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1 Introduction

1.1 Motivation

This paper is motivated by the problem of source localization using a large sensor network. In this context, the

observation is a complex valued M-variate time series (yn)n∈Z (M represents the number of sensors of the array)

given by

yn =
K
∑

k=1

sk,n a(θk )+vn = A(θ)sn +vn ,

where
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• The K < M scalar (in general complex valued) time series ((sk,n)n∈Z for k = 1, . . . ,K are non observable, and

represent the signals transmitted by K transmitters. The vector sn is given by sn = (s1,n , . . . , sK ,n)T .

• For each k, θk is a scalar real parameter characterizing the direction of arrival of transmitter k. θ → a(θ)

is a known C
M -valued function depending on the sensor network geometry, and matrix A(θ) is defined as

A(θ) = (a(θ1), . . . ,a(θK )).

• (vn)n∈Z finally represents an additive complex Gaussian noise, i.e. vn = (v1,n , . . . , vM ,n)T where the M time se-

ries
(

(vk,n)n∈Z
)

k=1,...,M are mutually independent identically distributed (i.i.d.) sequences such that Re(vk,n)

and Im(vk,n) are independent real Gaussian random variables with zero mean and variance σ2/2.

The classical source localization problem consists in estimating vector θ = (θ1, . . . ,θK )T from N samples collected

in the M × N matrix YN = (y1, . . . ,yN ). This problem was extensively studied in the past (see e.g. [21] and the

references therein). The so-called subspace estimator of θ = (θ1, . . . ,θK )T is based on the observation that if ma-

trices A(θ) and SN = (s1, . . . ,sN ) have both full rank K , then the angles (θk )k=1,...,K are solutions 1 of the equation

a(θ)∗ΠN a(θ) = 0, where ΠN represents the orthogonal projection matrix on the kernel of matrix A(θ)SN S∗
N A(θ)∗.

The existing subspace methods consist in estimating for each θ the quadratic form ηN (θ) = a(θ)∗ΠN a(θ) of ΠN by

a certain term η̂N (θ), and then to estimate the K angles as the argument of the K most significant local minima of

function θ → η̂N (θ). This approach has been extensively developed when N →+∞ and M fixed. In this context,

ηN (θ) can be estimated consistently for each θ by η̂N (θ) = a(θ)∗Π̂N a(θ) with Π̂N the orthogonal projection matrix

on the eigenspace associated to the M −K smallest eigenvalues of the empirical covariance matrix 1
N

YN Y∗
N . It

clearly holds that supθ∈[−π,π]

∣

∣η̂N (θ)−ηN (θ)
∣

∣ converges torwards 0 almost surely, and this allows to prove that the

corresponding estimators (θ̂k )k=1,...,K of the direction of arrivals are consistent.

If however M and N are of the same order of magnitude, a quite common situation if the number of sensors M

is large, then the above estimators show poor performances because Π̂N is no longer an accurate estimator of ΠN .

In order to study this context, Mestre & Lagunas [18] were the first to propose consistent estimators of ηN (θ) when

M , N → +∞ in such a way that cN = M
N

→ c, with c > 0. In Mestre & Lagunas [18], it is assumed that the source

signals (sk,n)k=1,...,K are mutually independent complex Gaussian i.i.d. time series with unit variance elements.

Under this assumption, yn can be written as

yn = R1/2
y xn ,

where Ry = A(θ)A(θ)∗+σ2IM represents the covariance matrix of the time series (yn)n∈Z and xn is a complex stan-

dard Gaussian vector. Matrix ΠN coincides with the orthogonal projection matrix over the eigenspace of Ry associ-

ated to the eigenvalue σ2, and Mestre & Lagunas addressed the problem of estimating consistently any quadratic

form of ΠN from the empirical covariance matrix 1
N

YN Y∗
N where YN = R1/2

y XN and XN = (x1, . . . ,xN ). Mestre &

Lagunas [18] used properties (see Silverstein & Choi [20], Bai & Silverstein [1] [2]) of the empirical covariance ma-

trix, and were able to exhibit a M ×M matrix Π̃i i d ,N such that a∗
N Π̃i i d ,N aN −a∗

NΠN aN → 0 for each deterministic

bounded sequence of vectors (aN ) when M , N →+∞ in such a way that cN = M
N

→ c, with c > 0. In some sense,

matrix Π̃i i d ,N can be viewed as a consistent estimate of ΠN but in a weak sense because in general, it does not hold

that ‖Πi i d ,N −ΠN‖→ 0, where we have denoted by ‖.‖ the usual spectral norm. Mestre & Lagunas concluded that

for each θ, a(θ)∗Π̃i i d ,N a(θ) is a consistent estimate of ηN (θ). However, the consistency of the angular estimates

was not established. Note that these results do not require any hypothesis on K which may scale with N or not.

In Vallet et al. [23], a more general case was considered where the time series (sk,n)k=1,...,K are deterministic

signals for which the spectral norm of matrix 1p
N

A(θ)SN is bounded w.r.t. the dimensions M , N ,K . This time,

random matrix YN is non zero mean, and corresponds to the so-called "Information plus Noise model" investi-

gated in various works of Girko (see e.g. [11]) and Dozier & Silverstein ([9], [8]). Using new results on the almost

sure localization of the eigenvalues of the empirical covariance matrix 1
N

YN Y∗
N , [23] generalized the estimator of

Mestre & Lagunas [18], and derived a "weakly consistent estimator" Π̃N of ΠN , i.e. a∗
N Π̃N aN −a∗

NΠN aN → 0 for

each deterministic bounded sequences of vectors (aN ). Therefore, it holds that for each θ, η̃N (θ) = a(θ)∗Π̃N a(θ) is

a consistent estimate of ηN (θ) if a(θ) is uniformly bounded in N .

The goal of the present paper is to pursue the work [23], and to establish that the angle estimates defined as

the K most significant local minima of function θ → a(θ)∗Π̃N a(θ) are consistent. As it will be shown below, the

1 The K angles are the unique solutions under certain assumptions on function θ→ a(θ)
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consistency of the angle estimates is based on the property

sup
θ∈[−π,π]

|η̃N (θ)−ηN (θ)|→ 0 (1)

almost surely, that we shall refer to as the uniform consistency of the estimate η̃N (θ) of ηN (θ).

This paper is organized as follows. In Section 2, we provide some background material on the asymptotic eigen-

value distribution of the large information plus noise model, on the almost sure localization of the eigenvalues of

the empirical covariance matrix, and on the consistent estimator of a∗
NΠN aN proposed in [23]. In Section 3, we

prove the property of uniform consistency of estimator η̃N (θ) (see (1)) when function a(θ) is defined by

a(θ) =
1

p
M

(

1,e iθ , . . . ,e i (M−1)θ
)T

. (2)

(1) of course holds for more general functions, but we believe that considering the typical example defined by (2)

is informative enough. The proof of (1) heavily relies on results concerning the probability that the eigenvalues

of
YN Y∗

N

N
escape from the intervals in which they are located almost surely for N large enough. These results are

believed to be of independent interest. Finally, we establish in Section 4 the consistency of the K most significant

local minima of function θ→ η̃N (θ) by following the approach in [15].

1.2 General notations and useful results

We now introduce various notations and results used throughout the paper.

• If E ⊂R, Int(E) and ∂E represent the interior and the boundary of E respectively.

• If z ∈ C, the complex conjugate of z is denoted z or z∗. For a complex matrix A, we denote its transpose by

AT and its Hermitian adjoint by A∗.

• We denote by C
∞(R,R) (respectively C

∞
c (R,R)) the set of all smooth real-valued functions (resp. compactly

supported smooth real values functions).

• The quantity C will represent a generic positive constant whose main feature is to be deterministic and

independent of M and N . The value of C may change from one line to another.

• Similarly, P1 and P2 will denote generic polynomials, independent of M and N , with positive coefficients.

The polynomials may change from one line to another.

• Complex Gaussian distribution: A complex valued random variable Z = X + i Y follows the distribution

C N
(

α+ iβ,σ2
)

if X and Y are independent real Gaussian random variables N

(

α, σ
2

2

)

and N

(

β, σ
2

2

)

re-

spectively. The variance of Z , denoted as Var(Z ) is defined as Var(Z ) = E|Z −E[Z ]|2 =σ2.

• Poincaré inequality (see Chen [6]): let Z1 = X1 + i Y1, . . . , Zp = Xp + i Yp be p iid C N (0,σ2) random variables

and consider a function γ defined on R
2p continuously differentiable with polynomially bounded partial

derivatives. Then, if X = (X1, . . . , Xp )T and Y = (Y1, . . . ,Yp )T , the random variable γ(X,Y) can be written as

γ(X,Y) = γ̃(Z,Z) and

Var
[

γ(X,Y)
]

= Var
[

γ̃(Z,Z)
]

≤σ2
p
∑

i=1

(

E

∣

∣

∣

∣

∣

∂γ̃(Z,Z)

∂zi

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∂γ̃(Z,Z)

∂zi

∣

∣

∣

∣

∣

2)

,

where we define as usual the differential operators ∂
∂z

= 1
2

(

∂
∂x

− i ∂
∂y

)

and ∂
∂z

= 1
2

(

∂
∂x

+ i ∂
∂y

)

. If γ is real-valued,

it is clear that
∂γ̃(Z,Z)

∂zi
coincides with the complex conjugate of

∂γ̃(Z,Z)
∂zi

. In this case, the Poincaré inequality

reduces to

Var(γ(X,Y)) ≤ 2σ2
∑

i

E

∣

∣

∣

∣

∣

∂γ̃(Z,Z)

∂zi

∣

∣

∣

∣

∣

2

.
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• Stieltjes transform: Let µ be a positive finite measure on R. Its Stieltjes transform m is the function defined

by

m(z) =
∫

R

dµ(λ)

λ− z
, ∀z ∈C\supp(µ),

where supp(µ) represents the support of measure µ. Function m is holomorphic on C\supp(µ) and satisfies
Im(m(z))

Im(z)
> 0 for z ∈C\R and m(i y) → 0 when y →+∞. Moreover, supp(µ) ⊂ R

+ if and only if Im(zm(z))
Im(z)

> 0 for

z ∈C\R. The mass of the measure µ can be evaluated through the formula

µ(R) = lim
y→+∞

−i ym(i y).

We also notice that if m(z) is the Stieltjes transform of positive measure µ, then it holds that

|m(z)| ≤
µ(R)

dist
(

z, supp(µ)
) ≤

µ(R)

|Im(z)|
,

and that m′(z) =
∫

R

dµ(λ)

(λ−z)2 satisfies

∣

∣m′(z)
∣

∣≤
µ(R)

dist
(

z, supp(µ)
)2

≤
µ(R)

|Im(z)|2
,

on C\supp(µ). We finally recall the following version of the inverse Stieltjes transform formula: For each

function ψ ∈C
∞
c (R,R)), we have

∫

R

ψ(λ)dµ(λ) =
1

π
lim
y↓0

Im

(∫

R

ψ(λ)m(λ+ i y)dλ

)

. (3)

2 Background on the Information plus Noise model and on the estimator of

[23]

All along this paper, we consider integers M , N ,K ∈N
∗ such that 1 ≤ K < M , K = K (N ) and M = M(N ) are functions

of N with cN = M
N

→ c > 0 as N →∞. We assume that

Assumption A-1: 0 < cN < 1 and 0 < c < 1.

In this section, ΣN represents the complex valued M ×N random matrix given by

ΣN =
YNp

N
= BN +WN ,

where BN = A(θ)SNp
N

and WN = VNp
N

. Matrices BN and WN are assumed to satisfy the following assumptions

Assumption A-2: Matrix BN is deterministic and satisfies supN ‖BN‖ <+∞

Assumption A-3: Rank(BN B∗
N ) = K < M where K may scale with N or not.

Assumption A-4: The entries of matrix WN are i.i.d and follow the complex normal distribution C N (0, σ
2

N
).

We assume moreover that the non zero eigenvalues of BN B∗
N have multiplicities 1 in order to simplify the

notations. In the following, we denote by 0 = λ1,N = . . . = λM−K ,N < λM−K+1,N < . . . < λM ,N and (uk,N )k=1,...,M the

ordered eigenvalues and associated eigenvectors of BN B∗
N . The eigenvalues and the eigenvectors of matrix ΣNΣ

∗
N

are denoted (λ̂k,N )k=1,...,M and (ûk,N )k=1,...,M , and µ̂N represents the empirical eigenvalue distribution of ΣNΣ
∗
N

defined by

µ̂N =
1

M

M
∑

k=1

δλ̂k,N
.

As we assume cN < 1, the joint probability distribution of (λ̂k,N )k=1,...,M is absolutely continuous (see e.g. James

[16]) and it holds that the (λ̂k,N )k=1,...,M have multiplicity 1 almost surely. We finally denote by QN (z) the resolvent

of matrix ΣNΣ
∗
N , i.e. QN (z) =

(

ΣNΣ
∗
N − zIM

)−1
.
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2.1 The asymptotic eigenvalue distribution µN of µ̂N

It is well-known ([11, Th. 7.4], [9, Th. 1.1]) that it exists a sequence of deterministic probability measures (µN ) such

that µ̂N −µN →N 0 weakly almost surely. Measure µN is characterized by its Stieltjes transform mN (z) which is

known to satisfy the equation

mN (z) =
1

M
Tr

[

−z(1+σ2cN mN (z))IM +σ2(1− cN )IM +
BN B∗

N

1+σ2cN mN (z)

]−1

, (4)

for each z ∈C\R+. In the following, we denote by SN the support of µN . As µ̂N −µN →N 0 weakly almost surely, it

holds that

m̂N (z)−mN (z) → 0 (5)

almost surely for each z ∈C\R+. The following result will be of help.

Lemma 1 ([12], [4]). Let ψ ∈C
∞
c (R,R) and (rN ) a sequence of holomorphic functions on C\R such that

|rN (z)| ≤ P1(|z|)P2

(

1

|Im(z)|

)

,

with P1 and P2 two polynomials with positive coefficients, independent of N . Then,

limsup
y↓0

∣

∣

∣

∣

∫

R

ψ(x)rN (x + i y)dx

∣

∣

∣

∣

≤C <∞,

with C a constant independent of N .

Taking into account the previous result, it is shown in [23] that

E[m̂N (z)] = mN (z)+
rN (z)

N 2
, (6)

with rN as in Lemma 1. Using the inverse Stieltjes transform formula (3), we obtain that for each function ψ ∈
C

∞
c (R,R), it holds that

1

M
E
[

Trψ(ΣNΣ
∗
N )

]

=
1

M

M
∑

k=1

E
[

ψ(λ̂k,N )
]

=
∫

SN

ψ(λ)µN (dλ)+O

(

1

N 2

)

. (7)

If we denote by TN (z) the matrix-valued function defined by

TN (z) =
[

−z(1+σ2cN mN (z))IM +σ2(1− cN )IM +
BN B∗

N

1+σ2cN mN (z)

]−1

,

then TN coincides with the Stieltjes transform of a positive matrix valued measure µN with support SN such that

µN (SN ) = IM (see Hachem et al [13, Th. 2.4 & Prop. 2.2]), i.e.

TN (z) =
∫

SN

dµN (λ)

λ− z
.

As mN (z) verifies the equation (4), it is clear that 1
M

TrµN =µN .

In the remainder of the paper, we will make use of the following result proved in [23] if WN is complex Gaussian

and in Hachem et al [14] in the non Gaussian case.

Theorem 1. Consider two sequences of deterministic vectors (bN ), (dN ) such that supN ‖bN‖ <+∞ and supN ‖dN‖ <
+∞. Then, it holds that

b∗
N QN (z)dN −b∗

N TN (z)dN −→
N

0, (8)

almost surely for each z ∈C\R+.
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2.2 The characterization of the support SN of µN

The support SN of µN was first studied in Dozier & Silverstein [8] and a more convenient characterization was

presented in [23]. We first recall (see [8]) that if z ∈ C
+ converges torwards x ∈ R, then, mN (z) converges torwards

a finite limit still denoted mN (x). Function x → mN (x) is continuous on R, continuously differentiable on R\∂SN ,

and verifies Eq. (4) on R\∂SN . Moreover, µN is absolutely continuous and its density coincides with function
1
π Im(mN (x)).

In order to present the chacterization of SN , we first introduce the following notations. We denote by fN ,φN

and wN the functions defined by

fN (w) =
1

M
Tr

(

BN B∗
N −wIM

)−1
,

φN (w) = w
(

1−σ2cN fN (w)
)2 +σ2(1− cN )

(

1−σ2cN fN (w)
)

,

wN (z) = z(1+σ2cN mN (z))2 −σ2(1− cN )(1+σ2cN mN (z)). (9)

We are now in position to characterize SN .

Theorem 2. The function φN admits 2Q non-negative local extrema counting multiplicities (with 1 ≤ Q ≤ K +1)

whose preimages are denoted w−
1,N < 0 < w+

1,N
≤ w−

2,N . . . ≤ w−
Q,N < w+

Q,N
. Define x−

q,N = φN (w−
q,N ) and x+

q,N
=

φN (w+
q,N

) for q = 1. . .Q. Then,

x−
1,N < x+

1,N ≤ x−
2,N < . . . ≤ x−

Q,N < x+
Q,N ,

and the support SN of µN is given by

SN =
Q
⋃

q=1

[

x−
q,N , x+

q,N

]

.

Moreover, for q = 1, . . . ,Q, each interval ]w−
q,N , w+

q,N
[ contains at least an element of the set {0,λM−K+1,N , . . . ,λM ,N }

and each eigenvalue of BN B∗
N belongs to one of these intervals.

The second statement of the theorem shows that each eigenvalue of BN B∗
N corresponds to a certain interval of

SN . More precisely, an eigenvalue of BN B∗
N will be said to be associated to cluster [x−

q,N , x+
q,N

] if it belongs to the

interval (w−
q,N , w+

q,N
). We note that the eigenvalue 0 is necessarily associated to the first cluster [x−

1,N , x+
1,N

].

We finally recall the useful properties of function wN defined by (9) (see [23]). We still denote by wN (x) the

limit of wN (z) when z ∈C
+ converges torwards x ∈R.

Proposition 1. Function wN : C→C satisfies the following properties:

• Function x → wN (x) is continuous on R and continuously differentiable on R\∂SN ,

• Im(wN (z)) > 0 if Im(z) > 0,

• wN is real and strictly increasing on R\SN ,

• wN (x−
q,N ) = w−

q,N and wN (x+
q,N

) = w+
q,N

for each 1 ≤ q ≤Q,

• Im(wN (x)) > 0 if and only if x ∈ Int(SN ).

2.3 Some useful evaluations

In this paragraph, we gather some useful bounds related to certain Stieltjes transforms. We first recall that the

inequality

|1+σ2cN mN (z)| ≥ Re(1+σ2cN mN (z)) ≥ 1/2 (10)

holds for z ∈ C (see Loubaton & Vallet [17]). We now consider function z → −1
z(1+σ2cN mN (z))

. Proposition 2.2 in [13]

implies that it coincides with the Stieltjes transform of a probability measure carried by R
+. Moreover, (10) shows

that the support of this measure is included in SN ∪ {0}. Therefore, we obtain that

1

|1+σ2cN mN (z))|
≤

|z|
|Im(z)|

(11)

6



for each z ∈C\R as well as
1

|1+σ2cN mN (z))|
≤

|z|
dist(z,SN )

for each z ∈ C
∗\SN . We also recall that matrix TN (z) satisfies TN (z)TN (z)∗ ≤ IM

Im(z)2 for z ∈ C
+ (see [13, Prop. 5.1]).

We now claim that the inequality

TN (z)TN (z)∗ ≤
IM

dist(z,SN )2
(12)

also holds on C\SN . In order to establish (12), we follow the proof of Proposition 5.1 in [13]. We first remark that

function m̃N (z) defined by

m̃N (z) = cN mN (z)−
1− cN

z

is the Stieltjes transform of probability measure µ̃N = cNµN + (1− cN )δ0. The support of µ̃N thus coincides with

SN ∪ {0}, and is included in R
+. Therefore, it holds that

Im(zm̃N (z))
Im(z)

> 0 if z ∈C\R. We remark that

TN (z)−TN (z)∗

2i
= Im(z)

∫

SN

dµN (λ)

|λ− z|2
.

By using the identity, TN (z)−TN (z)∗ = TN (z)
(

TN (z)−∗−TN (z)−1
)

TN (z)∗, we get after some algebra

Im(z)

∫

SN

dµN (λ)

|λ− z|2
=

Im(z)TN (z)TN (z)∗+σ2Im(zm̃N (z))TN (z)TN (z)∗+
σ2cN

|1+σ2cN mN (z)|2
Im(mN (z))TN (z)BN B∗

N TN (z)∗,

for each z ∈C\R, or equivalently

∫

SN

dµN (λ)

|λ− z|2
= TN (z)TN (z)∗+σ2 Im(zm̃N (z))

Im(z)
TN (z)TN (z)∗+

σ2cN

|1+σ2cN mN (z)|2
Im(mN (z))

Im(z)
TN (z)BN B∗

N TN (z)∗.

Consequently, we obtain that

TN (z)TN (z)∗ ≤
∫

SN

dµN (λ)

|λ− z|2

for z ∈ C\R, but also for z ∈ C\SN because both members of above inequality are continuous on C\SN . This

immedialely leads to (12). This inequality also implies that for each z ∈C\SN ,

min
k=1,...,M

∣

∣λk,N −wN (z)
∣

∣≥
1

2
dist(z,SN ). (13)

Indeed, TN (z) can be written as TN (z) = (1+σ2cN mN (z))
(

BN B∗
N −wN (z)IM

)−1
. Therefore, ‖TN (z)‖ is equal to

‖TN (z)‖ =
|1+σ2cN mN (z)|

mink=1,...,M

∣

∣λk,N −wN (z)
∣

∣

so that (13) follows from (12) and (10).

Since m̂N (z) is the Stieltjes transform of the distribution 1
M

∑M
k=1

δλ̂k,N
, it holds that

|m̂N (z)| ≤
1

dist
(

z, {λ̂1,N , . . . , λ̂M ,N }
) ,

as well as

|m̂′
N (z)| ≤

1

dist
(

z, {λ̂1,N , . . . , λ̂M ,N }
)2

.
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We now consider the rational function z 7→ 1
1+σ2cN m̂N (z)

which will play an important role in the following. Its poles

are solutions of the equation 1+σ2cN m̂N (z) = 0, and satisfy some useful properties. From now on, we denote by

Λ̂N the diagonal matrix Λ̂N = Diag
(

λ̂1,N , . . . , λ̂M ,N

)

and by Ω̂N the matrix

Ω̂N = Λ̂N +
σ2cN

M
11T , (14)

where 1 denotes vector 1 = (1,1, . . . ,1)T . We denote ω̂1,N ≤ . . . ≤ ω̂M ,N its eigenvalues. Then we have the following

straighforward properties.

• The zeros of z 7→ 1+σ2cN m̂N (z) are included in the set {ω̂1,N , . . . ,ω̂M ,N }.

• If the eigenvalues λ̂1,N , . . . , λ̂M ,N of ΣNΣ
∗
N have multiplicity one, the equation 1+σ2cN m̂N (z) = 0 has M

multiplicity one solutions which coincide with the (ω̂k,N )k=1,...,M . Moreover, λ̂1,N < ω̂1,N < . . . < λ̂M ,N <
ω̂M ,N .

• If the eigenvalue λ̂k,N has multiplicity p > 1, i.e. λ̂k−1,N < λ̂k,N = λ̂k+p−1,N < λ̂k+p,N , then,

ω̂k−1,N < λ̂k,N = ω̂k,N = . . . = λ̂k+p−2,N = ω̂k+p−2,N = λ̂k+p−1,N < ω̂k+p−1,N < λ̂k+p,N ,

and the ω̂k,N that do not coincide with some eigenvalues of ΣNΣ
∗
N are zeros of 1+σ2cN m̂N (z).

Remark 1. Since cN < 1, we recall that the eigenvalues (λ̂k,N )k=1,...,M have multiplicity 1 almost surely. However, in

subsection 3.2, it will be necessary to define properly the solutions of 1+σ2cN m̂N (z) = 0 everywhere. This explains

why the case where some of the (λ̂k,N )k=1,...,M are multiple has to be considered.

Function z 7→ −1
z(1+σ2cN m̂N (z))

is the Stieltjes transform of a probability measure whose support coincides with the

set of all roots of the equation z(1+σ2cN m̂N (z)) = 0, which is included into the set {0,ω̂1,N , . . . ,ω̂M ,N }. Therefore, it

holds that
1

|1+σ2cN m̂N (z)|
≤

|z|
dist(z, {0,ω̂1,N , . . . ,ω̂M ,N })

for z ∈C\{0,ω̂1,N , . . . ,ω̂M ,N } and
1

|1+σ2cN m̂N (z)|
≤

|z|
|Im(z)|

(15)

for z ∈C\R. We eventually notice that

‖QN (z)‖ ≤
1

dist(z, {λ̂1,N , . . . , λ̂M ,N })
.

2.4 Almost sure localization of the eigenvalues (λ̂k,N )k=1,...,M

We recall the two following useful results of [23] and [17].

Theorem 3 ([23]). Assume assumptions A-1 to A-4 hold. Let a,b ∈R, ǫ> 0 and N0 ∈N such that

]a −ǫ,b +ǫ[∩SN =;,

for each N > N0. Then, with probability one, no eigenvalue of ΣNΣ
∗
N belongs to [a,b] for N large enough.

Theorem 4 ([17]). Assume assumptions A-1 to A-4 hold. Let a,b ∈ R, ǫ > 0, N0 ∈N such that ]a − ǫ,b + ǫ[∩SN = ;
for N > N0. Then, with probability 1,

card{k : λ̂k,N < a} = card{k : λk,N < wN (a)} (16)

card{k : λ̂k,N > b} = card{k : λk,N > wN (b)} (17)

for N large enough.

It is useful to mention that supN x+
QN ,N

<+∞ and that these two theorems are still valid if b =+∞ (see [17]).
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2.5 The consistent estimate of quadratic forms of ΠN

Let ΠN be the orthogonal projection matrix on the kernel of BN B∗
N and let (aN )N∈N be a sequence of deterministic

M–dimensional vectors such that supN ‖aN‖ <∞. Then, [23] proposed a consistent estimate of ηN defined by

ηN = a∗
NΠN aN .

The approach of [23] is valid under the following assumptions.

Assumption A-5: For N large enough, none of the strictly positive eigenvalues of BN B∗
N is associated to the first

cluster [x−
1,N , x+

1,N
], i.e. λM−K+1,N > wN (x+

1,N
) for N large enough.

Assumption A-6: It holds that

0 < liminf
N→+∞

x−
1,N < limsup

N→+∞
x+

1,N < liminf
N→+∞

x−
2,N .

Using theorems 3 and 4, we deduce that if t−1 , t+1 , t−2 , t+2 are real numbers independent of N satisfying

0 < t−1 < liminf
N→+∞

x−
1,N < limsup

N→+∞
x+

1,N < t+1 < t−2 < liminf
N→+∞

x−
2,N ≤ limsup

N→+∞
x+

QN ,N < t+2 (18)

then, almost surely, for N large enough, it holds that

0 < t−1 < λ̂1,N < . . . < λ̂M−K ,N < t+1 < t−2 < λ̂M−K+1,N < . . . < λ̂M ,N < t+2 . (19)

Assumptions 5 and 6 thus imply that, almost surely, the smallest M−K eigenvalues ofΣNΣ
∗
N are separated from the

K greatest ones for N large enough in the sense that the 2 sets of eigenvalues are included into 2 disjoint intervals

that do not depend on N . It is interesting to remark that Assumptions 5 and 6 are "deterministic conditions"

depending only on σ2,cN = M
N

,and on the eigenvalues of BN B∗
N . If K remains fixed, recent results of Benaych-

Rao [3] (see also [17]) imply that Assumptions A-5 and A-6 hold if and only if liminfN→+∞λM−K+1,N > σ2pc. If

however K scales with N , the derivation of more explicit conditions equivalent to Assumptions 5 and 6 is still an

open problem.

We are now in position to present the consistent estimator of ηN proposed in [23]. It is based on the observation

that

ΠN =
1

2iπ

∫

C −

(

BN B∗
N −λIM

)−1
dλ,

where C represents a contour enclosing 0 and not the strictly positive eigenvalues of BN B∗
N , and the symbol C

−

means that the contour is oriented clockwise. The estimator of [23] is based on the observation that under As-

sumptions 5 and 6, function wN (z) provides such a contour for N large enough. In the following, for y > 0 and

ǫ> 0, ǫ< y
3

small enough, we consider the rectangle Ry defined by

Ry = {z = x + i v,0 < t−1 −3ǫ≤ x ≤ t+1 +3ǫ< t−2 −3ǫ,−y ≤ v ≤ y} (20)

and its boundary ∂Ry . Then, the properties of function wN (z) (see Proposition 1) imply that for N large enough,

the set wN (∂Ry ) is a contour enclosing the origin, but not the other eigenvalues of BN B∗
N . Therefore, ΠN can also

be written as

ΠN =
1

2iπ

∫

∂Ry
−

(

BN B∗
N −wN (z)IM

)−1
w ′

N (z)dz

or equivalently

ΠN =
1

2iπ

∫

∂Ry
−

TN (z)
w ′

N (z)

1+σ2cN mN (z)
dz (21)

because (BN B∗
N −wN (z)IM )−1 = TN (z)

1+σ2cN mN (z)
. Using (5) and (8) as well as the following lemma

Lemma 2. Almost surely, for N large enough, the M solutions (ω̂k,N )k=1,...,M of the equation 1+σ2cN mN (z) = 0

satisfy

t−1 < λ̂1,N < ω̂1,N < . . . < λ̂M−K ,N < ω̂M−K ,N < t+1 < t−2 < λ̂M−K+1,N < ω̂M−K+1,N < . . . < λ̂M ,N < ω̂M ,N < t+2
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It is showed in [23] that matrix Π̃N defined by

Π̃N =
1

2iπ

∫

∂Ry
−

QN (z)
ŵ ′

N (z)

1+σ2cN m̂N (z)
dz (22)

where ŵN (z) = z(1+σ2cN m̂N (z))2 −σ2(1− cN )(1+σ2cN m̂N (z)), satisfies a∗
N Π̃N aN −a∗

NΠN aN → 0 almost surely.

We note that the poles of the integrand of the righthandside (r.h.s) of (22) coincide with the set {λ̂k,N ,ω̂k,N : k =
1, . . . , M }, which by (19) and Lemma 2, verifies

dist
(

∂Ry , {(λ̂k,N ,ω̂k,N )k=1,...,M }
)

> 3ǫ (23)

almost surely for N large enough. In pratice, the above estimator is quite easy to implement because, as the local-

ization of the poles of the integrand in (22) w.r.t. the contour ∂Ry is known (see lemma 2), the contour integral in

(22) can be solved, and expressed in closed form in terms of the (ûk,N , λ̂k,N ,ω̂k,N )k=1,...,M .

3 Statement and proof of the uniform consistency of estimate η̃N (θ)

From now on, we assume that vector a(θ) is given by (2) and that assumptions 5 and 6 hold. We consider t−1 , t+1 , t−2
and t+2 satisfying (18) as well a rectangle Ry defined by (20). We prove here the following result.

Theorem 5. Assume assumptions A-1 to A-6 hold. Then, we have

sup
θ∈[−π,π]

∣

∣η̃N (θ)−ηN (θ)
∣

∣−−−−→
N→∞

0.

with probability one.

In order to prove theorem 5, we show that it is sufficient to establish that for each α > 0 and for each θ ∈
[−π,π], P(|a(θ)∗(Π̃N −ΠN )a(θ)| > α) decreases fast enough torwards 0. For this, a tempting choice is to use the

Markov inequality, and to establish that the moments of a(θ)∗(Π̃N −ΠN )a(θ) decrease fast enough. However, the

observation that (23) holds for N greater than a random integer does not necessarily imply the existence of the

moments of a(θ)∗Π̃N a(θ). In order to solve this technical problem, we establish that the probability that at least

one element of {λ̂k,N ,ω̂k,N : k = 1, . . . , M } escapes from [t−1 −2ǫ, t+1 +2ǫ]∪ [t−2 −2ǫ, t+2 +2ǫ] decreases at rate 1
N l for

any l ∈ N, and prove that the moments of a convenient regularized version of a(θ)∗(Π̃N −ΠN )a(θ) converge fast

enough torwards 0.

In the following, we denote by Tǫ the set

Tǫ = [t−1 −ǫ, t+1 +ǫ]∪ [t−2 −ǫ, t+2 +ǫ],

We first establish in Sections 3.1 and 3.2 that the events E1,N and E2,N defined by

E1,N = {at least one of the (λ̂k,N )k=1,...,M escapes from Tǫ}, (24)

E2,N = {at least one of the (ω̂k,N )k=1,...,M escapes from Tǫ}. (25)

verify P
(

Ei ,N

)

= O

(

1
N l

)

for each l ∈ N. Using this result, we introduce in Section 3.3 the regularization term, de-

noted χN , defined as follows. We consider a function φ ∈C
∞
c (R,R+) satisfying

φ(λ) =
{

1 for λ ∈Tǫ

0 for λ ∈R\
(

[t−1 −2ǫ, t+1 +2ǫ]∪ [t−2 −2ǫ, t+2 +2ǫ]
) (26)

and φ(λ) ∈ (0,1) elsewhere, and define the random variable

χN = det φ(ΣNΣ
∗
N )det φ

(

Ω̂N

)

, (27)

which verifies 1E c
N
≤χN where EN = E1,N ∪E2,N . We will prove that, considered as a function of the real and imagi-

nary part of the entries of WN , χN is a C
1 function, and using Poincaré inequality, we will establish that

E
∣

∣a(θ)∗(Π̃N −ΠN )a(θ)χN

∣

∣

2l =O

(

1

N l

)

,

for each integer l . The above mentioned properties eventually allow to prove the uniform consistency of estimator

η̃N (θ).
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3.1 Evaluation of the escape probability of (λ̂k,N )k=1,...,N

The purpose of this section is to prove the following technical result.

Proposition 2. Under assumptions A-1-A-6, for each l ∈N, it holds that

P(E1,N ) =O

(

1

N l

)

.

To prove this result, we consider a function ψ0 ∈C
∞(R,R+) such that

ψ0(λ) =
{

1 for λ ∈T
c
ǫ ,

0 for λ ∈ [t−1 , t+1 ]
⋃

[t−2 , t+2 ].
(28)

and ψ0(λ) ∈ (0,1) elsewhere. From this definition, we clearly have

P(E1,N ) ≤P
(

Trψ0(ΣNΣ
∗
N ) ≥ 1

)

≤ E

[

(

Trψ0(ΣNΣ
∗
N )

)2l
]

for l ∈ N. In order to establish Proposition 2, it is therefore sufficient to prove that E
[

(

Trψ0(ΣNΣ
∗
N )

)2l
]

= O

(

1
N 2l

)

for each integer l which is the object of the next lemma.

Lemma 3. Assume assumptions A-1 to A-6 hold. Then, for all function ψ ∈C
∞(R,R) constant over the complemen-

tary of a compact interval and which vanishes on the support SN of µN for all N large enough, it holds that

E

[

(

Trψ(ΣNΣ
∗
N )

)2l
]

=O

(

1

N 2l

)

(29)

for each l ∈N.

Proof: We prove Lemma 3 by induction on l . We first consider the case l = 1, and consider a function ψ as above,

and denote by C the constant value taken by ψ over the complementary of a certain compact interval. We follow

[12] and write ψ as ψ = ψ̃+C , where ψ̃ ∈ C
∞
c (R,R), and verifies ψ̃ = −C over SN for N large enough. Using the

technique developed in [12] based on (7) and Poincaré inequality, we have

Var
[

Trψ(ΣNΣ
∗
N )

]

= Var
[

Trψ̃(ΣNΣ
∗
N )

]

=O

(

1

N 2

)

,

E
[

Trψ̃(ΣNΣ
∗
N )

]

= M

∫

R

ψ̃(λ)dµN (λ)+O

(

1

N

)

=−MC +O

(

1

N

)

.

As E
[

Trψ(ΣNΣ
∗
N )

]

=C M +E
[

Trψ̃(ΣNΣ
∗
N )

]

, this leads to E
[

Trψ(ΣNΣ
∗
N )

]

=O
(

1
N

)

. As

E

[

(

Trψ(ΣNΣ
∗
N )

)2
]

=
(

E
[

Trψ(ΣNΣ
∗
N )

])2 +Var
[

Trψ(ΣNΣ
∗
N )

]

(30)

we finally obtain that (29) holds for l = 1.

We now assume that (29) holds until the order l −1 for each function of C
∞(R,R) vanishing on SN for N large

enough and constant over the complementary of a compact interval. We consider such a function ψ and evaluate

the behaviour of the 2l–th order moment of Trψ(ΣNΣ
∗
N ). We have

E

[

(

Trψ(ΣNΣ
∗
N )

)2l
]

=
(

E

[

(

Trψ(ΣNΣ
∗
N )

)l
])2

+Var
[

(

Trψ(ΣNΣ
∗
N )

)l
]

. (31)

The first term of the r.h.s of (31) can be upperbounded as follows

(

E

[

(

Trψ(ΣNΣ
∗
N )

)l
])2

≤ E

[

(

Trψ(ΣNΣ
∗
N )

)2
]

E

[

(

Trψ(ΣNΣ
∗
N )

)2(l−1)
]

=O

(

1

N 2l

)

,

using that (29) holds until the order l −1. The second term of the righthandside of (31) can be evaluated using the

Poincaré inequality. Using that the partial derivative of Trψ(ΣNΣ
∗
N ) w.r.t. Wi , j ,N and W i , j ,N are equal respectively

to eT
j
Σ
∗
Nψ′(ΣNΣ

∗
N )ei and eT

i
ψ′(ΣNΣ

∗
N )ΣN e j , we immediately obtain that

Var
[

(

Trψ(ΣNΣ
∗
N )

)l
]

≤CE

[

1

N
Tr

(

ψ′(ΣNΣ
∗
N )2

ΣNΣ
∗
N

)(

Trψ(ΣNΣ
∗
N )

)2l−2
]

.
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Using Hölder’s inequality, we get immediately that

E

[

1

N
Tr

(

ψ′(ΣNΣ
∗
N )2

ΣNΣ
∗
N

)(

Trψ(ΣNΣ
∗
N )

)2l−2
]

≤C

(

E

∣

∣

∣

∣

1

N
Tr

(

ψ′(ΣNΣ
∗
N )2

ΣNΣ
∗
N

)

∣

∣

∣

∣

l
) 1

l (

E

[

(

Trψ(ΣNΣ
∗
N )

)2l
]) l−1

l
.

(32)

Since the function λ → ψ′(λ)2λ belongs to C
∞
c (R,R) and has a support disjoint from SN for N large enough, it

holds that

E

∣

∣

∣

∣

1

N
Tr

(

[

ψ′(ΣNΣ
∗
N )

]2
ΣNΣ

∗
N

)

∣

∣

∣

∣

l

≤

√

E

∣

∣

∣

∣

1

N
Tr

(

[

ψ′(ΣNΣ
∗
N

)
]2
ΣNΣ

∗
N

)

∣

∣

∣

∣

2
√

E

∣

∣

∣

∣

1

N
Tr

(

[

ψ′(ΣNΣ
∗
N

)
]2
ΣNΣ

∗
N

)

∣

∣

∣

∣

2(l−1)

=O

(

1

N 2l

)

.

Plugging the previous estimates into (32), we get

Var
[

(

Trψ(ΣNΣ
∗
N )

)l
]

≤
C

N 2

(

E

[

(

Trψ(ΣNΣ
∗
N )

)2l
]) l−1

l
.

Define xN = E

[

(

Trψ(ΣNΣ
∗
N )

)2l
]

and uN = N 2l xN . From (31), we have the inequalities xN ≤ C1

N 2 x
l−1

l

N
+ C2

N 2l and

uN ≤C1u
l−1

l

N
+C2. We claim that the sequence (uN ) is bounded. If this is not the case, it exists a subsequence ukN

extracted from uN which converges torwards +∞. However, the inequality
C1

u1/l
kN

+ C2

ukN
≥ 1 must holds for N large

enough. As ukN
→+∞, this leads to a contradiction. Therefore, uN is bounded and xN ≤ C

N 2l for N large enough.

This proves Lemma 3. ä

3.2 Evaluation of the escape probability of the (ω̂k,N )k=1,...,N

In this section, we will prove the following result.

Proposition 3. Assume assumptions A-1 to A-6 hold. For each l ∈N, it holds that

P(E2,N ) =O

(

1

N l

)

.

We follow the same approach than in Section 3.1 and first prove that the (ω̂k,N )k=1,...,M satisfy a property similar

to (7). For this, we study the behaviour of the Stieltjes transform n̂N (z) of the distribution 1
M

∑M
k=1

δω̂k,N
defined by

n̂N (z) =
1

M
Tr

(

Ω̂N − zI
)−1

.

and use Lemma 1 as well as the inverse Stieltjes transform formula (3). Our starting point is the following result

showing that the empirical eigenvalue distribution of Ω̂N is very similar to the distribution of the eigenvalues of

ΣNΣ
∗
N . The following auxiliary result will be useful.

Lemma 4. Assume assumptions A-1 to A-6 hold. It holds that

E
[

m̂′
N (z)

]

−m′
N (z) =

tN (z)

N 2
(33)

where tN is analytic on C\R and can be upperbounded by P1(|z|)P2

(

1
|Im(z)|

)

on C\R.

Proof: The proof is given in Appendix 5.1. ä
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We now prove the fundamental following result.

Lemma 5. Assume assumptions A-1 to A-6 hold. For each z ∈C\R,

E [n̂N (z)] =
∫

SN

dµN (λ)

λ− z
+

1

M

∫

SN

dκN (λ)

λ− z
+

rN (z)

N 2
,

withκN a finite signed measure carried by SN such thatκN

(

[x−
q,N , x+

q,N
]
)

= 0 for q = 1, . . . ,QN , and rN a holomorphic

function on C\R satisfying

|rN (z)| ≤ P1(|z|)P2

(

1

|Im(z)|

)

,

with P1, P2 two polynomials with positive coefficients independent of N .

Proof: Using that Ω̂N is a rank 1 perturbation of Λ̂N , we obtain immediately that

n̂N (z) = m̂N (z)−
1

M

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)
.

Therefore, for z ∈C\R, it holds that

E [n̂N (z)] = E [m̂N (z)]−
1

M
E

[

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)

]

. (34)

We first establish that

E

[

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)

]

=
σ2cN m′

N (z)

1+σ2cN mN (z)
+

cN

N
rN (z), (35)

where rN (z) is holomorphic on C\R and satisfies |rN (z)| ≤ P1(|z|)P2

(

1
|Im(z)|

)

. For this, we write

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)
−

σ2cN m′
N (z)

1+σ2cN mN (z)
=

σ2cN (m̂′
N (z)−m′

N (z))

(1+σ2cN m̂N (z))(1+σ2cN mN (z))
+

(σ2cN )2
(

mN (z)(m̂′
N (z)−m′

N (z))+m′
N (z)(mN (z)−m̂N (z))

)

(1+σ2cN m̂N (z))(1+σ2cN mN (z))
. (36)

In order to study the expectation of this expression, we use (11) and (15). Moreover, (6) and a straightforward

application of the Poincaré inequality to m̂N (z) considered for z fixed as a function of the entries of WN leads

immediately to

E |m̂N (z)−mN (z)|2 ≤
1

N 2
P1 (|z|)P2

(

1

|Im(z)|

)

,

for some polynomials P1, P2 with positive coefficients and independent of N . Therefore,

E |m̂N (z)−mN (z)| ≤
1

N

(

P1 (|z|)+P2

(

1

|Im(z)|

))

.

Applying also Poincaré inequality to bound Var[m̂′
N (z)], together with Lemma 4, we get

E
∣

∣m̂′
N (z)−m′

N (z)
∣

∣

2 ≤
1

N 2
P1 (|z|)P2

(

1

|Im(z)|

)

.

Therefore, it holds that

E
∣

∣m̂′
N (z)−m′

N (z)
∣

∣≤
1

N

(

P1 (|z|)+P2

(

1

|Im(z)|

))

.

Using |mN (z)| ≤ 1
|Im(z)| , |m

′
N (z)| ≤ 1

|Im(z)|2 , as well as (11) and (15), we eventually get from (36) that

E

∣

∣

∣

∣

∣

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)
−

σ2cN m′
N (z)

1+σ2cN mN (z)

∣

∣

∣

∣

∣

≤
1

N
P1 (|z|)P2

(

1

|Im(z)|

)

.

13



This immediately implies (35). Now define the function hN (z) by

hN (z) =
σ2cN m′

N (z)

1+σ2cN mN (z)
.

This function coincides with the Stieltjes transform of a signed measure κN satisfying the conditions of Lemma

5: Using (10), we obtain that |hN (z)| ≤ 2σ2cN |m′
N (z)|. As |m′

N (z)| ≤ 1
dist(z,K )2 where K is a compact containing

SN , it holds that |hN (z)| ≤C 1
dist(z,K )2 . Using Theorem 4.3 in [5], we obtain that hN (z) is the Stieltjes transform of a

finite signed measure κN , the support of which is the set of singular points of hN (z), i.e. SN . In order to evaluate

κN ([x−
q,N , x+

q,N
]), we use the inverse Stieltjes transform formula,

κN ([x−
q,N , x+

q,N ]) = lim
y↓0

Im

(

∫

[x−
q,N

,x+
q,N

]
hN (x + i y)dx

)

.

It is clear that hN (x + i y) = ∂ log(1+σ2cN mN (x+i y))
∂x

, where the complex logarithm corresponds to the principal deter-

mination defined on C\R−. We note that (10) justifies the use of the principal determination. Therefore,

∫

[x−
q,N

,x+
q,N

]
hN (x + i y)dx = log

(

1+σ2cN mN (x+
q,N + i y)

)

− log
(

1+σ2cN mN (x−
q,N + i y)

)

.

When y → 0, this converges towards log(1+σ2cN mN (x+
q,N ))− log(1+σ2cN mN (x−

q,N )), a real quantity because x−
q,N

and x+
q,N

belong to ∂SN . This shows that κN ([x−
q,N , x+

q,N
]) = 0. Consequently,

E

[

σ2cN m̂′
N (z)

1+σ2cN m̂N (z)

]

=
∫

SN

dκN (λ)

λ− z
+

cN rN (z)

N
,

where rN (z) is holomorphic on C\R such that |rN (z)| ≤ P1(|z|)P2( 1
|Im(z)| ). Lemma 5 follows immediately from (34).

ä

We now handle the proof of Proposition 3. Although certain steps of the present proof are similar to the proof

of Proposition 2, more work is needed because matrix Ω̂N considered as a function of the entries of WN is more

complicated than ΣNΣ
∗
N . We still consider function ψ0 ∈C

∞(R,R+) defined by (28) and remark that

P(E2,N ) ≤P
(

Trψ0(Ω̂N ) ≥ 1
)

≤ E

[

(

Trψ0(Ω̂N )
)2l

]

for l ∈N. In order to establish Proposition 3, it is therefore sufficient to prove that E
[

(

Trψ0(Ω̂N )
)2l

]

= O

(

1
N 2l

)

for

each integer l . For this, we still use the Poincaré inequality. However, in contrast with the context of Proposition 2,

the entries of Ω̂N , considered as functions of the real and imaginary parts of the entries of WN , are not continuously

differentiable on R
2M N because function WN → λ̂k,N is not differentiable at points for which eigenvalue λ̂k,N is

multiple. The use of Poincaré inequality has therefore to be justified carefully. The following useful lemma is

proved in the appendix.

Lemma 6. Assume assumptions A-1 to A-6 hold. Let ψ̃ be a function of C
∞
c (R,R). Then, Trψ̃(Ω̂N ), considered

as a function of the real and imaginary parts of the entries of WN , is continuously differentiable. Moreover, if the

eigenvalues of ΣNΣ
∗
N have multiplicity 1, it holds that

∂

∂Wi , j ,N

{

1

M
Tr

(

ψ̃(Ω̂N )
)

}

=
1

M

[

Σ
∗
N

M
∑

l=1

[ψ̃′(Ω̂N )]l ,l Π̂l ,N

]

j ,i

. (37)

where Π̂l ,N represents the orthogonal projection matrix on the 1–dimensionnal eigenspace associated to the eigen-

value λ̂l ,N of ΣNΣ
∗
N .

We will also need that

14



Lemma 7. For each integer p > 0, it holds that

sup
N

E
[

‖WN W∗
N‖p

]

<+∞,

a property also established in the appendix. We now prove the following result.

Lemma 8. Assume assumptions A-1 to A-6 hold. For all function ψ ∈C
∞(R,R) constant over the complementary of

a compact interval and which vanishes on the support SN of µN for all N large enough, it holds that

E

[

(

Trψ(Ω̂N )
)2l

]

=O

(

1

N 2l

)

(38)

for each l ∈N.

Proof: As previously, we prove Lemma 8 by induction on l . We first consider the case l = 1, and consider a function

ψ as above, and denote by C the constant value taken by ψ over the complementary of a certain compact interval,

and by ψ̃ the function of C
∞
c (R,R) defined by ψ̃(λ) = ψ(λ)−C , which, of course, is equal to −C on SN . Using

Lemma 1 and Lemma 5, we obtain

E

[

1

M
Trψ̃(Ω̂N )

]

=
∫

SN

ψ̃(λ)dµN (λ)+
1

M

∫

SN

ψ̃(λ)dκN (λ)+O

(

1

N 2

)

. (39)

Using that κN ([x−
q,N , x+

q,N
]) = 0 for each q = 1, . . . ,QN , we get that

∫

SN
ψ̃(λ)dκN (λ) = 0 and that

E

[

1

M
Trψ̃(Ω̂N )

]

=−C +O

(

1

N 2

)

.

Therefore, it holds that

E

[

1

M
Trψ(Ω̂N )

]

=O

(

1

N 2

)

.

Moreover, we prove the following lemma.

Lemma 9. Assume assumptions A-1 to A-6 hold. It holds that

Var

[

1

M
Tr

(

ψ
(

Ω̂N

))

]

=O

(

1

N 4

)

. (40)

Proof: We first note that, considered as a function of (Re(Wi , j ,N ), Im(Wi , j ,N ))1≤i≤M ,1≤ j≤N , function 1
M

Trψ̃(Ω̂N ) is

continuously differentiable by Lemma 6. Therefore, function 1
M

Trψ(Ω̂N ) is continuously differentiable as well. It

is thus possible to use the Poincaré inequality to evaluate the lefthandside of (40). Furthermore, as the probability

that the eigenvalues (λ̂k,N )k=1,...,M have multiplicity one is equal to 1, it is sufficient to evaluate the partial deriva-

tives of function 1
M

Trψ(Ω̂N ) when WN is such that the (λ̂k,N )k=1,...,M have multiplicity 1. As the derivative of ψ

coincides with ψ̃
′
, (37) and Poincaré inequality lead to

Var

[

1

M
Tr

(

ψ(Ω̂N )
)

]

≤
C

N 2
E

[

1

M
Tr

(

ΣNΣ
∗
N

M
∑

l=1

∣

∣[ψ′(Ω̂N )]l ,l

∣

∣

2
Π̂l ,N

)]

,

or equivalently,

Var

[

1

M
Tr

(

ψ(Ω̂N )
)

]

≤
C

N 2
E

[

1

M

M
∑

l=1

λ̂l ,N

∣

∣[ψ′(Ω̂N )]l ,l

∣

∣

2

]

.

We claim that
∣

∣[ψ′(Ω̂N )]l ,l

∣

∣

2 ≤
(

[ψ′(Ω̂N )]2
)

l ,l . (41)

Indeed, if (v̂k,N )k=1,...,M represent the eigenvectors of Ω̂, then

[

ψ′(Ω̂N )
]

l ,l =
M
∑

k=1

ψ′(ω̂k,N )|eT
l v̂k,N |2.
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As
∑M

k=1
|eT

l
v̂k,N |2 = 1, Jensen’s inequality yields to (41). Therefore, it holds that

Var

[

1

M
Tr

(

ψ(Ω̂N )
)

]

≤
C

N 2
E

[

∥

∥ΣNΣ
∗
N

∥

∥

1

M

M
∑

l=1

ψ′(ω̂l )2

]

. (42)

As supN ‖BN B∗
N‖ <+∞, we get using lemma 7 that

sup
N

E
[

‖ΣNΣ
∗
N‖p

]

<+∞.

We remark that ‖ΣNΣ
∗
N‖ < t+2 +ǫ on the set E

c
1,N

,and write the righthandside of (42) as

C

N 2
E

[

∥

∥ΣNΣ
∗
N

∥

∥ (1E1,N
+ 1E c

1,N
)

1

M

M
∑

l=1

ψ′(ω̂l )2

]

.

It holds that

E

[

∥

∥ΣNΣ
∗
N

∥

∥1E c
1,N

1

M

M
∑

l=1

ψ′(ω̂l )2

]

≤
(

t+2 +ǫ
)

E

[

1

M
Tr(ψ′(Ω̂N ))2

]

.

Functionψ′2 belongs to C
∞
c (R,R) and vanishes on SN . Therefore, lemma 5 implies that E

[

1
M

Tr(ψ′(Ω̂N ))2
]

=O ( 1
N 2 )

(see Eq. (39)). Moreover, as 1
M

Tr
(

ψ′(Ω̂N )2
)

≤ supλψ
′(λ)2 <C , we have

E

[

∥

∥ΣNΣ
∗
N

∥

∥1E1,N

1

M

M
∑

l=1

ψ′(ω̂l )2

]

<CE
[∥

∥ΣNΣ
∗
N

∥

∥1E1,N

]

,

which is itself upperbounded by

C
(

E
[

‖ΣNΣ
∗
N‖2

])1/2
P(E1,N )1/2 =O

(

1

N p

)

,

for each integer p. This completes the proof of lemma 9. ä

Assume that (38) holds until integer l −1. We write as previously that

E

[

(

Trψ(Ω̂N )
)2l

]

=
(

E

[

(

Trψ(Ω̂N )
)l

])2
+Var

[

(

Trψ(Ω̂N )
)l

]

. (43)

The Cauchy-Schwarz inequality leads immediately to

(

E

[

(

Trψ(Ω̂N )
)l

])2
≤ E

[

(

Trψ(Ω̂N )
)2

]

E

[

(

Trψ(Ω̂N )
)2l−2

]

=O

(

1

N 2l

)

. (44)

As for the second term of the r.h.s. of (43), we use Poincaré inequality and Hölder’s inequality to obtain

Var
[

(

Trψ(Ω̂N )
)l

]

≤CE

[

(

Trψ(Ω̂N )
)2(l−1) 1

M

M
∑

k=1

λ̂k,N

(

[ψ′(Ω̂N )]k,k

)2

]

,

≤C

(

E

∣

∣

∣

∣

∣

1

M

M
∑

k=1

λ̂k,N

(

[ψ′(Ω̂N )]k,k

)2

∣

∣

∣

∣

∣

l )
1
l
(

E

[

(

Trψ(Ω̂N )
)2l

]) l−1
l

.

Jensen’s inequality leads again to

E

∣

∣

∣

∣

∣

1

M

M
∑

k=1

λ̂k,N

(

[ψ′(Ω̂N )]k,k

)2

∣

∣

∣

∣

∣

l

≤ E

∣

∣

∣

∣

‖ΣNΣ
∗
N‖

1

M
Trψ′(Ω̂N )2

∣

∣

∣

∣

l

.

We write again that

E

∣

∣

∣

∣

‖ΣNΣ
∗
N‖

1

M
Trψ′(Ω̂N )2

∣

∣

∣

∣

l

= E

∣

∣

∣

∣

‖ΣNΣ
∗
N‖

1

M
Trψ′(Ω̂N )2

1E1,N

∣

∣

∣

∣

l

+E

∣

∣

∣

∣

‖ΣNΣ
∗
N‖

1

M
Trψ′(Ω̂N )2

1E c
1,N

∣

∣

∣

∣

l

,
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and obtain as previously that

E

∣

∣

∣

∣

‖ΣNΣ
∗
N‖

1

M
Trψ′(Ω̂N )2

∣

∣

∣

∣

l

≤C

(

E

∣

∣

∣

∣

1

M
Trψ′(Ω̂N )2

∣

∣

∣

∣

l

+
(

P(E1,N )
)1/2

)

.

But, applying Cauchy-Schwarz inequality as in (44) to E
∣

∣Trψ′(Ω̂N )2
∣

∣

l
leads to E

∣

∣

1
M

Trψ′(Ω̂N )2
∣

∣

l =O

(

1
N 2l

)

. Gather-

ing all the previous inequalities, we find that

E

[

(

Trψ(Ω̂N )
)2l

]

≤
C

N 2

(

E

[

(

Trψ(Ω̂N )
)2l

]) l−1
l +O

(

1

N 2l

)

,

and in the same way as in the proof of Proposition 2, we obtain E

[

(

Trψ(Ω̂N )
)2l

]

= O

(

1
N 2l

)

. This concludes the

proof of Lemma 8. ä

3.3 End of the proof of theorem 5

We now complete the proof of Theorem 5 when function θ→ a(θ) is given by

a(θ) =
1

p
M

[

1,e iθ , . . . ,e i (M−1)θ
]T

,

for θ ∈ [−π,π]. We recall that EN is defined by

EN = E1,N

⋃

E2,N ,

where (Ei ,N )i=1,2 are defined by (24) and (25), and that 1E c
N
≤χN where χN = det φ(ΣNΣ

∗
N )det φ(Ω̂N ). We first give

a useful lemma which appears as a straighforward consequence of the evaluations of Section 2.3

Lemma 10. Assume assumptions A-1 to A-6 hold. For each N , it holds that

sup
z∈∂Ry

‖TN (z)‖ ≤C ,

sup
z∈∂Ry

∣

∣

∣

∣

1

1+σ2cN mN (z)

∣

∣

∣

∣

≤C ,

sup
z∈∂Ry

∣

∣

∣

∣

w ′
N (z)

1+σ2cN mN (z)

∣

∣

∣

∣

≤C ,

and for N large enough, we have

sup
z∈∂Ry

‖QN (z)‖χN ≤C ,

sup
z∈∂Ry

∣

∣

∣

∣

χN

1+σ2cN m̂N (z)

∣

∣

∣

∣

≤C ,

sup
z∈∂Ry

∣

∣

∣

∣

ŵ ′
N (z)

1+σ2cN m̂N (z)

∣

∣

∣

∣

χN ≤C .

We consider the set

ϑN =
{

−π+
2(k −1)π

N 2
: k = 1, . . . , N 2

}

,

and remark that for each θ ∈ [−π,π] and for each N , there exists θN ∈ ϑN such that |θ−θN | ≤ 2π
N 2 . For each θ ∈

[−π,π], it holds that

η̃N (θ)−ηN (θ) =
[

η̃N (θ)− η̃N (θN )
]

+
[

η̃N (θN )−ηN (θN )
]

+
[

ηN (θN )−ηN (θ)
]

. (45)
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It is easy to check that the third term of the r.h.s. of (45) satisfies

sup
θ∈[−π,π]

∣

∣ηN (θN )−ηN (θ)
∣

∣≤ 2 sup
θ∈[−π,π]

‖a(θ)−a(θN )‖ =O

(

1

N

)

. (46)

In order to evaluate the behaviour of the supremum over θ of the first term of the r.h.s. of (45), we prove that for

each α> 0,

P

(

sup
θ∈[−π,π]

|η̃N (θ)− η̃N (θN )| >α

)

=O

(

1

N 1+β

)

,

where β> 0. We first remark that for each l ∈N, it holds that

P

(

sup
θ∈[−π,π]

∣

∣η̃N (θ)− η̃N (θN )
∣

∣>α

)

≤P

(

sup
θ∈[−π,π]

∣

∣η̃N (θ)− η̃N (θN )
∣

∣1E c
N
>α

)

+P (EN )

≤
1

αl
E

[

sup
θ∈[−π,π]

∣

∣η̃N (θ)− η̃N (θN )
∣

∣

l
1E c

N

]

+O

(

1

N l

)

.

Moreover,

∣

∣η̃N (θ)− η̃N (θN )
∣

∣

l
1E c

N
≤C

∮

∂R
−
y

∣

∣

∣

∣

(a(θ)−a(θN ))∗ QN (z)
ŵ ′

N (z)

1+σ2cN m̂N (z)
a(θN )

∣

∣

∣

∣

l

1E c
N
|dz| .

Lemma 10 and the inequality 1E c
N
≤χN imply that

sup
z∈∂Ry

‖QN (z)‖
∣

∣

∣

∣

ŵ ′
N (z)

1+σ2cN m̂N (z)

∣

∣

∣

∣

1E c
N
<C (47)

for some constant term C . Inequality (46) thus implies that

sup
θ∈[−π,π]

∣

∣

∣

∣

(a(θ)−a(θN ))∗ QN (z)
ŵ ′

N (z)

1+σ2cN m̂N (z)
a(θN )

∣

∣

∣

∣

l

1E c
N
≤

C

N l

thus showing that

P

(

sup
θ∈[−π,π]

∣

∣η̃N (θ)− η̃N (θN )
∣

∣>α

)

=O

(

1

N l

)

for each integer l . Borel-Cantelli’s lemma eventually implies that

sup
θ∈[−π,π]

∣

∣η̃N (θ)− η̃N (θN )
∣

∣→ 0

almost surely.

We finally study the supremum of the second term of (45). We denote by νk,N the elements of ϑN . Let α > 0,

then

P

(

sup
θ∈[−π,π]

∣

∣η̃N (θN )−ηN (θN )
∣

∣>α

)

≤P

(

sup
k=1,...,N 2

∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣>α

)

≤
N 2
∑

k=1

P
(∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣>α
)

≤
N 2
∑

k=1

[

P
({∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣>α
}

∩E
c
N

)]

+O

(

1

N l

)

for each integer l . We now introduce in the above term the regularization term χN = det φ(ΣNΣ
∗
N )det φ(Ω̂N )

defined in (27). As χN is equal to 1 on E
c
N

, it holds that

P
({∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣>α
}

∩E
c
N

)

=P
({∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣χ2
N >α

}

∩E
c
N

)

≤P
(∣

∣η̃N (νk,N )−ηN (νk,N )
∣

∣χ2
N >α

)

≤
1

α2l
E
∣

∣

(

η̃N (νk,N )−ηN (νk,N )
)

χ2
N

∣

∣

2l
.
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The introduction of χN is in part motivated by the observation that the moments of η̃N (νk,N )χ2
N . are finite. More-

over, it holds that

E
∣

∣

(

η̃N (νk,N )−ηN (νk,N )
)

χ2
N

∣

∣

2l

≤C

∮

∂R
−
y

E

[

∣

∣

∣

∣

a(νk,N )∗
(

QN (z)
ŵ ′

N (z)

1+σ2cN m̂N (z)
−TN (z)

w ′
N (z)

1+σ2cN mN (z)

)

a(νk,N )χ2
N

∣

∣

∣

∣

2l
]

|dz| (48)

In order to complete the proof of Theorem 5, we establish the following proposition.

Proposition 4. Assume assumptions A-1 to A-6 hold. If (aN )N∈N is sequence of deterministic vectors satisfying

‖aN‖ = 1, then, for each integer l , it holds that

sup
z∈∂Ry

E

[

∣

∣

∣

∣

a∗
N

(

QN (z)
ŵ ′

N (z)

1+σ2cN m̂N (z)
−TN (z)

w ′
N (z)

1+σ2cN mN (z)

)

aNχ2
N

∣

∣

∣

∣

2l
]

≤
C

N l
(49)

where the constant C does not depend on the sequence (aN ).

Proof: In order to shorten the notations, we denote by ĝN (z) and gN (z) the functions defined by

ĝN (z) = a∗
N QN (z)aN

ŵ ′
N (z)

1+σ2cN m̂N (z)
,

and

gN (z) = a∗
N TN (z)aN

w ′
N (z)

1+σ2cN mN (z)
.

In order to evaluate E|ĝN (z)− gN (z)χ2
N |2l , we use the Poincaré inequality. For this, we first state the following

lemma proved in the appendix. We recall that if H a hermitian matrix with a spectral decomposition H =
∑

l γl xl x∗
l

,

its adjoint (i.e. the transpose of its cofactor matrix) denoted by adj(H) is given by adj(H) =
∑

l (
∏

k 6=l γk )xl x∗
l

. When

H is invertible, adj(H) = det (H)H−1. Next, we state the following lemma proved in the appendix.

Lemma 11. Assume assumptions A-1 to A-6 hold. Considered as functions of the real and imaginary parts of the

entries of WN , functions det φ(ΣNΣ
∗
N ) and det φ(Ω̂N ) belong to C

1(R2M N ), and their partial derivatives w.r.t. Wi , j ,N

denoted by

[D1]i , j ,N :=
∂

∂Wi , j ,N

{

det φ(ΣNΣ
∗
N )

}

,

[D2]i , j ,N :=
∂

∂Wi , j ,N

{

det φ(Ω̂N )
}

,

are given almost surely by

[D1]i , j ,N = e∗j Σ
∗
N adj

(

φ(ΣNΣ
∗
N )

)

φ′(ΣNΣ
∗
N )ei , (50)

[D2]i , j ,N =
[

Σ
∗
N

M
∑

l=1

[

adj
(

φ(Ω̂N )
)

φ′(Ω̂N )
]

l l Π̂l ,N

]

j i

(51)

If we denote by A1,N and A2,N the events defined by

A1,N =
{

∃k : λ̂k,N 6∈Tǫ

}

∩
{

λ̂1,N , . . . , λ̂M ,N ∈ supp(φ)
}

,

A2,N =
{

∃k : ω̂k,N 6∈Tǫ

}

∩
{

ω̂1,N , . . . ,ω̂M ,N ∈ supp(φ)
}

.

then [D1]i , j ,N = 0 on A
c

1,N
and [D2]i , j ,N = 0 on A

c
2,N

.

We now establish (49) by induction on l , and first consider the case l = 1. We write the second moment of

(ĝN (z)− gN (z))χ2
N as

E
∣

∣(ĝN (z)− gN (z))χ2
N

∣

∣

2 =
∣

∣E
(

(ĝN (z)− gN (z))χ2
N

)∣

∣

2 +Var
(

(ĝN (z)− gN (z))χ2
N

)

.
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We evaluate Var
[

(ĝN (z)− gN (z))χ2
N

]

using the Poincaré inequality and get

Var
[

(ĝN (z)− gN (z))χ2
N

]

≤
σ2

N

∑

i , j

E

[

χ4
N

(

∣

∣

∣

∣

∂ĝN (z)

∂Wi , j ,N

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∂ĝN (z)

W i , j ,N

∣

∣

∣

∣

∣

2)]

+2E

[

|ĝN (z)− gN (z)|2
∣

∣

∣

∣

∣

∂χ2
N

∂Wi , j ,N

∣

∣

∣

∣

∣

2]

. (52)

It is clear that

∂ĝN (z)

∂Wi , j ,N
= a∗

N

∂QN (z)

∂Wi , j ,N
aN

ŵ ′
N (z)

1+σ2cN m̂N (z)
+a∗

N QN (z)aN
∂

∂Wi , j ,N

{

ŵ ′
N (z)

1+σ2cN m̂N (z)

}

.

We verify that

a∗
N

∂QN (z)

∂Wi , j ,N
aN =−a∗

N QN (z)ei e jΣ
∗
N QN (z)aN ,

so that
∑

i , j

∣

∣

∣

∣

a∗
N

∂QN (z)

∂Wi , j ,N
aN

∣

∣

∣

∣

2

= a∗
N QN (z)QN (z)∗aN a∗

N QN (z)ΣNΣ
∗
N QN (z)∗aN .

As χN 6= 0 implies that λ̂M ,N = ‖ΣNΣ
∗
N‖ ≤ t+2 +2ǫ, Lemma 10 implies that

sup
z∈∂Ry

χ2
N a∗

N QN (z)QN (z)∗aN a∗
N QN (z)ΣNΣ

∗
N QN (z)∗aN ≤C .

Using again Lemma 10, we get that

sup
z∈∂Ry

χ4
N

∣

∣

∣

∣

ŵ ′
N (z)

1+σ2cN m̂N (z)

∣

∣

∣

∣

2
∑

i , j

∣

∣

∣

∣

a∗
N

∂QN (z)

∂Wi , j ,N
aN

∣

∣

∣

∣

2

≤C . (53)

We obtain similarly that

sup
z∈∂Ry

χ4
N |a∗

N QN (z)aN |2
∑

i , j

∣

∣

∣

∣

∂

∂Wi , j ,N

{

ŵ ′
N (z)

1+σ2cN m̂N (z)

}∣

∣

∣

∣

2

≤
C

N
. (54)

The same conclusions hold when the derivatives w.r.t. variables W i , j ,N are considered. This shows that the first

term of the r.h.s. of (52) is a O
(

1
N

)

term. We now evaluate the behaviour of the second term of the r.h.s. of (52), and

establish that

sup
z∈∂Ry

E

[

|ĝN (z)− gN (z)|2
∑

i , j

∣

∣

∣

∣

∣

∂χ2
N

∂Wi , j ,N

∣

∣

∣

∣

∣

2]

=O

(

1

N p

)

(55)

for each integer p. We express
∂χ2

N

∂Wi , j ,N
as 2χN

∂χN

∂Wi , j ,N
. Lemma 10 implies that supz∈∂Ry

χ2
N |ĝN (z)− gN (z)|2 < C .

Therefore, it is sufficient to check that

E

[

∑

i , j

∣

∣

∣

∣

∂χN

Wi , j ,N

∣

∣

∣

∣

2
]

=O

(

1

N p

)

for each integer p.
∂χN

∂Wi , j ,N
can be written as

∂χN

∂Wi , j ,N
= [D1]i , j ,N det φ(Ω̂N )+ [D2]i , j ,N det φ(ΣNΣ

∗
N ).

It holds that

E

[

∑

i , j

∣

∣[D1]i , j ,N det φ(Ω̂N ))
∣

∣

2

]

= E

[

det φ(Ω̂N )2Tr
(

ΣNΣ
∗
Nφ′(ΣNΣ

∗
N )2adj

(

φ(ΣNΣN
∗)

)2
)

1A1,N

]

Moreover, we can write

Tr
(

ΣNΣ
∗
Nφ′(ΣNΣ

∗
N )2adj

(

φ(ΣNΣN
∗)

)2
)

=
∑

k

λ̂k,Nφ′(λ̂k,N )2
∏

l 6=k

φ(λ̂l ,N )2

≤ Tr
(

ΣNΣ
∗
Nφ′(ΣNΣ

∗
N )2

)

,
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because φ(λ) ≤ 1 on R. Therefore, it holds that

E

[

∑

i , j

∣

∣[D1]i , j ,N det φ(Ω̂N )
∣

∣

2

]

≤ E
[

det φ(Ω̂N )2Tr
(

ΣNΣ
∗
Nφ′(ΣNΣ

∗
N )2

)

1A1,N

]

≤C NP(A1,N ),

because det φ(Ω̂N )) ≤ 1, and Tr
(

ΣNΣ
∗
Nφ′(ΣNΣ

∗
N )2

)

≤C N on A1,N . As A1,N ⊂ E1,N , proposition 2 implies that

E

[

∑

i , j

∣

∣[D1]i , j ,N det φ(Ω̂N ))
∣

∣

2

]

=O

(

1

N p

)

for each integer p. Using similar calculations and Proposition 3, we obtain that

E

[

∑

i , j

∣

∣[D2]i , j ,N det φ(ΣNΣ
∗
N ))

∣

∣

2

]

=O

(

1

N p

)

for each integer p. This completes the proof of (55) and establishes that

sup
z∈∂Ry

Var
[

(ĝN (z)− gN (z))χ2
N

)

=O

(

1

N

]

.

In order to evaluate the term
∣

∣E
[

(ĝN (z)− gN (z))χ2
N

]∣

∣

2
, we also need the following auxilliary lemma proved in the

appendix.

Lemma 12. Assume assumptions A-1 to A-6 hold. It holds that

sup
z∈∂Ry

∣

∣E
[

a∗
N QN (z)aNχN −a∗

N TN (z)aN

]∣

∣=O

(

1

N 3/2

)

, (56)

sup
z∈∂Ry

∣

∣E
[

m̂N (z)χN −mN (z)
]∣

∣=O

(

1

N 2

)

, (57)

sup
z∈∂Ry

∣

∣E
[

m̂′
N (z)χN −m′

N (z)
]∣

∣=O

(

1

N 2

)

. (58)

We express (ĝN (z)− gN (z))χ2
N as β1,N (z)+β2,N (z) where

β1,N (z) =χN

(

a∗
N QN (z)aN −a∗

N TN (z)aN

) ŵ ′
N (z)χN

1+σ2cN m̂N (z)

and

β2,N (z) =χ2
N a∗

N TN (z)aN

(

ŵ ′
N (z)

1+σ2cN m̂N (z)
−

w ′
N (z)

1+σ2cN mN (z)

)

,

and establish that

sup
z∈∂Ry

E|β1,N |2 =O

(

1

N

)

and sup
z∈∂Ry

E|β2,N |2 =O

(

1

N 2

)

. (59)

Using Lemma 10, (59) for β1,N will be established if we show that

sup
z∈∂Ry

E
∣

∣χN

(

a∗
N QN (z)aN −a∗

N TN (z)aN

)∣

∣

2 =O

(

1

N

)

.

For this, we write that

E
∣

∣χN (a∗
N QN (z)aN −a∗

N TN (z)aN )
∣

∣

2 = Var(χN a∗
N QN (z)aN )+

∣

∣E
(

χN (a∗
N QN (z)aN −a∗

N TN (z)aN )
)∣

∣

2
.

The above calculations prove that supz∈∂Ry
Var[χN a∗

N QN (z)aN ] =O
(

1
N

)

, while (56) and 1−E(χN ) =O ( 1
N p ) for each

p imply that

E
[

χN (a∗
N QN (z)aN −a∗

N TN (z)aN )
]

=O

(

1

N 3/2

)

.
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This completes the proof of (59) for β1,N . In order to show (59) for β2,N , we first remark that by Lemma 10,

|a∗
N TN (z)aN | is uniformly bounded on ∂Ry , and write that

χ2
N

(

ŵ ′
N (z)

1+σ2cN m̂N (z)
−

w ′
N (z)

1+σ2cN mN (z)

)

=

σ2cNχ2
N (m̂N (z)−mN (z))+2zσ2cNχ2

N

(

m̂′
N (z)−m′

N (z)
)

−σ4cN (1− cN )χ2
N

(

m̂′
N (z)

1+σ2cN m̂N (z)
−

m′
N (z)

1+σ2cN mN (z)

)

,

or equivalently that

χ2
N

(

ŵ ′
N (z)

1+σ2cN m̂N (z)
−

w ′
N (z)

1+σ2cN mN (z)

)

=

σ2cNχ2
N (m̂N (z)−mN (z))+2zσ2cNχ2

N

(

m̂′
N (z)−m′

N (z)
)

− (σ2cN )2σ2(1− cN )
χN

(1+σ2cN m̂N (z))(1+σ2cN mN (z))

[

mN (z)χN (m̂′
N (z)−m′

N (z))−m′
N (z)χN (m̂N (z)−mN (z))

]

−σ2cNσ2(1− cN )
χN

(1+σ2cN m̂N (z))(1+σ2cN mN (z))

[

χN

(

m̂′
N (z)−m′

N (z)
)]

.

The Poincaré inequality and Lemma 12 imply that

sup
z∈∂Ry

E
∣

∣χN (m̂N (z)−mN (z))
∣

∣

2 =O

(

1

N 2

)

and

sup
z∈∂Ry

E
∣

∣χN (m̂′
N (z)−m′

N (z))
∣

∣

2 =O

(

1

N 2

)

.

Eq. (59) follows immediately from

sup
z∈∂Ry

∣

∣

∣

∣

χN

(1+σ2cN m̂N (z))(1+σ2cN mN (z))

∣

∣

∣

∣

≤C ,

for some deterministic constant C (see Lemma 10). This completes the proof of (49) for l = 1.

We now assume that (49) holds until integer l −1 and write that

E
∣

∣χ2
N

(

ĝN (z)− gN (z)
)∣

∣

2l =
∣

∣

∣E

[

(

χ2
N (ĝN (z)− gN (z))

)l
]∣

∣

∣

2
+Var

[

(

χ2
N (ĝN (z)− gN (z))

)l
]

.

The Cauchy-Schwarz inequality implies that

∣

∣

∣E

[

(

χ2
N (ĝN (z)− gN (z))

)l
]∣

∣

∣

2
≤ E

∣

∣χ2
N (ĝN (z)− gN (z))

∣

∣

2
E
∣

∣χ2
N (ĝN (z)− gN (z))

∣

∣

2(l−1)
,

and shows that

sup
z∈∂Ry

∣

∣

∣E
(

χ2
N (ĝN (z)− gN (z))

)l
∣

∣

∣

2
=O

(

1

N l

)

.

The Poincaré inequality gives

Var
[

(

χ2
N (ĝN (z)− gN (z))

)l
]

≤ σ2l 2

N
E

[

∣

∣χ2
N (ĝN (z)− gN (z))

∣

∣

2(l−1)
χ4

N

∑

i , j

(

∣

∣

∣

∂ĝN (z)
∂Wi , j ,N

∣

∣

∣

2
+

∣

∣

∣

∣

∂ĝN (z)

∂W i , j ,N

∣

∣

∣

∣

2)]

+ 8σ2l 2

N
E

[

∣

∣ĝN (z)− gN (z))
∣

∣

2l
χ4l−2

N

∑

i , j

∣

∣

∣

∂χN

∂Wi , j ,N

∣

∣

∣

2
]

.

Finally, (53) and (54) imply that

sup
z∈∂Ry

χ4
N

∑

i , j

(

∣

∣

∣

∣

∂ĝN (z)

∂Wi , j ,N

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∣

∂ĝN (z)

∂W i , j ,N

∣

∣

∣

∣

∣

2)

≤C ,

for some deterministic constant C . Therefore, the supremum over z ∈ ∂Ry of first term of the r.h.s. of (60) is a

O

(

1
N l

)

. Moreover, it can be shown as in the case l = 1 that the supremum over z ∈ ∂Ry of the second term of the

righthandside of (60) is a O
(

1
N p

)

for each integer p. This completes the proof of Proposition 4 and of the uniform

consistency of estimator η̃N (θ). ä

22



4 Consistency of the angular estimates

We now adress the consistency of the DoA estimates defined as the local minima of function θ → η̃N (θ). For

this, we assume that the number of sources K is fixed, i.e. that K does not scale with N . In other words, model

ΣN = BN +WN corresponds to a finite rank perturbation of the complex Gaussian i.i.d. matrix WN .

Remark 2. In this context, it is possible to derive in a simpler way than above an alternative consistent estimator,

say θ → η̂N ,spi ke (θ) of function θ 7→ ηN (θ). This estimator is obtained by assuming from the very beginning that K

is fixed, and is based on the recent work of Benaych & Nadakuditi [3]; see [22] for more details. However, as shown

in [22], estimator η̃N (θ) always leads in practice to the same performance as η̂N ,spi ke (θ) if K
M

<< 1 (typical value 1
10

in [22]), but outperforms η̂N ,spi ke (θ) for greater values of K
M

(typical value 1
4

in [22]). Therefore, the use of estimator

η̃N (θ) appears in practice more relevant than η̂N ,spi ke (θ).

In order to define the estimators of θ1, . . . ,θK properly, we consider K disjoint intervals I1, . . . , IK , such that

θk ∈ Ik , and define for each k the estimator θ̃k,N of θk by θ̃k,N = argminθ∈Ik
|η̃N (θ)|. We prove the following result.

Proposition 5. For k = 1, . . . ,K , with probability one,

N (θ̃k,N −θk ) −−−−→
N→∞

0.

In order to establish the proposition, we follow a classical approach initiated by Hannan [15] to study sinusoid

frequency estimates. For this, we first recall the following useful lemma.

Lemma 13. Let (αM ) a real-valued sequence of a compact subset of (−0.5,0.5], and converging to α as M → ∞.

Define qM (αM ) = 1
M

∑M
k=1

e−i 2πkαM . If α 6= 0 or if α= 0 and M |αM |→∞, then qM (αM ) → 0. If α= 0 and MαM −−−−→
M→∞

β ∈R, then qM (αM ) → e iβ sinβ
β .

We denote by A the matrix A(Θ) corresponding the true angles Θ = (θ1, . . . ,θK )T . It is clear that ηN (θ) = 1−
a(θ)∗A(A∗A)−1A∗a(θ). By the very definition of θ̃k,N , |η̃N (θ̃k,N )| ≤ |η̃N (θk )|. From (1) and the equality ηN (θk ) = 0,

we have |η̃N (θ̃k,N )|→ 0 w.p.1., as N →∞. Consequently,

|ηN (θ̃k,N )| ≤ |ηN (θ̃k,N )− η̃N (θ̃k,N )|+ |η̃N (θ̃k,N )|
≤ sup

θ∈[−π,π]

|ηN (θ)− η̃N (θ)|+ |η̃N (θ̃k,N )|

a.s.−−−−→
N→∞

0. (60)

From Lemma 13, (A∗A)−1 converges to IK as N →∞. Since (θ̃k,N ) is bounded, we can extract a converging subse-

quence
(

θ̃k,ϕ(N )

)

. Let αN = θ̃k,ϕ(N ) −θk . From Lemma 13, if αN →α 6= 0 as N →∞, then

a(θ̃k,ϕ(N ))
∗A(A∗A)−1A∗a(θ̃k,ϕ(N ))

a.s.−−−−→
N→∞

0, (61)

and thus ηN (θ̃k,ϕ(N )) → 1, a contradiction with (60). This implies that the whole sequence (θ̃k,N ) converges tor-

wards θk . If N |θ̃k,N −θk | is not bounded, we can extract a subsequence such that N |θ̃k,φ(N )−θk |→+∞ and Lemma

13 again implies that (61) holds, a contradiction. N |θ̃k,N −θk | is thus bounded, and we consider a subsequence

such that N (θ̃k,ϕ(N ) −θk ) →β where β ∈ [−π,π]. From Lemma 13, if β 6= 0, we get

ηϕ(N )(θ̃k,ϕ(N ))
a.s.−−−−→

N→∞
1−

(

sinβ

β

)2

> 0,

which is again in contradiction with (60). Therefore, β = 0 and all converging subsequences of
(

N |θ̂k,ϕ(N ) −θk |
)

converge to 0, which of course implies that the whole sequence (N |θ̂k,N −θk |) converges to 0. We finally end up

with N (θ̃k,N −θk ) → 0 w.p.1., as N →∞.
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5 Appendix

5.1 Proof of Lemma 4: estimate of E[m̂′
N (z)]

We first give the following useful technical result. Its proof, based on Poincaré’s inequality, is elementary and

therefore omitted.

Lemma 14. Let (MN (z)) a sequence of deterministic complex M ×M matrix-valued functions defined on C\R such

that

‖MN (z)‖ ≤ P1(|z|)P2(|Im(z)|−1).

Then,

Var

[

1

N
TrQN (z)MN (z)

]

≤
1

N 2
P1(|z|)P2(|Im(z)|−1),

Var

[

1

N
TrΣ∗

N QN (z)MN (z)

]

≤
1

N 2
P1(|z|)P2(|Im(z)|−1).

Moreover, the same results still hold when QN (z) is replaced by QN (z)2.

We are now in position to establish Lemma 4. We have to establish that

∣

∣E
[

m̂′
N (z)

]

−m′
N (z)

∣

∣≤
1

N 2
P1(|z|)P2

(

|Im(z)|−1
)

. (62)

For clarity, we recall results from [10], [23] and [14], on which the proof heavily relies. We have first to introduce

some new notations extensively used in [10], [23] and [14]. We define δN (z) = σcN mN (z) = σ 1
N

Tr(TN (z)), as well

as δ̃N (z) = δN (z)− σ(1−cN )
z

which coincides with the Stieltjes transform of finite measures cNµN +(1−cN )δ0. In the

following, matrix T̃N (z) is defined by

T̃N (z) =
(

−z(1+σδN (z))IM +
B∗

N BN

1+σδ̃N (z)

)−1

,

and is related to δ̃N (z) through the equation δ̃N (z) =σ 1
N

Tr(T̃N (z)) (cf [13], [23]). We also remark that matrix TN (z)

can be written as

TN (z) =
(

−z(1+σδ̃N (z))IM +
BN B∗

N

1+σδN (z)

)−1

,

and that wN (z) coincides with z(1+σδN (z))(1+σδ̃N (z)). We also denote Q̃N (z) the resolvent of matrix Σ
∗
NΣN , i.e.

Q̃N (z) =
(

Σ
∗
NΣN − zIN

)−1

and define αN (z) = E
[

σ
N

TrQN (z)
]

, α̃N (z) = E
[

σ
N

TrQ̃N (z)
]

, and the matrices

RN (z) =
(

−z(1+σα̃N (z))IM +
BN B∗

N

1+σαN (z)

)−1

,

R̃N (z) =
(

−z(1+σαN (z))IN +
B∗

N BN

1+σα̃N (z)

)−1

.

It is shown in [10] and [23] that the entries of QN (z) (resp. Q̃N (z)) have the same behaviour as the entries of

RN (z) and TN (z) (resp. of R̃N (z) and T̃N (z)). It is also useful to recall that |αN (z)|, |α̃N (z)|, |−z(1+σαN (z))|−1,

|−z(1+σα̃N (z))|−1, ‖TN (z)‖, ‖T̃N (z)‖, ‖RN (z)‖ and ‖R̃N (z)‖ are bounded on C\R by P1(|z|)P2(|Im(z)|−1). We re-

mark that our new notations are symetrical w.r.t. the substitution ΣN →Σ
∗
N , and are easier to use in the forthcom-

ing calculations.

We first notice that (62) is equivalent to

∣

∣α′
N (z)−δ′N (z)

∣

∣≤
1

N 2
P1(|z|)P2

(

|Im(z)|−1
)

. (63)
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In order to prove (63), we first show that

∣

∣

∣α′
N (z)−

σ

N
TrR′

N (z)
∣

∣

∣≤
1

N 2
P1(|z|)P2

(

|Im(z)|−1
)

(64)

and deduce from this that (63) holds. Using results on the behaviour of αN (z)− σ
N

TrRN (z) established in [10], [23]

and [14], we first establish that (64) holds. For this, we recall the following lemma.

Lemma 15 ([10], [23, proof of Prop.6]). For z ∈C\R, it holds that

E [QN (z)] = RN (z)+∆N (z)RN (z)+
(

σ2

N
Tr∆N (z)

)

E [QN (z)]RN (z) (65)

where ∆N (z) is given by ∆N (z) =∆1,N (z)+∆2,N (z)+∆3,N (z) with

∆1,N (z) =
σ

1+σαN (z)
E

[

QN (z)ΣNΣ
∗
N

σ

N
Tr (QN (z)−E [QN (z)])

]

,

∆2,N (z) =
σ2

1+σαN (z)
E

[

(QN (z)−E [QN (z)])
σ

N
TrΣ∗

N QN (z)BN

]

,

∆3,N (z) =−
σ2

(1+σαN (z))2
E [QN (z)]E

[ σ

N
Tr (QN (z)−E [QN (z)])

σ

N
TrΣ∗

N QN (z)BN

]

.

If MN (z) is a sequence of deterministic complex matrix-valued functions defined on C\R such that

‖MN (z)‖ ≤ P1(|z|)P2(|Im(z)|−1),

then 1
N

Tr
(

∆i ,N (z)MN (z)
)

, for i = 1,2,3, is bounded by 1
N 2 P1(|z|)P2(|Im(z)|−1). Therefore,

αN (z) =
σ

N
TrRN (z)+

ǫ1,N (z)

N 2
. (66)

where ǫ1,N (z) is the holomorphic function on C\R defined by

ǫ1,N (z)

N 2
=

(

σ

N
Tr∆N (z)RN (z)+

σ

N
TrE [QN (z)]RN (z)

σ2

N
Tr∆N (z)

)

,

and satisfies |ǫ1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1). Finally, α̃N (z) can also be written as

α̃N (z) =
σ

N
Tr R̃N (z)+

ǫ̃1,N (z)

N 2
. (67)

where ǫ̃1,N (z) is equal to

ǫ̃1,N (z) =
1+σα̃N (z)

1+σαN (z)
ǫ1,N (z),

and satisfies |ǫ̃1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1).

In order to evaluate the behaviour of α′
N (z)− σ

N
TrR′

N (z), we differentiate (66) w.r.t. z and get the following

result.

Proposition 6. For z ∈ C\R, it holds that the derivatives ǫ′1,N (z) and ǫ̃′1,N (z) of ǫ1,N (z) and ǫ̃1,N (z) w.r.t. z satisfy

|ǫ′1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1) and |ǫ̃′1,N (z)| ≤ P1(|z|)P2(|Im(z)|−1).

Proof: The proof uses Lemma 14 and the observation that the spectral norms ‖R′
N (z)‖ and‖R̃′

N (z)‖ are bounded

by P1(|z|)P2(|Im(z)|−1). The details are omitted. ä
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In order to complete the proof of the lemma, we establish that

Proposition 7. For z ∈C\R,

α′
N (z) = δ′N (z)+

ǫ2,N (z)

N 2
,

α̃′
N (z) = δ̃′N (z)+

ǫ̃2,N (z)

N 2
,

where |ǫ2,N (z)| and |ǫ̃2,N (z)| are both bounded by P1(|z|)P2

(

|Im(z)|−1
)

.

Proof: We first observe that (66) and (67) imply that

α′
N (z)−δ′N (z) =σ

1

N
Tr(R′

N (z))−δ′N (z)+
ǫ′1,N (z)

N 2
, (68)

α̃′
N (z)− δ̃′N (z) =σ

1

N
Tr(R̃′

N (z))− δ̃′N (z)+
ǫ̃′1,N (z)

N 2
. (69)

We start with the classical identities

RN (z)−TN (z) = RN (z)
(

TN (z)−1 −RN (z)−1
)

TN (z),

R̃N (z)− T̃N (z) = R̃N (z)
(

T̃N (z)−1 − R̃N (z)−1
)

T̃N (z),

and get that

σ

N
Tr (RN (z)−TN (z)) =

(

α̃N (z)− δ̃N (z)
)

zvN (z)+ (αN (z)−δN (z))uN (z), (70)

σ

N
Tr

(

R̃N (z)− T̃N (z)
)

=
(

α̃N (z)− δ̃N (z)
)

ũN (z)+ (αN (z)−δN (z)) zṽN (z), (71)

with

uN (z) =
σ2

N
Tr

RN (z)BN B∗
N TN (z)

(1+σαN (z))(1+σδN (z))
, ũN (z) =

σ2

N
Tr

R̃N (z)B∗
N BN T̃N (z)

(1+σα̃N (z))(1+σδ̃N (z))
,

and

vN (z) =
σ2

N
TrRN (z)TN (z) ṽN (z) =

σ2

N
Tr R̃N (z)T̃N (z).

Note that it is easy to check that uN (z) = ũN (z). We differentiate (70), (71)) w.r.t. z, we use (68), (69) and Proposition

6, and recall that both |αN (z)−δN (z)| and |α̃N (z)− δ̃N (z)| are bounded that 1
N 2 P1(|z|)P2

(

|Im(z)|−1
)

(see [23]). We

check that uN (z), zvN (z), zṽN (z) are their derivatives are bounded by P1(|z|)P2

(

|Im(z)|−1
)

, and obtain eventually

that
[

α′
N (z)−δ′N (z)

α̃′
N (z)− δ̃′N (z)

]

=
[

uN (z) zvN (z)

zṽN (z) uN (z)

][

α′
N (z)−δ′N (z)

α̃′
N (z)− δ̃′N (z)

]

+
1

N 2

[

ǫ3,N (z)

ǫ̃3,N (z)

]

,

with |ǫ3,N (z)|, |ǫ̃3,N (z)| bounded by P1(|z|)P2

(

|Im(z)|−1
)

. We denote by ∆N (z) the determinant of the above system,

i.e.

∆N (z) = (1−uN (z))2 − zvN (z)ṽN (z). (72)

The determinant ∆N (z) was studied in [14] and in [23] where it was proved that
∣

∣∆N (z)−1
∣

∣ ≤ P1(|z|)P2

(

|Im(z)|−1
)

on a subset DN of C defined as

DN =
{

z ∈C−R,
1

N 2
Q1(|z|)Q2

(

|Im(z)|−1
)

< 1

}

where Q1 and Q2 are 2 polynomials independent of N . Thus, we can invert the previous system on DN to get

[

α′
N (z)−δ′N (z)

α̃′
N (z)− δ̃′N (z)

]

=
1

∆N (z)

[

1−uN (z) zvN (z)

zṽN (z) 1−uN (z)

]

1

N 2

[

ǫ3,N (z)

ǫ̃3,N (z)

]

.
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This implies that |α′
N (z)−δ′N (z)| is bounded by 1

N 2 P1(|z|)P2

(

|Im(z)|−1
)

on DN . If z ∈ C\{R∪DN }, we use the trick

in [12]. We remark that

|α′
N (z)−δ′N (z)| ≤ |α′

N (z)|+ |δ′N (z)| ≤
C

|Imz|
,

for each z, and that 1 ≤ 1
N 2 Q1(|z|)Q2

(

|Im(z)|−1
)

on C\{R∪DN }. Therefore,

|α′
N (z)−δ′N (z)| ≤

C

|Imz|
1

N 2
Q1(|z|)Q2

(

|Im(z)|−1
)

≤
1

N 2
P1(|z|)P2

(

|Im(z)|−1
)

on C\{R∪DN }. This in turn shows that (63) holds on C\R. ä

5.2 Proof of lemma 6: differentiability of 1
M

TrΨ̃(Ω̂N )

We first need to establish the following useful Lemma.

Lemma 16. Given an integer D > 0, let f be a continuous real function on R
D . Let O be an open set of RD such

that RD \O has a zero Lebesgue measure. Assume that f is a C
1 function on O and that its gradient f ′ on O can be

continuously extended to R
D . Then f is C

1 on the whole RD with gradient f ′.

Proof: We only need to prove that for any x ∈R
D −O and any sequence xn → x,

f (xn)− f (x) = 〈 f ′(x), xn −x〉+o(dn).

where dn = ‖xn − x‖. Since f is uniformly continuous on any small neighborhood of x, there exists a sequence δn

such that for every y and y ′ in this neighborhood for which ‖y − y ′‖ < δn , | f (y)− f (y ′)| ≤ d 2
n . Since R

D −O has a

zero Lebesgue measure, there exists yn and zn in O such that

‖xn − yn‖ < min(δn ,d 2
n) and ‖x − zn‖ < min(δn ,d 2

n).

Therefore, it holds that max(| f (xn)− f (yn)|, | f (zn)− f (x)|) < d 2
n . Writing f (xn)− f (x) = f (xn)− f (yn)+ f (yn)− f (zn)+

f (zn)− f (x), we obtain that f (xn)− f (x) = f (yn)− f (zn)+o(dn). By differentiability of f on O and continuity of f ′

at x,

f (yn)− f (zn) = 〈 f ′(zn), yn − zn〉+o(‖yn − zn‖) = 〈 f ′(x), xn −x〉+o(dn)

which proves the lemma. ä

We now complete the proof of the Lemma. We consider Ψ̃ ∈ C
∞
c (R,R), and establish that, considered as a

function of the real and imaginary parts of WN , function 1
M

TrΨ̃(Ω̂N ) is continuously differentiable on R
2M N , i.e.

that for each pair (i , j ), the partial derivatives

∂

∂Wi , j ,N

{

1

M
TrΨ̃

(

Ω̂N

)

}

exist, and are continuous 2 We denote by O the open subset of R2M N for which the eigenvalues (λ̂l ,N )l=1,...,M of

ΣNΣ
∗
N have multiplicity 1. It is clear that R2M N \O has a zero Lebesgue measure. On O , it is standard that the

eigenvalues (λ̂l ,N )l=1,...,M are C
1 functions and that

∂λ̂l ,N

∂Wi , j ,N
=

[

Σ
∗
N Π̂l ,N

]

j ,i . (73)

Using Lemma 4.6 in Haagerup-Thorbjornsen [12], we obtain

∂

∂Wi , j ,N

{

Trψ̃(Ω̂N )
}

= Tr

(

ψ̃′(Ω̂N )
∂

∂Wi , j ,N
{Ω̂N }

)

=
[

Σ
∗
N

M
∑

l=1

[ψ̃′(Ω̂N )]l l Π̂l ,N

]

j ,i

(74)

and get that 1
M

TrΨ̃(Ω̂N ) is a C
1 on O . By Lemma 16, it remains to establish that the righthandside of (74) can be

continuously extended to any point W0
N of R2M N \O . For this, we first prove the following useful result.

2
Ψ̃ is real valued, the partial derivatives w.r.t. W i , j ,N thus coincide with the complex conjugate of the partial derivative w.r.t. Wi , j ,N . It is

therefore sufficient to consider these derivatives.
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Lemma 17. If λ̂k,N = λ̂l ,N , then [ψ̃(Ω̂N )]kk = [ψ̃(Ω̂N )]l l .

Proof: We start by observing that for any integers m1,m2, . . . ,mt , matrix A = Λ̂
m1

N 11T
Λ̂

m2

N · · ·11T
Λ̂

mt

N writes

A =









λ̂
m1

1,N
· · · λ̂

m1

1,N
...

...
...

λ̂
m1

M ,N
· · · λ̂

m1

M ,N









· · ·









λ̂
mt−1

1,N
· · · λ̂

mt−1

1,N
...

...
...

λ̂
mt−1

M ,N
· · · λ̂

mt−1

M ,N









Λ̂
mt

N

hence [A]kk = [A]l l if λ̂k,N = λ̂l ,N . The same can be said about 11T A and A11T . Consequently, the result of the

lemma is true when ψ̃ is a polynomial. Since any continuous function ψ̃ is the uniform limit of a sequence of

polynomials on compact subsets of R, the result is true for such ψ̃. ä

We consider an element W0
N of R2M N \O , and denote by m1, . . . ,mL , with M =

∑L
l=1

ml , the respective multiplic-

ities of the eigenvalues of Σ0
NΣ

0∗
N where Σ

0
N = BN +W0

N . We also denote by (Πl ,N )l=1,...,L the orthogonal projection

matrices over the corresponding eigenspaces. Lemma 17 implies that for each i = 1, . . . ,L,

[

ψ̃
′
(Ω̂)

]

m1+...+mi ,m1+...+mi

= . . . =
[

ψ̃
′
(Ω̂)

]

m1+...+mi+mi+1−1,m1+...+mi+mi+1−1
= κi .

Therefore, for any sequence (WN ,n)n∈N converging torward W0
N , it holds that

lim
n→∞

∂

∂Wi , j ,N

{

1

M
TrΨ̃

(

Ω̂N

)

}∣

∣

∣

∣

WN=WN ,n

=
[

Σ
∗
N

L
∑

l=1

κlΠl ,N

]

j ,i

.

This completes the proof of Lemma 6.

5.3 Proof of lemma 7: uniform boundedness of E[‖WN‖p ]

It is clear that it is sufficient to prove the boundedness of E[‖WN‖p ] if the entries of WN are real. We thus consider

the case of real matrices and denote by XN the largest singular value of
WN

σ . The following concentration result is

well-known.

Theorem 6 ([7, Th. II.13]). It holds that E [XN ] ≤ 1+p
cN and for all t > 0, P

(

XN > 1+p
cN + t

)

≤ exp
(

−N t 2/2
)

.

Using Theorem 6 and for p ≥ 2 the inequality,

E[X
p

N
] =

∫+∞

0
P (XN ≥ t ) pt p−1dt ≤ p

(

1+
p

cN

)p +
∫+∞

0
P

(

XN ≥ t +1+
p

cN

)

p(t +1+
p

cN )p−1dt ,

we easily obtain E[X
p

N
] ≤ K <∞, with K a constant independent of N , for all p ∈N.

5.4 Proof of Lemma 11: differentiability of the regularization factor

We first establish that det φ(ΣNΣ
∗
N ) is a C

1 function, and that (50) holds. We use the same approach as in Haagerup

& Thorbjornsen [12, Lem. 4.6]. We start begin by showing that the differential of det φ(X ) is given by

det φ(X)′.H = Tr
(

adj(φ(X))φ′(X)H
)

. (75)

As det (X)′.H = Tr(adj(X)H) and (Xn)′.H =
∑n−1

i=0
Xi HXn−1−i for any n ∈N, we have

det (Xn)′.H = Tr
(

adj(Xn)(nXn−1)H
)

since adj(Xn) and X commute. So (75) is true when φ is a polynomial. By choosing a sequence of polynomials Pn

such that Pn →φ and P ′
n →φ′ uniformly on compact subsets of R, we generalize (75) to any φ ∈C1. Now one can

check that

∂(ΣNΣ
∗
N )

∂Wi , j ,N
,= ei e∗j Σ

∗
N , (76)
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and it remains to apply the composition formula for differentials to obtain (50).

We also remark that at a point WN for which there exists a λ̂l ,N 6∈ supp(φ), we have

adj
(

φ(ΣNΣN
∗)

)

φ′(ΣNΣN
∗) =

M
∑

l=1

(

∏

k 6=l

φ(λ̂k,N )
)

φ′(λ̂l ,N )ul u∗
l = 0

hence the derivative (50) is zero on A
c

1,N
.

It is easy to check that det φ(Ω̂N Ω̂
∗
N ) is a C1 function on the open set O of all matrices WN for which the

eigenvalues of ΣNΣ
∗
N are simple, and that (51) holds if WN ∈ O , i.e. on a set of probability 1. In order to show

that det φ(Ω̂N Ω̂
∗
N ) is a C1 function on R

2M N \O , we use again Lemma 16, and verify that (51) can be continuously

extended to R
2M N \O . For this, we claim that

[

adj(φ(Ω̂N ))φ′(Ω̂N )
]

k,k =
[

adj(φ(Ω̂N ))φ′(Ω̂N )
]

l ,l (77)

if λ̂k,N = λ̂l ,N . Indeed, given ε> 0, let φε(x) =φ(x)+ε. Since φε(Ω̂N ) > 0,

adj(φε(Ω̂N ))φ′
ε(Ω̂N ) = det (φε(Ω̂N ))φ−1

ε (Ω̂N )φ′
ε(Ω̂N ).

Applying Lemma 17 to ψ̃=φ−1
ε ×φ′

ε, we obtain that

[

adj(φε(Ω̂N ))φ′
ε(Ω̂N )

]

kk =
[

adj(φε(Ω̂N ))φ′
ε(Ω̂N )

]

l l if λ̂k,N = λ̂l ,N

and letting ε→ 0, we obtain the same result for adj(φ(Ω̂N ))φ′(Ω̂N ). Similarly to the proof of Lemma 6, this proves

that (51) can be continuously extended to R
2M N \O .

5.5 Proof of lemma 12: various estimates

In this section, we denote by αr,N (z), α̃r,N (z),Rr,N (z) and R̃r,N (z) the regularized versions of the respective func-

tions αN (z), α̃N (z),RN (z) and R̃N (z) defined in Section 5.1, i.e.

αr,N (z) =σE

(

1

N
Tr(QN (z))χN

)

and α̃r,N (z) =σE

(

1

N
Tr(Q̃N (z))χN

)

,

and

Rr,N (z) =
(

BN B∗
N

1+σαr,N (z)
− z(1+σα̃r,N (z))

)−1

, R̃r,N (z) =
(

B∗
N BN

1+σα̃r,N (z)
− z(1+σαr,N (z))

)−1

.

It is clear that αr,N and α̃r,N are the Stieltjes transforms of positive measures carried by C\supp(φ) and C
∗\supp(φ)

respectively and with mass σcNE[χN ] and σE[χN ]. This implies that the following uniform bounds hold: Let K

and K̃ be compact subsets of C\supp(φ) and C
∗\supp(φ) respectively, then we have

sup
z∈K

|αr,N (z)| <C and sup
z∈K̃

|α̃r,N (z)| <C . (78)

In order to establish Lemma 12, it is necessary to show that similar bounds hold for functions 1
1+σαr,N (z)

, ‖Rr,N (z)‖
and ‖R̃r,N (z)‖. For this, we introduce function wr,N (z) = z(1+σαr,N (z))(1+σα̃r,N (z)) and prove the following

lemma

Lemma 18. For any compact subset K of C\supp(φ), it holds that

sup
z∈K

∣

∣αr,N (z)−δN (z)
∣

∣−−−−→
N→∞

0, (79)

inf
z∈K

min
k=1,...,M

∣

∣λk,N −wr,N (z)
∣

∣>C > 0. (80)
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Proof: Define κN (z) := αr,N (z)−δN (z) where we recall that δN (z) = σcN mN (z) = σ
N

Tr(TN (z)). Since δN (z) and

αr,N (z) are Stieltjes transforms of positive measures carried by C\supp(φ), κN is holomorphic on C\supp(φ) and

satisfies

|κN (z)| ≤
C

d(z, supp(φ))
.

This implies that the sequence (κN ) is uniformly bounded on each compact subset of C\supp(φ). By Montel’s the-

orem, (κN ) is a normal family. Let (κψ(N )) a subsequence of (κN ) which converges uniformly to κ on each compact

subset of C\supp(φ)) . Then κ is holomorphic on C\supp(φ). From [23, Prop.6], E
[

1
N

TrQN (z)
]

− 1
N

TrTN (z) −→
N

0 for

z ∈C\R+ and since χN →N 1 a.s., dominated convergence theorem implies

κN (z) = E

[ σ

N
TrQN (z)χN

]

−
σ

N
TrTN (z) −→

N
0

for z ∈ C\R+. Thus, κ(z) = 0 for z ∈ C\R+, and by analytic continuation, κ(z) = 0 for all z ∈ C\supp(φ). Therefore,

all converging subsequences extracted from the normal family (κN (z)) converge to 0 uniformly on each compact

subset of C\supp(φ). Consequently, the whole sequence (κN ) converges uniformly to 0 on each compact subset of

C\supp(φ). This completes the proof of (79). We also notice that

α̃r,N (z) =αr,N (z)−
σ(1− cN )

z
+
σ(1− cN )

z

(

1−E(χN )
)

(81)

and recall that δ̃N (z) = δN (z)− σ(1−cN )
z

. As 1−E(χN ) =O
(

1
N p

)

for each integer p, (79) implies

sup
z∈K

∣

∣z(α̃r,N (z)− δ̃N (z))
∣

∣→ 0.

Hence, it holds that

sup
z∈K

∣

∣wr,N (z)−wN (z)
∣

∣→ 0.

Thus, (80) follows immediately from (13). ä

Lemma 18 immediately implies that the following uniform bounds hold.

Lemma 19. Let K and K̃ be compact subsets of C−supp(φ) and C
∗−supp(φ) respectively. For N large enough, we

have

sup
z∈K

∣

∣

∣

∣

1

1+σαr,N (z)

∣

∣

∣

∣

<C , (82)

sup
z∈K

‖Rr,N (z)‖ <C , (83)

sup
z∈K̃

‖R̃r,N (z)‖ <C , (84)

sup
z∈K

‖Rr,N (z)−TN (z)‖→ 0, (85)

sup
z∈K̃

‖R̃r,N (z)− T̃N (z)‖→ 0. (86)

Proof: We first recall that inequality (10) holds. Therefore, the uniform convergence result (79) implies that

inf
z∈K

∣

∣1+σαr,N (z)
∣

∣>
1

4

for N large enough. This establishes (82) that holds for N large enough. In order to prove (83), we express Rr,N (z)

as

Rr,N (z) =
(

1+σαr,N (z)
)(

BN B∗
N −wr,N (z)

)−1

and use (78) and (80). The proof of (84) is similar, and is based on the identity

R̃r,N (z) =
(

1+σα̃r,N (z)
)(

B∗
N BN −wr,N (z)

)−1
.
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We remark that function α̃r,N (z) has a pole at z = 0. Hence, any compact K̃ over which ‖R̃r,N (z)‖ is supposed to

be uniformly bounded should not contain 0. The proof of (85) follows immediately from (79) and from (82), (83),

(84). Finally, to establish (86), we remark that

R̃r,N (z) =
B∗

N RN (z)BN

wr,N (z)
−

IN

1+σαr,N (z)
,

T̃r,N (z) =
B∗

N TN (z)BN

wN (z)
−

IN

1+σδN (z)
,

and that |wr,N (z)| and |wN (z)| are uniformly bounded from below by (13) and (80) (recall that 0 is one of the

eigenvalues of BN B∗
N ). ä

We now establish (56) and (57). In order to prove that αN (z)−δN (z) = O

(

1
N 2

)

on C\R+, [10] and [23] used

the integration by parts formula (see e.g. [19]) and the Poincaré inequality to show that the entries of E[QN (z)]

are close from the entries of RN (z) (see the fundamental equation (65)). Then, αN (z)−δN (z) was evaluated by

solving a linear system whose determinant ∆N (z) given by (72) was shown to be bounded from below. Lemma 19

allows to follow exactly the same approach to establish (56) and (57). However, functions αN , α̃N ,RN , R̃N have to

be replaced by their regularized versions. The following results show that the presence of the regularization term

χN does not modify essentially the calculations of [10] and [23]. We first indicate how the integration by parts

formula is modified. Vec(.) denotes the column by column vectorization operator of a matrix.

Lemma 20. Let ( fN )N≥1 be a sequence of continuously differentiable functions defined on C
M(M+N ) with polynomi-

ally bounded partial derivatives satisfying the condition

sup
z∈∂Ry

∣

∣ fN (Vec(QN (z)) ,Vec(ΣN ))χN

∣

∣<C .

Then, for all p ∈N, we have

E
[

f (Vec(QN (z)) ,Vec(ΣN ))χN

]

= E

[

f (Vec(QN (z)) ,Vec(ΣN ))χk
N

]

+
ǫ1,N (z)

N p
. (87)

for all k ∈N
∗, and

E
[

Wi j ,N f (Vec(QN (z)) ,Vec(ΣN ))χN

]

=
σ2

N
E

[

∂ f (Vec(QN (z)) ,Vec(ΣN ))

∂W i j ,N

χN

]

+
ǫ2,N (z)

N p
, (88)

E

[

W i j ,N f (Vec(QN (z)) ,Vec(ΣN ))χN

]

=
σ2

N
E

[

∂ f (Vec(QN (z)) ,Vec(ΣN ))

∂Wi j ,N
χN

]

+
ǫ3,N (z)

N p
, (89)

with supz∈∂Ry
|ǫi ,N (z)| ≤C <∞.

As for the use of the Poincaré inequality, we have:

Lemma 21. Let (MN (z)) a sequence of deterministic complex M ×M matrix-valued functions defined on C\R such

that

sup
z∈∂Ry

‖MN (z)‖ ≤C .

Then,

sup
z∈∂Ry

Var

[

1

N
TrQN (z)MN (z)χN

]

≤
C

N 2
,

and for aN ∈C
M such that supN ‖aN‖ <∞,

sup
z∈∂Ry

Var
[

a∗
N QN (z)MN (z)aNχN

]

≤
C

N
.

Moreover, the same kind of uniform bounds still hold when QN (z) is replaced by QN (z)2.
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The proofs of these results are based on elementary arguments, and are thus omitted. Following the calcula-

tions of [10] and [23], we obtain that

E
[

QN (z)χN

]

= Rr,N (z)+∆r,N (z)Rr,N (z)+E
[

QN (z)χN

]

Rr,N (z)
σ2

N
Tr∆r,N (z)+ΘN (z)Rr,N (z) (90)

for each z ∈C\supp(φ) where ΘN (z) is a matrix whose elements are uniformly bounded on ∂Ry by C
N p for each p,

and where ∆r,N (z) is the regularized version of matrix ∆N (z) introduced in lemma 15 defined by

∆r,N (z) =−
1

(1+σαr,N (z))2
E
[

QN (z)χN

]

E

[(

σ2

N
TrQN (z)χN −E

[

σ2

N
TrQN (z)χN

])

σ2

N
TrΣ∗

N QN (z)BNχN

]

+
1

1+σαr,N (z)
E

[(

σ2

N
TrΣ∗

N QN (z)BNχN −E

[

σ2

N
TrΣ∗

N QN (z)BNχN

])

QN (z)χN

]

+
1

1+σαr,N (z)
E

[(

σ2

N
TrQN (z)χN −E

[

σ2

N
TrQN (z)χN

])

QN (z)ΣNΣ
∗
NχN

]

, (91)

After some calculations using Lemmas 19, 20, 21, we eventually obtain that

sup
z∈∂Ry

∣

∣a∗
N

(

E[QN (z)χN ]−Rr,N (z)
)

aN

∣

∣≤
C

N 3/2
,

sup
z∈∂Ry

∣

∣

∣αr,N (z)−
σ

N
Tr(Rr,N (z))

∣

∣

∣≤
C

N 2
, (92)

sup
z∈∂Ry

∣

∣

∣α̃r,N (z)−
σ

N
Tr(R̃r,N (z))

∣

∣

∣≤
C

N 2
. (93)

for all large N . In order to prove (56) and (57), it remains to handle the terms involving the difference Rr,N (z)−
TN (z). We show in the following that

sup
z∈∂Ry

∣

∣a∗
N

(

Rr,N (z)−TN (z)
)

aN

∣

∣≤
C

N 2
(94)

for all large N . We start as usual with the identity Rr,N (z)−TN (z) = Rr,N (z)
(

TN (z)−1 −Rr,N (z)−1
)

TN (z), to get

a∗
N

(

Rr,N (z)−TN (z)
)

aN =σ
αr,N (z)−δN (z)

(

1+σαr,N (z)
)

(1+σδN (z))
a∗

N Rr,N (z)BN B∗
N TN (z)aN

+ zσ
(

α̃r,N (z)− δ̃N (z)
)

a∗
N Rr,N (z)TN (z)aN .

The expression (81) of α̃r,N implies that z(α̃r,N (z)− δ̃N (z)) = z(αr,N (z)−δN (z))+O
(

1
N p

)

for each integer p. Thus,

to prove (56) and (57), it is sufficient to check that

sup
z∈∂Ry

∣

∣αr,N (z)−δN (z)
∣

∣≤
C

N 2
.

We will use the same ideas as in Section 5.1 and remark that (αr,N (z)−δN (z), α̃r,N (z)− δ̃N (z)) can be interpreted

as the solution of a 2×2 linear system whose determinant is a regularized version of (72), and appears uniformly

bounded away from zero on ∂Ry .

Using again the previous expression of Rr,N (z)−TN (z) together with (92), (93) and repeating the procedure for

R̃r,N (z)− T̃N (z), we obtain

[

αr,N (z)−δN (z)

α̃r,N (z)− δ̃N (z)

]

=
[

ur,N (z) zvr,N (z)

zṽr,N (z) ur,N (z)

][

αr,N (z)−δN (z)

α̃r,N (z)− δ̃N (z)

]

+
1

N 2

[

ǫN (z)

ǫ̃N (z)

]

, (95)

with ur,N (z) = σ2

N
Tr

Rr,N (z)B∗
N

BN TN (z)

(1+σαr,N (z))(1+σδN (z))
, vr,N (z) = σ2

N
TrRr,N (z)TN (z) and ṽr,N (z) = σ2

N
Tr R̃r,N (z)T̃N (z). The quanti-

ties ǫN (z), ǫ̃N (z) satisfy supz∈∂Ry
|ǫN (z)| <C , supz∈∂Ry

|ǫ̃N (z)| <C . The determinant of the system is given by

∆r,N (z) =
(

1−ur,N (z)
)2 − z2vr,N (z)ṽr,N (z).
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Lemma 19 implies that for all large N , ur,N (z), vr,N (z) and ṽr,N (z) are uniformly bounded on ∂Ry . Therefore, to

conclude the proof of (94), it remains to check that for all large N ,

inf
z∈∂Ry

∣

∣∆r,N (z)
∣

∣≥C > 0.

Consider the function ∆̌N (z) where we have replaced the matrix Rr,N (z) and R̃r,N (z) by TN (z) and T̃N (z), i.e

∆̌N (z) = (1− ǔN (z))2 − z2v̌N (z) ˇ̃vN (z),

with ǔN (z) = σ2

N
Tr

TN (z)B∗
N

BN TN (z)

(1+σδN (z))(1+σδN (z))
, v̌N (z) = σ2

N
TrTN (z)2, and ˇ̃vN (z) = σ2

N
Tr T̃N (z)2. Denote by hN (z) = ∆N (z)−

∆̌N (z). Lemmas 18, 19 imply that |ǔN (z)−uN (z)|, |vN (z)− v̌N (z)| and
∣

∣ṽN (z)− ˇ̃vN (z)
∣

∣ converge to 0 uniformly on

∂Ry which of course implies

sup
z∈∂Ry

|hN (z)| −−−−→
N→∞

0. (96)

Using Cauchy-Schwarz inequality, we get

∣

∣∆̌N (z)
∣

∣≥∆N (z) :=
(

1−uN (z)
)2 −|z|2v N (z)ṽ N (z),

with uN (z) = σ2

N
Tr

TN (z)BN B∗
N

TN (z)∗

|1+σδN (z)|2 , v N (z) = σ2

N
TrTN (z)TN (z)∗ and ṽ N (z) = σ2

N
Tr T̃N (z)T̃N (z)∗. Now, we use the

following lemma.

Lemma 22. There exists a constant C > 0 independent of N such that

inf
z∈∂Ry

∆N (z) ≥C .

Proof: It is shown in [23] and [14] that ∆N (z) is the determinant of the following 2×2 linear system

[

Im(δN (z))

Im
(

zδ̃N (z)
)

]

=
[

uN (z) v N (z)

|z|2 ṽ N (z) uN (z)

][

Im(δN (z))

Im
(

zδ̃N (z)
)

]

+
Im(z)

σ

[

v N (z)

uN (z)

]

, (97)

and that for z ∈C\R, ∆N (z) > 0. Solving the system, and looking at the corresponding expression of Im(δN (z)), we

easily get that

∆N (z) =
Im(z)

Im(δN (z))

σ

N
TrTN (z)TN (z)∗.

for z ∈ C\R. Expressing TN (z) − TN (z)∗ as TN (z)
(

TN (z)−∗−TN (z)−1
)

TN (z)∗, and using the equation δN (z) =
σ
N

Tr(TN (z)), we obtain that

Im(δN (z)) = Im(wN (z))
σ

N
TrTN (z)TN (z)∗.

and deduce the useful formula

∆N (z) =
Im(z)

Im(wN (z))
. (98)

Using the integral representation δN (z) =
∫

SN

dµN (λ)
λ−z

, we obtain after straightforward computations that the ex-

pression Im(z)
Im(wN (z))

extends to C\SN , and therefore to C\supp(φ), and satisfies

sup
z∈∂Ry

|Im(wN (z))|
|Im(z)|

<C

Eq. (98) thus implies that

sup
z∈∂Ry

∣

∣∆N (z)
∣

∣

−1 ≤C .

which concludes the proof. ä
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We deduce from this that infz∈∂Ry
|∆N (z)| ≥C > 0 for all large N . Therefore, we can invert the system (95) and

obtain

sup
z∈∂Ry

∣

∣αr,N (z)−δN (z)
∣

∣≤
C

N 2
,

for all large N . This establishes (57) and completes the proof of (56).

The proof of (58) is similar to the proof of Lemma 4, but as above, αN (z), α̃N (z),RN (z) and R̃N (z) have to be

replaced by their regularized versions αr,N (z), α̃r,N (z),Rr,N (z) and R̃r,N N (z). The reader can check that the prop-

erties of these regularized functions allow to follow the various steps of the proof of Lemma 4.
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