(Q).

The error term/ (Q) — I(Q) is shown to be of orde®(1). As I(Q) is known to increase

linearly with ¢, the relative errorw is of orderO(t%). This supports the fact that

I(Q) is an accurate approximation((;%Q), and that it is relevant to studi(Q) in order
to obtain some insight of(Q).

2) We prove that the functio® — I(Q) is strictly concave on;. As a consequence,
the maximum ofI over G, is reached for a unique matriQ,. We also show that
I1(Q,) — I(Q.) = O(1/t) where we recall thaQ, is the capacity achieving covariance
matrix. Otherwise stated, the computatior@f (see below) allows one to (asymptotically)
achieve the capacity(Q.).

3) We study the structure @), and establish tha®, is solution of the standard waterfilling

problem :

gleaé log det (I + G (64, 5*)Q> ,

whered, = 6(Q,), 4, = 6(Q,) and

~ —1

- S, ~ 1 K 5

G, 0,)=—C+—-— A |1, *_C A .
(9., 0) K+1 +ﬂKH& ( +K+1 >

This result provides insights on the structure of the appnaxing capacity achieving
covariance matrix, but cannot be used to eval@tesince the parameteds ands, depend
on the optimum matrixQ,. We therefore propose an attractive iterative maximizatio
algorithm of I(Q) where each iteration consists in solving a standard watedipiroblem

and a2 x 2 system characterizing the parametéfs)).

[ll. ASYMPTOTIC BEHAVIOR OF THE ERGODIC MUTUAL INFORMATION

In this section, the input covariance matfix e C; is fixed and the purpose is to evaluate the
asymptotic behaviour of the ergodic mutual informatibiQ) ast — oo (recall thatt — +oo
meanst — oo, r — oo andt/r — ¢ € (0, 400)).

As we shall see, it is possible to evaluate in closed form @uirate approximatiod(Q) of
1(Q). The corresponding result is partly based on the results o fievoted to the study of

the asymptotic behaviour of the eigenvalue distributionmaftrix X% where X is given by

>=B+Y, (8)



matrix B being a deterministiec x ¢ matrix, andY being ar x ¢t zero mean (possibly complex
circular Gaussian) random matrix with independent entiikese variance is given y|Y;;|? =

”ti Notice in particular that the variablgd;;; 1 < i < r, 1 < j < t) are not necessarily
identically distributed. We shall refer to the triangularay (afj; 1<i<r, 1<j<t)asthe
variance profile of ; we shall say that it is separableoifj = dldj whered; > 0for1 <:<r
and Jj > 0 for 1 < j < t. Due to the unitary invariance of the EMI of Gaussian channels
the study of7(Q) will turn out to be equivalent to the study of the EMI of mode) (8 the

complex circular Gaussian case with a separable variarafdepr

A. Study of the EMI of the equivalent model (8).

We first introduce the resolvent and the Stieltjes transforsoeiated withS X (Section
[1I-A.1) ; we then introduce auxiliary quantities (Sectidi-A.2) and their main properties; we
finally introduce the approximation of the EMI in this case (&ettll-A.3).

1) The resolvent, the Stieltjes transforrenote byS(c?) and S(¢?) the resolvents of

matricesX X and =¥ X defined by :
S(6?) = [Z2 +0%L] ", §(c) = [+ . )

These resolvents satisfy the obvious, but useful property :

I ~ I;

S(0?) < S(0?) < — . (10)

o2’

Recall that the Stieltjes transform of a nonnegative measiselefined by[ “A(i). The quantity

s(0?) = LTr(S(0?)) coincides with the Stieltjes transform of the eigenvalugritiistion of

o

matrix X evaluated at point = —¢2. In fact, denote by(\i)1<i<, its eigenvalues , then :

s(0?) = %Z [ v(d\)
i=1

)\z"|‘0’2 R+>\—|—O'2’

wherev represents the eigenvalue distribution3® defined as the probability distribution :

1 T
V= ;Zd)‘i
i=1

whered,. represents the Dirac distribution at point The Stieltjes transform(s?) is important
as the characterization of the asymptotic behaviour of igermalue distribution o&=X is
equivalent to the study of(c?) whent — +oc for eacho?. This observation is the starting
point of the approaches developed by Pastur [29], Girko,[B3] and Silverstein [1], etc.

We finally recall that a positive x p matrix-valued measurg is a function defined on the

Borel subsets oR onto the set of all complex-valugdx p matrices satisfying :



(i) For each Borel seB, u(B) is a Hermitian nonnegative definitex p matrix with complex
entries ;
(i) p(0)=0;
(iiiy For each countable familyB,,),en Of disjoint Borel subsets oR,

H(Uan) = Z”(Bn) :

Note that for any nonnegative Hermitianx p matrix M, thenTr(Myu) is a (scalar) positive
measure. The matrix-valued measwrés said to be finite ifTr(u(R)) < +oco.

2) The auxiliary quantities3, 3, T and T: We gather in this section many results of [17]
that will be of help in the sequel.

Assumption 1:Let (B;) be a family of » x t deterministic matrices such that :
supy; > oy |Bij|? < o0, sup, ; >i_; [Bij|* < 400 .

Theorem 1:Recall that¥ = B + Y and assume th&Y = %D%X Dz, whereD and D
represent the diagonal matric& = diag(d;, 1 < i < r) andD = diagd;, 1 < j < t)
respectively, and wher& is a matrix whose entries are i.i.d. complex centered withavae
one. The following facts hold true :

(i) (Existence and uniqueness of auxiliary quantjtiesr 2 fixed, consider the system of
equations :

B = %Tr D (02(IT +DJ) + B, + ﬁﬁ)_lBH) o

1 11)

5= L1t [b (201, + DB + BY(, + D) B)

Then, the system (11) admits a unique couple of positive isaisit 3(02), 3(c2)). Denote

by T(02) andT(c?) the following matrix-valued functions :

T(e?) = [0+ ((s3)D)+ B+ H(o3)D)'B| .
T(o?) = [0+ H(oH)D) + B+ H(o)D)'B|
Matrices T(c2) and T (02) satisfy
T(0?) < % T(0?) < % : (13)

(i) (Representation of the auxiliary quantitje$here exist two uniquely defined positive

matrix-valued measureg and i such thatu(R*) = I, @(R*) = I; and

o [ BN o / ()
T(U)_/R+A+0'2, T(J)_ R+)\+O—2. (14)
The solutions3(c2) and 3(c2) of system (11) are given by :

B(0?) = %TrDT(aQ) L B = %Trﬁ'i‘(aQ) , (15)
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and can thus be written as

sty = [ Wld) o) = /. e (16)

where i, and i, are nonnegative scalar measures defined by

1 _ 1 _
py(dN) = STr(Dp(d))) and fiy(dA) = T Tr(Dj(dN)).
(i) (Asymptotic approximatignAssume that Assumption 1 holds and that
sup |D| < diax < 400 and sup ||D|| < diax < +00 .
t t

For every deterministic matricésI and M satisfyingsup, | M| < 4+oco0 andsup, |[M|| <

+00, the following limits hold true almost surely :

{limt_>+oo71,T1” [(8(¢*) = T(e*))M] = 0 (17)

limy . 4o LT [(S(&)—T(a?))m} =0

Denote byu and i the (scalar) probability measures= %T&"u andji = %Trﬁ, by (\;)
(resp.(:\j)) the eigenvalues cEX (resp. ofS X). The following limits hold true almost

surely :

0
- ) (18)
0

limy oo 2 3701 (N) — Jo ™ B(N) p(dA) =
limg—oo 7 35 9(N) = Jo 6N AldA) =

for continuous bounded functionsand ¢ defined onR™+.

The proof of (i) is provided in Appendix | (note that in [17], the existencedamiqueness
of solutions to the system (11) is proved in a certain clasanalytic functions depending on
o but this does not imply the existence of a unique solu(i@n@) wheno? is fixed). The rest
of the statements of Theorem 1 have been established in [Ad]their proof is omitted here.

Remark 3:As shown in [17], the results in Theorem 1 do not require any SSim
assumption foB. Remark that (17) implies in some sense that the entrigl @f) andS(o?)
have the same behaviour as the entries of the deterministifaesT(s%) and T(o2) (which
can be evaluated by solving the system (11)). In particuking (17) forM = 1, it follows that
the Stieltjes transformy(o?) of the eigenvalue distribution aEX* behaves likel Tr'T (02),
which is itself the Stieltjes transform of measuyre= %Tru. The convergence statement (18)
which states that the eigenvalue distribution3®" (resp.X X) has the same behavior as

(resp. 1) directly follows from this observation.
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3) The asymptotic approximation of the EMDenote by.J(0?) = Elogdet (I, + o 2E%H)

the EMI associated with matriX. First notice that

> : Y
log det (I—i— 2 ) = zZ;log (1 + 02> )

where the\;’s stand for the eigenvalues 8f>. Applying (18) to functionp()\) = log(A+o2)

(plus some extra work sincg is not bounded), we obtain :

H 400
lim (i log det (I + 222 ) —/ log(\ + 0?) du()\)) =0. (29)
o 0

t——+o00

Using the well known relation :

H +o00
1logdet (I—i— 222 ) = / (1 — 1Tr(EEH —|—wI)1> dw
r g o2 w T
T 11
= — —-TrS(w) | dw (20)
o2 w T
together with the fact tha$(w) ~ T'(w) (which follows from Theorem 1), it is proved in [17]
that :
H +o00
lim [1 log det <I + 222 ) —/ <1 — 1TrT(w)> dw} =0 (22)
t—+oo | 1 o o2 w T
almost surely. Define by (¢2) the quantity :
_ +o0 1 1
J(o?) = 7‘/ < - TrT(w)) dw . (22)
o2 w T

Then,.J(c?) can be expressed more explicitely as :
J(o?) = log det [Ir + 3(c®)D + %B(It + 5(02)15)—1BH]
+ log det {It +ﬁ(02)f)} — %tB(0®)B(c?) , (23)
or equivalently as
J(02) = log det [It + 862D + %BH(IT + B(UQ)D)_lB]
+ log det [Ir + B(O’Z)D} — 2%B(0?)3(0?) . (24)

Taking the expectation with respect to the chan®l in (21), the EMI J(o2?) =
Elogdet (I, + o~2XX*) can be approximated by(c?) :

J(0?) = J(o%) + o(t) (25)

ast — +oo. This result is fully proved in [17] and is of potential intstesince the numerical
evaluation ofJ(o?) only requires to solve the x 2 system (11) while the calculation of(c?)
either rely on Monte-Carlo simulations or on the impleméntaof rather complicated explicit

formulas (see for instance [22]).



12

In order to evaluate the precision of the asymptotic appnation./, we shall improve (25)
and get the speed(o?) = J(0?) + O(t~!) in the next theorem. This result completes those in
[17] and on the contrary of the rest of Theorem 1 heavily retiasthe Gaussian structure of
3. We first introduce very mild extra assumptions :

Assumption 2:Let (B;) be a family ofr x ¢ deterministic matrices such that

sup || B|| < bmax < +00 .
t

Assumption 3:Let D andD be respectively x r and¢ x ¢ diagonal matrices such that
sup |D|| < dmax < +00  and  sup ||D|| < dmax < +00 .
t t
Assume moreover that

irtlf %TrD >0 and irtlf %Trf) >0 .

Theorem 2:Recall thats = B+Y and assume that = %D%X Dz, whereD = diag(d;)
andD = diag(d;) arer x r andt x t diagonal matrices and whele is a matrix whose entries
are i.i.d. complex circular Gaussian variabléd (0, 1). Assume moreover that Assumptions 2
and 3 hold true. Then, for every deterministic matriddsand M satisfyingsup; | M| < +oo

andsup, M| < +oo, the following facts hold true :

Var (2Te[8(eM] ) =0 (=) and Var (1 [S(UQ)M} ol (26)

T 12 t 12
whereVar(.) stands for the variance. Moreover,
1
1
t2
and
- 1
J(0?) = J(*) +0 <t> . (28)

The proof is given in Appendix Il. We provide here some comraent

Remark 4:The proof of Theorem 2 takes full advantage of the Gaussiatatel of matrix

3 and relies on two simple ingredients :

(i) An integration by parts formula that provides an expi@sgor the expectation of certain
functionals of Gaussian vectors, already well-known andelyi used in Random Matrix
Theory [25], [32].

(i) An inequality known as Poincaré-Nash inequality thauhds the variance of functionals
of Gaussian vectors. Although well known, its applicatianrandom matrices is fairly
recent ([6], [33], see also [16]).



13

Remark 5: Equations (26) also hold in the non Gaussian case and candigigis¢d by using
the so-called REFORM (Resolvent FORmula Martingale) methoddunced by Girko ([13]).

Equations (27) and (28) are specific to the complex Gaussiaatgte of the channel matrix
3. In particular, in the non Gaussian case, or in the real Gaussse, one would get(c?) =

J(a?) + O(1). These two facts are in accordance with :

(i) The work of [2] in which a weaker resulb(1) instead ofO(t 1)) is proved in the simpler
case wherdB = 0;

(i) The predictions of the replica method in [30] (resp. [Blfj the case wher® = 0 (resp.
in the case wher® =1, andD =1, ;

Remark 6 (Standard deviation and biafig. (26) implies that the standard deviation of
1Tr [(S(0?) — T(0?))M] and + Tr [(Q(Jz) — T(02>)1\~/I:| are of orderO(t ') terms. However,
their mathematical expectations (which correspond to tae)lxonverge much faster towards
as (27) shows (the order 8(t2)).

Remark 7:By adapting the techniques developed in the course of thef moTheorem 2,
one may establish that”’ ES(c?)v — uT(s%)v = O (1) , whereu and v are uniformly
boundedr-dimensional vectors.

Remark 8:Both J(c2) and.J(¢?) increase linearly witht. Equation (28) thus implies that the
relative error%';f)("g)

the observed fact that approximations of the EMI remain Ipddizeven for small numbers of

is of orderO(¢=?). This remarkable convergence rate strongly supports

antennas (see also the numerical results in section Ve M@t similar observations have been

done in other contexts where random matrices are used, gegE.[30], [?].

B. Introduction of the virtual channd}IQé

The purpose of this section is to establish a link betweenithpldied model (8) ¥ = B+Y
whereY = LD:XD:, X being a matrix with i.i.d2N (0, 1) entries,D andD being diagonal

7
matrices, and the Rician model (2) under investigatioH := /7 A + mV where
V = ﬁC%WC%. As we shall see, the key point is the unitary invariance & EMI of

Gaussian channels together with a well-chosen eingeneddigmvector decompaosition.

We introduce the virtual channé{Q% which can be written as :

1 K 1
HQ: = — AQ-:
Q K+1 Q:

1 1 W 1 101
mc2%@(QZCQ2)2 ) (29)

where® is the deterministic unitary x ¢ matrix defined by

~. 1 1

©=C:Q3(Q:CQ3) : . (30)
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The virtual channeIHQ% has thus a structure similar t#1, where (A, C,C, W) are

respectively replaced WithAQ%, C, Q% CQé ,WO).

Consider now the eigenvalue/eigenvector decompositiémsatrices —-S— and 259> -

VEAFI VE+1
C :CQ: .- -
_upu”  and ¥EY _gpor (31)
VK +1 K+1

MatricesU and U are the eigenvectors matrices while and D are the eigenvalues diagonal
matrices. It is then clear that the ergodic mutual inforomtof channe[HQé coincides with
the EMI of ¥ = UPHQ!/2U. Matrix X can be written a& = B + Y where

B = KKHUHAQéfJ and Y = \}EDixf)é with X =U"WeUu. (32)
As matrix W has i.i.d.@N(0,1) entries, so has matriX = UYW@OU due to the unitary
invariance. Note that the entries & are independent sind® and D are diagonal. We sum
up the previous discussion in the following proposition.

Proposition 1: Let W be ar x ¢ matrix whose individual entries are i.i.@N (0, 1) random

variables. The two ergodic mutual informations

H H
I(Q) = Elog det (I + HQ? ) and J(0?) = Elog det <I + 2% >
ag o

are equal provided that channHl is given by :

K 1
A+ Vv
K+1 VK +1

with V = 2.CzWC?; channelS by ¥ = B+ Y with Y = .D:XD: and that (30), (31)
and (32) hold true.

C. Study of the EMI(Q).

We now apply the previous results to the study of the EMI of clehil. We first state the
corresponding result.

Theorem 3:For Q € ©;, consider the system of equations

o = f(6,6,Q
where f(5,4,Q) and (4,4, Q) are given by :

K+1C)

K 1 (S 1 = 1 -t 1 -1
—|—K7+1AQ2 (It+MQ2CQ2> Q2AH} } , (34)

£(6,5,Q) = 1%{0[02 (I, +
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f(575,Q)=1Tr{Q§(~}Qi[02(It+5Q;CQ;)

K+1
~ —1
K 5 171
— Q:Af (1 4+ —— AQ>: )
719 <T+K+1c> Q! } (35)

Then the system of equations (33) has a unique strictly pessblution(§(Q),d(Q)).
Furthermore, assume thaup, |[Q| < +oo, sup; ||A|| < +oo, sup,; ||C|| < +oo, and
sup, ||C|| < +oo. Assume also thainf; Ayin(C) > 0 where A\, (C) represents the smallest

eigenvalue ofC. Then, ast — +o0,

1(Q) = 1(Q) +0 (1) (36)

where the asymptotic approximatidiQ) is given by

-1
oy Q) et L K oiaw i(Q) 1

’(Q)

K+1

+ log det (Ir +
or equivalently by

_ 5 1 K 1 ) 1~ 1 -1 1
I(Q) = log det (Ir—i_l((:;—))lc—'—o?KHAQz (It+K.((_§)1Q2CQ2> Q2AH>

T log det (It+ I‘i(f)lczméczm) - @@, @
Proof: We rely on the virtual channel introduced in Section IlI-B aowl the eigenva-
lue/eigenvector decomposition performed there.

Matrices B, D, D as introduced in Proposition 1 are clearly uniformly bouthdevhile
inf, \TrD = inf, 1TrC = 1 due to the model specifications andf; 1TrQ:CQz >
inf; Amin(C)2TrQ > 0 as 1TrQ = 1. Therefore, matrice®, D and D clearly satisfy the
assumptions of Theorems 1 and 2.

We first apply the results of Theorem 1 to matlix and use the same notations as in the
statement of Theorem 1. Using the unitary invariance of thegtiof a matrix, it is straightforward

to check that :

£(6,6,Q

K+

= S~—
I
|
o
w)
VY
ql\)
VN
[a—
_l’_
)
N S
_l’_

—_
N——
_|_

w
7N
-

_l’_

wh
=
+
—_
N—————
|
Iy
N———
I
"

jw\z
gl
f S
tle
Il
|
=
wh
/
qw
N
-
+
wh
| o
+
—_
N————
+
vel
=
VN
-
+
w)
f o
[
N———
L
N——
.
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Therefore, (4, 4) is solution of (33) if and only if(\/ffiH, \/Igiﬂ) is solution of (11). As the

system (11) admits a unique solution, S@3 B), the solution(é, 5) to (33) exists, is unique
and is related tdqs, 3) by the relations :

b . 5
ViRl TS URT
In order to justify (37) and (38), we note thd{c?) coincides with the EMI/(Q). Moreover,

6=

(39)

the unitary invariance of the determinant of a matrix togethith (39) imply that/(Q) defined
by (37) and (38) coincide with the approximatigngiven by (23) and (24). This proves (36)
as well. [ |

In the following, we denote b{['x (02) and Tk (02) the following matrix-valued functions :

5 1 1 ~ 1 1 -1
Ti(o?) = [0+ 250) + £1AQH I+ 2;Q:CQ:) QA | )
~ 1~ 1 1 N 1 -1
Ti(o?) = [0+ 27Q:CQH) + QAT 1+ 2;0)1AQ: ]
They are related to matricéE and T defined by (12) by the relations :
Tx(c?) = UT(c?)UH
Tl = UT)U™ (41)
Tx(0?) = UT(c*)UH

and their entries represent deterministic approximatiofs (HQH” + ¢°I,)~! and
(Q:HHQ: + ¢2I,)! (in the sense of Theorem 1).

As ITrTx = !'T'T and ITiTx = L1TrT, the quantities! TrT, and 1 TrTx are the
Stieltjes transforms of probability measurgsand i introduced in Theorem 1. As matrices
HQH and =" (resp.Q:H”HQ: and =7 %) have the same eigenvalues, (18) implies
that the eigenvalue distribution GdIQHY (resp.Q:HHQ:) behaves like: (resp.f).

We finally mention thab(c2) andd(c?) are given by

1 ~ 1 . -
5(0?) = ETrCTK(a?) and  §(0?) = ZTrQECQl/QTK(JQ) : (42)
and that the following representations hold true :
oy _ [ ma(dA) 9 _/ fra(d )
5(0)/R+)\+02 and 4(o%) = At o? (43)

where 14 and fi; are positive measures di* satisfying uq(R*) = 1TrC and fig(RT) =
1 1/20001/2
1TrQY/2CQY/2.

IV. STRICT CONCAVITY OF I(Q) AND APPROXIMATION OF THE CAPACITY(Q.)

A. Strict concavity off (Q)

The strict concavity off (Q) is an important issue for optimization purposes (see Sesfjon

The main result of the section is the following :
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Theorem 4:The functionQ — I(Q) is strictly concave or€;.

As we shall see, the concavity dfcan be established quite easily by relying on the concavity

of the EMI I(Q) = Elogdet (I + H%{H) The strict concavity is more demanding and its
proof is mainly postponed to Appendix III.

Recall that we denote by, the set of nonnegative Hermitiarx ¢ matrices whose normalized
trace is equal to one (i.et"'TrQ = 1). In the sequel, we shall rely on the following
straightforward but useful result :

Proposition 2: Let f : ¢; — R be a real function. Therf is strictly concave if and only if

for every matricedQ, Q2 (Q1 # Q2) of €1, the functiong(\) defined on[0, 1] by

d(N) = f(AQ1 + (1 - )1)Qq)

is strictly concave.
1) Concavity of the EMI:We first recall that/ (Q) = Elog det (I + HQHH) is concave on

o2

€1, and provide a proof for the sake of completeness. Denot®by AQ; + (1 — \)Q. and
let p(A) = I(AQ1 + (1 — X\)Q2). Following Proposition 2, it is sufficient to prove thatis
concave. Adog det (I + HQHH) = log det (I + HHHQ), we have :

o2 o2

HQH" >

o2

»(A) = Elogdet <I+

H'HQ\ ' H'H
g0 = ETr (14 119 S (Q1 - Qa) .
o g
H -1 oyl H -1 oyl
sy = e (10 2509) T g, - g (1 ) g, g

-1 H . . .
In order to conclude thap”(\) < 0, we notice that(I + HHHQ) H"H (pincides with

—1
H <1+ Han ) i

o2 o2

(use the well-known inequalityl + UV)~'U = U(I+ VU)~! for U = H” andV = HQ

[

)-

We denote byM the non negative matrix

HQHY\ ' H
o2

o2

M = H” (I +
and remark that
¢"(A) = —ETr [M(Q:1 — Q2)M(Q1 — Q2)] (44)
or equivalently that
¢"(N) = —ETr | M"2(Q1 — Q2)M'/*M'*(Q; — Qo)M'/?

As matrix M'/2(Q; — Q2)M'/? is Hermitian, this of course implies that’(\) < 0. The

concavity of¢ and of I are established.



18

2) Using an auxiliary channel to establish concavityI¢)): Denote by the Kronecker

product of matrices. We introduce the following matrices :
A=1,%C, A=1,2C, A=I,%A, Q=1,2Q.

Matrix A is of sizerm x rm, matricesA andQ are of sizetm x tm, andA is of sizerm x tm.

Let us now introduce :

- 1 1w~ 1 . K . 1 .
V=——A2WA: and H= A+ V.,
Vmt K+1 " VK11

where W is arm x tm matrix whose entries are i.i.dN (0, 1)-distributed random variables.

Denote byI,,(Q) the EMI associated with chann#l :

I,,(Q) = Elog det <I + HQEIH> .

g

Applying Theorem 3 to the channdl, we conclude thatl,,(Q) admits an asymptotic
approximationI,,,(Q) defined by the system (34)-(35) and formula (37), where oné wil

substitute the quantities related to chanHeby those related to channdl, i.e. :
temt, romr, A—~A Q—Q CoA, CoA.

Due to the block-diagonal nature of matricds Q, A and A, the system associated with
channeH is exactly the same as the one associated with chdfinkloreover, a straightforward
computation yields :

L@ =1@, Ym=1.

It remains to apply the convergence result (36) to conclinde t

lim —1,,(Q) = 1(Q) .

m—oo M
SinceQ +— I1,,(Q) = I,(I,, ® Q) is concave,l is concave as a pointwise limit of concave
functions.
3) Uniform strict concavity of the EMI of the auxiliary chagin Strict concavity off (Q):
In order to establish the strict concavity 6(Q), we shall rely on the following lemma :
Lemma 1:Let ¢ : [0,1] — R be a real function such that there exists a fanfiby, ),,>1 of
real functions satisfying :

(i) The functionse,, are twice differentiable and there exists< 0 such that
Ym>1, VYxelo,1], PN <k<O. (45)

(i) Forevery € [0,1], ¢m () —— B(N).

Then¢ is a strictly concave real function.
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Proof of Lemma 1 is postponed to Appendix III.

Let Qi, Q2 in €;; denote byQ = AQ; + (1 = AN)Q2, Q1 = I, ® Q1, Q2 = I, ® Qq,
Q = I, ® Q. Let H be the matrix associated with the auxiliary channel and tiehy :
ﬁQﬁH>

o2

1
dm(A) = —Elogdet (I +
m

We have already proved that,, () — d(\) 2 I(AQ1 + (1 — A)Q2). In order to fulfill
assumptions of Lemma 1, it is sufficient to prove that theretexis< 0 such that for every
A€ [0,1],

limsup ¢, (\) <k <0 . (46)

m—00

(46) is proved in the Appendix IlI.

B. Approximation of the capacity(Q.)

Sincel is strictly concave over the compact $gt it admits a unique argmax we shall denote
by Q,, i.e.:
1(Q,) = max I(Q) .

Qe
As we shall see in Section V, matr@®, can be obtained by a rather simple algorithm. Provided
that sup, || Q.|| is bounded, Eq. (36) in Theorem 3 yield$Q,) — I(Q,) — 0 ast — oo. It
remains to check thaf(Q.) — I(Q,) goes asymptotically to zero to be able to approximate
the capacity. This is the purpose of the next proposition.
Proposition 3: Assume thasup, || A|| < oo, sup, |C|| < oo, sup; ||C|| < oo, inf; Amin(C) >
0, andinf; A\pin(C) > 0. Let Q, and Q. be the maximizers ove€; of I andI respectively.

Then the following facts hold true :
(i) sup; [|Q.[ < oo
(i) sup; Q.| < oo.
(i) 1(Q.) =1(Q.) +O(t™1).
Proof: The proof of items (i) and (ii) is postponed to Appendix VI. Let prove (iii). As

>0 >0

= (IQ)-1Q.)) +  (I(Q)-1Q.) (47)

N~

= 0(™) = o(t™)
by (i) and Th. 3 Eq. (36) by (i) and Th. 3 Eq. (36)
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where the two terms of the lefthand side are nonnegative altigetfact thaQ, andQ, are the
maximizers ofl andI respectively. As a direct consequence of (47), we ha@.) — 1(Q,) =

O(t~') and the proof is completed. [ |

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that ma®ix asymptotically achieves the capacity.
The purpose of this section is to propose an efficient way of mang the asymptotic
approximation/ (Q) without using complicated numerical optimization algimits. In fact, we

will show that our problem boils down to simple waterfillinggatithms.

A. Properties of the maximum &{Q).

In this section, we shall establish some@f’s properties. We first introduce a few notations.

Let V(k, %, Q) be the function defined by :

K 1~ 1 K 1 /;} -1 1
V(k, %, Q) =logdet [ I; + —— Q=CQ2z + ————— QzAY (1, C| AQ:
(K, R, Q) Oge<t+K+1Q Q +02(K+1)Q < M ) Q)
K to2ki
or equivalently by
V(n 7 Q) = logdet I + ——C+ — 5 AQ}(1,+—"_Qicq: 71QLAH
o Ry ) = 108 TR T 2K 1) TR 1
2 ~
K o12@ol/2) _ toTER
+logdet<It+K+lQ CcQ ) kil (49)

Note that if (5(Q),4(Q)) is the solution of system (33), then :

I[(Q) =V (§(Q),4(Q),Q) .

Denote by(d,,d,) the solution(5(Q,),5(Q,)) of (33) associated witlQ,. The aim of the

section is to prove tha®, is the solution of the following standard waterfilling protvie

1(Q,) = max V(4,,0.,Q) .

Qety

Denote byG(k, k) thet x ¢ matrix given by :

Ko = K i -1
G(k, i) = C AP (L, +—"——C|] A. 50
8 = 73 7CF ( TR ) (50)

Then,V(k, &, Q) also writes

V7, Q) = log det (I + QG(k, 7)) + logdet (1, + ——C _ 1o (51)
R, Q) = log ) & "TK 11 K+1’
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which readily implies the differentiability ofx, &, Q) — V(k,k,Q) and the strict concavity
of Q — V(k,k,Q) (x and & being frozen).

In the sequel, we will denote by F'(z) the derivative of the differentiable functiof' at
point z (z taking its values in some finite-dimensional space) andWy'(x),y) the value of
this derivative at poinf). Sometimes, a function is not differentiable but still adndiirectional

derivatives: The directional derivative of a functioR' at  in directiony is

F,(Cﬁy) — lim F(x + ty) B F(x)
’ t10 t

when the limit exists. Of course, if' is differentiable atc, then F'(z;y) = (VF(z),y). The
following proposition captures the main features needethésequel.

Proposition 4: Let F': ¢; — R be a concave function. Then :

(i) The directional derivativeF” (Q; P — Q) exists in(—oo, o] for all Q,P in C;.

(i) (necessary conditignif F' attains its maximum foQ, € Gy, then :

vQeel, F(Q:Q-Q,)<0. (52)
(iii) (sufficient condition Assume that there exisfy, € C; such that :

vQeli, F'(Q;Q-Q,)<0. (53)

Then F admits its maximum aQ, (i.e. Q, is an argmax ofF’ over ;).

If F is differentiable then both conditions (52) and (53) write :

vQet, (VF(Q.).Q-Q,) <o0.
Although this is standard material (see for instance [4,f@41a2]), we provide some elements
of proof for the reader’s convenience.
Proof: Let us first prove item (i). AQ +t(P — Q) = (1 —)Q + tP € C1, A(t)
t 1 (F(Q+t(P - Q)) — F(Q)) is well-defined. Let) < s <t < 1 and consider

1>

A0-ae = L{5F-0Q+ P+ U R@ - P s P}
(a) — — S
< i{F(Jl “?”P+tt Q)—F((l—s)Q+sP)},
= {(F(1-9)Q+sP) - F((1-5)Q+sP)} = 0,

where (a) follows from the concavity ofF’. This shows thatA(¢) increases as | 0, and in
particular always admits a limit i\—oo, co].

Item (ii) readily follows from the fact that’((1 — ¢)Q, + tP) < F(Q,) due to the mere
definition of Q,. This implies thatA(¢) < 0 which in turn yields (52).
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We now prove (iii). The concavity of’ yields :

_F@.+4P-Q,) - F@Q.)

At) t

> F(P) - F(Q,).

As lim; o A(t) < 0 by (53), one gets VP € €1, F(P) — F(Q,) < 0. Otherwise statedf’
attains its maximum a®, and Proposition 4 is proved. [ ]

In the following proposition, we gather various propertietated tol.

Proposition 5: Consider the functiong(Q),4(Q) and I(Q) from ©; to R. The following
properties hold true :

(i) Functionss(Q),4(Q) andI(Q) are differentiable (and in particular continuous) ot
(i) Recall thatQ, is the argmax ofl over Cy, i.e.VQ € €1, I(Q) < I(Q,) . Let Q € C;.

The following property :

holds true if and only ifQ = Q,.

(i) Denote by d, andd, the quantitiess(Q,) and §(Q,). Matrix Q, is the solution of the
standard waterfilling problem : Maximize ovedd < C; the function V(é*,S*,Q) or
equivalently the functionog det(I + QG (., d,)).

Proof: (i) is established in the Appendix. Let us establish (ii). &ethat 1(Q) is strictly
concave by Theorem 4 (and therefore its maximum is attainet atost one point). On the
other hand,I(Q) is continuous by (i) ove€; which is compact. Therefore, the maximum of
I(Q) is uniquely attained at a poi®,. Item (ii) follows then from Proposition 4.

Proof of item (iii) is based on the following identity, to beoped below :

(VI@Q.),Q-Q.) = (VaV (5-.4.Q.).Q-Q.) . (54)

where Vq denote the derivative oV (x, %, Q) with respect toV’s third component, i.e.
VqQV(k, %, Q) = VI'(Q) with " : Q — V(k, &, Q). Assume that (54) holds true. Then item
(ii) implies that (Vg V (5*,8*,6*) ,Q—Q,) <0foreveryQ e €. As Q — V(4,,6,,Q)

is strictly concave or€;, Q, is the argmax oft/ (4., J., -) by Proposition 4 and we are done.

It remains to prove (54). Consid€) and P in C;, and use the identity

(VI(P),Q—P) = (VqV(3(P),6(P),P),Q — P))

(P),P) (Vi(P),Q - P)

+
TN
Q|
&
N~
=
=
o

N @V) (6(P),5(P), P) (Vi(P).Q — P) .



23

We now compute the partial derivatives Bf and obtain :

ov R

o = s (- e RQ)

oV to? 5 ’ (55)
8/?; = _K_’_l(’%_f(’ivﬁzQ))

where f and f are defined by (34) and (35). The first relation follows from (48l ¢he second

relation from (49). As(6(Q),d(Q)) is the solution of system (33), equations (55) imply that :

2 (6(Q),5(Q). Q) = T (5(Q),5(Q).Q) = 0. (56)

Letting P = Q, and taking into account (56) yields :

(VI(Q,),Q - Q.) = (VqV(i(Q.),4(Q.).Q.),Q - Q,)

and (iii) is established. [ ]
Remark 9: The quantitiesS, andd, depend on matriXQ,. Therefore, Proposition 5 does not
provide by itself any optimization algorithm. However, ivgs valuable insights on the structure
of Q,. Consider first the cas€ = I andC = I. Then, G(é.,d,) is a linear combination of
I and matrix A A. The eigenvectors 0@, thus coincide with the right singular vectors of
matrix A, a result consistent with the work [19] devoted to the maxation of the EMII(Q).
If C =IandC # I, G(J.,4,) can be interpreted as a linear combination of matri€es
and A A. Therefore, if the transmit antennas are correlated, thensiectors of the optimum
matrix Q, coincide with the eigenvectors of some weighted sunCofind A A. This result
provides a simple explanation of the impact of correlatethdémit antennas on the structure
of the optimal input covariance matrix. The impact of corethreceive antennas o, is

however less intuitive because mati’ A has to be replaced witA ” (I + §,C) ' A.

B. The optimization algorithm.

We are now in position to introduce our maximization aldgamitof /. It is mainly motivated
by the simple observation that for each fixéel, <), the maximization w.r.t.Q of function
V(k,%,Q) defined by (51) can be achieved by a standard waterfilling proeedvhich, of
course, does not need the use of numerical techniques. Oathiee hand, forQ fixed, the
equations (33) have unique solutions that, in practice,mwbtained using a standard fixed-
point algorithm. Our algorithm thus consists in adaptingapzetersQ and é, 4 separately by
the following iterative scheme :

— Initialization : Qy =1, (51,51) are defined as the unique solutions of system (33) in which

Q = Qo = I. Then, defineQ; are the maximum of functio® — V(él,Sl,Q) on Cq,

which is obtained through a standard waterfilling procedure.
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— lterationk : assumeQ;,_1, (6k_1,5k_1) available. Then(dk,Sk) is defined as the unique
solution of (33) in whichQ = Q,_;. Then, defineQ; are the maximum of function

Q — V (3, o, Q) on €;.
One can notice that this algorithm is the generalizationh& procedure used by [44] for

optimizing the input covariance matrix for correlated Ragh MIMO channels.

We now study the convergence properties of this algorithma, state a result which implies
that, if the algorithm converges, then it converges to thigum argmaxQ,, of I.

Proposition 6: Assume that the two sequenc@),>o and (d;)r>o Verify

lim & —0r_1 — 0, lim & —0p_1 — O (57)
k—+o00

k—+o00
Then, the sequend®))x>o converges toward the maximu@, of 7 on C;.
The proof is given in the appendix.

Remark 10:If the algorithm is convergent, i.e. if sequen(@;),>o converges towards a
matrix P, Proposition 6 implies thaP,. = Q,. In fact, functionsQ +— 6(Q) and Q S(Q)
are continuous by Proposition 5. Ag = §(Qx—_1) andd, = S(Qk_l), the convergence diQy)
thus implies the convergence 6f;,) and (4;), and (57) is fulfilled. Proposition 6 immediately
yields P, = Q,. Although we have not been able to prove the convergenceeofilidporithm,
the above result is encouraging, and tends to indicate tiwitim is reliable. In particular, all
the numerical experiments we have conducted indicategtibatlgorithm converges towards a

certain matrix which must coincide by Proposition 6 wifj) .

VI. NUMERICAL EXPERIMENTS
A. When is the number of antennas large enough to reach thepastyenregime ?

All our analysis is based on the approximation of the ergadigtual information. This
approximation consists in assuming the channel matrix tdabge. Here we provide typical
simulation results showing that the asymptotic regime &hed for relatively small number of
antennas. For the simulations provided here we assume :

-Q=1L.

— The chosen line-of-sight (LOS) componeAt is based on equation (4). The angle of

arrivals are chosen randomly according to a uniform diatrdm.

— Antenna correlation is assumed to decrease exponentidlythe inter-antenna distance

i.e. Cij ~ p'ffﬂ, Cij ~ p'j{j‘ with 0 < ppr <1 and0 < pr < 1.

— K is equal tol.
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Figure 1 represents the EM(Q) evaluated by Monte Carlo simulations and its approximation
I(Q) as well as their relative difference (in percentage). Héne, correlation coefficients are
equal to(pr, pr) = (0.8,0.3) and three different pairs of numbers of antenna are coresider
(t,r) € {(2,2),(4,4),(8,8)}. Figure 1 shows that the approximation is reliable evenrfer

t =2 in a wide range of SNR.

20 T
—— Montecarlo Simulations ( 2*2)

* Deterministic Approximant ( 2*2 )
15| [ — Montecarlo Simulations ( 4*4 )

I x  Deterministic Approximant ( 4*4 )

g_ —— Montecarlo Simulations ( 8*8 )

-g 10 <! Deterministic Approximant ( 8*8 ) .
=

w

5
) Me
o 4 4
o
g
c 3t —— Relative Error ( 2*2) |
'g —— Relative Error (4*4)
5 —>— Relative Error (8*8)
o 2 A
=
£ W
e 1r ]
) P> P> P> P> P> P> ‘>‘9_—9§9_—9‘9_—9‘9‘£
0 L \
-5 0 5 10

SNR in dB

Fig. 1. The large system approximation is accurate for correlated RiciviQvchannels. The relative difference
between the EMI approximation and that obtained by Monte-Carlo simulaisoiess tharb % for a 2 x 2 system

and less thal % for a 8 x 8 system.

B. Comparison with the Vu-Paulraj method.

In this paragraph, we compare our algorithm with the methogsgnted in [42] based
on the maximization of/(Q). We recall that Vu-Paulraj’'s algorithm is based on a Newton
method and a barrier interior point method. Moreover, therage mutual informations and
their first and second derivatives are evaluated by MontéeGamulations. In fig. 3, we have
evaluatedCr = maxqee, 1(Q) versus the SNR forr = ¢t = 4. Matrix H coincides with
the example considered in [42]. The solid line correspondshto results provided by the

Vu-Paulraj's algorithm; the number of trials used to ev&uthe mutual informations and
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n=N=2|n=N=4|n=N =

Vu-Paulraj 0.75 8.2 138

New algorithm 1072 3.1072 7.1072

Fig. 2. Average time per iteration in seconds

its first and second derivatives is equal 30.000, and the maximum number of iterations
of the algorithm in [42] is fixed to 10. The dashed line corresito the results provided
by our algorithm : Each point represenf$Q,) at the corresponding SNR, whe®, is
the argmax of[ ; the average mutual information at poi@Q, is evaluted by Monte-Carlo
simulation (30.000 trials are used). The number of iteraigalso limited to 10. Figure 3
shows that our asymptotic approach provides the same sethalh the Vu-Paulraj's algorithm.
However, our algorithm is computationally much more effitias the above table shows.
The table gives the average executation time (in sec.) of mmation for both algorithms for

r=t=2,r=t=4,r=t=2_8.

In fig. 4, we again compare Vu-Paulraj’s algorithm and our psgb. Matrix A is generated
according to (4), the angles being chosen at random. Thentiirend receive antennas
correlations are exponential with parameter< pr < 1 and0 < pr < 1 respectively.
In the experimentsy = ¢t = 4, while various values ofp;, pr and of the Rice factor
have been considered. As in the previous experiment, thanmiax number of iterations for
both algorithms is 10, while the number of trials generatecetaluate the average mutual
informations and their derivatives is equal to 30.000. Oppraach again provides the same
results than Vu-Paulraj's algorithm, except for low SNRs for= 1, pr = 0.5, pr = 0.8 where
our method gives better results : at these points, the Virddaualgorithm seems not to have

converge at the 10th iteration.

VIlI. CONCLUSIONS

In this paper, an explicit approximation for the ergodic maltinformation for Rician MIMO
channels with transmit and receive antenna correlatiomagigged. This approximation is based
on the asymptotic Random Matrix Theory. The accuracy of theag@mation has been studied
both analytically and numerically. It has been shown to by @aecurate even for small MIMO
systems : The relative error is less tha% for a 2 x 2 MIMO channel and lesg % for an

8 x 8 MIMO channel.
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The derived expression for the EMI has been exploited to dexivesfficient optimization

algorithm providing the optimum covariance matrix.

APPENDIXI

PROOF OF THE EXISTENCE AND UNIQUENESS OF THE SYSTE(L1).

We consider functiong

—

k, k) and g(k, &) defined by

~ —1
Tr |D <02(IT +D#&) + B(L + DH)_IBH)

(58)

~ ~ —1
Tr |D (02(It +Dr) +BH(IL, + D%)’1B>
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For eachz > 0 fixed, functionk — g(k, k) is clearly strictly decreasing, converges towarco
if k — 0 and converges t0 if x — +oo. Therefore, there exists a unique> 0 satisfying
g(k, k) = 1. As this solution depends of, it is denotedh(%) in the following. We claim that
— (i) Functionk — h(k) is strictly decreasing,
— (ii) Function — Rh(k) is strictly increasing.
In fact, considersy > &;. It is easily checked that for each > 0, g(k,%1) > g(k,R2).
Hence, the solutiorh(%1) and h(k2) of the equationgy(x, 1) = 1 and g(k, ko) = 1 satisfy
h(k1) > h(R2). This establishes (i). To prove (ii), we use the obvious i@y (h(k1),R1) —
g(h(R2), k2) = 0. We denote byU;);—1 » the matrices

I
h(%:)

It is clear thatg(h(k;), ki) = %TrDU;l. We expresgy(h(k1), k1) — g(h(kz2), k2) as

!
U; = o2 (h(7:)I + £;h(%;)D) + B < + D) B!
o(h(R2), Fa) — g(h(R2), R2) = TTED(U; ~ Uz

and use the identity

Ul-uyt=ut (U, -Uy) Ut (59)
Using the form of matrice$U;);—1 2, we eventually obtain that
g(h(R1), k1) — g(h(R2), ke) = u(h(k2) — h(F1)) + v(R2h(R2) — R1h(R1)) ,
wherew andwv are the strictly positive terms defined by
"= %TrDUl_l (0?1 + B(I + h(32)D) (1 + h(51)D)'BY) U

and

1
v=-TrDU;'DU, " .
t

As u(h(f{g) — h(%l)) + U(/%Qh(l%Q) — I%lh(l%l)) = 0, (h(l%g) — h(fil)) < 0 |mp|leS that
Roh(R2) — k1h(R1) > 0. Hence,kh(k) is a strictly increasing function as expected.
From this, it follows that functionk — g(h(k), %) is strictly decreasing. This function

converges tot+oo if & — 0 and to0 if & — +oc. Therefore, the equation
r— g(h(k),k) =1

has a unique strictly positive solutigh If 3 = h(f), itis clear thay (3, ) = 1 andg(s, 3) = 1.
Therefore, we have shown th@t, 3) is the unique solution of (11) satisfying> 0 and > 0.
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APPENDIXII

PROOF OFTHEOREM 2

This section is organized as follows. We first recall in sulisectl-A some useful
mathematical tools. In subsection 1I-B, we establish (26)lI-C, we prove (27) and (28).
Technical details that are needed to establish (27) andg&8also given in subsections II-D

and II-E.

We shall use the following notations.dfis a random variable, the zero mean random variable
u—E(u) is denoted byi. If z =z + iy is a complex number, the differential operatgfsand
£ are defined respectively b%’(a% — i%) and } (a% + i%). Finally, if X, B,Y are given

matrices, we denote respectively gy, b;,y; their columns.

A. Mathematical tools.

1) The Poincaré-Nash inequality.et x = [z1,..., 2]’ be a complex Gaussian random
vector whose law is given bE[x] = 0, Exx!] = 0, and E[xx*] = E. Let & =
®(x1,...,20,71,...,20) be aCl complex function polynomially bounded together with

its partial derivatives. Then the following inequality hslttue :
Var(®(x)) < E [qu)(x)T = vch(x)} +E [(vgq)(x))H B V:0(x)| |

whereV,® = [0®/0z1,...,00/0zy]T andV:® = [0®/0%1,...,0®/0z)]T.
This inequality is well known (see e.g. [7] and [21]).
Let'Y be ther x ¢ matrix Y = .-DzXD:, whereX has .i.d.CN(0, 1) entries and consider

Vit
the stackedt x 1 vectorx = [Yi1,...,Y4]7. In this case, Poincaré-Nash inequality writes :
r t 2 2
1 ~ 00(Y) 00(Y)
O(Y)) < - d;d;E — 60
Var (@(Y)) < £ 332 '% +16Ym (60)

2) The differentiation formula for functions of Gaussiandam vectors:With x and® given

as above, we have the following

M

_ 0P (x

E[z,®(x)] = Z [El,, E [ 053( )} . (61)
m=1 m

This formula relies on an integration by parts, and is thusrrefl to as the Integration by

parts formula for Gaussian vectors. It is widely used in Matlatical Physics ([14]) and has

been used in Random Matrix Theory in [25] and [32].

If x coincides with thert x 1 vectorx = [Yi1,..., YT, relation (61) becomes
J (Y
E[Y,,d(Y)] = 2%E [a b )] . (62)
¢ 8YP‘1
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Replacing matriXY by matrix Y also provides

E [V ®(Y)] = dptqu [8(;1)125)} : (63)
3) Some useful differentiation formula3he following partial derivatives‘% and g%p:
for eachp,q € {1,...,r} andl <i <r,/1 < j <t will be of use in the sequel. Straightforward
computations vyield :
{ m = e, (64
aT‘fj = _Sz}q (Sg)p

B. Proof of (26)

We just prove that the variance dfTr(MS) is a O(%) term. For this, we note that the
random variable. Tr(MS) can be interpreted as a functidn(Y) of the entries of matrixy,

and use the Poincaré-Nash inequality (60)ptdY’). Function®(Y) is equal to
1
2(Y) = i ZM‘LPSI%Q :
p,q

Therefore, the partial derivative @f(Y) with respect toy;; is given by

20(Y) 1 S 05,
q7PaTZ_j

81/” t p,q

which, by (64), coincides with

oB(Y) 1

1
Yy ot ;;Mq,psp,i(ﬁfs)q =7 (EJHSMS)Z. :

As d; < diax andd; < dpay, it is clear that

) ) rot 0P(Y
< dmaxdmax Z Z E ’ a}(flﬂ )

r 2

Lo 09(Y
ZZdidjE’a}(fi‘)

i=1 j=1

i=1 j=1
It is easily seen that

- 8(I)<Y)2_ 1 H 2ngHqeH
;E’ oY, = 5B (¢'SMS*M"S¢])

As [S| < & andsup, [M]| < +oo, £7SMS*M7S¢! is less thank sup, [M][? ||€,[>. Mo-

reover,E||&,|? coincides with|[b; |2+ 1d; >°7_; d;, which is itself less thah? . + dmaxdmax 5,

max

a uniformly bounded term. Therefore,

;E ’6(1)(Y)

Yy
2
1
-o(3)

2

is aO(%) term. This proves that

t2
1, - |09(Y)
tzzdidﬂz’ dYi

i=1 j=1
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It can be shown similarly that

ZdeE’a@ Y) "

=1 j=1

oft)

The conclusion follows from Poincaré-Nash inequality (60).

C. Proof of (27) and (28).

As we shall see, proofs of (27) and (28) are demanding. We fitsbduce the following

notations : Define scalar parametey®?), a(c?), a(c?) as

1Tr (DS(c?))

[+ Tr (DS(0%))] (65)
-1

E
a(0?) = {Tr {15( 21+ aD)) (I—BHIE(S(02))B(I+Q]5)—1)}

and matriceR(c2), R(0?) as
-1
R(c?) = |oc?(I+a ol Tt
[ +aD) +B (I+ D)lB L o)
R(0?) = [02 (I+aD)+B (I + af)) BH}

It is difficult to study directly the term} TrM(E(S) — T). In some sense, matriR can be seen
as an intermediate quantity betweB(S) and T. Thus the proof consists into two steps : 1)
first, studying2 TrM(E(S) — R) and 2) studying TrM(R — T).

1) First step: The first step consists in showing the following Proposition.

Proposition 7: For each deterministic x » matrix M, uniformly bounded (for the spectral

norm) asr — oo, we have :

%Tr M (E(S)—R)]| =0 (;2 (67)

We just sketch the proof of this proposition, and provide die¢ailed proof in subsection II-D.

In order to use the Integration by parts formula (62), renthdt

0?S(0?) +8(c*)ZxH =1, (68)
Taking the mathematical expectation, we have for gache {1,...,7} :
U2E(Spq) +E [(SEEH)pq] =d(p—2q) . (69)

A convenient use of the Integration by parts formula allowgxpressf [(SEZH)pq] in terms

of the entries ofE(S). To see this, note that

[ SEEH pq ZZE(SMEUZ‘T])
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For eachi, E(S,X;;2,;) can be written as

E(SpiXijXq;) = E(Spi) BijByj + E (SpiYqs) Bij + E (SiYiiXg5) -
Using (62) with function®(Y) = S,;%,; and (63) with®(Y) = S,;, and summing over index
i yields :

dyd; - dyd; -
E [(Séj)pzq,j = %E(Spq) — d;IE [n(Sﬁj)pqu - qTJE [Squ}quj} + E[(Sb;)p| By; -
(70)
Eq. (26) forM = D implies thatVar(n) = O(%), or equivalently tha[E(ny) = O(%). This,

in some sense (details are given in subsection [I-D), allmapproximatel [n(SEj)pEQ,j] by
E(n)E [(S€;)p2q,;] = oE [(S€;)p5,,;]- Therefore, Eq. (70) can be written as
dqdj 7 S dqdj H -

E [(Sfj)pzqd = TE(SPq) — ad;E [(Sfj)pzq,j] - TE [Spqu Sbj} +E[(Sby)p] By; -
Solving w.r.t.E [(S¢;),%,,;], we obtain
- 1 dyd; 1 — 1 dyd;
E VpZgj] ~ - — K ~E[(Sb,),] Byj — - —+2=E [S,,£7Sb,] .

[(Sﬁj)p 0.j] 1+ ad, (Spq) + 1+ ad, [(Sbj)p] Byj {1+ ad; [ pa€; ;]
Writing £, = b; + y;, and summing ovey provides the following approximate expression of

E[(S=X),,] :

E[(sEsM),] ~ d, %Tr [f)(naf))—l} E(Sp,)

+E [(SB(I + aﬁ)—lBH> ] —dyE [quiTr (SBf)(I - af))_lBH)]

pq
—d,E [quiTr (SBD( + aﬁ)_lYH)] . (71)
Using similar calculations, it is possible to establishttha
E [SpqiTr (SBB(I + a]j)_lYH>] ~ —E(S)q)E [1Tr (SBB(I + aﬁ)_lYH>]
E [5 Ly (SBﬁ(I+a]§)_1BH>] ~ E(S,)E [1Tr (SBE(I+a]3)_1BH>]
pqt - pq t
and that
E [1Tr (SBﬁ(I + aﬁ)_lYH>] ~ —a %Tr <JE(S)B]32(I + aﬁ)—2BH) . (72)
Therefore E [(SZX*),,] can be approximated by
1 = =\ —1 S\~ 1H
dg = Tr DI+ aD) | E(S,yg) +E | (SB(I+ D) 'B
t Pq
— dyE(Spg)E [1Tr <SB]5(I +aoD)BH )]

+ ady B(Spg)E ETr (SBf)?(I +aD)2BH )] . (73)
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Plugging the above approximate expressiofi @(SEZH)M] into (69), and solving with respect
to E(S,,), we obtain after some algebra that
<E [S <02(I +aD)+B(I+ a]j)_lBHﬂ) ~d(p—q)
pq

or equivalently that

E(Spq) ~ Ryq -

In order to prove Proposition 7, it is of course necessaryviauate the convergence speed
toward O of the error term&(S,,) — R,,. Fortunately, Poincaré-Nash inequality allows to
study these terms rather easily, and to prove (67). Moreildetee given in subsection II-D.

2) Second stepThe second step consists in showing the Proposition :

Proposition 8: For each deterministic matridvI, uniformly bounded for the spectral norm

ast — oo, we have :

%Tr M(R—T) =0 (;) . (74)
We first observe thaR — T = R (T~! — R™!) T. Using the expressions @&~ and T,

multiplying by M, and taking the trace gives
%Tr M(R-T)] = (3—a) 02%Tr(MRDT) +
(a—B) %Tr [MRB(I + 3D)~'D(1 + 5D)'B"T| . (75)
As the terms? - Tr(MRDT) and Tr [MRB(I + D) 'D(I + ﬁﬁ)‘lBHT] are uniformly
bounded, it is sufficient to establish that — 5) and (@ — ) are themselve®) (%) terms. For

this, we first prove the following lemma.

Lemma 2:a and& can be written as
1 - 1 .
a = STI(DR)+e, & = Tr (DR) ye, (76)

wheree andé areO() terms.

Proof: The first relation of (76) follows immediately from Proposiii@ when matrixiV
is equal toD. To establish the second relation, we again use Proposition a relevant matrix
M, and obtain that

a(o?) = LT []3 (02(1 v af))) - (I _BYRB( + aﬁ)_l)} te
whereé = O(). We claim that

12

%Tr []3 (02(1 N a]~3>>‘1 (I _BFRB(I+ a]j)1>] - %Tr (ﬁﬁ) . 77)
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In fact, using the definition oR, we get that
(B RB(I+aD)™) =
B [I + (c*(I+aD)) "' B(I+ ozf))_lBH)} o (0*(I+aD)) " B(I+aD)™".
In order to simplify the notations, we put
G = (o>(I+aD)) ' BI+aD)™"
Using the identities

BY (1+GBY)"'c = (I1+BfG) 'BfG
I-(I+B”G)"'BYG = (1+B”G)™"

)

we get that
- (BH RB(I + af))_1> = 1+B7G)".
Hence,
~ -1 ~ ~
(02(1 + aD)) (I ~BYRB(I+ aD)—l) ~R,
which eventually yields (77). This establishes the seconditton of (76). [ ]

We now establish that — 5 anda — (3 are bothO(3%) terms.
First expresga — ) = 1TrD(R — T) + ¢. Using (75) forM = D yields

1

(=) <1 - %Tr [DRB(I + /D) 'D(I + ﬁf))_lBHTD + (& —B) JZ%Tr(DRDT) =
(78)

Similarly, (& — ) = 1T [ﬁ(f{—'i‘)} + ¢ Expressing(R — T) as (R — T) =

R (T*l — R*l) T and replacingl'~! andR~! by their expressions, we obtain after straigh-

forward computations :

(a—B) JQ%Tr(f)RfDT) +(a—p) (1 - %Tr [f)RBH(I +3D)"'D(I + BD)—lDTD = ¢
(79)
Equations (78) and (79) can be interpreted as a linear systems(a — 3) and (& — /3). More

precisely, if we defindug, vg, g, 0g) by

up = 1-1Tr(DRB(I+3D)'D(I+ D)~ 'BHT)
3o = 1-—1Tr(DRB#(I+5D)"'D(I+ 3D)"'BT) (80)
vy = o*1Tr(DRDT)

iy = az%Tr(f)f{f)T)
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then, (78) and (79) can be written as

=@

uog Yo (0] €

- . (81)

€

uo 170 a—

@

If the determinantugty — ugvy Of the 2 x 2 matrix governing the system is nonzero 5 and
& — 3 are given by :

oz—,@ _ Vo€ — Vo€ d—B _ UQE — UQE ’ (82)

uolo — Uovo UoVo — UpUo
o, vy, do, Ty being uniformly bounded. As and é are O(%) terms, (o — 8) and (& — B)
will themselves beD () terms as long as the invergegdy — dov) ' of the determinant is

uniformly bounded. In order to state the correspondinglteste define(u,v,u,v) by

u = 1-1T(DTB(I+D)'D(I+ D)"'B#T)

o = 1-1T(DTBA(I+ /D) 'D(I+3D)'BT) (63)
v o= o*1Tr(DTDT)

u = 02%Tr(]~)'i‘]~)'i‘)

The expressions of(u,v,a,v) nearly coincide with the expressions of coefficients
(uo,vo, 4o, Ug), the only difference being that matric&s andR are replaced in the definition
of (u,v,u,v) by matricesT and T respectively. The following result, proved in subsection
lI-E, suggests that the study ob — av provides useful informations omyog — ugvo.

Lemma 3: (ug, vo, g, Up) can be written as

Uyg = U+ €y
Vg = U+ 6 (84)
Vg = V+e€
Uy = U+ €y

wheree,, €,, €,, €, converge to) whent — +oc.
The behaviour ofiv—aw is provided in the following Lemma, whose proof is given in settion
lI-E.

Lemma 4: Coefficients(u, v, @, v) satisfy :

- () u=m0,

— (i) 0 <u < 1andinf; u > 0,

— (iii) 0 < uv —uv < 1 andsup, ﬁ < +o0.
Lemmas 3 and 4 immediately imply that it exigtssuch that0 < uyvy — ugvg < 1 for each
t >ty and

1

sup ———— < 400 . (85)
t>t, UoVo — UOVo
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This eventually shows. — 3 and& — /3 are of the same order of magnitude thaandyé, i.e.
are O(+) terms which in turn establishes Proposition 8.

Eq. (28) eventually follows from the integral representat(@7)

T(0?) — J(0?) = /m Tr (B(S(w)) — T(w)) dw. (86)

2

as well as a dominated convergence argument that is omitted.

D. Details of the proof of Step 1

We provide the detailed proof of Proposition 7. We first statesaful Lemma.
Lemma 5:Let P, P; andP; be deterministia- x t, t x t, t x r matrices respectively, uniformly

bounded with respect to the spectral normtas oc. Consider the following functions oY'.

®(Y) = %Tr [sPxf] | (87)
T(Y) = %Tr [SE=P,=7P,] | (88)
T(Y) = %Tr [S=P, YP,] . (89)
Then, the following estimates hold true :
Var(®) = 0<tlz> : (90)
Var(¥) = 0<tlz> : (91)
Var(®') = 0(7;) . (92)

The proof, based on the Poincaré-Nash inequality (60), igtedi
We now complete proof of Step 1. We take Eq. (70) as a startingtpand writen as
n=E(n) + 1 = o+ 1. Therefore,
E [1(S&))p S0s) = O [(S€;), Sqs] + B [1(S€,)p T | -
Plugging this relation into (70), and solving w.i.[(S¢;), ¥, j] yields

— 1 dyd; 1 _
E[(S¢), >, .| = —-—LL _RE(S —E[(Sb;),]| B,
[( Eg)p qa} 1+ ad; (Spq) + 1+ ad, [(Sby)p] By
— 2K |S,,£Sb;| — —E SEN, X, .
tl—l—adj [ qug J] 1+ ad, {77( Eg)p q,J]

Writing §; = b;+y;, and summing ovej provides the following expression E‘[(SEZH)pq] :
1 - -
E[SDE),] = 47T [D(I + aD)_l} E(S,q)

+E [(SB(I + aﬁ)—lBH) ] —d,E [quiTr (SBf)(I + aﬁ)_lBH)]

rq

—d,E [SpqiTr (SBf)(I + aﬁ)_lYH>] ~E [?; (szf)(l + aﬁ)—le)M] . (93)
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The resolvent identity (68) thus implies that
2 dy - D)1
6(p—gq) = o”E(Sp)+ LTr |D(IL+aD) | E(S)
- 1 - -
E [(SB(I + aD)—lBH) ] —d,E [quﬁ (SBD(I + aD)_lBH)]
pq t
1 ~ ~ o - -
—d,E [Spthr (SBD(I n aD)_lYH>] “E [n (SED(I + aD)_12H) ] . (94)
p.q
In order to simplify the notations, we defing and p, by
1 M N\ — 1l H 1 B N\ —1~vH
pr = ST (SBD(I +aoD)'B ) and py = STr <SBD(I +aD)lY ) .
Fori = 1,2, we write E(S,,p;) as
E(Spgpi) = E(Spq) E(pi) + E <Spq 5z> .
Thus, (94) can thus be written as
1 ~ =
S(p—q) = o”E(Sp)+dy;Tr [D(IL+aD)™| E(S,)

+ (E(S)B(I + aﬁ)—lBH) —d, E(qu)lTr (E(S)BD(I + af))—lBH)

— dyE(Syq)E [1Tr (SBf)(I +pqaf))—1YH)] —d,E (qu ,01) d,E <Spq ,02>
_E [5’7 (SEf)(I + aﬁ)—le)M] . (95)

We now establish the following lemma.

Lemma 6:
E —IE}T(SBf) D)Ly H
P2 = ;T (I+aD)'Y
= —a%Tr (E(S)BD2(1+aD)‘2BH> —E(n P3> ; (96)

where p3 is defined by
- %Tr (SBﬁ2(I + aﬁ)—22H) :
Proof: We expressE(py) as
E(p2) = 301 E(Sh)
% E;:l 1+d;gj ZLl E ((SbJ)zYTJ)
and evaluatéE ((Sb;);Y;;) using formula (63) for®(Y) = (Sb;);. This gives

aSzk
E ((Sb;);Y;) = dd ZE(WU)B,W».

(97)

By (64),

E (gi:j) = -k (Sm(be)k) —_FE (Szz(ny)k) _
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Therefore,

E (y}'Sb;) = —d;E (n b/'Sb;) — d;E (n y}'Sb;) .

Writing againn = E(n) + 1 = a + 1, we get that

E(y¥Sb;) = —ad;E(b¥Sb;) - adE (ySb;) 8)
~d,;E (71b2Sb; ) — d,;E (7} y!'Sb;)
Solving this equation w.r.fE (nybj) yields
d; d; ° d; 0
E(yHSb;) = —— % _E (bHsb,) - — % _E(7blsb,) - —“ _E(7yHSb,) (99
(y] J) 1+O£d] ( 7 J) 1+Oédj (77 7 ]) 1+Oédj (77YJ ]) ( )
or equivalently
d; ; °

E(yiSb;) = —— 2% g (blsb,) - — % _E(nelsb;) . 100
(YJ ]) 1+C¥dj ( 7 .7) 1+Oéd] (7753 J) ( )
Eq. (96) immediately follows from (97), (100), and the redatif (1) p3) = E(7) p3). m

Plugging (96) into (95) yields

6(p—q) + Apg
2 1 ~ ~ 1 1 N2 N —2pH
=E(S)y) [U +d, (tTrD(I +aD)" —E(p1) + OzETr]E(S)BD (I+aD)™"B ﬂ
+ [E(S)BI+aD) "B (101)

Pq
where A is ther x r matrix defined by

Dy = i (SED-+aD) ) | +4,5 (S5 + 7)) - dB (S B ()

for eachp, ¢ or equivalently by
A=E [7‘} (5213(1 + af))_leﬂ +E ((pol + p2) S) D-E (%p"g) E(S)D .
Using the relation

aD(I+aD) '=1-(I+aD) !,

we obtain that

1 - -
= E(p1)— ;Tr (E(S)BD(I+aD)_2BH) . (102)
Therefore, the term

J— ~ 1 - _
STD(L+aD) ™! —E(p1) + a7 Tr (E(S)BDQ(I + aD)’QBH>
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is equal to
%Trf)(I +aD)! - %T& (E(S)BD(1 + aD)~2B")
_ %Tr [D(I+0D)"! (T- BYES)B(I + aD) )]

which, in turn, coincides witr? & (see Eqg. (65)). Eq. (101) is thus equivalent to

(IE(S) [02(1 +aD) +B(I+ af))*lBHD = 3(p—q) + Dpg (103)
pq
or, in matrix form,
ES)R'=1+A (104)
i.e.
ES)=R+AR. (105)

In order to complete the proof of Proposition 7, it remaingheck that ifM is a deterministic,
uniformly bounded matrix for the spectral norm as— oo, then
%’I‘rARM =0 <t12> .
For this, we write TTARM as 1 TrARM = T} + 15 — T3 where
T, = E [% Iy (szﬁ(l + aﬁ)-leRM)] ,
T = E <(p°1 + /%) %Tr(éDRM)) ,
Ty = E (7"7 ;3’3) LTy (E(S)DRM) .
We denote by, the term
p1 = %Tr (8213(1 + af))’leRM>

2
[¢] [¢] . . 02 o
and remark thatl} = E(n p4). EQ. (26) implies thafE(n ) and E [% Tr (SDRM)) are

O(%) terms. Moreover, Lemma 5 immediately shows that for each 1,2,3, E(p; ) is a
O(%) term. The Cauchy-Schwarz inequality eventually proviggs ARM = O(:), which

completes the proof of Proposition 7.

E. Details of the proof of Step 2

1) Proof of Lemma 3:n order to establish Lemma 3, we first prove that :
Lemma 7:
a—fF = o(1) and a—f = o(1) . (106)
Proof: We first prove that ifo? is large enough, then (106) holds. For this, we take (82)

as a starting point, and study the behaviour of coefficiepisio, vo, 09 for large enough values
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of o2. As matricesR andT are less thar%Ir and matriceR and T are less thar%lt, it is

clear that :
wg > 1= L4 [DBI+ D) DA+ D) B > 1 L diadmonbia
i > 1-L1Tr [DBH(I + D) 'D(I + BD)*lB} > 1— L dpaxdimaxb?a
uy < j%sx )
vy < 7 df‘;‘é‘x

(107)
As § — ¢, it is clear that there exisﬁsg and an integet, for which ug > 1/2,099 > 1/2, 19 <
1/4,v9 < 1/4 for t > to ando? > o3. Therefore,uody — Ggvg > 15 for t >ty ando? > of.

Eq. (82) thus implies that i5* > 03, thena — 3 anda — (3 are of the same order of magnitude

1
2

ase = O(), and therefore converge to 0 wheén— +oo. It remains to prove that this
convergence still holds fob < o2 < o3. For this, we shall rely on Montel's theorem (see
e.g. [5]), a tool frequently used in the context of large m@mdmatrices. It is based on the
observation that, considered as functions of parameter(s?) — 5(c?) and a(o?) — 3(c?)
can be extended to holomorphic functions ©n- R~ by replacings? by a complex number
z. Moreover, it can be shown that these holomorphic functiares uniformly bounded on
each compact subsét’ of C — R, in the sense thatup,sup,cx |a(z) — 6(2)] < +oo
and sup, sup,cc |@(z) — B(z)] < +oo. Using Montel's theorem, it can thus be shown that
if a(o?) — B(o?) anda(o?) — G(o?) converge toward zero for eaat? > o3, then for each
ze C—R~, a(z)—B(z) anda(z) — 3(z) converge as well towards 0. This in particular implies
thato(o?) — B(0?) anda(o?) — 3(02) converge towards O for eaet? > 0. This proves Lemma
7. For more details, the reader may e.g. refer to [17]. [ ]

We note that Montel's theorem does not guaranteedhafs anda — 3 are still O(t%) terms
for o < of. It is therefore necessary to prove Lemmas 3 and 4 to obtasnréisult from Eq.
(82).

In order to complete the proof of Lemma 3, we observe that, by) (@nd (106),
1Tr[M(R — T)] converges towards O for each uniformly bounded maliix It can be shown
similarly that + Tr [1\7[(13{ — ’i‘)] converges towards O for each uniformly bounded maix
Using these properties for relevant matridgsand M immediately yields Lemma 3.

2) Proof of Lemma 4.:In order to establish item (i), we remark that a direct aglmn of

the matrix inversion Lemma vyields :
TBA(1+3D)"! = (1+ D) 'BAT . (108)

The equalityu = © immediately follows from (108).
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The proofs of (ii) and (iii) are based on the observation thatcfion o> — o23(0?) is
increasing while functionr? — 3(02) is decreasing. This claim is a consequence of Eq. (16)

that we recall below :

52 — dpy(N) 3(02) — djfiy(N)
B >‘.4 B(o?) A

+ A+ o2’ + AFo2’
wheredy,(\) = 1 Tr(Ddp()\)) anddjiy(\) = 1Tr(Dd())). Remark thayy,(RT) = 1Tr(D)

and thatji,(R*) = %Tr(f)). Note thatB is decreasing becaus€ is decreasing and

1
Xto?

o?B(c?) is increasing because’ is increasing. Denote bythe differentiation operator

w
w.rt. o2, Then,(¢23)" > 0 and §* < 0 for eacha?. We now differentiate relations (15) w.r..

o?. After some algebra, we obtain :

w(028) +o020 3 = LTx(DTB(I+ D) I+ 8D)"'BAT)

_ o (109)
% (0%0) +08 = —¢1IDT

As (' < 0, the first equation of (109) implies that (¢23)" > 0. As (623)" > 0, this yields
u > 0. Asu < 1 clearly holds, the first part of (ii) is proved.

We now prove thainf; » > 0. The first equation of (109) yields :

1
(0?8)

—= >0, 1nft|ﬁ | > 0 and thatinf, v > 0.

u>—ovf (110)

In the following, we show thainf, @ ZB)

By representation (16),

5 dip(N) r_ Adpp(N)
-0 = /R Otz and (*Bo%) = /R O+ 02)?

As < L for A >0, (6?3) < Lu(RT) = 1TrD. Therefore, the term—L - is

(/\+ DR (0>8)'

lowerbounded by?(:TrD) 1. As 1 TrD < “dpax, We haveinf, w7 > 0

)
We now establish thainf; || > 0. We first use Jensen’s inequality : As measure

(%Trf))_l dfip(N) is a probability distribution :

e (b0) o] < [ (b) i

In other words|5'| = |, ey diin()) satisfies

R+ ()\+0.22
. 1 1 2

> _ —du(\)| = _3?
wr_iﬁD[/ i) 5

As mentioned above(%TrD)—1 is lower-bounded by(d..)~!. Therefore, it remains to

establish thainf, 52 > 0, or equivalently thainf, 5 > 0. For this, we assume thatf; (;(c2) =
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0 (we indicate tha3 depends both os? andt). Therefore, there exists an increasing sequence
of integers(ty)r>o for which
lim G, (0%) =
k—1>r—il-1c>o ﬂtk (U ) 0

: 1 _(tr)
1 —Fd A)=0
kiIfw R+ )\+0'2 o ( ) ’

Whereﬁl(f"‘) is the positive measure associated with(c2). As D is uniformly bounded, the
sequenceéﬂffk))kzo is tight. One can therefore extract fro@ﬁl(f"))kzo a subsequeno@l(fl))lzo

that converges weakly to a certain measgfewhich of course satisfies

I
/R+)\_|_02dﬂb()\)—0-
This implies thati; = 0, and thusi;(R*) = 0, while the convergence c(fa,(f;))lzo gives

’ 1 -
lim A"(RY) = lim ~TrDy >0

~ % R+ _
Mb( ) l—~+o00 l—+o00 l
by assumption (3). Therefore, the assumptiofy Bt(o—Q) = 0 leads to a contradiction. Thus,
inf; B;(c2) > 0 andinf, |3'| > 0 is proved.
We finally establish that is lower-bounded, i.e. thahf, %TrDTDT > 0. For any Hermitian

positive matrixM,

1 1 2

ZTr(MQ) > [tTr(M)] .
We use this inequality foM = T'/2DT/2. This leads to

1 1 1 2 2
-T'DTDT = ;TrMZ > LTr(M)} = [tTr(DT)} =3

Therefore,inf; %TrDTDT > inf, 3. Using the same approach as above, we can prove that

inf; 42 > 0. Proof of (i) is completed.

In order to establish (iii), we use the first equation of (109kpresgc?3) in terms of 3,

and plug this relation into the second equation of (109). Ties :

1 ~ 1~~~ u 1 - -
<@ — ufw) g =—DTDT - %ETr(DTB(I + /D) Y1+ D) 'BYT) . (111)

The righthand side of (111) is negative as well@sTherefore i — %ﬂv > 0. As u is positive,
u® — ww is also positive. Moreovery et ¢ are strictly less than 1. A§ andv are both strictly

positive,uv — @ is strictly less than 1. To complete the proof of (iii), we raik that by (111),
1 7]

< — ~=—.
uwb — v~ ulTYTDT
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13| clearly satisfies|#| < L 1TyD and is thus upper bounded =, (ii) implies that

ot t

sup; L < 4oc. It remains to verify thainf, :T*TDT > 0. Denote byz = :TrTDT.

~

t

T = %ZCL’Z@HQ :
=1 j=1

. . . J’i t -~
In order to use Jensen’s inequality, we considge Ty and remark tha% Y ki=1lw
t

can be written as )

t t
ol ~ 7o2y1/2
l’thrthlfﬂ (Z}ITm!)/
1= 1=

By Jensen’s inequality

2 2
t t

t t
%ZQ(ZHmW”;z%Z@Q]mﬁW
j=1 j=1

i=1 =1

Moreover,

Finally,

-1
. %Tr’i‘f)'i‘ > <1Tr]~3> 3

Sinceinf; 3* > 0, we haveinf, JT'TDT > 0 and the proof of (jii) is completed.

APPENDIX I

STRICT CONCAVITY OF I(Q) : REMAINING PROOFS
A. Proof of Lemma 1

Remark thatp,, is strictly concave due to (45). Remark also théds concave as a pointwise
limit of the ¢,,’s. Now in order to prove the strict concavity gf, assume that there exists a

subinterval, saya,b) C [0,1] with a < b where ¢ fails to be strictly concave :

VA€ [0,1], d(Aa+ (1—N\b) = Ad(a)+ (1 — N)a(b) .

Otherwise stated,

o(b) — ¢(a)

Vr € (a,b), ¢(z)= —

(z —a) + ¢(a).

Let z € (a,b) andh > 0 be small enough so that— 4 andx + h belong to(a,b) ; recall the

following inequality, valid for differentiable concaveriations :

Om(x) — zm(m_h) > gb;n(x) > ¢m(x+h;_¢m(x) .
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Letting m — oo, we obtain :

() - Z(x ) > limsup ¢, (z) > linlinf o (x) > oz + h})L SRAC) .

In particular, for allz € (a,b), lim, 00 @}, (x) = w . Now let [z, z+h] € (a,b). Fatou’s

lemma together with (45) yield :

m—00

z+h
0 < kh < / liminf ¢! (u) du

m—00 m—00

z+h
< liminf/ o (u)du = lim (¢),(z+h) —¢},(z)) = 0.

This yields a contradiction, therefore must be strictly convex off), 1].

B. Proof of (46).

We defineM as thetm x tm matrix given by
HQHH> :

o2 o2’

s (I+
We have :

P (N) = —iETT (M(Q1 — Q2)M(Q1 — Q2)]

m

or equivalently

1
/(\)=——ET
() m :

m

o —1
(1+ 595) D@ aoma - Q2>HH]

Recall thatTr(AB) > AnLin(A)Tr(B) for A, B Hermitian and nonnegative matrices. In

particular :
| (129 R i - qui|
2 e (11U T (B, quna, - @i
Similarly, we obtain that
Tr [E(Ql — Q2)M(Q1 — Q2)H"
e (1 1) T [ Mg, @1 g, - g
This eventually implies that
w (1 B T g g - aunt -
2 (0 H9) T [T, g, M g, qu



45

As

HQH"\ ' 1 1
)‘12nin<1+ Q2 ) = HQHH = = e 2
i N (T4 BH) 7 (1072 Q) [FHH])
we have :
1 1 HIH . . HI'H . .
(N < ——E ( PTEST— 2) ><Tr< 5 (Q1 — Q2)— (Ql_Q2)>] :
m |\ (1+ 02| Q|| [F ) o o
Let us introduce the following notations :
1 1 [HfE,. . HIE, .
e = L ﬂm:Tr[ Hoa —an™, (Q1—Qz)}
(1+o072]Ql [HHH]) m 7 7

The following properties whose proofs are postponed to Adpehl-C hold true :
Proposition 9: (i) lim,,— var(fy,) =0,

(i) For all m > 1, E(8n) = E(%1) = ETr | FH(Q: - Qo) (Q1 - Q2)] > 0.,

(iii) There existsd > 0 such that for all\ € [0,1], liminf,, oo E(ap) >0 >0 .

We are now in position to establish (46). By Proposition)9ifie have

[E(amBm) — E(am)E(Bm)| < \/V&r(ﬁm)\/E(a?n) < \/V&r(ﬁm) —0.

m—0o0

By Proposition 9-(ii),(iii), we have :

lim inf E(c, Gy,) = lim inf E(a,, ) E(Gy,) = E(5) liHLianE(am) > 0E(p1) >0 .

The bound (46) is now established for= —dE(3;). Applying Lemma 1 tap,,, (), we conclude
that A — ¢(\) is strictly concave for everf);, Qs in C; (Q1 # Qs), and so isQ — I(Q) by

Proposition 2.

C. Proof of Proposition 9

Proof: [Proof of (i)] In order to prove thatim,, var(3,,) = 0, we shall rely on Poincaré-

Nash inequality. We shall use the following decomposttion

C% 1 ~ 1 ~ ~ 1 _~
— UD:UY,; C: = UD:=U#
vVK+1
In particular,H writes

~ ~ 1 H [ ~ 1
U'HU = K UHAU+DEMDE

K+1 Vi

A 1 X ~1 A
= B+D:—D: = B+Y
Vi

1>

3Note that the notations introduced hereafter slightly differ from those intred in Section I11-B but this should

not disturb the reader.
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whereX is ar x t matrix with i.i.d. €N (0, 1) entries. Consider now the following matrices :

B=1,%B, I'=1,®D, I'=1I,9D, v=1,9U, V=I,%U.

Similarly, H writes :

X
Vmt
where X is a mr x mt matrix with i.i.d. GN(0,1) entries. Denote by® = U7 (Q; —
Q2)U and by ® = V#(Q; — Qy)V(= I, ® ©). The quantity(,, writes then :,, =

B+Y

%,

1>
1>

VIHV =B +T': T

-Trex#¥exs. Considerings,, as a function of the entries oK = (X;;), i.e.
Bm = ¢(X), standard computations yield

00X) _ 2 onnnesnt). .

8XU m J

Poincaré-Nash inequality yields then

var (Bm) < 12&%'%(})

< Amothas gy @ $H5ERIROMSIEOM)
m3t3
4dmaxdmax ~ ~ 1 & G ) S S - -
< R ofo|E ( —Trxfrexizelsliy) |
m2t2 mt
Moreover, Schwarz inequality yields
1 . s . . . 1 . . 1/2 1 . . . o . . . 1/2
— Tzl (ni)?e < [Tr(EHE)Q] [Tr (eH(szﬁeeH(sz)?e)]
mt mt mt
so that
1 . o . . . . 1 . . 1/2 1 . . 1/2
—Treiselisise < |efo| [Tr(ZHE)Q] [Tr(ZHE)4] .
mt mt mt

Schwarz inequality yields then

1 L7 s P71 e S 1 _ 1/2 1 o 1/2
E <tTrEHE®HEH2®> < ||ef@| [IE (tTr(EHE)z)] [IE <Tr(EHE)4>} .
m m

It is tedious, but straightforward, to check that

1 S
supE <Tr(EHE)2> < 400
m mt

and
1 L e
supE <Tr(2HE)4> < 400
m mt
which, in turn, imply thatvar(8,,) = O(:%). |
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Proof: [Proof of (ii)] Write E 3,,, as

Efn = ——ETr¥fnex’se
g m
= LETr B"B+B"Y+Y"'B+Y"Y)0 (B"B+B’Y+Y"B+Y"Y)0O
im
@ %TrBHB@)BHB(l) + ——ETrB"BOY YO
g m aim
1 e e e
+——ETrB'YOY"BO + —ETrYHBeBHY@
g m 0' m
1 ST
+——ETrY?'YeB"BO + TETrYHYG)YHYG)
g m g m

where (a) follows from the fact that the terms whelé appears one or three times are readily
zero, and so are the terms li@TrBYY®B”Y®. Therefore, it remains to compute the
following four terms :

1 e v v ore
—TrB"BOB"BO ,

m

T

1>

1 e v ..
Ty —ETrB"BOY"YO ,
m

(1>

1 . S ..
Ty —ETrBfYOY BO ,
m

(1>

1 e e
Ty “ETrY?YOYH YO .

m

Due to the block nature of the matrices involvéd, = Tr BFBOBYB® ; in particular, T}
does not depend om. Let us now computds. We havel, = m Tt BIBOE (YY) ©

andE (YY) = (mt)"'T2E (XTX) 'z = (mt)~'Tr(T")T. Therefore, T, writes :
_ 1 1 DPHDRATES ) — } H B
o= T (T) —Tr (B Ber@) = Tr (D) ;Tr (B B@D@) ,
and this quantity does not depend on. We now turn to the term73. We have

T3 = m~'Tr BYE (YOYH)BO. The same computations as before yi#@ld YOYH) =

1

(mt)~! ( r:0 §> I'. ThereforeTs writes :
A | S H 1t & ~ 11
Ty= LT (F:er?) —Tr (BTB6) = Tr (DieD:
m mit
E(YAYOY"Y) = - TiE(XTX[:OL:XIX)D:.
Computing the individual terms of matrik <XI‘Xf‘%G)f‘% ) yields (denote byG =
I':OTI: for the sake of simplicity) :

[E(XTXGXTX)], = Y. E(X“ kxjxjx)rc.”r
11,J1,J2,02

= (TrT)> Gy + Tr (T?) Tr G G
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whered, stands for the Kronecker symbol (i@, = 1 if £k = ¢, and 0 otherwise). This yields

B(YIYOY'Y) = o (BT)TOF + (%) T (OF)
and

_ (TrD (D@D@) + 5 Tr (D) <Tr@f)>2 ,

which does not depend on. This shows thakEj3,, does not depend om, and thus coincides
with E;. In order to complete the proof of (ii), it remains to verifyat £S5, > 0, or equivalenlty
thatE; is not equal to 0. IfEG; was indeed equal to 0, then, matrix

1/2 1/2

(H"H) " (Q: — Q2) (H'H)

or equivalently matrix

H"H(Q: — Q)
would be equal to zero almost everywhere. @s # Qo, it would exist a deterministic non
zero vectorx such thatx H# Hx = 0 almost everywhere, i.d1x = 0, or equivalently

WC!2x = —VKtC™'/?Ax . (112)

As matrix C'/2 is positive definite, vectoiC'/2x is non zero. Relation (112) leads to a
contradiction because the joint distribution of the emtrid W is absolutely continuous. This

shows thaf£3; > 0. The proof of (ii) is complete. [ ]

Proof: [Proof of (iii))] In order to controlx,,, = L first notice that|Q|| =
[Proof of (i} “m = (o2 QI A ) il
1Qll. Now [[HH|| = |[H|* and

- K . 1 1 ~ 1 VV
H| </ ——||A]| + A A || ——]| .
[H| < K+1H | m” | lAz]] HWH
Now |[A|| = | :|| = ||Cz|| and||Az|| = ||C:||. The behaviour of the spectral norm of

(mt)~z W is well-known (see for instance [36], [1])H:(mt)*$WH — oo 14 1/1/c almost
surely. Therefore, Fatou’s lemma yields the desired redith inf,, Ec,,, > 6 > 0, and (iii) is

proved. [ ]

APPENDIX IV
PROOF OFPROPOSITIONS, ITEM (1).
By (50) and (51),(x, &, Q) — V(k,#, Q) is differentiable fromR*™ x R* x €; to R. In
order to prove thatl (Q) = V(6(Q),0(Q), Q) is differentiable, it is sufficient to prove the
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differentiability of 4,4 : €, — R. Recall thats and é are solution of system (33) associated
with matrix Q. In order to apply the implicit function theorem, which withmediatly yield

the differentiablity ofs andé with respect toQ, we must check that :

1) The function
N ~ §— f(4,9,
6o -Tedq=| Y
6—f(6,0,Q)

is differentiable.

2) The partial jacobian
} 1—2L(6,9, — 95,6,
Ds57(0,0,Q) = 8?6( ~ Q 62; ~Q)
_%(67(5;(2) 1_5(6757Q)

is invertible for everyQ € ;.

In order to check the differentiability of’, recall the following matrix equality
I+UV)'uU=Uu@a+vu)! (113)

which follows from elementary matrix manipulations (cf.0[2Section 0.7.4]). Applying this
equality toU = Qi andV = 5(~JQ%, we obtain :
1 1~ 1\ 1 1 ~ —1
AQ? (I n (5QECQE) QA" — AQ (I n 5CQ) AT
which yields
< 1 5 K 5 =\ -1
=_T 2L+ —— —AQ(I; + —— AH .
100,0.Q) =5 Y{C[U( TS R Q<t+K+1CQ) ] }
Clearly, f is differentiable with respect to the three variablies and Q. Similar computations
yield

~ —1
- . 1 ~ d = K 1) -1
f(é’é’Q):tTr{QC[UZ(ItJFKHCQ)JrKHAH(ITJFI(HC) AQ| }

and the same conclusion holds fbr Therefore, (8,0, Q) — Y (4,4, Q) is differentiable and 1)
is proved.

In order to study the jacobiaﬁ)(&g)“f, let us compute firs%.

of - ! § -~ \!'cCq & ~\N' g K
250 Q) = tTrCTKAQ<I+K+10Q> K+1<I+K+10Q> AT
1 1 (S 1~ 1 71Q%CQ%
= [ Tr CTxAQ: <I—|—K+1Q20Qz> ——

K
K+1’

Q:CQ: § s\t oy
A i | — (- 2 2 AYT
K11 <+K+1Q cQ ) Q K

@ %Tr (DTB(I+ D) ~'D(I + AD)~'BT)
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where(a) follows from the virtual channel equivalences (31), (3dther with (39) and (41).
Finally, we end up with the following :

of
96

Similar computations yield

1— gg(a 5,Q) = 1-— %Tr(f)’i‘BH(I +6D)"'D(I+ D) 'BT) ,

8f B o?
G 5,Q) = °-Tr (DTDT)

of ot
~55(6.0.Q) = —Tr (DIDT) .

The invertibility of the jacobiaer S)T follows then from Lemma 4 in Appendix II-C and 2) is

1—25(6,0,Q) =1— 1Tr(DTB(I + D)~ 'D(I+ D) 'BIT) .

proved. In particular, we can assert tiats Q — §(Q) andC; > Q — (Q) are differentiable

due to the Implicit function theorem. Item (i) is proved.

APPENDIXV

PROOF OFPROPOSITIONG

First note that the sequend®);) belongs to the compact s€;. Therefore, in order to
show that the sequence converges, it is sufficient to edtathiet the limits of all convergent
subsequences coincide. We thus consider a convergentgaigmsee extracted fromiQy)x>o0.
say (Qy k) )k>0, Where for eachk, ¢ (k) is an integer, and denote @1{’ its limit. If we prove
that

<VI(QY),Q-QY><0 (114)

for eachQ € €y, Proposition 5-(ii) will imply thatQ? coincides with the argmaQ, of I
over C;. This will prove that the limit of every convergent subsemqeconverges towardg,,
which in turn will show that the whole sequent@y);>o converges taQ,.

In order to prove (114), consider the iteratiar(k) of the algorithm. The matrixQ,, )
maximizes the functiorQ — V(dy ), 5¢, ), Q). As this function is strictly concave andd

differentiable, Proposition 4 implies that

< VQV (6yk)s Opk)s Qur))s Q — Quey > < 0 (115)

for every Q € C; (recall thatVq represents the derivative 6f(x, &, Q) with respect toV’s
third component). We now consider the pair of solutic@ﬁg(k)ﬂ,@(k)ﬂ) of the system (33)
associated with matrix, ).

Due to the continuity ob(Q) andS(Q), the convergence of the subsequefirg,,) implies

the convergence of the subsequen¢ds) i, dy 1) towards a limit(6Y,5¢). The pair
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(6%,5?) is the solution of system (33) associated W@}y i.e. §¥ = 5(Q¥) ands? = 5(Q¥);

in particular :
ov ov
Ok Ok

(see for instance (56)). Using the same computation as iprib@&f of Proposition 5, we obtain

(VI(QY),Q-QY) = (VV (3.0/.QF) .Q - QY) (116)

for everyQ € €;. Now condition (57) implies that the subseque(&gy,), Sw(k)) also converges

toward (6¢,5%). As a consequence,

kgrwaV(éw(k), Ok Quin): Q = Qury) = (VV (67,0, QY),Q — QY) .

Inequality (115) thus implies thdtVV((SfZ’, 5Y, fo), Q- fo> < 0 and relation (116) allows us

to conclude the proof.

APPENDIX VI

END OF PROOF OFPROPOSITION3
Proof of Proposition 3 relies on properties @, established in Proposition 5—(iii). Denote
by

A = max <sup |A]|,sup ||C||, sup ||CH> <oo and a = min (irtlf Amin(C), irgf )\min(C)) >0.
t t t

Proof of (i): Recall that by Proposition 5—(iii)}Q, maximizeslog det(I + QG (4., d.)).
This implies that the eigenvalugs;(Q,)) are the solutions of the waterfilling equation

1

Vi=1,....1 Aj(Q*>:maX(7_x((:‘r)’O>
J

wherey is tuned in such a way thaf; \;(Q,) = t. Itis clear from this equation thdQ, || < ~.
If v < Amin(G) 7! then [|Q, || < Amin(G) 7L If ¥ > Apin(G) ™! theny > X;(G)~! and we

have :

hence
1 1 1
=1+-y — <1+
7 +t§j:)\j(G) ()

In both cases, we have
1

Q.| <1 .

(117)

It remains to prove
vQee, infAum (GO(Q).5Q) >0 (118)
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and we are done. To this end, we first show thdit 5(Q) > 0 for all Q € €;. From Equations

(40) and (42), we have :

1
Q) = ZtTCTK(Uz)
> )\min(C)%trTK(UZ)
(a) 1 9 o -
> . -
2 Amn(C) [ttr <0 L+ 6C

—1
K ) - -1
AOY2 (1 1/2 1/2 1/2AH
TR Q <t+K+1Q cQ Q

(b) 1 9 0.2 _ K " —1
> ; — -
= )\mm(C) <ttr <U I + K+ 150 + K+ 1AQA )) (119)

where (a) follows from Jensen’s Inequality an@) is due to the facts that(I; + Y) 7! < 1

andtr(XY) < || X]|tr(Y) whenY is a nonnegative matrix. We now find an upper bound for

6. From (41) and (13), we hawT i (02)|| < 1/02. Using (42) we then have
- -1 - - ~ 1 A
0 < ITx[l5trCQ < [Tk |[ICI;0Q < —

(recall that%trQ = 1). Getting back to (119), we easily obtain

K+1 K+1 K+1) K+1
where( is a certain constant term. Hence we hay@) > aco—l. By inspecting the expression
(50) of G(4,4), we then obtain

1 2 K A A2K t
Ztr <021,. +-2 _5c+ AQAH> < g <02 + >+ <Cp V(t,r), i

aC! ~ a20 !
. > 0 . > 0
Amin(G) = K+ 1Amm(c) -~ K+1

and (118) is proven. It remains to plug this estimate into/§ldnd (i) is proved.

:Cl>0

Proof of (ii): We begin by restricting the maximization d{Q) to the setC{ = {Q
Q = diag(qi,...,q) > 0,tr(Q) = t} of the diagonal matrices withif;, and show thaQ? =
argmaxqees 1(Q) satisfiessup, 1QY|| < co where the bound is a function @f, A, o2, ¢, K)
only. The sete{ is clearly convex and the solutioR¢ is given by the Lagrange Karush-Kuhn-

Tucker (KKT) conditions
oI(Q) 0

b = 9, EOQI =05, (120)

where J(Q) = logdet (I, + ZHQH") and the Lagrange multiplier and the 3; are

associated with the power constraint and with the pogytigbnstraints respectively. More
specifically,n is the unique real positive number for Whi(ﬁz.:1 g; = t, and theg; satisfy
Bj=0if ¢g; >0andg; > 0if ¢; = 0. We have

01(Q) 1. n 1 H !
=—h’' (I, + =HQH h;
dq; o27J + o2 Q J
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whereh; the j*" column of H. By consequenceR [03(Q)/dq;] < LE [||h;|*]. Ash; is a
Gaussian vector, the righthand side of this inequality finée and therefore, by the Dominated
Convergence Theorem, we can exchafigéq; with E in Equation (120) and write

o1(Q) _ 1
8%‘ T o2

1 —1
E |hY <IT+UQHQHH> hj] (121)

Let us denote byH; ther x (¢t — 1) matrix that remains after extractirig; from H. Similarly,
we denote byQ; the (¢ — 1) x (¢ — 1) diagonal matrix that remains after deleting row and
columnj from Q. Writing R, = (IT + %HijHf)fl, we have by the Matrix Inversion
Lemma ([20, §0.7.4])

1 -1 Qi
I, + —HQH =R, — J R h,h'R,; .

By plugging this expression into the righthand side of Equat{121), the Lagrange-KKT

conditions become

X,
E|l—2 | =p-2; 122
[02 +qa‘Xj] "= (122)

whereX; = hHR-h» A consequence of this last equation is that 1/77 for everyj. Indeed,

assume thag; > 1/n for somej. Theno? + ¢; X; > X;/n henceE [ } < n, therefore

O'2+q X;
Bj > 0 (122), which implies that; = 0, a contradiction. As a result, in order to prove that
sup; |Q¢|| < oo, it will be enough to prove thatup, 1/n < co. To this end, we shall prove

that there exists a constagt > 0 such that

max P(X; <C)——0. (123)

J=1,...,t t—00

Indeed, let us admit (123) temporarily. We have

el % __c el X __C X
a2+quj 0'2—|-q]'C N J2+quj X;>0 2+q]C 02+qu] X;sC
C C
—=P(X; >C) — 54—
0% +¢;C (%X ) 0%+ ¢;C
wheree; = Th e C]P’(X < (), and the inequality is due to the fact that the functjgn) =

2+q — is increasing. As

C
max |EJ|<— max P(X; <C) ——0

7=1,.. o2 J=1,...,t t—o00
by (123), we have
X,
liminfmin(E[ 3 J ]— 20 >20.
t j o+ qj X o4+ q;C
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Getting back to the Lagrange KKT condition (122) we therefuaee fort large enoughy—3; >
c/2

THa,C3 for everyj = 1,...,t. By consequence,

L1 20 N

- < i

nTan=p ¢ Y
for larget. Summing overj and taking into account the power constrairjg q; = t, we obtain
t 202t 202
5 <G ttie ; <EF+1and

202
sup[|QS] < <& +1 (124)

which is the desired result. To prove (123), we make use of MMStmation theory. Recall

that H = A+ L C/?WC'/2. Denoting bya; andz; the jt" columns of the

\/7 Vi
matricesA and WC'/2 respectively, we have

K+1

K 1 1 K 1 1
X — _ aH Hol/2 | R. Ccl/24. | .
J (K_i_lajJr\/i\[J J +1J \/7\[ Zj
We decomposez; as z; = u; + ujL where u; is the conditional expectatiom; =
E(z||z1,...,2j-1,2j4+1,...,2, in other words,u; is the MMSE estimate of; drawn from

the other columns oW C1/2, Put

1 1 LH 1/2 K 1 1 12
Sj:2<\/7\[]C/RJ'< +1J \/7\[ /uj

1 1H ~1/2 1/2. 1
——u; C/“R,C o 125
+L‘(K—|—1) ¥l J u] ( )
Then
K 1 1 K 1
X = S H —ulc/?2 | R, Cl/2y,
j ]+< K19 P URTIviY I\VEF1Y T ﬁ\f v
> 8. (126)

Let us study the asymptotic behaviour &f;. First, we note that due to the fact that

the joint distribution of the elements oW C'/2 is the Gaussian distributionujL and

vj = lz{,...,2]_,2],,...,2;|" are independent. By consequena:r;& and (Rj,u;) are
independent. Let us derive the expression of the covariana@ixnR, = E[uj-uj-H].

From the well known formulas for MMSE estimation ([35]), we baR, = E[zjz]H] -
Elz;v}] (E[vjvf])_lE[vj z!']. To obtain Ry, We note that the covariance matrix of the
vectorz = [z],...,z7 |7 is E[zz"] = CT ® I, (just check thaff [[WCW] [WCL2),| =
5(i—k)[C];;). Let us denote by;, ¢; andC; the scalag; = [C];;, thej** vector column ofC
without element;, and the(t — 1) x (¢t —1) matrix that remains after extracting row and column
j from C respectively. With these notations we haRg = (éj — 6?(3;16]-) I.. Recalling that
ujL and(R;, u;) are independent, one may see that the first term of the rigtitigie of (125)
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~ ~H~—1x
le—Cj Cj Cj

is negligible while the second is close o = ; ~—/—

tr(R;C). More rigorously, using
this independence in addition t = max(||A ||, ||C|, |C||) < co and||R;|| < 1, we can prove
with the help of [1, Lemma 2.7] or by direct calculation thaer exists a constardf; such
that

(&}
T

E [(Sj - pj)ﬂ < (127)

In order to prove (123), we will prove that thg are bounded away from zero in some sense.

First, we have

- a) T ~ —1(b) . -
& —ellCle; Y [C—le > 1Y = Auin(©) > a

(for (a) see [20, 8§0.7.3] and fofb), use the fact thal{X];;| < || X|| for any elementk,!) of
a matrix X). By consequence,

aAmin(C) 1 1 7\
iz Trr g\t e,

aAmin(C) (1 1 2\ 7!
e (t“ <1, T i QH; ))

,\
Ve

2

(b) 1 1 2 1 -1
a r B
= —+— (A L/2) &2 1
- K+1 (t + o2 <‘ |+l =[cl \\ﬁVV I ttr(Q)

where(a) is Jensen Inequality an@) is due totr(XY) < || X]|tr(Y) whenY is a nonnegative
matrix. As lim; ||%WH = 1+ /1/c with probability one ([1]), and furthermorer(Q) = t,

we have with probability one

a? 1 A ~1/2)? o
luntlnfjg}.r.l.,tijKqu (c +ﬁ<2—|—c ) > =Cy . (128)

Choose the constaidt in the lefthand side of (123) as = C/4. From (126) we have

maxP(X; <C) < maxP(S; <CO)
J J

= maxP(S; < C|S; - pjl = C) + maxP (S; < C,[S; — pj| < C)
J J

max P (|S; — p;| = C) + maxP (p; < 20)
J J

(@ 1

< —ymaxE [(Sj - Pjﬂ + max P (p; < 2C)
C? J

®) 1 :

< gpmaxE [(Sj - pjﬂ +P <mj1npj = 20>

—
2]
~

o(1)

where (a) is Tchebychev’s Inequalityb) is due tomax; P(E;) < P(U;E;), and(c) is due to
(127) and to (128).
We have proven (123) and hence ti@Q¢ = arg maxqees [(Q) satisfiessup, QY| < .
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In order to prove thaQ. = argmaxqece, 1(Q) satisfiessup, ||Q.|| < oo, we begin by noticing
that

1 HyyH
(IQneaé I(Q) = Ir}leaé /IXnEaCX(fE [log det <I,« + ﬁHUAU H ﬂ (129)

wherell; is the group of unitary x ¢ matrices. For a given matrikl € U;, the inner maximiza-

tion in (129) is equivalent to the problem of maximizing thetomal information ovel€{ when

H H H ! _ _ K ! 1 1 1/2 "v1/2
the channel matriH is replaced withH = HU = K—HA + \/THWC /2W'C/2, Here,
matrix C' is defined byC' = UYCU, A' = AU, W = WO where © is the unitary
matrix ® = CY2UC -2 As U € U, we clearly have||A’| = ||A], |C'| = |C|,
and |C'~!|| = ||C!||. By consequence, the boundsand A4, and hence the constant in

the left hand member of (123) (which depends only (@nA, o2, ¢, K)) remain unchanged
when we replacel with H'. By consequence, for everyy € U; the matrix A,(U) that
maximizesE [log det (I, + SHUAUYH)] satisfies|A.(U)| < 202/C + 1 (see (124))

which is independent obJ. Hence||Q.|| < 20%/C + 1 which terminates the proof of (ii).
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