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Abstract
For each n, let An = (σi j ) be an n × n deterministic matrix and let Xn = (Xi j ) be
an n× n random matrix with i.i.d. centered entries of unit variance. In the companion
article (Cook et al. in Electron J Probab 23:Paper No. 110, 61, 2018), we considered
the empirical spectral distribution μY

n of the rescaled entry-wise product

Yn = 1√
n
An � Xn =

(
1√
n
σi j Xi j

)

and provided a deterministic sequence of probability measures μn such that the dif-
ference μY

n − μn converges weakly in probability to the zero measure. A key feature
in Cook et al. (2018) was to allow some of the entries σi j to vanish, provided that
the standard deviation profiles An satisfy a certain quantitative irreducibility property.
In the present article, we provide more information on the sequence (μn), described
by a family of Master Equations. We consider these equations in important special

cases such as sampled variance profiles σ 2
i j = σ 2

(
i
n ,

j
n

)
where (x, y) �→ σ 2(x, y)

is a given function on [0, 1]2. Associated examples are provided where μY
n converges
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to a genuine limit. We study μn’s behavior at zero. As a consequence, we identify
the profiles that yield the circular law. Finally, building upon recent results from Alt
et al. (Ann Appl Probab 28(1):148–203, 2018; Ann Inst Henri Poincaré Probab Stat
55(2):661–696, 2019), we prove that, except possibly at the origin, μn admits a posi-
tive density on the centered disc of radius

√
ρ(Vn), where Vn = ( 1nσ 2

i j ) and ρ(Vn) is
its spectral radius.

Keywords Non-Hermitian random matrices · Deterministic equivalents · Limiting
spectral distribution · Schwinger–Dyson equations

Mathematics Subject Classification (2020) Primary 15B52 · Secondary 15A18 ·
60B20

1 Introduction

For an n × n matrix M with complex entries and eigenvalues λi ∈ C (counted with
multiplicity and labeled in some arbitrary fashion), the empirical spectral distribution
(ESD) is given by

μM
n = 1

n

n∑
i=1

δλi . (1.1)

A seminal result in non-Hermitian random matrix theory is the circular law, which
describes the asymptotic global distribution of the spectrum for matrices with i.i.d.
entries of finite variance—see [15] for additional references and the survey [13] for a
detailed historical account.

In the companion paper [15], we studied the limiting spectral distribution μY
n for

random matrices with a variance profile (see Definition 1.1). More precisely, we
provided a deterministic sequence of probability measures μn each described by a
family of Master Equations (see (2.3)), such that the difference μY

n − μn converges
weakly in probability to the zero measure. Such master equations were introduced and
studied by Girko; see, for example, [18].

A key feature of this result was to allow a large proportion of the matrix entries
to be zero, which is important for applications to the modeling of dynamical systems
such as neural networks and food webs [3,5]. This also presented challenges for the
quantitative analysis of the Master Equations, for which we developed the graphical
bootstrapping argument.

We mention that in the appendix of [26] it was shown that the ESDs for two
sequences of random matrices with the same mean and variance profile (but pos-
sibly different entry distributions) are asymptotically equivalent, assuming, among
other (mild) conditions, that the variances are uniformly bounded away from zero.
Our aims here and in the companion paper [15] are in an orthogonal direction: to
establish asymptotic equivalence with a sequence of deterministic measures, and to
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study properties of these deterministic equivalents. Moreover, these tasks are far more
challenging when one does not assume the variances are uniformly positive.

After the initial release of [15], a local law version of our main statement (Theo-
rem 2.3) was proven in [7] under the restriction that the standard deviation profile σi j
is uniformly strictly positive and that the distribution of the matrix entries possesses a
bounded density and finite moments of every order. The results of [7] were extended
in [9] to include random matrices with correlated entries and the behavior of the lim-
iting density is investigated further. Early attempts to study non-Hermitian random
matrices with dependent entries can be found in [12] (Markov entries), [21] (doubly
stochastic matrices), and [2] (log-concave distributions). Predating the non-Hermitian
setting, a large body ofwork exists forHermitian randommatriceswith non-identically
distributed entries and/or dependent entries, see for instance [4,6,19,20,22,24].

In this article, we consider in more detail the measures (μn). In particular, we
provide new conditions that ensure the positivity of the density of μn and study the
behavior of μn at zero. This study allows us to deduce a necessary condition for the
circular law. Additionally, we specialize to sampled standard deviation profiles, which
are important from a modeling perspective and can yield genuine limits.

1.1 The Setting

We study the following general class of random matrices with non-identically dis-
tributed entries.

Definition 1.1 (Random matrix with a variance profile) For each n ≥ 1, let An be a
(deterministic) n × n matrix with entries σ

(n)
i j ≥ 0, let Xn be a random matrix with

i.i.d. entries X (n)
i j ∈ C satisfying

EX (n)
11 = 0 , E|X (n)

11 |2 = 1 (1.2)

and set

Yn = 1√
n
An � Xn (1.3)

where� is the matrix Hadamard product, i.e., Yn has entries Y
(n)
i j = 1√

n
σ

(n)
i j X (n)

i j . The

empirical spectral distribution of Yn is denoted by μY
n . We refer to An as the standard

deviation profile and to An � An =
(
(σ

(n)
i j )2

)
as the variance profile. We additionally

define the normalized variance profile as

Vn = 1

n
An � An .

When no ambiguity occurs, we drop the index n and simply write σi j , Xi j , V , etc.

The main result of [15] states that under certain assumptions on the sequence of
standard deviation profiles An and the distribution of the entries of Xn , there exists a

123



Journal of Theoretical Probability

tight sequence of deterministic probability measures μn that are deterministic equiva-
lents of the spectral measures μY

n , in the sense that for every continuous and bounded
function f : C→ C,

∫
f dμY

n −
∫

f dμn −−−→
n→∞ 0 in probability.

In other words, the signed measures μY
n −μn converge weakly in probability to zero.

In the sequel this convergence will be simply denoted by

μY
n ∼ μn in probability (n →∞).

The measures μn are described by a polynomial system of Master Equations that
will be recalled in the next section. The main results of [15], see Theorems 2.2 and
2.3, establish the existence and the uniqueness of the solution to these equations and
establishes the connection to the deterministic equivalent μn . This probability law
turns out to be a circularly symmetric law supported by the disk with center zero and
radius

√
ρ(Vn), where ρ(Vn) is the spectral radius of Vn . Moreover, μn has a density

on C\{0}.

1.2 Contributions of this Paper

In this article, we continue the study of the model initiated in [15], where we provided
existence of a μn such that μY

n ∼ μn for random matrices in Definition 1.1. In
particular, we study properties of μn : positivity of its density and its behavior at zero,
as well as identify variance profiles that yield the circular law.We also consider several
special classes of variance profiles.

In Sect. 2, we recall the main results of [15]. Then, in Proposition 2.7 and Theo-
rem 2.9 we provide sufficient conditions for which the density of μn is positive on the
disc of radius

√
ρ(Vn), with an emphasis on the behavior of this density near zero. In

particular, a formula for the value of the density at zero is provided. In Corollary 2.8,
we deduce from our formula at zero that the doubly stochastic normalized variance

profiles, i.e., Vn =
(
n−1σ 2

i j

)
such that

1

n

n∑
i=1

σ 2
i j = V ∀ j ∈ [n] and

1

n

n∑
j=1

σ 2
i j = V ∀i ∈ [n] .

for some fixed V > 0, are, up to conjugation by diagonal matrices, the only profiles
that give the circular law.

In Sect. 3, we consider sampled variance profiles, where the profile is obtained by
evaluating a fixed continuous function σ(x, y) on the unit square at the grid points
{(i/n, j/n) : 1 ≤ i, j ≤ n}. Here, in the large n limit the Master Equations (2.3) turn
into an integral equation defining a genuine limit for the ESDs:
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∫
f dμY

n −−−→n→∞

∫
f dμσ in probability;

see Theorem 3.1.
Section 5 is devoted to the proof of the results in Sect. 2 concerning positivity and

finiteness of the density ofμn . Much of this analysis will build upon results developed
by Alt et al. [7,8] in combination with the regularity of the solutions to the Master
Equations proven in [15].

Finally, in Sect. 4, we provide examples of variance profiles with vanishing entries.
In particular, we study band matrices and give an example of a distribution with an
atom and a vanishing density at zero (Proposition 4.2).

2 Limiting Spectral Distribution: A Reminder and Some Complements

In this section, we recall the main results in Cook et al. [15] and then give theorems
concerning the density of μn .

2.1 Notational Preliminaries

Let [n] be the set {1, · · · , n}. The Lebesgue measure on C will be denoted as �( dz).
The cardinality of a finite set S is denoted by |S|. We denote by 1n the n× 1 vector of
1’s. Given two n×1 vectors u, v, we denote their scalar product 〈u, v〉 =∑

i∈[n] ūivi .
Let a = (ai ) an n×1 vector. We denote by diag(a) the n×n diagonal matrix with the
ai ’s as its diagonal elements, by ‖a‖∞ = maxi∈[n] |ai |. For a given matrix A, denote
by AT its transpose, by A∗ its conjugate transpose, by ‖A‖ its spectral norm, and by
ρ(A) its spectral radius, that is ρ(A) = max{λ(A), λ(A) eigenvalue of A}. Denote
by In the n × n identity matrix. If clear from the context, we omit the dimension.
For a ∈ C and when clear from the context, we sometimes write a instead of a I and
similarly write a∗ instead of (aI )∗ = ā I .

Notations� and� refer to the element-wise inequalities for realmatrices or vectors.
Namely, if B and C are real matrices,

B � C ⇔ Bi j > Ci j ∀i, j and B � C ⇔ Bi j ≥ Ci j ∀i, j .

The notation B ��= 0 stands for B � 0 and B �= 0.

2.2 Model Assumptions

We will establish results concerning sequences of matrices Yn as in Definition 1.1
under various additional assumptions on An and Xn , which we now summarize.

For our main result, we will need the following additional assumption on the dis-
tribution of the entries of Xn .

A0 (Moments). We have E|X (n)
11 |4+ε ≤ M0 for all n ≥ 1 and some fixed ε > 0,

M0 <∞.
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We will also assume the entries of An are bounded uniformly in i, j ∈ [n], n ≥ 1:

A1 (Bounded variances). There exists σmax ∈ (0,∞) such that

sup
n

max
1≤i, j≤n σ

(n)
i j ≤ σmax.

Assumption A0 is necessary to obtain uniform integrability of the ESD of (Yn −
z)∗(Yn− z), a key step in Girko’s Hermitization strategy for determining the spectrum
of Yn . In particular, this assumption is necessary in order to apply results from [14],
which bound the least singular value of Yn − z, as well as to quantitatively bound the
difference between theStieltjes transformof theESDand the deterministic equivalents.
Assumption A1 was used in [15] to ensure the diagonal entries of the resolvent of a
2n×2n linearization of (Yn−z)∗(Yn−z) f approximately solve the systemof equations
given in (2.1).

In order to express the next key assumption, we need to introduce the following
Regularized Master Equations which are a specialization of the Schwinger–Dyson
equations of Girko’s so-called Hermitized model associated with Yn (see [15] for
more details about this subject).

Proposition 2.1 (RegularizedMaster Equations) Let n ≥ 1 be fixed, let An be an n×n
nonnegative matrix and write Vn = 1

n An� An. Let s, t > 0 be fixed, and consider the
following system of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ri = (V T
n r)i + t

s2 + ((Vn r̃)i + t)((V T
n r)i + t)

r̃i = (Vn r̃)i + t

s2 + ((Vn r̃)i + t)((V T
n r)i + t)

, (2.1)

where r = (ri ) and r̃ = (̃ri ) are n× 1 vectors. Denote by �r =
(
r
r̃

)
. Then, this system

admits a unique solution �r = �r(s, t) � 0. This solution satisfies the identity

∑
i∈[n]

ri =
∑
i∈[n]

r̃i . (2.2)

A2 (Admissible variance profile). Let �r(s, t) = �rn(s, t) � 0 be the solution of the
regularized Master Equations for given n ≥ 1. For all s > 0, there exists a
constant C = C(s) > 0 such that

sup
n≥1

sup
t∈(0,1]

1

n

∑
i∈[n]

ri (s, t) ≤ C .

A family of variance profiles (or corresponding standard deviation/normalized
variance profiles) for which the previous estimate holds is called admissible.
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Remark 2.1 After restating the main theorems we list concrete conditions under which
we verify A2, namely A3 (lower bound on Vn), A4 (symmetric Vn) and A5 (robust
irreducibility for Vn), cf. Sect. 2.4.

2.3 Results from [15]

The following system of Master Equations will be of central importance. Given
a parameter s ≥ 0, this is the system of 2n + 1 equations in 2n unknowns
q1, . . . , qn, q̃1, . . . , q̃n that reads:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi = (V T
n q)i

s2 + (Vn q̃)i (V T
n q)i

q̃i = (Vn q̃)i

s2 + (Vn q̃)i (V T
n q)i

∑
i∈[n] qi =

∑
i∈[n] q̃i

, qi , q̃i ≥ 0, i ∈ [n], (2.3)

where q, q̃ are the n × 1 column vectors with components qi , q̃i , respectively. In the

sequel, we shall write �q =
(
q
q̃

)
. Observe that these equations are obtained from

the regularized Master Equations (2.1) by letting the parameter t go to zero. Notice
however that condition

∑
qi =∑

q̃i is required for uniqueness and not a consequence
of the equations as in (2.1).

In what follows, we will always tacitly assume the standard deviation profile An is
irreducible. This will cause no true loss of generality, as we can conjugate the matrix
Yn by an appropriate permutation matrix to put An in block-upper-triangular form
with irreducible blocks on the diagonal. The spectrum of Yn is then the union of the
spectra of the corresponding block diagonal submatrices.

Theorem 2.2 (Cook et al. [15]). Let n ≥ 1 be fixed, let An be an n × n nonnegative
matrix and write Vn = 1

n An � An. Assume that An is irreducible. Then, the following
hold:

(1) For s ≥ √ρ(Vn) the system (2.3) has the unique solution �q(s) = 0.
(2) For s ∈ (0,

√
ρ(V )) the system (2.3) has a unique non-trivial solution �q(s) ��= 0.

Moreover, this solution satisfies �q(s) � 0.
(3) �q(s) = limt↓0 �r(s, t) for s ∈ (0,∞).
(4) The function s �→ �q(s) defined in parts (1) and (2) is continuous on (0,∞) and

is continuously differentiable on (0,
√

ρ(V )) ∪ (
√

ρ(V ),∞).

Remark 2.2 (Convention). Above and in the sequel we abuse notation and write �q =
�q(s) to mean a solution of Eq. (2.3), understood to be the nontrivial solution for
s ∈ (0,

√
ρ(V )).

Theorem 2.3 (Cook et al. [15]) Let (Yn)n≥1 be a sequence of random matrices as
in Definition 1.1, and assume A0, A1 and A2 hold. Assume moreover that An is
irreducible for all n ≥ 1.
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(1) There exists a sequence of deterministic measures (μn)n≥1 on C such that

μY
n ∼ μn in probability.

(2) Let q(s), q̃(s) be as in Theorem 2.2, and for s ∈ (0,∞) let

Fn(s) = 1− 1

n
〈q(s), Vn q̃(s)〉. (2.4)

Then, Fn extends to an absolutely continuous function on [0,∞) which is the
cumulative distribution function (CDF) of a probability measure with support
contained in [0,√ρ(Vn)] and continuous density on (0,

√
ρ(Vn)).

(3) For each n ≥ 1 the measure μn from part (1) is the unique radially symmetric
probability measure on C with μn({z : |z| ≤ s}) = Fn(s) for all s ∈ (0,∞).

It is natural to conjecture that the convergence in probability in the above theo-
rem could be strengthened to almost-sure convergence. The main barrier to such an
improvement is our use of a results from [14], where it shown the smallest singular
value Yn − z is polynomially small except with probability at most n−c for a small
constant c > 0 depending on the parameter ε from Assumption A0. If this result were
strengthened to a probability bound that is summable in n, it would immediately imply
the above result with almost-sure convergence, via the Borel–Cantelli lemma.

This theorem calls for some comments. Using the fact thatμn is radially symmetric
along with the properties of Fn(s) = μn({z : |z| ≤ s}), it is straightforward that μn

has a density fn on C\{0} which is given by the formula

fn(z) = 1

2π |z|
d

ds
Fn(s)

∣∣∣
s=|z| = − 1

2πn|z|
d

ds
〈q(s), V q̃(s)〉

∣∣∣
s=|z| (2.5)

for |z| /∈ {0,√ρ(Vn)}. We use the convention fn(z) = 0 for |z| = √ρ(Vn).

2.4 Sufficient Conditions for Admissibility

We now recall a series of assumptions that enforce A2 and are directly checkable on
the sequence (Vn) of variance profile matrices.

A3 (Lower bound on variances). There exists σmin > 0 such that infn min1≤i, j≤n
σ

(n)
i j ≥ σmin.

A4 (Symmetric variance profile). For all n ≥ 1, the normalized variance profile
(or equivalently the standard deviation profile) is symmetric: Vn = V T

n .

The following assumption is a quantitative form of irreducibility that considerably
generalizes A3, allowing a broad class of sparse variance profiles. We refer the reader
to [15] for the definition.

A5 (Robust irreducibility). There exists constants σ0, δ, κ ∈ (0, 1) such that for
all n ≥ 1, the matrix An(σ0) =

(
σi j1σi j≥σ0

)
is (δ, κ)-robustly irreducible.
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We gather in the following theorem some results from [15], namely Propositions
2.5 and 2.6, as well as Theorem 2.8.

Theorem 2.4 (Cook et al. [15]). Let (An) be a family of standard deviation profiles
for which A1 holds. If either A3, A4, or A5 holds then A2 also holds: the family (An)

is admissible.

2.5 Positivity of the Density of�n

In this section, we consider the positivity of μn . In [7, Lemma 4.1], it is shown that
underAssumptionA3, the density ofμn is strictly positive on the disk of radius

√
ρ(V ),

centered at the origin. We will begin by giving a more general assumption, see A6,
under which the density of μn , is uniformly bounded from below on its support.

Of particular interest is the behavior of μn near zero. By Theorem 2.3, Fn admits a
limit as s ↓ 0. Is this limit positive (atom) or equal to zero (no atom)? Is its derivative
finite at z = 0 (finite density), zero (vanishing density), or does it blow up at z = 0?
In Proposition 2.7, we will give an explicit formula for the density fn at zero under
AssumptionA6. InCorollary 2.8,weuse this formula to lower bound the density at zero
and give a necessary condition for μn to be given by the circular law. Proposition 4.2
provides an example of a simple variance profile with large zero blocks where μn

admits a closed-form expression with an atom and a vanishing density at z = 0.
Section 4 gives further examples that shed additional light on these questions. Then,
in Theorem 2.9, we adapt an argument from [7] to bound the density ofμn from below.
Our bound does not require assumption A3, and in particular gives an effective bound
even when the variance profile does not have a spectral gap, as in [7].

We recall the following definition used in [6]:

Definition 2.5 A K ×K matrix T = (ti j )Ki, j=1 with nonnegative entries is called fully
indecomposable if for any two subsets I , J ⊂ {1, . . . , K } such that |I | + |J | ≥ K ,
the submatrix (ti j )i∈I , j∈J contains a nonzero entry.

See [11] for a detailed account on these matrices.

A6 (Block fully indecomposable) For all n ≥ 1, the normalized variance profiles
Vn are block fully indecomposable, i.e., there are constants φ > 0, K ∈ N

independent from n ≥ 1, a fully indecomposable matrix Z = (zi j )i, j∈[K ],
with zi j ∈ {0, 1} and a partition (I j ) j∈[K ] of [n] such that

|Ii | = n

K
, Vxy ≥ φ

n
zi j , x ∈ Ii and y ∈ I j

for all i, j ∈ [K ].
Assumption A6 can be seen as a robust version of the full indecomposability of the
matrix V . It is well known that the full indecomposability implies the irreducibility
of a matrix. Therefore, one can expect that the block full indecomposability implies
the robust irreducibility. Indeed, the following is an immediate consequence of [15,
Lemma 2.4].
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Proposition 2.6 A6 implies A5.

Remark 2.3 In [25], full indecomposability is shown to be equivalent to the existence
and the uniqueness, up to scaling, of positive diagonal matrices D1 and D2 such that
D1V D2 is doubly stochastic. Below, in Proposition 2.7 and in particular (2.6), we see
under Assumption A6, diag(q)V diag(̃q) is doubly stochastic. Under AssumptionA6,
an optimal local law for square Gram matrices was proven in [6]. The boundedness of
the density near zero for Hermitian random matrices under the analogous conditions
was proven in [4].

Proposition 2.7 (No atom and bounded density near zero) Consider a sequence (Vn)
of normalized variance profiles and assume that A1 and A6 hold. Let �q(s) be as

in Theorem 2.2, let μn be as in Theorem 2.3, and let �r(s, t) =
(
r(s, t)
r̃(s, t)

)
be as in

Proposition 2.1. Then,

(1) The limits limt↓0 �r(0, t) and lims↓0 �q(s) exist and are equal. Writing q(0) =
(qi (0)) = lims↓0 q(s) and q̃(0) = (q̃i (0)) = lims↓0 q̃(s), it holds that

qi (0)(Vn q̃(0))i = 1 and q̃i (0)(V
T
n q(0))i = 1 , i ∈ [n] . (2.6)

In particular, the probability measure μn has no atom at zero: μn({0}) = 0 .

(2) The density fn of μn on C\{0} admits a limit as z → 0. This limit fn(0) is given
by

fn(0) = 1

n

∑
i∈[n]

1

(V T
n q(0))i (Vn q̃(0))i

= 1

n

∑
i∈[n]

qi (0)q̃i (0) .

In particular, there exist finite constants κ, K independent of n ≥ 1 such that

0 < κ ≤ fn(0) ≤ K . (2.7)

This proposition will be proven in Sect. 5.1.

Corollary 2.8 Let V satisfy Assumptions A1 and A6. Then the density of μn at zero is
greater than or equal to 1/(πρ(V )), with equality if and only if V = D−1SD for some
diagonal matrix D and doubly stochastic matrix S. In the latter case, μn = μcirc, the
circular law.

The proof of this corollary is given in Sect. 5.3.

Theorem 2.9 Assume that A1 holds true and that An is irreducible. Then,

(1) Assuming A2, if |z| ∈ (0,
√

ρ(V )), then the density fn of μn is bounded from
below by a positive constant that depends on |z| and is independent of n.

(2) AssumingA6, then for |z| ∈ [0,√ρ(V )), the density fn ofμn (for which existence
at zero is stated by Proposition 2.7) is bounded from below by a positive constant
that depends on |z| and is independent of n.
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The proof of Theorem 2.9 is postponed to Sect. 5.2. Part (2) will follow easily by
noting that the proof of Proposition 2.7-(2) shows the lower bound in (5.21) is bounded
away fromzero. Finally,we remark the examples in Sect. 4 show that one cannot expect
z independent lower bounds in general. We do note that our lower bounds only depend
on the solution to (2.3).

3 Sampled Variance Profile

3.1 SampledVariance Profile

Here, we are interested in the case where

σ 2
i j (n) = σ 2

(
i

n
,
j

n

)
,

where σ is a continuous nonnegative function on [0, 1]2. In this situation, the deter-
ministic equivalents will converge to a genuine limit as n →∞. Notice that A1 holds
and denote by

σmax = max
x,y∈[0,1] σ(x, y) and σmin = min

x,y∈[0,1] σ(x, y) .

For the sake of simplicity, wewill restrict ourselves to the case where σ takes its values
in (0,∞), i.e., where σmin > 0, which implies that A3 holds.

We will use some results from the Krein–Rutman theory (see for instance [16]),
which generalizes the spectral properties of nonnegative matrices to positive operators
on Banach spaces. To the function σ 2, we associate the linear operator V , defined on
the Banach space C([0, 1]) of continuous real-valued functions on [0, 1] as

(V f )(x) =
∫ 1

0
σ 2(x, y) f (y) dy. (3.1)

By the uniform continuity of σ 2 on [0, 1]2 and the Arzela–Ascoli theorem, it is a
standard fact that this operator is compact [23, Ch. VI.5]. LetC+([0, 1]) be the convex
cone of nonnegative elements of C([0, 1]):

C+([0, 1]) = { f ∈ C([0, 1]) , f (x) ≥ 0 for x ∈ [0, 1]} .

Since σmin > 0, the operator V is strongly positive, i.e., it sends any element of
C+([0, 1])\{0} to the interior of C+([0, 1]), the set of continuous and positive func-
tions on [0, 1]. Under these conditions, it is well known that the spectral radius ρ(V )

of V is nonzero, and it coincides with the so-called Krein–Rutman eigenvalue of V
[16, Theorem 19.2 and 19.3].

To be consistent with our notation for nonnegative finite dimensional vectors, we
write f ��= 0 when f ∈ C+([0, 1])\{0}, and f � 0 when f (x) > 0 for all x ∈ [0, 1].

123



Journal of Theoretical Probability

Theorem 3.1 (Sampled variance profile) Assume that there exists a continuous func-
tion σ : [0, 1]2 → (0,∞) such that

σ
(n)
i j = σ

(
i

n
,
j

n

)
.

Let (Yn)n≥1 be a sequence of random matrices as in Definition 1.1 and assume that
A0 holds. Then,

(1) The spectral radius ρ(Vn) of the matrix Vn = n−1(σ 2
i j ) converges to ρ(V ) as

n →∞, where V is the operator on C([0, 1]) defined by (3.1).
(2) Given s > 0, consider the system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q∞(x, s) =
∫ 1
0 σ 2(y, x)Q∞(y, s) dy

s2 + ∫ 1
0 σ 2(y, x)Q∞(y, s) dy

∫ 1
0 σ 2(x, y)Q̃∞(y, s) dy

,

Q̃∞(x, s) =
∫ 1
0 σ 2(x, y)Q̃∞(y, s) dy

s2 + ∫ 1
0 σ 2(y, x)Q∞(y, s) dy

∫ 1
0 σ 2(x, y)Q̃∞(y, s) dy

,

∫ 1

0
Q∞(y, s) dy =

∫ 1

0
Q̃∞(y, s) dy.

(3.2)

with unknown parameters Q∞(·, s), Q̃∞(·, s) ∈ C+([0, 1]). Then,
(a) For s ≥ √

ρ(V ), Q∞(·, s) = Q̃∞(·, s) = 0 is the unique solution of this
system.

(b) For s ∈ (0,
√

ρ(V )), the system has a unique solution Q∞(·, s) +
Q̃∞(·, s) ��= 0. This solution satisfies

Q∞(·, s), Q̃∞(·, s) � 0 .

(c) The functions Q∞, Q̃∞ : [0, 1] × (0,∞) −→ [0,∞) are continuous, and
continuously extended to [0, 1] × [0,∞), with

Q∞(·, 0) , Q̃∞(·, 0) � 0 .

(3) The function

F∞(s) = 1−
∫
[0,1]2

Q∞(x, s) Q̃∞(y, s) σ 2(x, y) dx dy , s ∈ (0,∞)

converges to zero as s ↓ 0. Setting F∞(0) = 0, the function F∞ is an abso-
lutely continuous function on [0,∞) which is the CDF of a probability measure
whose support is contained in [0,√ρ(V )], and whose density is continuous on
[0,√ρ(V )].
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(4) Let μ∞ be the rotationally invariant probability measure on C defined by the
equation

μ∞({z : 0 ≤ |z| ≤ s}) = F∞(s), s ≥ 0 .

Then,

μY
n

w−−−→
n→∞ μ∞ in probability .

The proof of Theorem 3.1 is an adaptation of the proofs of Lemmas 4.3 and 4.4
from [15] to the context of Krein–Rutman’s theory for positive operators in Banach
spaces.

3.2 Proof of Theorem 3.1

Extending the maximum norm notation from vectors to functions, we also denote by
||| f |||∞ = supx∈[0,1] | f (x)| the norm on the Banach space C([0, 1]). Given a positive
integer n, the linear operator V n defined on C([0, 1]) as

V n f (x) = 1

n

n∑
j=1

σ 2(x, j/n) f ( j/n)

is a finite rank operator whose eigenvalues coincide with those of the matrix Vn . It is
easy to check that V n f → V f in C([0, 1]) for all f ∈ C([0, 1]), in other words, V n

converges strongly to V in C([0, 1]), denoted by

V n
str−−−→

n→∞ V

in the sequel. However, V n does not converge to V in norm, in which case the con-
vergence of ρ(V n) to ρ(V ) would have been immediate. Nonetheless, the family
of operators {V n} satisfies the property that the set {V n f : n ≥ 1, ||| f |||∞ ≤ 1}
has a compact closure, being a set of equicontinuous and bounded functions thanks
to the uniform continuity of σ 2 on [0, 1]2. Following [10], such a family is named
collectively compact.

We recall the following important properties, cf. [10]. If a sequence (Tn) of collec-
tively compact operators on a Banach space converges strongly to a bounded operator
T , then:

(i) The spectrum of Tn is eventually contained in any neighborhood of the spectrum
of T . Furthermore, λ belongs to the spectrum of T if and only if there exist λn in
the spectrum of Tn such that λn → λ;

(ii) (λ− Tn)
−1 str−−−→

n→∞ (λ− T )−1 for any λ in the resolvent set of T .

The statement (1) of the theorem follows from i). We now provide the main steps of
the proof of the statement (2). Given n ≥ 1 and s > 0, let (qn(s)T q̃n(s)T)T ∈ R

2n be
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the solution of the system (2.3) that is specified by Theorem 2.2. Denote by qn(s) =
(qn1 (s), . . . , qnn (s)) and q̃n = (q̃n1 , . . . , q̃nn ) and introduce the quantities

�n(x, s) = 1

n

n∑
i=1

σ 2
(
x,

i

n

)
q̃ni (s) and �̃n(x, s) = 1

n

n∑
i=1

σ 2
(
i

n
, x

)
qni (s).

(3.3)

By Proposition 2.5 of [15] (recall that A3 holds), we know that the average

〈qn(s)〉n = 1

n

n∑
i=1

qni (s)

satisfies 〈qn(s)〉n ≤ σ−1min. Therefore, we get from (2.3) that

‖qn(s)‖∞ ≤ σ 2
max〈qn(s)〉n

s2
≤ σ 2

max

σmins2
. (3.4)

Consequently the family {�̃n(·, s)}n≥1 is an equicontinuous and bounded subset of
C([0, 1]). Similarly, an identical conclusion holds for the family {�n(·, s)}n≥1. By
Arzela–Ascoli’s theorem, there exists a subsequence (still denoted by (n), with a
small abuse of notation) along which �̃n(·, s) and �n(·, s), respectively, converge to
given functions �̃∞(·, s) and �∞(·, s) in C([0, 1]). Denote

�n(x, s) = 1

s2 +�n(x, s)�̃n(x, s)
and �∞(x, s) = 1

s2 +�∞(x, s)�̃∞(x, s)
.

and introduce the auxiliary quantities

Qn(x, s) = �n(x, s)�̃n(x, s) and Q̃n(x, s) = �n(x, s)�n(x, s) .

Then, there exists Q∞(x, s) and Q̃∞(x, s) such that Qn(·, s) → Q∞(·, s) and
Q̃n(·, s) → Q̃∞(·, s) in C([0, 1]). These limits satisfy

Q∞(x, s) = �̃∞(x, s)

s2 +�∞(x, s)�̃∞(x, s)

and Q̃∞(x, s) = �̃∞(x, s)

s2 +�∞(x, s)�̃∞(x, s)
.

Moreover, the mere definition of qn and q̃n as solutions of (2.3) yields that

{
Qn

( i
n , s

) = qni (s) 1 ≤ i ≤ n

Q̃n
( i
n , s

) = q̃ni (s) 1 ≤ i ≤ n.
(3.5)
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Combining (3.3), (3.5) and the convergence of Qn and Q̃n , we finally obtain the useful
representation

�∞(x, s) =
∫ 1

0
σ 2(x, y) Q̃∞(y, s) dy

and �̃∞(x, s) =
∫ 1

0
σ 2(y, x) Q∞(y, s) dy . (3.6)

which yields that Q∞ and Q̃∞ satisfy the system (3.2).
To establish the first part of the statement (2), we show that these limits are zero if

s2 ≥ ρ(V ) and positive if s2 < ρ(V ), then we show that they are unique. It is known
that ρ(V ) is a simple eigenvalue, it has a positive eigenvector, and there is no other
eigenvalue with a positive eigenvector. If T is a bounded operator on C([0, 1]) such
that T f − V f � 0 for f ��= 0, then ρ(T ) > ρ(V ) [16, Theorem 19.2 and 19.3].

We first establish (2)-(a). Fix s2 ≥ ρ(V ), and assume that Q∞(·, s) ��= 0. Since
Q∞(·, s) = �∞VQ∞(·, s), where �∞(·, s) is the limit of �n(·, s) along the subse-
quence (n), it holds that Q∞(·, s) � 0, and by the properties of the Krein–Rutman
eigenvalue, that ρ(�∞V ) = 1. From the identity

∫
Q∞(x, s) dx = ∫

Q̃∞(x, s) dx ,
we get that Q̃∞(·, s) ��= 0, hence Q̃∞(·, s) � 0 by the same argument. By con-
sequence, s−2V f − �∞V f � 0 for all f ��= 0. This leads to the contradiction
1 ≥ ρ(s−2V ) > ρ(�∞V ) = 1. Thus, Q∞(·, s) = Q̃∞(·, s) = 0.

We now establish (2)-(b). Let s2 < ρ(V ). By an argument based on collective
compactness, it holds that

ρ(�nV n) −−−→
n→∞ ρ(�∞V )

and moreover, that ρ(�nV n) = 1 (see, e.g., the proof of Lemma 4.3 of [15]). Thus,
Q∞(·, s) ��= 0 and Q̃∞(·, s) ��= 0, otherwise ρ(�∞V ) = ρ(s−2V ) > 1. Since
Q∞(·, s) = �∞VQ∞(·, s), we get that Q∞(·, s) � 0 and similarly, that Q̃∞(·, s) �
0.

It remains to show that the accumulation point (Q∞, Q̃∞) is unique. The proof
of this fact is similar to its finite dimensional analogue in the proof of Lemma 4.3
from [15]. In particular, the properties of the Perron–Frobenius eigenvalue and its
eigenspace are replaced with their Krein–Rutman counterparts, and the matrices K �q
and K �q,�q′ in that proof are replaced with continuous and strongly positive integral
operators. Note that the end of the proof is simpler in our context, thanks to the strong
positivity assumption instead of the irreducibility assumption. We leave the details to
the reader.

We now address (2)-(c) and first prove the continuity of Q∞ and Q̃∞ on [0, 1] ×
(0,∞). This is equivalent to proving the continuity of �∞ and �̃∞ on this set. Let
(xk, sk) →k (x, s) ∈ [0, 1] × (0,∞). The bound

0 ≤ Q̃∞(y, s) ≤ σ 2
max

σmin s2
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follows from (3.5) and the convergence of Q̃n to Q̃∞. As a consequence of (3.6), the
family {�∞(·, sk)}k is equicontinuous for k large. By Arzela–Ascoli’s theorem and
the uniqueness of the solution of the system, we get that �∞(·, sk) →k �∞(·, s) in
C([0, 1]). Therefore, writing

|�∞(xk, sk)−�∞(x, s)| ≤ |||�∞(·, sk)−�∞(·, s)|||∞ + |�∞(xk, s)−�∞(x, s)|

and using the continuity of �∞(·, s), we get that �∞(xk, sk) →k �∞(x, s).
The main steps of the proof for extending the continuity of Q∞ and Q̃∞ from

[0, 1] × (0,∞) to [0, 1] × [0,∞) are the following. Following the proof of Proposi-
tion 2.7, we can establish that

lim inf
s↓0

∫ 1

0
Q∞(x, s) dx > 0 .

The details are omitted. Since

1

Q̃∞(x, s)
= s2

�∞(x, s)
+ �̃∞(x, s) > σmin

∫ 1

0
Q∞(y, s) dy ,

we obtain that
∣∣∣∣∣∣Q̃∞(·, s)∣∣∣∣∣∣∞ is bounded when s ∈ (0, ε) for some ε > 0. Thus,

{�∞(·, s)}s∈(0,ε) is equicontinuous by (3.6), and it remains to prove that the accumu-
lation point �∞(·, 0) is unique.

This can be done by working on the system (3.2) for s = 0, along the lines of the
proof of Lemma 4.3 of [15] and Proposition 2.7. Details are omitted.

Turning to Statement (3), the assertion F(s) → 0 as s ↓ 0 can be deduced from
the proof of Proposition 2.7 and a passage to the limit, noting that the bounds in that
proof are independent from n.

Consider the Banach space B = C([0, 1];R2) of continuous functions

�f = ( f , f̃ )T : [0, 1] −→ R
2

endowedwith the norm
∣∣∣∣∣∣∣∣∣ �f ∣∣∣∣∣∣∣∣∣B = supx∈[0,1]max(| f (x)|, | f̃ (x)|). In the remainder of

the proof, wemay use the notation shortcut�s∞ instead of�∞(·, s) and corresponding
shortcuts for quantities �∞(·, s), �̃∞(·, s), Q∞(·, s) and Q̃∞(·, s).

Given s, s′ ∈ (0,
√

ρ(V )) with s �= s′, consider the function

 �Qs,s′∞ =
(
Qs∞ − Qs′∞, Q̃s∞ − Q̃s′∞

)T
s2 − s′ 2

∈ B.

Let V T be the linear operator associated with the kernel (x, y) �→ σ 2(y, x), and
defined as

V T f (x) =
∫ 1

0
σ 2(y, x) f (y) dy .
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Then, mimicking the proof of Lemma 4.4 of [15], it is easy to prove that  �Qs,s′∞
satisfies the equation

 �Qs,s′∞ = Ms,s′∞  �Qs,s′∞ + as,s
′

∞ ,

where Ms,s′∞ is the operator acting on B and defined in a matrix form as

Ms,s′∞ =
(

s2�s∞�s′∞V T −�s∞�s′∞�̃s∞�̃s′∞V
−�s∞�s′∞�s∞�s′∞V T s2�s∞�s′∞V

)
,

and as,s
′

∞ is a function B defined as

as,s
′

∞ = −
(

�s∞�s′∞V TQs∞
�s∞�s′∞V Q̃s∞

)
.

To proceed, we rely on a regularized version of this equation. Denoting by 1 the
constant function 1(x) = 1 in C([0, 1]), and letting v = (1,−1)T ∈ B, the kernel
operator vvT on B is defined by the matrix

(vvT)(x, y) =
(

1(x)1(y) −1(x)1(y)
−1(x)1(y) 1(x)1(y)

)
.

By the constraint
∫
Qs∞ = ∫

Q̃s∞, it holds that (vvT) �Qs,s′∞ = 0. Thus,  �Qs,s′∞
satisfies the identity

(
(I − (Ms,s′∞ )T)(I − Ms,s′∞ )+ vvT

)
 �Qs,s′∞ = (I − (Ms,s′∞ )T)as,s

′
∞ . (3.7)

We rewrite the left side of this identity as (I − Gs,s′∞ ) �Qs,s′∞ where

Gs,s′∞ = Ms,s′∞ + (Ms,s′∞ )T − (Ms,s′∞ )TMs,s′∞ − vvT ,

and we study the behavior of Ms,s′∞ and Gs,s′∞ as s′ → s.
Let s ∈ (0,

√
ρ(V )) and s′ belong to a small compact neighborhood K of s. Then,

the first component of Ms,s′∞ �f (x) has the form
∫ (

h11(x, y, s
′) f (y)+ h12(x, y, s

′) f̃ (y)
)
dy,

where h11 and h12 are continuous on the compact set [0, 1]2×K by the previous results.
A similar argument holds for the other component of Ms,s′∞ �f (x). By the uniform
continuity of these functions on this set, we get that the family

{
Ms,s′∞ �f : s′ ∈ K,

∣∣∣∣∣∣∣∣∣ �f ∣∣∣∣∣∣∣∣∣B ≤ 1
}
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is equicontinuous, and by the Arzela–Ascoli theorem, the family {Ms,s′∞ : s′ ∈ K} is
collectively compact. Moreover,

Ms,s′∞
str−−−→
s′→s

Ms∞ =
(
I 0
0 −I

)
Ns∞

(
I 0
0 −I

)
,

where

Ns∞ =
(

s2�2∞(·, s)V T �2∞(·, s)�̃2∞(·, s)V
�2∞(·, s)�2∞(·, s)V T s2�2∞(·, s)V

)
.

By a similar argument, {Gs,s′∞ : s′ ∈ K} is collectively compact, and Gs,s′∞
str−−−→
s′→s

Gs∞,

where

Gs∞ = Ms∞ + (Ms∞)T − (Ms∞)TMs∞ − vvT .

We now claim that 1 belongs to the resolvent set of the compact operator Gs∞.
Repeating an argument of the proof of Lemma 4.4 from [15], we can prove that the

Krein–Rutman eigenvalue of the strongly positive operator Ns∞ is equal to one, and

its eigenspace is generated by the vector �Qs∞ =
(
Qs∞, Q̃s∞

)T. From the expression of
Ms∞, we then obtain that the spectrum of this compact operator contains the simple
eigenvalue 1, and its eigenspace is generated by the vector

(
Qs∞,−Q̃s∞

)
.

We now proceed by contradiction. If 1 were an eigenvalue ofGs∞, there would exist
a nonzero vector �f ∈ B such that (I − Gs∞) �f = 0, or, equivalently,

(I − (Ms∞)T)(I − Ms∞) �f + vvT �f = 0 .

Left-multiplying the left hand side of this expression by �f T and integrating on [0, 1],
we get that (I − Ms∞) �f = 0 and

∫
f = ∫

f̃ , which contradicts the fact the �f is
collinear with

(
Q∞(·, s),−Q̃∞(·, s)).

Returning to (3.7) and observing that {Ms,s′∞ : s′ ∈ K} is bounded, we get from
the convergence (Ms,s′∞ )T

str−−−→
s′→s

(Ms∞)T that

(I − (Ms,s′∞ )T)as,s
′

∞ −−−→
s′→s

(I − (Ms∞)T)as∞ ,

where

as∞(·) = −
(

�∞(·, s)2V TQ∞(·, s)
�∞(·, s)2V Q̃∞(·, s)

)
.

From the aforementioned results on the collectively compact operators, it holds that
there is a neighborhood of 1 where Gs,s′∞ has no eigenvalue for all s′ close enough
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to s (recall that 0 is the only possible accumulation point of the spectrum of Gs∞).
Moreover,

(I − Gs,s′∞ )−1 str−−−→
s′→s

(I − Gs∞)−1 .

In particular, for s′ close enough to s, the family {(I − Gs,s′∞ )−1} is bounded by the
Banach–Steinhaus theorem. Thus,

 �Qs,s′∞ −−−→
s′→s

(
(I − (Ms∞)T)(I − Ms∞)+ vvT

)−1
(I − (Ms∞)T)as∞

= (∂s2Q
s∞, ∂s2 Q̃

s∞)T .

Using this result, we straightforwardly obtain from the expression of F∞ that this
function is differentiable on (0,

√
ρ(V )). The continuity of the derivative as well as

the existence of a right limit as s ↓ 0 and a left limit as s ↑ √ρ(V ) can be shown by
similar arguments involving the behaviors of the operators Ms∞ and Gs∞ as s varies.
The details are skipped.

Since μY
n ∼ μn in probability and since we have the straightforward convergence

μn
w−−−→

n→∞ μ∞, the statement (4) of the theorem follows.

4 Examples and Simulations

In this section, we provide simulations for band matrix models in Sect. 4.1 and exhibit
a model with vanishing density and an atom at zero in Sect. 4.2.

4.1 BandMatrix Models

We illustrate Theorem 2.3 with simulations. In the case of band matrices, closed-form
expressions for the density seem out of reach but plots can be obtained by numerics.
We consider two probabilistic matrix models with complex entries (with independent
Bernoulli real and imaginary parts) and sampled variance profiles associated with the
following functions:

Model A Model B
σ 2(x, y) = 1{

|x−y|≤ 1
20

} σ 2(x, y) = (x + 2y)21{
|x−y|≤ 1

10

}

Clearly, the function associated with Model A yields a symmetric variance profile,
admissible by Theorem 2.4. Model B satisfies the broad connectivity hypothesis (see
[15,Remark 2.8]), henceA5 (which isweaker than the broad connectivity assumption).

Lemma 4.1 Given α ∈ (0, 1) and a > 0, consider the standard deviation profile
matrix An = (σ (i/n, j/n))ni, j=1 where σ 2(x, y) = (x + ay)21|x−y|≤α . Then, there
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Fig. 1 Eigenvalues realizations. Setting: n = 2000; the circles’ radii are
√

ρ(V )

exists a cutoff σ 0 ∈ (0, 1) such that for all n large enough, the matrix An(σ 0) satisfies
the broad connectivity hypothesis with δ = κ = cα for a suitable absolute constant
c > 0.

Proof One can take the cutoff parameter σ0 sufficiently small that the entries σi j < σ0
within the band are confined to the top-left corner of A of dimension n/100, say, at
which point the argument of [14, Corollary 1.17] applies with minor modification. ��

Eigenvalue realizations for Models A and B are shown in Fig. 1.
Up to the “corner effects,” the variance profile for Model A is a scaled version of

the doubly stochastic variance profile considered in Sect. 4.3. It is therefore expected
that the density for Model A is “close” to the density of the circular law.

Due to the form of the variance profile of Model B, a good proportion of the rows
and columns of the matrix Yn have small Euclidean norms. We can therefore expect
that many of the eigenvalues of Yn will concentrate toward zero. This phenomenon is
particularly visible in Fig. 1b.

4.2 A Limiting Distribution with an Atom at z = 0

The following proposition gives an example of a variance profile with a deterministic
equivalent that has an atom at zero.

Proposition 4.2 (Example with an atom and vanishing density at zero) Denote by Jm
the m × m matrix whose elements are all equal to one. Let k ≥ 1 be a fixed integer,
assume that n = km (m ≥ 1) and consider the n × n matrix

An =

⎛
⎜⎜⎜⎝

0 Jm · · · Jm
Jm 0 · · · 0
...

Jm 0 · · · 0

⎞
⎟⎟⎟⎠ . (4.1)
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Associated with matrix An is the sequence of normalized variance profiles Vn =
1
n An � An with spectral radius ρ(Vn) =

√
k−1
k . Denote by ρ∗ = √ρ(Vn) = 4√k−1√

k
.

Then,

(1) Assumptions A1 and A2 hold true.
(2) The function Fn defined in Theorem 2.3 does not depend on n and is given by

Fn(s) = F∞(s) = 1

k

√
(k − 2)2 + 4k2s4 if 0 ≤ s ≤ ρ∗ ,

and F∞(s) = 1 if s > ρ∗. In particular, F∞(0) = 1− 2
k and lims↑ρ∗ F∞(s) = 1.

(3) The density fn(= f∞) and the measure μn(= μ∞) do not depend on n and are
given by

f∞(z) = 4k

π

|z|2√
(k − 2)2 + 4k2|z|4 1{|z|≤ρ∗} ,

μ∞( dz) =
(
1− 2

k

)
δ0( dz)+ 4k

π

|z|2√
(k − 2)2 + 4k2|z|4 1{|z|≤ρ∗}�(dz) .

In particular, f∞(0) = 0.

Proof of Proposition 4.2 is left to the reader.
The definition of Fn readily implies that measure μn admits an atom at zero of

weight 1− 2
k since μn({0}) = Fn(0) = 1− 2

k . This result can (almost) be obtained by
simple linear algebra: Note that rank(Yn) = rank(n−1/2An� Xn) ≤ (m−2)k for any
Xn . Indeed, since the top-right m × (k − 1)m submatrix of Yn has row-rank at most
m, its kernel, and hence the kernel of Yn , has dimension at least m(k − 2). Therefore,
μY
n has an atom at zero with the weight m(k−2)

mk = 1− 2
k (at least) when n is a multiple

of k.

Remark 4.1 (Typical spacing for the random eigenvalues near zero) We heuristically
evaluate the typical spacing for the random eigenvalues in a small disk centered at
zero.

μY
n (B(0, ε)) �

(
1− 2

k

)
+

∫
B(0,ε)

f∞(z)�(dz)

If we remove the n
(
1− 2

k

) = km
(
1− 2

k

) = (k−2)m deterministic zero eigenvalues,
the typical number of random eigenvalues in B(0, ε) is

#{λi random ∈ B(0, ε)} = n ×
∫
B(0,ε)

f∞(z)�(dz) = 2πn
∫ ε

0
sh(s) ds ∝ nε4,

with h(|z|) = f∞(z). Hence, if we want the number of random eigenvalues in B(0, ε)
to be of orderO(1), we need to tune ε = n−1/4 and the typical spacing should be n−1/4
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Fig. 2 Density f∞ and eigenvalue realizations of a 2001×2001matrix for the model studied in Proposition
4.2 in the case k = 3. A repulsion phenomenon can be observed near zero

near zero. On the other hand, the typical spacing at any point z where f∞(z) > 0 is
n−1/2. Notice that n−1/4 � n−1/2. This is confirmed by the simulations which show
some repulsion phenomenon at zero, cf. Fig. 2.

4.3 Revisiting the Circular Law

Example 2.1 in [15] uses Theorem 2.3 to rederive the classical circular law. In [15,
Example 2.2] and [15, Theorem 2.4], the circular law is shown to also hold for any
doubly stochastic variance profile that satisfies Assumption A1. In both these cases,
the master equations (2.1), (2.3) simplify to:

ri ≡ r = r + t

s2 + (r + t)2
, r > 0 and qi ≡ q = q

s2 + q2
, q ≥ 0 . (4.2)

Remark 4.2 Beyond doubly stochastic variance profiles, it is not hard to see that the
circular law also holds for any variance profile of the form DSD−1, where D is a
diagonal, positive matrix and S is a doubly stochastic matrix. Indeed, a randommatrix
with such a variance profile can be represented as DCD−1, where C is a random
matrix with a doubly stochastic variance profile. As the matrices DCD−1 and C have
the same eigenvalues, we see the circular law is the deterministic equivalent for both.

We illustrate this observation by recovering a result by Aagaard and Haagerup [1,
Section 4].

Example 4.1 Let ε > 0 and consider the variance profile C̃ with entries:

σ 2
i j =

{
ε if i ≥ j

ε + 1 if i < j
.

Let A be the associated standard deviation profile and consider the random matrix
model n−1/2A � X . Then, its deterministic equivalent is given by μn , the uniform
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measure on the disk of radius square root of ε
n

∑n−1
i=0

( 1+ε
ε

) i
n . In the limit n → ∞,

the expression for the radius converges to (1/ log(1+ 1/ε))1/2.

To prove this, we begin by conjugating the variance profile by D, the diagonal

matrix with diagonal element Dii =
( 1+ε

ε

) i−1
n . Matrix n−1DC̃D−1 is a circulant

matrix with positive entries. Since the row and column sums of a circulant matrix are
all equal it follows immediately from Theorem 2.3 and Sect. 4.3 that the deterministic
equivalent for the ESD is uniform on a disk. The radius of this disk follows from
computing the first eigenvalue of the circulant variance profile.

Recall that by Corollary 2.8 the variance profiles given in Remark 4.2 are the only
ones that yield the circular law.

4.4 Approximately Doubly Stochastic Variance Profile

We show that a variance profile matrix which is approximately doubly stochastic as
in the statement of the following proposition leads to an approximation of the circular
law1.

Proposition 4.3 Assume that the family (Vn) of variance profile matrices satisfies
Assumptions A1 and A2, and that

‖Vn1n − 1n‖∞ −−−→
n→∞ 0 and ‖V T

n 1n − 1n‖∞ −−−→
n→∞ 0 .

Then, μn converges weakly to μcirc in probability as n →∞.

Sketch of proof. For arbitrary s ∈ R and t > 0, let a = a(t) be the unique positive
solution of the equation

a = a + t

s2 + (a + t)2
(4.3)

in the real variable a. As stated in Sect. 4.3, the system of Eq. (2.1) collapses into this
scalar equation, when the variance profile matrix is doubly stochastic. In fact, g(ı t) =
ıa(t) coincides with the Stieltjes transform of the limiting probability measure given
by the Schwinger–Dyson equations associated with the Hermitized doubly stochastic
model, when restricted to the positive imaginary axis.

Getting back to the system of Eq. (2.1), recall the definitions of the vectors r = (ri )
and r̃ = (̃ri ), and write

mn(t) = 1

n

n∑
i=1

ri , t > 0.

It suffices to prove that for all t large enough,mn(t)→n a(t). Indeed, gn(ı t) = ımn(t)
coincideswith the restriction to the positive imaginary axis of the finite-n deterministic

1 The authors thank the reviewer for having pointed out this approximation problem.
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approximation of the spectral measure of the Hermitized model associated with Vn .
Standard results pertaining to the convergence of Stieltjes transforms of the spectral
measures of the Hermitized models, coupled with the admissibility of the family (Vn)
lead to the result of the proposition, see [15].

Given two vectors b, b̃ ∈ R
n+, write

i (b) = t + (V T
n b)i , and ̃i (b̃) = t + (Vn b̃)i .

After some simple manipulations, (4.3) rearranges to

a(t) = i (a1n)

s2 +i (a1n)̃i (a1n)
+ εi = ̃i (a1n)

s2 +i (a1n)̃i (a1n)
+ ε̃i , i = 1, . . . , n,

where the vector �ε = (ε1, . . . , εn, ε̃1, . . . , ε̃n)
T satisfies ‖�ε ‖∞ →n 0 by the assump-

tions on (Vn). Subtracting (2.1) from the first equality leads to:

a(t)− ri = s2(V T(a1− r)i )+i (a1)i (r)V (a1− r̃))i
(s2 +i (a1n)̃i (a1n))(s2 +i (r)̃i (̃r))

+ εi ,

with a similar equation for a(t) − r̃i . The denominator of this expression is lower

bounded by t4. Moreover, 0 ≤ i (a1),i (r) ≤ t + σ 2
max/t . Writing �r =

(
r
r̃

)
gives

the bound:

‖a12n − �r‖∞ ≤ K
( t2 + s2

t4
+ 1

t6

)
‖a12n − �r‖∞ + ‖�ε ‖∞,

where K is an absolute constant that depends on σ 2
max. Choosing t large enough that

K ((t2 + s2)t−4 + t−6) < 1

holds, we obtain ‖a12n − �r‖∞ →n 0, which in turn implies that mn(t) →n a(t) for
these values of t , as desired. ��

5 Positivity of the Density

In this section, we prove Proposition 2.7, Theorem 2.9 and Corollary 2.8.
In the remainder, the following notation will be useful. For two n × 1 nonnegative

vectors a and ã and two parameters s, t ≥ 0, we shall write �aT = (
aT ãT

)
, and

�(�a, s, t) = diag

(
1

s2 + [(Vn ã)i + t][(V T
n a)i + t] ; i ∈ [n]

)
. (5.1)
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With these notations, the reals ri and qi in the systems (2.1) and (2.3), respectively,
can be written as

ri = (�(�r, s, t))−1i i ((V T
n r)i + t), and qi = (�(�q, s, 0))−1i i (V T

n q)i ,

with similar expressions for r̃i and q̃i .

5.1 Proof of Proposition 2.7

Most of the work will go into showing that the limits limt↓0 �r(0, t) and lims↓0 �q(s)
exist and are equal. To that end, we rely on some of the results of [6], from which we
start by borrowing some notations. We emphasize that the following notation is only
used in this subsection. Given to sequences (an) and (bn) of real numbers, an � bn
refers to the fact that there exists a constant κ > 0 independent of n ≥ 1 such that
an ≤ κ bn . The notation an ∼ bn stands for an � bn and bn � an . Given a real vector
x, the notation min x refers to the smallest element of x.

Lemma 5.1 (Lemmas 3.11, 3.13 and Eq. (3.56) of [6]). Let A1 and A6 hold true, and
recall that �r(0, t) is the unique positive solution of (2.1) for s = 0 and t > 0. Then,

1 � inf
t∈(0,10]min �r(0, t) ≤ sup

t>0
‖ �r(0, t)‖∞ � 1 .

The limit �r0 =
(
r0
r̃0

)
= limt↓0 �r(0, t) exists and satisfies 1 � min �r0 ≤ ‖�r0‖∞ � 1.

Moreover, writing r0 = (r0,i ) and r̃0 = (r̃0,i ), it holds that

r0,i (Vn r̃0)i = 1, and r̃0,i (V
T
n r̃0)i = 1 , i ∈ [n] . (5.2)

Proposition 5.2 (Proposition 3.10 (ii) of [6]). Let A1 and A6 hold. Suppose the func-
tions

�d =
(
d
d̃

)
=

(
(di )i∈[n]
(d̃i )i∈[n]

)
: R+ → C

2n,

and �g =
(
g
g̃

)
=

(
(gi )i∈[n]
(g̃i )i∈[n]

)
: R+ → (C\{0})2n

satisfy

1

gi (t)
= (Vn g̃(t))i + t + di (t) ,

1

g̃i (t)
= (V T

n g(t))i + t + d̃i (t)

and
∑
i∈[n]

gi (t) =
∑
i∈[n]

g̃i (t) (5.3)

for all t ∈ R
+. Then, there exist λ∗ > 0 and C > 0, depending on V , such that

‖�g(t)− �r(0, t)‖∞ 1{‖�g(t)−�r(0,t)‖∞≤λ∗} ≤ C‖�d(t)‖∞ for all |t | < 10 .
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Let us outline the proof of Proposition 2.7–(1). Lemma 5.1 shows that �r(0, t)
converges as t ↓ 0. In parallel, we know from Theorem 2.2–(3) that for each s > 0,
it holds that �r(s, t) →t↓0 �q(s) under the irreducibility assumption, which is implied
byA6. To prove that �q(s)→s↓0 �r0, we fix s > 0 small enough and find a sequence tk ↓
0 such that ‖�r(s, tk)−�r(0, tk)‖∞ ≤ Constant×s2. This inequality will be established
iteratively on k. Specifically, we start with a t0 large enough so that the inequality is
satisfied; then, we apply a bootstrap procedure on k, controlling ‖�r(s, tk)−�r(0, tk)‖∞
at each step with the help of Proposition 5.2 with �g(t) = �r(s, t). We now begin the
proof.

Proof of Proposition 2.7 Letting �g(t) = �r(s, t), we get from (2.1) that �g(t) satis-
fies (5.3) with

di (s, t) = s2

((V T
n r(s, t))i + t

and d̃i (s, t) = s2

((Vn r̃(s, t))i + t
.

Wenow start our iterative procedure by choosing properly the initial value t0. Using the
bound ‖�r(0, t)‖∞ ≤ t−1 and ‖�r(s, t)‖∞ ≤ t−1 from (2.1), and ‖�d(s, t)‖∞ ≤ s2t−1
weget that for t0 sufficiently large,‖�r(s, t0)−�r(0, t0)‖∞ ≤ λ∗ and thusProposition 5.2
gives the bound

‖�r(s, t0)− �r(0, t0)‖∞ ≤ Cs2t−10 . (5.4)

We now fix this t0 and let K = sup0<t<t0 ‖�r(0, t)‖∞, which is finite by Lemma 5.1.
We also introduce �∗, s∗ > 0 such that

�∗ ≤ min

(
λ∗, 1

2σ 2
maxK

)
and (s∗)2 ≤ min

(
�∗

8CK
,
t0�∗

4C

)
. (5.5)

Fix s such that 0 < s < s∗. From the choice of s∗ and (5.4), we get that

‖�r(s, t0)− �r(0, t0)‖∞ ≤ �∗

4
.

By Lemma 5.1 and Theorem 2.2–(3), the functions t �→ �r(0, t) and t �→ �r(s, t)
extend continuously to t = 0 and hence are uniformly continuous on the compact
interval [0, t0]. Thus, there exists η > 0 such that for 0 ≤ t, t ′ ≤ t0 and |t − t ′| ≤ η,
we have

‖�r(0, t)− �r(0, t ′)‖∞ ≤ �∗

4
, ‖�r(s, t)− �r(s, t ′)‖∞

≤ �∗

4
,

∣∣∣(V Tr(s, t))i + t − (V Tr(s, t ′))i − t ′
∣∣∣ ≤ 1

4K
.
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Consider a sequence of real numbers (tk)k≥0 such that tk ↓ 0 and |tk+1 − tk | < η for
k ≥ 0. We shall prove inductively that

‖�r(s, tk)− �r(0, tk)‖∞ ≤ �∗

4
. (5.6)

Using the uniform continuity and the inductive assumption, we obtain

‖�r(s, tk+1)− �r(0, tk+1)‖∞
≤ ‖�r(s, tk+1)−�r(s, tk)‖∞+‖�r(s, tk)−�r(0, tk)‖∞+‖�r(0, tk)− �r(0, tk+1)‖∞ ,

≤ �∗

4
+ �∗

4
+ �∗

4
< �∗ < λ∗ , (5.7)

thus, Proposition 5.2 leads to the bound

‖�r(s, tk+1)− �r(0, tk+1)‖∞ ≤ C‖�d(s, tk+1)‖∞ .

We now upper bound ‖�d(s, tk+1)‖∞. We have:

(V T
n r(s, tk+1))i + tk+1
≥ (V T

n r(0, tk+1))i + tk+1 −
(
((V T

n r(0, tk+1))i − (V T
n r(s, tk+1))i

)
,

(a)≥ (V T
n r(0, tk+1))i + tk+1 − σ 2

max�
∗ ,

(b)= 1

ri (0, tk+1)
− σ 2

max�
∗ ≥ 1

K
− σ 2

max�
∗ (c)≥ 1

2K
,

where (a) follows from (5.7), (b) from the system satisfied by �r(0, tk+1) and (c) from
the constraint (5.5) of �∗.Wefinally endupwith the estimation‖�d(s, tk+1)‖∞ ≤ 2Ks2.
Applying Proposition 5.2 together with (5.7), we obtain

‖�r(s, tk+1)− �r(0, tk+1)‖∞ ≤ C‖�d(s, tk+1)‖∞ ≤ 2CKs2
(a)≤ �∗

4
,

where (a) follows from the fact that s < s∗ and the constraint (5.5) on s∗. Hence,
the induction step is verified. As a byproduct of the induction, we have, after taking
tk ↓ 0,

∀s ∈ (0, s∗) , ‖�q(s)− �r0‖∞ ≤ 2CK s2 (5.8)

and in particular, �q(s) converges to �q(0) = �r0 as s ↓ 0.
Combining qi (0)(V q̃(0))i = 1 and q̃i (0)(V Tq(0))i = 1 with the definition of μn ,

we obtain

μn({0}) = 1− lim
s↓0

1

n
〈q(s), V q̃(s)〉 = 1− 1

n

∑
i∈[n]

qi (0)(V q̃(0))i = 0 .
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Proposition 2.7-(1) is proven.
We now turn to Proposition 2.7-(2). To establish the existence of the limit of f (z)

as z → 0, we first show that ∂s2 �q(s) can be continuously extended to s = 0 as s ↓ 0.
This can be done by considering [15, Lemma 4.4]. Using the shorthand notation
�(s) = �(�q, s, 0) from (5.1), let us define

M(s) =
(

s2�(s)2V T −diag(q(s))2V
−diag(̃q(s))2V T s2�(s)2V

)
,

A(s) =
(
I − M(s)
(1Tn − 1Tn)

)
∈ R

(2n+1)×2n, and b(s) = −
⎛
⎝�(s)q(s)

�(s )̃q(s)
0

⎞
⎠ ∈ R

2n+1.

Then, it is shown in [15, Lemma 4.4] that A(s) is a full column-rank matrix for
s ∈ (0,

√
ρ(V )), and that ∂s2 �q(s) = A(s)−Lb(s), where A(s)−L is the left inverse of

A(s). Now, the important observation here is that if we take s ↓ 0, then A(s) converges
to the full column-rank matrix

A(0) =
(
I − M(0)
(1Tn − 1Tn)

)
, with M(0) =

(
0 −diag(q(0))2V

−diag(̃q(0))2V T 0

)
.

The convergence to A(0) is an immediate consequence of the convergence of �q(s)
that we just established, and of Lemma 5.1. To show that A(0) is full column-rank,
consider thematrix non-negativematrix N = −M(0).We show that �q(0) is the unique
eigenvector of N , up to scaling, such that N �q(0) = �q(0).

For any nonzero vector �x =
(
x
x̃

)
such that �x = N �x, we have

diag(q(0))V diag(̃q(0))diag(̃q(0))−1 x̃ = diag(q(0))−1x, and

diag(̃q(0))V Tdiag(q(0))diag(q(0))−1x = diag(̃q(0))−1 x̃, (5.9)

thus, writing Q = diag(q(0))V diag(̃q(0))2V Tdiag(q(0)), we get that

Qdiag(q(0))−1x = diag(q(0))−1x. (5.10)

We know from Proposition 2.7–(1) that Q is doubly stochastic (see also
Remark 2.3). Moreover, since V is fully indecomposable, Q is also fully indecompos-
able, see, e.g., [11, Theorem 2.2.2]. Thus, it is irreducible, which implies that the only
nonzero vectors x that satisfy (5.10) take the form x = αq(0) for α �= 0. Plugging
this identity into (5.9), we also get that x̃ = αq̃(0), which shows that �x exists and is
equal to α�q(0).

As a consequence, the right null space of the matrix I − M(0) is spanned by the

vector

(
q(0)
−q̃(0)

)
. Since the inner product of the last row of A(0) with this vector is

nonzero, A(0) is full column-rank. By the right continuity of A(s) and b(s) at zero
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and the fact that A(s) is full column-rank on [0,√ρ(V )), we conclude that ∂s2 �q(s)
can be continuously extended to s = 0 as s ↓ 0.

Now, from the expression (2.5) of the density and Eq. (2.3), we have for |z| near
zero

fn(z) = − 1

2πn|z|
d

ds
〈q(s), V q̃(s)〉

∣∣∣
s=|z| = −

1

πn

d

ds2
〈q(s), V q̃(s)〉

∣∣∣
s=|z| (5.11)

= − 1

πn

∑
i∈[n]

∂s2
(Vn q̃(s))i (V T

n q(s))i
s2 + (Vn q̃(s))i (V T

n q(s))i

∣∣∣
s=|z|

= 1

πn

∑
i∈[n]

(Vn q̃(|z|))i (V T
n q(|z|))i − |z|2∂s2

(
(Vn q̃(s))i (V T

n q(s))i
) |s=|z|(|z|2 + (Vn q̃(|z|))i (V T

n q(|z|))i
)2

Since ‖∂s2 �q(s)‖∞ is bounded near zero by what we have just shown, it is easily seen
that

|z|2∂s2
(
(Vn q̃(s))i (V

T
n q(s))i

)
|s=|z| −−→

z→0
0.

We therefore get that

fn(z) −−→
z→0

1

πn

∑
i∈[n]

1

(Vn q̃(0))i (V T
n q(0))i

as well as the inequalities (2.7) by using Lemma 5.1 again, which completes the proof
of Proposition 2.7-(2). ��

5.2 Proof of Theorem 2.9

The positivity of the density has been established under Assumptions A1 and A3 in
[7, Lemma 4.1]. We will follow a similar strategy. The proof of [7, Lemma 4.1] relies
on two crucial steps: the existence and regularity of solutions to the Master Equations
(2.3), and an expression for the density (2.5) in terms of a certain operators whose
spectrum can be controlled. In [15, Section 5], the first step is established, as long as
|z| is away from 0, under the more general AssumptionA5. Following the calculations
from [7], we now carry out the second step, occasionally referring the reader to [7]
for details. We note that while the calculations can be closely followed, the weaker
assumptions on the variance profile V introduce new complications.

In all this section, we follow the notational convention of [7] stating that if u = (ui )
and v = (vi ) are n × 1 vectors, then 1

u is the vector ( 1
ui

)i∈[n],
√
u = (

√
ui )i∈[n],

uv = (uivi )i∈[n], and so on.
In what follows, O(t) refers to error terms that are bounded in magnitude by Ct

for small t , where the constant C can depend on n or on |z|. We use the notation
a(t) � b(t) if there exists a constant C that might depend on n or on |z|, such that
a(t) ≤ Cb(t). The notation a(t) ∼ b(t) refers to a(t) � b(t) � a(t). Note that in
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this subsection the relation ∼ refers to the limit t → 0, rather than n →∞, as in the
previous subsection.

Proof of Theorem 2.9 Wenowprove part (1), in particular in this sectionwewill always
assume Assumption A2 holds and that s = |z|2 is in the interval (0,

√
ρ(V )). As

mentioned in Introduction, we will prove a lower bound that depends on q and q̃. By
Proposition 2.7, we have that under Assumption A6 these vectors are continuous in
a neighborhood of 0 and therefore can continuously extend our lower bound to zero
and match it with the bound in the previous section, ensuring the lower bound stays
away from 0 for all z in the support, verifying part (2).

We start with the expression of the density in (2.5). In what follows, it will be more
convenient to work on the regularized Master Equations provided by the system (2.1)
rather than those given by the system (2.3), recalling from Theorem 2.2–(3) that
�q(s) = limt↓0 �r(s, t) for s > 0. In [15, Section 7], it is indeed proven that we can
switch d/ds2 and limt↓0, and write

fn(z) = − 1

πn

d

ds2

(
lim
t↓0 〈r(s, t), V r̃(s, t)〉

) ∣∣∣
s=|z|

= − 1

πn
lim
t↓0

d

ds2
〈r(s, t), V r̃(s, t)〉

∣∣∣
s=|z|.

Introducing the notation

ϕ(s, t) = V r̃(s, t)+ t , ϕ̃(s, t) = V Tr(s, t)+ t, and �ϕ(s, t) =
(

ϕ(s, t)
ϕ̃(s, t)

)
,

we can rewrite the expression of the density as

fn(z) = − 1

πn
lim
t↓0 〈�ϕ(s, t),

d

ds2
�r(s, t)〉

∣∣∣
s=|z|.

We now use the shorthand �(s, t) = �(�r(s, t), s, t) from (5.1) and let

�(s, t) =
(

�(s, t)
�(s, t)

)
, �̃r(s, t) =

(̃
r(s, t)
r(s, t)

)
.

In what follows we will often drop the dependence on s and t . In expressions with t
taken to zero we will use q instead of r . With this notation, we reformulate (2.1) as

�ϕ(s, t) = �(s, t)−1 �̃r(s, t). (5.12)

We now turn to the derivative d�r(s, t)/ds2. A straightforward adaption of [15, Lemma
4.4] with �q(s) replaced by �r(s, t) yields:

d

ds2
�r(s, t) = A(s, t)−1b(s, t). (5.13)
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where

M(s, t) =
(

s2�(s, t)2V T −diag(r(s, t)2)V
−diag(̃r(s, t)2)V T s2�(s, t)2V

)
,

A(s, t) = I − M(s, t) ∈ R
2n×2n, and b(s, t) = −�(s, t)�r(s, t) ∈ R

2n .

We note that from [15], A(s, t) is invertible.
In [7], a fine analysis of the spectrum of A(s, t) is done for the purpose of estab-

lishing an optimal local law on the eigenvalues of Yn . Here, we borrow some of the
results of [7] in order to control the inverse of this matrix. Following the proof of [7,
Lemma 4.1], the matrix A(s, t) can be factored as

A(s, t) = W(I − T F)W−1, (5.14)

where W , T and F are the 2n × 2n symmetric matrices given as

T = �−1
(−diag(r r̃) s2�2

s2�2 −diag(r r̃)
)

,

W =
(
W

W̃

)
,

F =
(

WV W̃
W̃V TW

)
=

(
F

FT

)
,

W =
√
diag

( r
r̃

)
�, and W̃ =

√
diag

(
r̃
r

)
�.

We note that T , F,W each depend on s, t but we omit the notation for readability.
From Eqs. (5.12)–(5.14), we have

fn(z) = lim
t→0

1

πn

〈
�−1 �̃r,W(I − T F)−1W−1��r

〉

= lim
t→0

1

πn

〈√
�r �̃r,�−1/2(I − T F)−1�1/2

√
�r �̃r

〉
. (5.15)

In order to exploit this decomposition, we will need the following lemmas, which
all hold under the assumptions of Theorem 2.9–(1).

Lemma 5.3 ri (s, t) ∼ 1 and r̃i (s, t) ∼ 1 uniformly in i ∈ [n].
Proof Under A2, the average of r is bounded. Since each term is positive, we trivially
have each term is bounded by an (n-dependent) constant. For the (n-dependent) lower
bounds on ri and r̃i , we refer to [15, Eq. (5.17) and (5.31)]. ��

The following two lemmas provide control on the spectrum of the symmetric oper-
ators T and F. While the proofs appeal to arguments from [7], we point out that we
only use the parts of their theorems that hold without that work’s assumption of A3.
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Lemma 5.4 Let s > 0 and t ∈ (0, 1). Then, there exists a constant ε > 0 such that
the spectrum spec(T ) of T satisfies

min(spec(T )) = −1 and spec(T ) ⊂ {−1} ∪ (−1+ ε, 1− ε)

Moreover, the eigenspace for the eigenvalue −1 is the span of all vectors of the form
(− yT, yT)T.

This lemma follows from the definition of T , (2.1), and the bound in Lemma 5.3,
see [7, Lemma 3.6] for details.

The following lemma gives bounds on the spectrum of F. Unlike in [7], our
assumptions on V do not imply the matrix F is irreducible, but we will not need
its Perron–Frobenius subspace to be one-dimensional. Although we will use that the

vector �−1/2√�r �̃r is near this Perron–Frobenius subspace. In particular in the follow-
ing lemma, we compute the “correction” term.

Lemma 5.5 Let s > 0 and t ∈ (0, 1). There exists a ct ∼ t such that ‖F‖ = 1 − ct .
Let V be the subspace spanned by all eigenvalues with magnitude greater than 1−Ct
for some C > 0. Then, for all t sufficiently small, ‖F|V⊥‖ ≤ 1− ε, for some small ε.
Moreover, there exists an eigenvector f− such that

F f− = −‖F‖ f−, and f− = �−1/2
√
�r �̃re− + ε(t), (5.16)

where e− =
(

1
−1

)
, and ‖ε(t)‖ = O(t). Finally, it holds that

(I + F)−1
(

�−1/2
√
�r �̃r − t

2
W1

)
= 1

2
�−1/2

√
�r �̃r. (5.17)

Proof The bound on the norm and the spectral gap can be obtained by combining
Lemma 5.3 with the proof of [7, Lemma 3.4], in particular (5.16) follows from (3.45)
and (3.46) in [7]. Let us verify (5.17). By direct calculation, using Eq. (5.12) along
with the expression of W , we have

F�−1/2
√
�r �̃r = W

(
V r̃
V Tr

)
= W (�ϕ − t1)

= W
(
�−1 �̃r − t1

)
= �−1/2

√
�r �̃r − tW1. (5.18)

Thus,

(I + F)�−1/2
√
�r �̃r = 2�−1/2

√
�r �̃r − tW1,

and applying (I + F)−1 to both sides of this equation, we obtain (5.17). ��
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We can now manipulate (5.15), the expression for the density. Following [7], the
technique is based on a factorization of the term I−�−1/2T F�1/2. One of the factors
will be dealt with bymeans of the identity (5.17). In order to be able to use this identity,
we shall have to inject the “correction” term 0.5tW1 into the expression (5.15) of the
density. The following lemma shows that this can be done safely.

Lemma 5.6
∣∣∣〈�1/2W1 , �−1/2(I − T F)−1�1/2

√
�r �̃r

〉∣∣∣ � 1.

We prove this technical lemma in Appendix A.

Now, writing E =
(
I I
I I

)
∈ R

2n×2n , we factor the matrix �−1/2(I − T F)�1/2 as

in [7, Equation 4.16], namely

�−1/2(I − T F)�1/2 = (I − s2�1/2EF(I + F)−1�1/2)(I +�−1/2F�1/2).

Using Lemma 5.6 to add a correction term and then substituting this relationship gives:

fn(z) = lim
t→0

1

πn

〈√
�r �̃r − 0.5t�1/2W1,�−1/2(I − T F)−1�1/2

√
�r �̃r

〉

= lim
t→0

1

πn

〈
(I +�1/2F�−1/2)−1(

√
�r �̃r − 0.5t�1/2W1),

(I − s2�1/2EF(I + F)−1�1/2)−1
√
�r �̃r

〉

= lim
t→0

1

2πn

〈√
�r �̃r, (I − s2�1/2EF(I + F)−1�1/2)−1

√
�r �̃r

〉
,

where the final equality uses (5.17). After some algebraic manipulations, it is shown
in [7] that

(I − s2�1/2EF(I + F)−1�1/2)−1
(
x
x

)
=

(
(I − s2�1/2B�1/2)−1x
(I − s2�1/2B�1/2)−1x

)
,

where

Bx = (
I I

) ((
I 0
0 I

)
−

(
I F
FT I

)−1)(
x
x

)
.

We thus obtain that

fn(z) = lim
t→0

1

πn

〈√
r r̃, (I − s2�1/2B�1/2)−1

√
r r̃

〉
. (5.19)

The matrix B is symmetric. Furthermore, because the spectrum of F is contained in
[−1, 1] and the vector s2� has entries strictly less than 1 we have the eigenvalues of
s2�1/2B�1/2 are bounded away from 1, uniformly in t ; see [7, Eq. (4.20) - (4.22)]
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for details (note the matrix B is labeled A there). To lower bound this expression, we

begin by noting that if

(
x
x

)
is an eigenvector of F, with eigenvalue λ, then

Bx = 2λ

1+ λ
x . (5.20)

From Lemma 5.5, we have that

(
�−1/2√r r̃
�−1/2√r r̃

)
is O(t) from an eigenvector of F with

eigenvalue 1. Let f+ be this eigenvector. Since the operator (I − s2�1/2B�1/2)−1
has uniformly bounded norm, we can replace

√
r r̃ with�1/2 f+, at the cost of an error

that goes to zero as t → 0. We now have all the elements to provide a lower bound on
the density. Using the Cauchy–Schwarz inequality (with respect to the inner product
〈·, (s−2�−1 − B)−1·〉) along with (5.20), we have

lim
t→0
〈√r r̃, (I − s2�1/2B�1/2)−1

√
r r̃〉

= lim
t→0
〈�−1/2 f+, (I − s2�1/2B�1/2)−1�−1/2 f+〉

= lim
t→0

s−2〈 f+, (s−2�−1 − B)−1 f+〉

≥ lim
t→0

‖ f+‖2
s2〈 f+, (s−2�−1 − B) f+〉

= lim
t→0

‖ f+‖2
s2〈 f+, (s−2�−1 − I ) f+〉 .

Taking the limit t → 0 and using that f+ → �−1/2√qq̃ as t → 0 gives

lim
t→0

‖ f+‖2
s2〈 f+, (s−2�−1 − I ) f+〉 =

‖�−1/2√qq̃‖2
s2〈�−1qq̃, (s−2�−11− 1)〉 .

Then, using the equalities

�−1(s−2�−11− 1) = �−1ϕϕ̃

s2
= �qq̃

s2

gives

fn(z) ≥
∑n

i=1 �−1
i qi q̃i∑n

i=1 �i q2i q̃
2
i

. (5.21)

From the uniformity in t in Lemma 5.3, qi , q̃i are upper and lower-bounded and
hence Theorem 2.9–(1) is proven. ��

123



Journal of Theoretical Probability

5.3 Proof of Corollary 2.8

The proof relies on the following theorem by Friedland and Karlin:

Theorem 5.7 (Theorem 3.1, Eq. (1.9) in [17]) Let M be an irreducible non-negative
matrix with Perron–Frobenius left and right eigenvectors u, v normalized so that∑

i∈[n] uivi = 1 and ρ(M) = 1. Let D be a diagonal matrix with positive entries.
Then,

ρ(MD) ≥
n∏
i

duivii (5.22)

Proof of Corollary 2.8 Without loss of generality we consider V such that ρ(V ) = 1.
Proposition 2.7, μn gives the formula for the density at 0. By (2.6), matrix S :=
diag(q)V diag(̃q) is doubly stochastic hence with spectral radius 1 and any left or
right Perron–Frobenius eigenvector u or v is proportional to 1n . In particular, the
normalization

∑
i∈[n] uivi = 1 implies uivi = n−1. We now apply Theorem 5.7 with

M = S and D = (diag(̃q)diag(q))−1 to get

ρ(S (diag(̃q)diag(q))−1) ≥
∏
i∈[n]

(
1

qi (0)q̃i (0)

) 1
n

.

Since ρ(SD) = ρ((diag(q))−1 S (diag(̃q))−1) = ρ(V ) = 1, we arrive at

1 ≤
∏
i∈[n]

[qi (0)q̃i (0)]
1
n ≤ 1

n

∑
i∈[n]

qi (0)q̃i (0) ,

where the second inequality is the AM-GM inequality. We note that equality in the
final inequality only occurs if qi (0)q̃i (0) = 1 for all i ∈ [n]. This condition can be
rewritten as diag(q)−1 = diag(̃q), which, by Remark 4.2, implies the desired form
V = diag(q)−1 S diag(q) . ��
Acknowledgements The work of NC was partially supported by NSF grants DMS-1266164 and DMS-
1606310. The work of WH and JN was partially supported by the Labex BEZOUT from the Gustave Eiffel
University. DR was partially supported by Austrian Science Fund (FWF): M2080-N35. DR would also like
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Appendix A. Proof of Lemma 5.6

Before completing the proof, we state several technical lemmas, from which
Lemma 5.6 will immediately follow. The first step is to define the subspace on which
the inverse (I − T F)−1 is not bounded.
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Lemma A.1 Let V−1 be spanned by eigenvectors of F with eigenvalues in (−1,−1+
Ct], that are additionally of the form

(
x
−x

)
+ �w, where ‖ �w‖ < 2‖ε(t)‖ and C and

ε(t) are from in Lemma 5.5. Then, the subspace V−1 is spanned by f−.

Proof From Lemma 5.5, we have that f− is an eigenvector of F, within an ‖ε(t)‖
distance of�−1/2√�r �̃re−. Nowwe show f− spansV−1. Let �y =

(
y
− y

)
+

(
w

w̃

)
∈ V−1

be a unit vector. The block structure of F, then implies F y = y + w + Fw̃. The
irreducible matrix F has non-negative entries, with norm 1 − ct and spectral radius
also tending to 1 as t → 0. Additionally y, up to an 4‖ε(t)‖ error, saturates this norm
bound, so we must have that y = y1+ y2, where the entries of y1 have the same sign
and ‖ y2‖ = C1‖ε(t)‖. Otherwise, setting the entries equal to their absolute values
would give a bigger norm. Finally, as the vectors f− and �y are both C1‖ε(t)‖ away
from vectors who each have the same sign, we conclude they cannot be orthogonal
for all small t , and therefore f− spans V-1. ��

To prove Lemma 5.6, we will use the following identity to bound (I − FT )−1W1:

(I − FT )−1�x = 1

2
�x + (I − FT )−1

(
FT �x + �x

2

)
(A.1)

or any vector �x. We will apply this identity with �x = ( FT+I
2

)k
W1, for k a non-

negative integer. We now bound the inner product of the final term and f−. Afterward,
we show this is an effective bound.

Lemma A.2 For any positive integer k,

∣∣∣∣∣
〈
f−,

(
FT + I

2

)k

W1

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
f−,

(
FT + I

2

)k−1
W1

〉∣∣∣∣∣+ ‖ε(t)‖
∥∥∥∥∥
(
FT + I

2

)k−1
W1

∥∥∥∥∥ (A.2)

≤ |〈 f−,W1〉| + ‖ε(t)‖
k−1∑
j=0

∥∥∥∥∥
(
FT + I

2

) j

W1

∥∥∥∥∥ .

Furthermore,

|〈 f−,W1〉| ≤ ‖ε(t)‖‖W‖ .

Proof We will prove the inequality in the first line of (A.2), the second line follows
by inductively applying the first line.
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〈
f−,

(
FT + I

2

)k

W1

〉

=
〈(

T F + I

2

)
f−,

(
FT + I

2

)k−1
W1

〉

= ‖F‖
〈
f−,

(
FT + I

2

)k−1
W1

〉
+ ‖F‖

〈(
I − T
2

)
ε(t),

(
FT + I

2

)k−1
W1

〉

where we use that

T F f− = −‖F‖T f− = ‖F‖ f− + ‖F‖(I − T )ε(t)

then the desired inequality follows by applying the Cauchy–Schwarz inequality to the
second term. The inner product between W1 and f− is bounded using (5.16) along
with the identity∑

ri =∑
r̃i :

|〈W1, f−〉| = |〈r, 1〉 − 〈̃r, 1〉 + 〈W1, ε(t)〉| ≤ ‖ε(t)‖‖W‖.

��
Wenow show that final term in the identity (A.1) will have smaller norm than vector

on the left side.

Lemma A.3 There exists a constant c > 0 such that, for each non-negative integer k,
we have

∥∥∥∥∥
(
FT + I

2

)k

W1

∥∥∥∥∥ ≤ (1− cε)k ‖W‖ .

Proof We prove this lemma by induction. If k = 0, the lemma is trivial. Let k > 0

and let �x = ( FT+I
2

)k−1
W1. By the induction hypothesis we have

∥∥∥∥∥
(
FT + I

2

) j

W1

∥∥∥∥∥ ≤ (1− cε) j ‖W‖

for all 0 ≤ j ≤ k − 1.

∥∥∥∥
(
FT + I

2

)
�x
∥∥∥∥
2

= 1

4

(
‖�x‖2 + ‖FT �x‖2 + 2〈FT �x, �x〉

)
. (A.3)

Webound the second termby ‖FT �x‖ ≤ ‖F‖‖T‖‖�x‖ ≤ ‖�x‖. Let �x = f−〈 f−, �x〉+�x′
be the orthogonal decomposition of �x onto f− and its orthogonal complement. Then,
we expand the final term as
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〈FT �x, �x〉 = 〈FT �x, �x′〉 + 〈FT �x, f−〉〈�x, f−〉 = 〈FT �x′, �x′〉 + 〈FT f−, �x′〉〈�x, f−〉
+〈FT �x, f−〉〈�x, f−〉.

which we bound by

− ‖�x‖2 ≤ 〈FT �x, �x〉 ≤ 〈T �x′, F�x′〉 + 2‖�x‖‖ f−‖〈�x, f−〉 . (A.4)

From the induction hypothesis along with Lemma A.2, we have

|〈 f−, �x〉| ≤ 2‖ε(t)‖
k−2∑
j=0

(1− cε) j ‖W1‖ ≤ 2

cε
‖ε(t)‖‖W1‖ . (A.5)

To bound 〈T �x′, F�x′〉, let �x′ = �x1+ �x2 where �x1 is the projection onto the eigenspace
of T corresponding to the eigenvalue −1, and �x2 is the projection onto the remaining
eigenspaces. We now consider two cases based on the size of ‖�x2‖ compared to ‖�x‖.
In what follows c1 will be an appropriately chosen small constant depending only on
ε. Case I. If ‖�x2‖ ≤ c1‖�x′‖, then we begin by expanding:

〈T �x′, F�x′〉 = −〈�x1, F�x1〉 + 〈T �x2, F�x1〉 + 〈T �x′, F�x2〉 . (A.6)

To bound −〈�x1, F�x1〉 from above we project �x1 onto f− and its orthogonal comple-
ment. By choice of c1, we will make the projection onto f− small. We will bound the

orthogonal term by using that it is of the form

(
x
−x

)
+ �w and thus not in V−1. Indeed,

for c1 is chosen sufficiently small (compared to ε)

|〈�x1, f−〉| = |〈�x′, f−〉 − 〈�x2, f−〉| ≤ 0+ c1‖�x‖‖ f−‖

and then

−〈�x1, F�x1〉 = −〈�x1, F f−〉〈�x1, f−〉 − 〈�x1, F(�x1 − 〈�x1, f−〉 f−)〉
≤ c1‖�x′‖2‖ f−‖2 + (1− ε)‖�x′‖2.

So we have that there exist a constant c2 such that

−〈�x1, F�x1〉 ≤ (1− c2ε)‖�x′‖

and if c1 is chosen smaller, then c2 can be chosen closer to 1. Then, continuing from
(A.6) gives:

〈T �x′, F�x′〉 ≤ (1− c2ε)‖�x′‖2 + 2‖�x′‖‖�x2‖.

Thus, for a sufficiently small choice of c1, there is a c3 such that

〈T �x′, F�x′〉 ≤ (1− c3ε)‖x‖2. (A.7)
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Case II: If ‖�x2‖ > c1‖�x‖ From the bound ‖T �x2‖ ≤ (1− ε)‖�x2‖, we have that

〈T �x′, F�x′〉 ≤
√
‖T �x1‖2 + ‖T �x2‖2‖�x′‖ ≤

√
‖�x1‖2 + (1− ε)‖�x2‖2‖�x′‖

≤
√
1− c21ε‖�x′‖2.

Choosing c′ to be the smaller of the bounds between the two cases, we have for any
possible �x′

〈T �x′, F�x′〉 ≤ (1− c′ε)‖x‖2. (A.8)

So for all t sufficiently small, combining (A.4), (A.5), and (A.8) gives for some constant
c4:

−‖�x‖2 ≤ 〈FT �x, �x〉 ≤ (1− c4ε)‖�x‖2.

Substituting these estimates into (A.3) gives that there exists a c such that

∥∥∥∥
(
FT + I

2

)
�x′

∥∥∥∥ ≤ (1− c ε)‖�x′‖.

as desired. ��
Proof of Lemma 5.6 By taking the adjoint and then applying the Cauchy–Schwarz
inequality, we have

∣∣∣〈�1/2W1 , �−1/2(I − T F)−1�1/2
√
�r �̃r

〉∣∣∣ ≤ ‖(I − FT )−1W1‖
∥∥∥�1/2

√
�r �̃r

∥∥∥ .

Then applying (A.1) iteratively gives:

(I − FT )−1W1 =
∞∑
k=0

(
I + FT

2

)k 1

2
W1 .

Then, applying Lemma A.3 we have

‖(I − FT )−1W1‖ ≤ ‖W1‖
∞∑
k=0

(1− cε)k .

The desired inequality then follows. ��
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8. Alt, J., Erdős, L., Krüger, T., Nemish, Y.: Location of the spectrum of Kronecker random matrices.
Ann. Inst. Henri Poincaré Probab. Stat. 55(2), 661–696 (2019)

9. Alt, J., Krüger, T.: Inhomogeneous circular law for correlated matrices. J. Funct. Anal., 281(7):Paper
No. 109120, 73 (2021)

10. Anselone, P.M., Palmer, T.W.: Spectral analysis of collectively compact, strongly convergent operator
sequences. Pac. J. Math. 25, 423–431 (1968)

11. Bapat, R.B., Raghavan, T.E.S.: Nonnegative matrices and applications. In: Encyclopedia of Mathe-
matics and its Applications, vol. 64. Cambridge University Press, Cambridge (1997)

12. Bordenave, C., Caputo, P., Chafaï, D.: Circular law theorem for random Markov matrices. Probab.
Theory Related Fields 152(3–4), 751–779 (2012)

13. Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)
14. Cook, N.A.: Lower bounds for the smallest singular value of structured randommatrices. Ann. Probab.

46(6), 3442–3500 (2018)
15. Cook, N.A., Hachem, W., Najim, J., Renfrew, D.: Non-Hermitian random matrices with a variance

profile (I): deterministic equivalents and limiting ESDs. Electron. J. Probab., 23: Paper No. 110, 61
(2018)

16. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
17. Friedland, S., Karlin, S.: Some inequalities for the spectral radius of non-negative matrices and appli-

cations. Duke Math. J. 42(3), 459–490 (1975)
18. Girko, V.L.: Theory of stochastic canonical equations. In: Vol, I. (ed.) volume 535 of Mathematics and

its Applications. Kluwer Academic Publishers, Dordrecht (2001)
19. Götze, F., Naumov, A.A., Tikhomirov, A.N.: Limit theorems for two classes of random matrices with

dependent entries. Theory Probab. Appl. 59(1), 23–39 (2015)
20. Hachem, W., Loubaton, P., Najim, J.: The empirical eigenvalue distribution of a Gram matrix: from

independence to stationarity. Markov Process. Related Fields 11(4), 629–648 (2005)
21. Nguyen, H.H.: Random doubly stochastic matrices: the circular law. Ann. Probab. 42(3), 1161–1196

(2014)
22. O’Rourke, S.: A note on the Marchenko-Pastur law for a class of random matrices with dependent

entries. In: Electronic Communications in Probability, vol. 17 (2012)
23. Reed, M., Simon, B.:Methods of ModernMathematical Physics. I, 2nd edn. Academic Press Inc., New

York (1980). Functional analysis
24. Shlyakhtenko, D.: Random Gaussian band matrices and freeness with amalgamation. Int. Math. Res.

Notices 20, 1013–1025 (1996)
25. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J.

Math. 21, 343–348 (1967)
26. Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of ESDS and the circular law. Ann.

Probab. 38(5), 2023–2065 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Non-Hermitian Random Matrices with a Variance Profile (II): Properties and Examples
	Abstract
	1 Introduction
	1.1 The Setting
	1.2 Contributions of this Paper

	2 Limiting Spectral Distribution: A Reminder and Some Complements
	2.1 Notational Preliminaries
	2.2 Model Assumptions
	2.3 Results from cook2018non
	2.4 Sufficient Conditions for Admissibility
	2.5 Positivity of the Density of µn

	3 Sampled Variance Profile
	3.1 Sampled Variance Profile
	3.2 Proof of Theorem 3.1

	4 Examples and Simulations
	4.1 Band Matrix Models
	4.2 A Limiting Distribution with an Atom at z=0
	4.3 Revisiting the Circular Law
	4.4 Approximately Doubly Stochastic Variance Profile

	5 Positivity of the Density
	5.1 Proof of Proposition 2.7
	5.2 Proof of Theorem 2.9
	5.3 Proof of Corollary 2.8

	Acknowledgements
	Appendix A. Proof of Lemma 5.6
	References




