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Abstract—In this paper, using tools from asymptotic random The works by Cabric et al. [7], Akyildiz et al. [10] and

matrix theory, a new cooperative scheme for frequency band  Haykin [11] provide a summary of these classical techniques
sensing is introduced for both AWGN and fading channels. Urike from the cognitive network point of view. It is clear from s

previous works in the field, the new scheme does not require & ks. th full ith all th . f
knowledge of the noise statistics or its variance and is refad to ~ WO'KS, that none can fully cope with all the requirements o

the behavior of the largest and smallest eigenvalue of rando  the cognitive radio networks.
matrices. Remarkably, simulations show that the asymptot In simple AWGN (Additive White Gaussian Noise) chan-
claims hold even for a small number of observations (whichmkes  na|s most classical approaches perform very well. Howéver
it convenient for time-varying topologies), outperforming classical th f fast fading. th techni t able td
energy detection technigues. e case of fast fading, these techniques are not able adgrov
satisfactory solutions, in particular to the hidden nodebpgm
[. INTRODUCTION [12]. To this end, several works [13]-[16] have looked into

It has already become a common understanding that curreffte case in which cognitive radios cooperate for sensing the
mobile communication systems do not make full use of thespectrum. These works aim at reducing the probability fefal
available spectrum, either due to sparse user access oe to thlarm by adding extra redundancy to the sensing procesg. The
system’s inherent deficiencies, as shown by a report from th@lso aim at reducing the number of samples collected, arg] thu
Federal Communications Commission (FCC) Spectrum Policjhe estimation times by the use parallel measuring devices.
Task Force [1]. It is envisioned that future systems will beHowever, even though one could exploit the spatial dimensio
able to opportunistically exploit those spectrum ’lefeey, ~ efficiently, these works are based on the same fundamental
by means of knowledge of the environment and cognitiorfechniques, which require a priori knowledge of the signal.
capability, in order to adapt their radio parameters adogtyl In this work, we introduce an alternative method for blind
Such a technology has been proposed by Joseph Mitola iin the sense that no a priori knowledge is needed) spectrum
2000 and is called cognitive radio [2]. Due to the fact thatsensing. This method relies on the use of multiple receitgers
recent advances on micro-electronics and computer systenfifer on the structure of the received signals using random
are pointing to a -not so far- era when such radios will bematrix theory (RMT). We show that we can estimate the
feasible, it is of utmost importance to develop good perfagn  spectrum occupancy reliably with a small amount of received
sensing techniques. samples.

In its simplest form, spectrum sensing means looking for The remainder of this work is divided as follows. In
a signal in the presence of noise for a given frequency bandection I, we formulate the problem of blind spectrum segsi
(it could also encompass being able to classify the signal)in section Ill, we introduce the proposed approach based on
This problem has been extensively studied before, but it hasandom matrix theory. In section IV, we present some prakttic
regained attention now as part of the cognitive radio resear results which confirm that the asymptotic assumptions hold
efforts. There are several classical techniques for thipgae, even for a small amount of samples. Then, in section V, we
such as the energy detector (ED) [3]-[5], the matched filteshow the performance results of the proposed method. Finall
[6] and the cyclostationary feature detection [7]-[9]. $&e in section VI, we draw the main conclusions and point out
technigques have their strengths and weaknesses and are wielither studies.
suited for very specific applications.

Nevertheless, the problem of spectrum sensing as seen from 1
a cognitive radio perspective, has very stringent requams)

. PROBLEM FORMULATION

and limitations, such as, The basic problem concerning spectrum sensing is the
« no prior knowledge of the signal structure (statisticsspoi detection of a signal within a noisy measure. This turns out
variance value, etc...); to be a difficult task, especially if the received signal poige

« the detection of signals in the shortest time possible; very low due to pathloss or fading, which in the blind spetru
« ability to detect reliably even over heavily faded environ-sensing case is unknown. The problem can be posed as a
ments; hypothesis test such that [3]:
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n(k): Hy « The K base stations in the secondary system share
y(k) { h(k)s(k) 4+ n(k): Hy ° (1) information between them. This can be performed by
transmission over a wired high speed backbone.
o The base stations are analyzing the same portion of the
spectrum.
Let us consider the following x N matrix consisting of the
samples received by all thE secondary base stationg; (k)
is the sample received by base statiost instantk):

wherey(k) is the received vector of samples at instant.(k)

is a noise (not necessarily gaussian) of varianteh (k) is the
fading components(k) is the signal which we want to detect,
such thatE [| s(k) |*] # 0, and Hy and H; are the noise-
only and signal hypothesis, respectively. We suppose twat t
channelh stays constant duringy blocks ¢ = 1..N).

Classical techniques for spectrum sensing based on energy yi(1) y1(2) - yi(N)
detection compare the signal energy with a known threshold y2 (1) 92(2) -+ y2(N)
Vr [3]-[5] derived from the statistics of the noise and channel v = | y(1) ws(2) - ys(N)
The following is considered to be the decision rule : : :
decisi _{ Ho, ifEP y(k) |?] < Vr yr(1) yx(2) - yx(N)
ecision= . 9 , . .
Hy, it E||y(k)|?] > Vr The goal of the random matrix theory approach is to

perform a test of independence of the signals received by the
garious base stations. Indeed, in the presence of sidial (
case), all the received samples are correlated, whereas whe
no signal is presentH, case), the samples are decorrelated
whatever the fading situation. Hence, in this case, for a fixe
nd N — oo, the sample covariance matr%YYH converge

where E|[| y(k) |?] is the energy of the signal antr is
usually taken as the noise variance. One drawback of thi
approach is that neither the noise/channel distributianifo
are known a priori. In real life scenariogr depends on
the radio characteristics and is hard to be estimated psoper
Moreover, in the case of fading and path loss, the energy of, - - be of ih q ¢
the received signal can be of the order of the noise, making L However, in practiceN' can be of the same order o

difficult to be detected all the more as the number of sampleg]agmg’qe than’ and therefore one can not infer dlrect_ly
N may be very limited. Indeed® “ y(k) m is estimated by ~ YY" independence of the samples. This can be formalized
using tools from random matrix theory [17]. In the case where
1 the entries ofY are independent (irrespectively of the specific
N Z | y(k) |2, probability distribution, which corresponds to the casesieh
k=1 no signal is transmitted H;) results from asymptotic random

which is not a good estimator for the small sample size casénatrix theory [17] state that: _ _
In the following, we provide a cooperative approach for ~Theorem. Consider ank x N matrix W whose entries
cognitive networks to detect the signal from a primary syste are independent zero-mean complex (or real) random vasabl

. 2
without the need to know the noise variance using results fro With variance 5z and fourth moments of .ord.e@(%). As
random matrix theory. K,N — oo with £ — «, the empirical distribution oW W

converges almost surely to a nonrandom limiting distrifouti

[1l. RANDOM MATRIX THEORY FORSPECTRUM SENSING with density

Consider the scenario depicted in Figure 1, in which 1 V@ —a)Fb—a)F
primary users (in white) communicate to their dedi- flz)=(1 )To(z) + 5
cated (primary) base station. Secondary base sta’[ion\ﬁhere @ e
{BS1,BSs,BSs,...,BSk} are cooperatively sensing the
channel in order to identify a white space and exploit the a=0c%(1-+a)? and b=0c%(1+ )
medium.

Interestingly, when there is no signal, the support of the
Primary base station Secondary base station eigenvalues of the sample covariance matrix (in Figure 2,
denoted byMP) is finite, whatever the distribution of the
noise. The Marchenko-Pastur law thus serves as a thedretica
BSk prediction under the assumption that matrix is "all noise”.
Deviations from this theoretical limit in the eigenvaluestdi-
bution should indicate non-noisy components i.e they shoul
suggest information about the matrix.
In the case in which a signal is presert{;(, Y can be
B rewritten as

Fig. 1. Considered scenario for spectrum sensing. Y

Before going any further, let us assume the following:



I

a b a b v

Fig. 2. The Marchenko-Pastur suppoH{ hypothesis). Fig. 3. The Marchenko-Pastur support plus a signal comgonen

wheres(i) and zx(i) = ons (i) are respectively the indepen- computation of the asymptotic largest eigenvalue distigou
dent signal and noise with unit variance at instamind base in the Hy and H; case.

stationk. Let us denote bif’ the matrix: B. Both noise distribution and variance unknown

hy o 0 Note that the ratio of the maximum and the minimum
T — : . _ eigenvalues in thedy hypothesis case does not depend on
h. 0 ' - the noise variance. Hence, in order to circumvent the need fo
K the knowledge of the noise, the following criteria is used:
TTH has clearly one eigenvalug = Y |h;|? + o2 and
all the rest equal tar2. The behavior of the eigenvalues of decision=
%YYH is related to the study of the eigenvalue of large
sample covariance matrices of spiked population modelk [18
Let us define the signal to noise ratio (SNRin this work as

Hy: |, if dme < QEV@2

Amin = (1—v/a)? 4)
H otherwise

It should be noted that in this case, one needs to still take a
sufficiently high number of sample¥ such that the conditions
S |hil? in Eq. (2) are met. In other words, the number of samples
2 scales quadratically with the inverse of the signal to nosie.

ag
: Note moreover that the teéf; provides also a good estimator
thr?cent works of Baik et al. 18], [19] have shown that, of the SNRp. Indeed, the ratio of largest eigenvalué) @and
smallest ) of %YYH is related solely tg and« i.e

K K

Nl ey @) Yo (p+11+2)
(which are assumptions that are clearly met when the number a (1 —Va)?
of slamplesN are sufficiently high), the maximum eigenvalue  To our knowledge, this estimator of the SNR has never been
of 4 YY# converges almost surely to put forward in the literature before.

by = (Z|hi|2 to?)(1+ g) IV. PERFORMANCEANALYSIS

p

The previous theoretical results have shown that one is able
which is superior tob = o%(1 + \/a)? seen for theH, case.  to distinguish a signal from noise by the use of only a lingjtin
Therefore, whenever the distribution of the eigenvalues ofatio of the highest to the smallest eigenvalue of the sample
the matrix - YY* departs from the Marchenko-Pastur law covariance matrix. For finite dimensions, the operatindoreg
(Figure 3), the detector knows that the signal is presemickle for such an algorithm is still an issue and is related to the
one can use this interesting feature to sense the spectrum. asymptotic distribution of a scaling factor of the ratio [ZDhis
Let \; be the eigenvalues oﬁYYH andG = [a,b], the  section provides some characterization of this regionutno
cooperative sensing algorithm works as follows: the analysis of the ratio betweew,,,. and \,,,;,, of %YYH
for various matrix sizes.
Figures 4 and 5 present thg,,,./Am:n for various sizes
In this case, the following criteria is used: of Y in the pure noise case, with = 1/2 anda = 1/10,
. respectively. From the figures we see that both cases provide
Ho: it E.G (3) agood approximation of the asymptotic ratio even with small
Hy: otherwise matrix sizes. If one takes, for exampl@, = 100 (K = 50
Note that refinements of this algorithm (where the probabilfor o = 1/2 and K = 10 for « = 1/10), it can be seen
ity of false alarm is taken into account in the non-asymptoti that the simulated cases are respectively equal to 81%mterce
case) can be found in [20]. The results are based on thand 83% of the asymptotic limit foix = 1/2 anda = 1/10.

A. Noise distribution unknown, variance known

decision= {



As expected, for a large¥ matrix size, the empirical ratio H, case, SNR = -5 dB, fixa= 1/2
approaches the asymptotic one. 4

H, case, fixedr = 1/2

st : —A__ /A . (Asymptotic)| |

max” min

"")‘ma></>‘mm (Simulated)
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% 50 100 150 200 250 300 350 00 Fig. 6. Behavior 0f\pqz/Amin for increasingN (caseH:, o = 1/2).
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H1 case, SNR = -5 dB, fixeul = 1/10

Fig. 4. Behavior ofA\;naz/Amin fOr increasingN (caseHp, a = 1/2).
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A oA (Simulated) Fig. 7. Behavior ofA\paz/Amin for increasingN (caseHi, a = 1/10).
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with (k) modeled as a rayleigh multipath fading of variance
Fig. 5. Behavior of\maz/Amin for increasingN (caseHo, a = 1/10). 1/K. The variance is normalized to take into account the fact
that the energy does not increase without bound as the number
Figures 6 and 7 show the behavior of thg,../ A forthe  of base stations increases due to the path loss. A total of 10
signal plus noise case far= 1/2 anda = 1/10, respectively. secondary base stations were simulated. For the votingrsshe

In both casesg? = 1/p (with a p of -5 dB) with " |h;|? =  the decision rule is the following: one considers the overal
1 (which holds under the criteria in Eq. (2)). In this case,spectrum occupancy decision to be the one chosen by most of
M = Y for the pure signal case. Interestingly, fir= 100  the secondary base stations. The threshalds taken ass?

(K = 50 for a =1/2and K = 10 for a = 1/10), it can  (for the known noise variance case). For the random matrix
be seen that the simulated case is approximately 70% perceifieory based scheme, a fixed total &f & 10) base stations
and 83% of the asymptotic limit for = 1/2 anda = 1/10,  were adopted. Note that the algorithms can be optimized for
respectively. As expected, the larger thematrix sizes, the the voting and random matrix theory based rules by adopting
closer one gets to the asymptotic ratio. A good approximatio decision margins [20].
was obtained for values a¥ as low as 100 samples. Figure 8 depicts the performance of the energy detector
scheme along with the random matrix theory one for=
V. RESULTS {10,20, ...,60} samples and a known noise variance oo
Simulations were carried out to establish the performafice cat SNR equal to -5dB. It is important to stress that since
the random matrix theory detector scheme in comparisorgto thK is fixed, o is not constant as in the previous section. As
cooperative energy detector scheme based on voting [16], [1 clearly shown, the random matrix theory scheme outperforms
The framework for the energy detector is exposed in sectjon | the cooperative energy detector case for all number of ssnpl



Correct detections at SNR = -5 dB (known noise)

o
©
5
T
i

Ratio of correct detections

(1]
(2]

154
©
@

o
©
R

o
©
i

(3]
(4
(5]

o

I I
30 35

40 60
N (number of samples)

Fig. 8. Comparison between the ED and random matrix theoproagh
(p = —5 dB). [6]
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due to its inherent robustness. [14]

Figure 9 plots the performance of the random matrix theory
scheme for an unknown noise variance (the voting schem
can not be compared as it relies on the knowledge of th
noise variance). One can see that, indeed, even without the
knowledge of a noise variance, one is still able to achieve ?16]
very good performance for sample sizes greater than 30.

[17]

5]

VI. CONCLUSIONS

In this paper, we have provided a new spectrum sensinf8]
techniqgue based on random matrix theory and shown its
performance in comparison to the cooperative energy detegrg
tor scheme for both a known and unknown noise variance.
Remarkably, the new technique is quite robust and doe[%]
not require the knowledge of the signal or noise statistics.
Moreover, the asymptotic claims turn out to be valid even
for a very low number of dimensions. The method can be
enhanced (see [20]) by adjusting the threshold decisimda
into account the number of samples though the derivation of

the probability of false alarm of the limiting ratio of therdgest
to the smallest eigenvalue.
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