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Free Deconvolution: from Theory to Practice
Florent Benaych-Georges, Mérouane Debbah, Senior Member, IEEE

Abstract— In this paper, we provide an algorithmic method to
compute the singular values of sum of rectangular matrices based
on the free cumulants approach and illustrate its application to
wireless communications. We first recall the algorithms working
for sum/products of square random matrices, which have already
been presented in some previous papers and we then introduce
the main contribution of this paper which provides a general
method working for rectangular random matrices, based on
the recent theoretical work of Benaych-Georges. In its full
generality, the computation of the eigenvalues requires some
sophisticated tools related to free probability and the explicit
spectrum (eigenvalue distribution) of the matrices can hardly be
obtained (except for some trivial cases). From an implementation
perspective, this has led the community to the misconception that
free probability has no practical application. This contribution
takes the opposite view and shows how the free cumulants
approach in free probability provides the right shift from theory
to practice.

Index Terms— Free Probability Theory, Random Matrices,
Rectangular Free Convolution, Deconvolution, Free Cumulants,
Wireless Communications.

I. INTRODUCTION

A. General introduction

A question that naturally arises in cognitive random net-
works [1] is the following: “From a set of p noisy measure-
ments, what can an intelligent device with n dimensions (time,
frequency or space) infer on the rate in the network?”. It turns
that these questions have recently found answers in the realm
of free deconvolution [2], [3]. Cognitive Random Networks
have been recently advocated as the next big evolution of
wireless networks. The general framework is to design self-
organizing secure networks where terminals and base stations
interact through cognitive sensing capabilities. The mobility in
these systems require some sophisticated tools based on free
probability to process the signals on windows of observations
of the same order as the dimensions (number of antennas,
frequency band, number of chips) of the system. Free proba-
bility theory [4] is not a new tool but has grown into an entire
field of research since the pioneering work of Voiculescu in
the 1980’s ([5], [6], [7], [8]). However, the basic definitions of
free probability are quite abstract and this has hinged a burden
on its actual practical use. The original goal was to introduce
an analogy to independence in classical probability that can
be used for non-commutative random variables like matrices.
These more general random variables are elements of what is

Florent Benaych-Georges: LPMA, UPMC Univ Paris 6, Case courier
188, 4, Place Jussieu, 75252 Paris Cedex 05, France and CMAP, École
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called a noncommutative probability space, which we do not
introduce as our aim is to provide a more practical approach to
these methods. Based on the moment/cumulant approach, the
free probability framework has been quite successfully applied
recently in the works [2], [3] to infer on the eigenvalues of
very simple models i.e the case where one of the considered
matrices is unitarily invariant. This invariance has a special
meaning in wireless networks and supposes that there is some
kind of symmetry in the problem to be analyzed. In the present
contribution, although focused on wireless communications,
we show that the cumulant/moment approach can be extended
to more general models and provide explicit algorithms to
compute spectrums of matrices. In particular, we give an
explicit relation between the spectrums of random matrices
(M+N)(M+N)∗, MM∗ and NN∗, where M,N are large
rectangular independent random matrices, at least one of them
having a distribution which is invariant under multiplication,
on any side, by any othogonal matrix. This had already been
done ([9], [10], [11]), but only in the case where M or N is
Gaussian.

B. Organization of the paper, definitions and notations

In the following, upper (lower) boldface symbols will be
used for matrices (column vectors) whereas roman symbols
will represent scalar values, (.)∗ will denote hermitian trans-
pose. I will represent the identity matrix. Tr denotes the trace.

The paper is organized as follows.
1) Section II: In section II, we introduce the moments

approach for computing the eigenvalues of classical known
matrices.

2) Sections III and IV: In these sections, we shall review
some classical results of free probability and show how (as
long as moments of the distributions are considered) one can,
for A,B independent large square Hermitian (or symmetric)
random matrices (under some general hypothesis that will be
specified):
• derive the eigenvalue distribution of A+B from the ones

of A and B.
• derive the eigenvalue distribution of AB or of A

1
2 BA

1
2

from those of A and B.
The framework of computing the eigenvalue of the
sum/product of matrices is known in the literature as free
convolution ([12]), and denoted respectively by �,�.

We will also see how one can:
• Deduce the eigenvalue distribution of A from those of

A + B and B.
• Deduce the eigenvalue distribution of A from those of

AB or of A
1
2 BA

1
2 and B.

These last operations are called free deconvolutions ([9]) and
denoted respectively by �,�.
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3) Section V: This section will be devoted to rectangular
random matrices. We shall present how the theoretical results
that the first named author proved in his thesis can be made
practical in order to solve some of the network problems
presented in Section ??. The method presented here also uses
the classical results of free probability mentioned above.

We consider the general case of two independent real
rectangular random matrices M,N, both of size n× p. We
shall suppose that n, p tend to infinity in such a way that
n/p tends to λ ∈ [0, 1]. We also suppose that at least
one of these matrices has a joint distribution of the entries
which is invariant by multiplication on any side by any
orthogonal matrix. At last, we suppose that the eigenvalue
distributions of MM∗ and NN∗ (i.e. the uniform distributions
on their eigenvalues with multiplicity) both converge to non
random probability measures. From a historical and purely
mathematical perspective, people have focused on these types
of random matrices because the invariance under actions
of the orthogonal group is the – quite natural – notion of
isotropy. The Gram1 approach was mainly due to the fact that
the eigenvalues of MM∗ (which are real and positive) are
easier to characterize than those of M. From an engineering
perspective, for a random network modeled by a matrix M, the
eigenvalues of MM∗ contain in many cases the information
needed to characterize the performance limits of the system. In
fact, the eigenvalues relate mainly to the energy of the system.
We shall explain how one can deduce, in a computational
way, the limit eigenvalue distribution of (M + N)(M + N)∗

from the limit eigenvalue distributions of MM∗ and NN∗.
The underlying operation on probability measures is called
the rectangular free convolution with ratio λ, denoted by �λ

in the literature ([13], [14], [15]). Our machinery will also
allow the inverse operation, called rectangular deconvolution
with ratio λ: the derivation of the eigenvalue distribution of
MM∗ from the ones of (M + N)(M + N)∗ and NN∗.

4) Sections VII and VI: In section VII, we present some
applications of the results of section V to the analysis of
random networks and we compare them with other results,
due to other approaches, in section VI.

II. MOMENTS FOR SINGLE RANDOM MATRICES

A. Historical Perspective

The moment approach for the derivation of the eigenvalue
distribution of random matrices dates back to the work of
Wigner [16], [17]. Wigner was interested in deriving the
energy levels of nuclei. It turns out that energy levels are linked
to the Hamiltonian operator by the following Schröndinger
equation:

HΦi = EiΦi,

where Φi is the wave function vector, Ei is the energy level.
A system in quantum mechanics can be characterized by a
self-adjoint linear operator in Hilbert space: its hamiltonian
operator. We can think of this as a Hermitian matrix of
a number of infinitely many dimensions, having somehow
introduced a coordinate system in a Hilbert space. Hence,

1For a matrix M, MM∗ is called the Gram matrix associated to M.

the energy levels of the operator H are nothing else but
the eigenvalues of the matrix representation of that operator.
For a specific nucleus, finding the exact eigenvalues is a
very complex problem as the number of interacting particles
increases. The genuine idea of Wigner was to replace the exact
matrix by a random matrix having the same properties. Hence,
in some cases, the matrix can be replaced by the following
Hermitian random matrix where the upper diagonal elements
are i.i.d. generated with a binomial distribution.

H =
1√
n


0 +1 +1 +1 −1 −1

+1 0 −1 +1 +1 +1
+1 −1 0 +1 +1 +1
+1 +1 +1 0 +1 +1
−1 +1 +1 +1 0 −1
−1 +1 +1 +1 −1 0


It turns out that, as the dimension of the matrix increases, the

eigenvalues of the matrix become more and more predictable
irrespective of the exact realization of the matrix. This striking
result enabled to determine the energy levels of many nuclei
without considering the very specific nature of the interactions.
In the following, we will provide the different steps of the
proof which are of interest for understanding the free moments
approach.

B. The semi-circular law

The main idea is to compute, as the dimension increases,
the trace of the matrix H at different exponents. Typically, let

dFn(λ) =
1
n

n∑
i=1

δ (λ− λi) .

Then the moments of the distribution are given by:

mn
1 =

1
n

trace (H) =
1
n

n∑
i=1

λi =
∫

xdFn(x)

mn
2 =

1
n

trace
(
H2

)
=

∫
x2dFn(x)

... =
...

mn
k =

1
n

trace
(
Hk

)
=

∫
xkdFn(x)

Quite remarkably, as the dimension increases, the traces can
be computed using combinatorial and non-crossing partitions
techniques. All odd moments converge to zero, whereas all
even moments converge to the Catalan numbers [18]:

lim
n→∞

1
n

trace(H2k) =
∫ 2

−2

x2kf(x)dx

=
1

k + 1
C2k

k .

More importantly, the only distribution which has all its odd
moments null and all its even moments equal to the Catalan
numbers is known to be the semi-circular law provided by:

f(x) =
1
2π

√
4− x2,
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Fig. 1. Semicircle law and simulation for a 512× 512 Wigner matrix.

with |x| ≤ 2. One can verify it directly by calculus based on
recursion:

α2k =
1
π

∫ 2

−2

x2k
√

4− x2dx

= − 1
2π

∫ 2

−2

−x√
4− x2

x2k−1(4− x2)dx

=
1
2π

∫ 2

−2

√
4− x2(x2k−1(4− x2))′dx

= 4(2k − 1)α2k−2 − (2k + 1)α2k.

In this way, the recursion is obtained:

α2k =
2(2k − 1)

k + 1
α2k−2.

C. The Marchenko-Pastur law

Let us give another example to understand the moments
approach for a single random matrix. Suppose that one is in-
terested in the empirical eigenvalue distribution of SSH where
S is an n × p random matrix which entries are independent
centered gaussian random variables with entries of variance 1

n
with n

p → λ. In this case, in the same manner, the moments
of this distribution are given by:

mn
1 =

1
n

trace
(
SSH

)
=

1
n

n∑
i=1

λi → λ

mn
2 =

1
n

trace
(
SSH

)2
=

1
n

N∑
i=1

λ2
i → 1 + λ

mn
3 =

1
n

trace
(
SSH

)3
=

1
n

n∑
i=1

λ3
i → 1 + 3λ + λ2

It turns out that the only distribution which has the same
moments is known to be (a dilation of) the Marchenko-Pastur
law.
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Fig. 2. Density function of (1) for λ = 1, 0.5, 0.2.

Definition 2.1: (Marchenko-Pastur Law (see, e.g. [19]))
The eigenvalue distribution of SS∗ tends to the law µλ with
density√

4λ− (x− 1− λ)2

2πλx
on [(1−

√
λ)2, (1 +

√
λ)2]. (1)

This law it is the law of λ times a random variable distributed
according to the so-called Marchenko-Pastur law with param-
eter 1/λ.

Remark: In many cases, one would obviously think that
the eigenvalues of

n


 S


︸ ︷︷ ︸

p


SH


when n → ∞, n/p → λ are equal to one. Indeed,
asymptotically, all the diagonal elements tend to to one and the
extra-diagonal elements tend to zero. However, the matrix is
not the identity matrix. Indeed, there are n2−n extra-diagonal
terms which tend to zero at a rate of O( 1

n2 ). Therefore, the
distance of the matrix to the identity matrix (in the Fröbenius
norm sense) is not zero.

D. Conclusion

The moments technique is very appealing and powerful in
order to derive the exact asymptotic moments. It requires com-
binatorial skills and can be used for a large class of random
matrices. Recent works on random Vandermonde matrices
[20], [21] and Euclidean matrices [22] have shown again its
potential. The main drawback of the technique (compared to
other tools such as the Stieljes transform method [11]) is that it
can rarely provide the exact eigenvalue distribution. However,
in many wireless applications, one needs only a subset of
the moments depending on the number of parameters to be
estimated.



4

III. SUM OF TWO RANDOM MATRICES

A. Scalar case: X + Y

Let us consider two independent random variables X, Y
and suppose that we know the distribution of X + Y and
Y and would like to infer on the distribution of X . The
distribution of X + Y is the convolution of the distribution
of X with the distribution of Y . However, the expression is
not straightforward to obtain. Another way of computing the
spectrum is to form the moment generating functions

MX(s) = E(esX), MX+Y (s) = E(es(X+Y )).

It is then immediate to see that

MX(s) = MX+Y (s)/MY (s).

The distribution of X can be recovered from MX(s).
This task is however not always easy to perform as the
inversion formula does not provide an explicit expression. It
is rather advantageous to express the independence in terms
of moments of the distributions or even cumulants. We denote
by Ck the cumulant of order k:

Ck(X) =
∂n

∂tn |t=0
log

(
E

(
etX

))
.

They behave additively with respect to the convolution, i.e, for
all k ≥ 0,

Ck(X + Y ) = Ck(X) + Ck(Y ).

Moments and cumulants of a random variable can easily be
deduce from each other by the formula

∀n ≥ 1,mn(X) =
n∑

p=1

∑
k1≥1,...,kp≥1
k1+···+kp=n

Ck1(X) · · ·Ckp
(X)

(recall that the moments of a random variable X are the
numbers mn(X) = E(Xn), n ≥ 1).

Thus the derivation of the law of X from the laws of X+Y
and Y can be done by computing the cumulants of X by the
formula Ck(X) = Ck(X + Y ) − Ck(X) and then deducing
the moments of X from its cumulants.

B. Matrix case: additive free convolution �

1) Definition: It is has been proved by Voiculescu [12]
that for An,Bn free2 large n by n Hermitian (or symmetric)
random matrices (both of them having i.i.d entries, or one of
them having a distribution which is invariant under conjugation
by any orthogonal matrix), if the eigenvalue distributions of
An,Bn converge as n tends to infinity to some probability
measures µ, ν, then the eigenvalue distribution of An + Bn

converges to a probability measure which depends only on
µ, ν, which is called the additive free convolution of µ and ν,
and which will be denoted by µ � ν.

2The concept of freeness is different from independence.

2) Computation of µ � ν by the moment/cumulants ap-
proach: Let us consider a probability measure ρ on the real
line, which has moments of all orders. We shall denote its
moments by mn(ρ) :=

∫
tndρ(t), n ≥ 1. (Note that in the

case where ρ is the eigenvalue distribution of a d× d matrix
A, these moments can easily be computed by the formula:
mn(ρ) = 1

d Tr (An)). We shall associate to ρ another se-
quence of real numbers, (Kn(ρ))n≥1, called its free cumulants.
The sequences (mn(ρ)) and (Kn(ρ)) can be deduced one from
each other by the fact that the formal power series

Kρ(z) =
∑
n≥1

Kn(ρ)zn and Mρ(z) =
∑
n≥1

mn(ρ)zn (2)

are linked by the relation

Kρ(z(Mρ(z) + 1)) = Mρ(z). (3)

Equivalently, for all n ≥ 1, the sequences (m0(ρ), . . . ,mn(ρ))
and (K1(ρ), . . . ,Kn(ρ)) can be deduced one from each other
via the relations

m0(ρ) = 1

mn(ρ) = Kn(ρ) +
n−1∑
k=1

Kk(ρ)
∑

l1,...,lk≥0
l1+···+lk=n−k

ml1(ρ) · · ·mlk(ρ)


for all n ≥ 1.

Example 3.1: As an example, it is known (e.g. [19]) that the
law µλ of definition 2.1 has free cumulants Kn(µλ) = λn−1

for all n ≥ 1.
The additive free convolution can be computed easily with

the free cumulants via the following characterization [23]:
Theorem 3.2: For µ, ν compactly supported, µ � ν is the

only law ρ such that for all n ≥ 1,

Kn(ρ) = Kn(µ) + Kn(ν).
3) Simulations for finite size matrices: In Figure 3, we plot,

for k = 1, . . . , 25, the quantity∣∣∣∣mk(ρ[A + MM∗])
mk(ν � µλ)

− 1
∣∣∣∣ (4)

for A a diagonal random matrix with independent diagonal
entries distributed according to ν = (δ0 + δ1)/2 and M a
gaussian n × p matrix as in definition 2.1. ρ[X] denotes the
eigenvalue distribution of the matrix X. The dimensions of A
are 1500× 1500, those of M are 1500× 2000. Interestingly,
the values of (4) provide a good match, which shows that the
moments/free cumulants approach is a good way to compute
the spectrum of sums of free random matrices.

C. Matrix case: additive free deconvolution �

1) Computation of �: The moments/cumulants method can
also be useful to implement the free additive deconvolution.
The free additive deconvolution of a measure ρ by a measure
ν is (when it exists) the only measure µ such that ρ = µ � ν.
In this case, µ is denoted by ρ � ν. By Theorem 3.2, when it
exists, ρ � ν is characterized by the fact that for all n ≥ 1,
Kn(m � ν) = Kn(ρ) − Kn(ν). This operation is very useful
in denoising applications [2], [3]
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Fig. 3. Relative distance between empirical and theoretical moments of A+
MM∗, with A diagonal 1500 by 1500 matrix with Bernouilli independent
diagonal entries and M gaussian 150 by 2000 matrix.
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Fig. 4. Relative distance between the actual moments of A and the moments
of A computed via deconvolution of A+B, with A diagonal 3000× 3000
matrix with uniform independent diagonal entries and B gaussian symmetric
3000× 3000 matrix.

2) Simulations for finite size matrices: In Figure 4, we plot
for n = 1, . . . , 15, the following values:∣∣∣∣mn(ρ[(A + B) � B])

mn(ρ[A])
− 1

∣∣∣∣ (5)

for A a diagonal random matrix which spectrum is chosen
at random (the diagonal entries of B are independent and
uniformly distributed on [0, 1]) and B a Gaussian symmetric
matrix. The dimension of the matrices is 3000. Again, the fact
that the values of (5) match even in the non-asymptotic case
shows that the computational method, for deconvolution, is
effecient.

IV. PRODUCT OF TWO RANDOM MATRICES

A. Scalar case: XY

Suppose now that we are given two classical random
variables X, Y , assumed to be independent. How do we

find the distribution of X when only the distributions of
XY and Y are given? The solution is quite straightfor-
ward since E((XY )k) = E(Xk)E(Y k), so that E(Xk) =
E((XY )k)/E(Y k). Hence, using the moments approach, one
has a simple algorithm to compute all the moments of the
distribution. The case of matrices is rather involved and is
explained in the following.

B. Matrix case: multiplicative free convolution �

1) Definition: It is has been proved by Voiculescu [12] that
for An,Bn free large n×n positive Hermitian (or symmetric)
random matrices (both of them having i.i.d entries, or one of
them having a distribution which is invariant under multiplica-
tion by any orthogonal matrix), if the eigenvalue distributions
of An,Bn converge, as n tends to infinity, to some probability
measures µ, ν, then the eigenvalue distribution of AnBn,
which is equal to the eigenvalue distribution of A

1
2 BA

1
2

converges to a probability measure which depends only on
µ, ν. The measure is called the multiplicative free convolution
of µ and ν and will be denoted by µ � ν.

2) Computation of µ � ν by the moment/cumulants ap-
proach: Let us consider a probability measure ρ on [0,+∞[,
which is not the Dirac mass at zero and which has moments
of all order. We shall denote by

{
mn(ρ) :=

∫
tndρ(t)

}
n≥0

the sequence of its moments. We shall associate to ρ an-
other sequence of real numbers, {sn(ρ)}n≥0, which are the
coefficients of what is called its S-transform. The sequences
{mn(ρ)} and {sn(ρ)} can be deduced one from each other
by the fact that the formal power series

Sρ(z) =
∑
n≥1

sn(ρ)zn−1 and Mρ(z) =
∑
n≥1

mn(ρ)zn (6)

are linked by the relation

Mρ(z)Sρ(Mρ(z)) = z(1 + Mρ(z)). (7)

Equivalently, for all n ≥ 1, the sequences
{m1(ρ), . . . ,mn(ρ)} and {s1(ρ), . . . , sn(ρ)} can be deduced
one from each other via the relations

m1(ρ)s1(ρ) = 1,

mn(ρ) =
∑n+1

k=1 sk(ρ)
∑

l1,...,lk≥1
l1+···+lk=n+1

ml1(ρ) · · ·mlk(ρ).

Remark Note that these equations allow computations
which run faster than the ones already implemented (e.g.
[10]), because those ones are based on the computation of the
coefficients sn via non crossing partitions and the Kreweras
complement, which use more machine time.

Example 4.1: As an example, it can be shown that for
the law µλ of definition 2.1, that for all n ≥ 1, sn(µλ) =
(−λ)n−1.

The multiplicative free convolution can be computed easily
with the free cumulants via the following characterization [23].

Theorem 4.2: For µ, ν compactly supported probability
measures on [0,∞[, non of them being the Dirac mass at zero,
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µ � ν is the only law ρ such that Sρ = SµSν , i.e. such that
for all n ≥ 1,

sn(ρ) =
∑

k,l≥1
k+l=n+1

sk(µ)sl(ν).

The algorithm for the computation of the spectrum of the
product of two random matrices following from this theorem
is presented in paragraph IV-C.

C. Matrix case: The multiplicative free deconvolution

The moments/cumulants method can also be useful to
implement the multiplicative free deconvolution. The multi-
plicative free deconvolution of a measure m by a measure ν
is (when it exists) the only measure µ such that ρ = µ � ν.
In this case, µ is denoted by m � ν. By theorem 4.2, when it
exists, m � ν is characterized by the fact that for all n ≥ 1,

sn(ρ � ν)s1(ν) = sn(ρ)−
n−1∑
k=1

sk(ρ � ν)sn+1−k(ν).

1) Simulations for finite size matrices: In Figure 5, we
illustrated the performance of the combinatorial methods
• to predict the spectrum of AMM∗ from those of A and

of MM∗ (free multiplicative convolution)
• to recover the spectrum of A from those of MM∗ and

of AMM∗ (free multiplicative deconvolution).
We simulated a random n × n diagonal matrix A which
eigenvalue distribution is µ = (δ1 + δ4/3 + δ5/3 + δ2)/4 and a
random n × p Gaussian matrix M such that the eigenvalue
distribution of GG∗ is approximately the measure µλ of
definition 2.1. Then on one hand, we compared the moments
of AGG∗ with their theoretical limit values obtained by free
multiplicative convolution of µ and µλ: on the left graph, we
plotted, for n = 1, . . . , 10,∣∣∣∣mn(ρ[AMM∗])

mn[µ � µλ]
− 1

∣∣∣∣ . (8)

On the other hand, we compared the actual moments of
A with their approximations obtained by free multiplicative
deconvolution of the eigenvalue distribution of AMM∗ and
the limit measure of MM∗ (which is the measure µλ of
definition 2.1): on the right graphic, we plot, for n = 1, . . . , 10,∣∣∣∣ mn(ρ[A])

mn(ρ[AMM∗]) � µλ]
− 1

∣∣∣∣ . (9)

Again, the fact that the values of (8) and (9) are very
small for non-asymptotic values show that the computational
methods, for convolution as well as for deconvolution, are
efficient.

V. SINGULAR VALUES OF SUMS OF RECTANGULAR
MATRICES

A. Main result

In this section, we still consider two independent rectangular
random matrices M,N, both having size n × p. We shall
suppose that n, p tend to infinity in such a way that n/p
tends to λ ∈ [0, 1]. We also suppose that at least one of these

0 2 4 6 8 10
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

  Relative distance between the actual moments of AGG^*  
       and the ones computed via free convolution,       
     with A diagonal matrix and  G gaussian matrix.      
Dimensions of A = 1500x1500, dimensions of G = 1500x2000.

order of the moment
0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

    Relative distance between the actual moments of A    
      and the ones computed via free deconvolution,      
     with A diagonal matrix and  G gaussian matrix.      
Dimensions of A = 1500x1500, dimensions of G = 1500x2000.

order of the moment

re
la

tiv
e 

di
st

an
ce

Fig. 5. On the left: relative distance between the actual moments of
the eigenvalue distribution of AMM∗ and the ones computed via free
convolution. On the right: relative distance between the actual moments of the
eigenvalue distribution of A and the ones computed via free deconvolution of
AMM∗ by the theoretical limit of MM∗. Dimensions of A: 1500×1500,
dimensions of M: 1500× 2000.

matrices has a distribution which is invariant by multiplication
on both sides by any orthogonal (or unitary, in the case where
the matrices are not real but complex) matrix. At last, we
suppose that the eigenvalue distributions of MM∗ and NN∗

both converge to non random probability measures. Here, we
shall denote σ, τ the limit eigenvalue distributions of MM∗

and NN∗ respectively.

Note that in the previously presented results, the case of the
limit eigenvalue distribution of (M + N)(M + N)∗ has not
been treated. The reason is that these results rely on the work
of Voiculescu, who ”only” found a general way to compute
the limit normalized trace of product of independent square
random matrices with large dimension, which is sufficient
to compute the moments of the eigenvalue distribution of
either MM∗+NN∗ or MM∗NN∗, but which is not enough
to compute the moments of the eigenvalue distribution of
(M + N)(M + N)∗. In a recent work [13], the authors
generalized Voiculescu’s work to rectangular random matrices,
which allowed to prove that, under the hypothesis made here,
the eigenvalue distribution of (M + N)(M + N)∗ converges
to a probability measure which only depends on σ, τ and λ,
and is denoted by σ �+

λ τ .

Remark: The symmetric square root3 of the distribution
σ �+

λ τ is called the rectangular free convolution with ratio λ
of the symmetric square roots

√
σ,
√

τ of σ and τ , and denoted
by
√

σ �λ
√

τ . The operation �λ is, rather than �+
λ , the one

introduced in [13]. It is essentially equivalent to �λ.

3For any probability measure ρ on [0,∞[, the symmetric square root of
ρ, denoted

√
ρ, is the only symmetric probability measure on the real line

which push-forward by the t 7→ t2 function is ρ. Note that ρ is completely
determined by

√
ρ, and vice versa. In [13], the use of symmetric measures

turned out to be more appropriate. However, in the present paper, as the focus
is on practical aspects, we shall not symmetrize distributions.
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B. Computing �+
λ

We fix λ ∈ [0, 1]. Let us consider a probability measure
ρ on [0,+∞[, which has moments of all orders. Denote{
mn(ρ) =

∫
tndρ(t)

}
n≥0

the sequence of its moments. We
associate to ρ another sequence of real numbers, {cn(ρ)}n≥1,
depending on λ, called its rectangular free cumulants4 with
ratio λ, defined by the fact that the sequences {mn(ρ)} and
{cn(ρ)} can be deduced from one another by the relation

Cρ[z(λMρ2(z) + 1)(Mρ2(z) + 1)] = Mρ2(z) (10)

with the power series

Cρ(z) =
∑
n≥1

cn(ρ)zn and Mρ2(z) =
∑
n≥1

mn(ρ)zn. (11)

Equivalently, for all n ≥ 1, the sequences
{m0(ρ), . . . ,mn(ρ)} and {c1(ρ), . . . , cn(ρ)} can be deduced
from one another via the relations (involving an auxiliary
sequence {m′

0(ρ), . . . ,m′
n(ρ)})

m0(ρ) = m′
0(ρ) = 1,

∀n ≥ 1, m′
n(ρ) = λmn(ρ),

∀n ≥ 1, mn(ρ) =

cn(ρ) +
n−1∑
k=1

ck(ρ)
∑

l1,l′1,...,lk,l′k≥0

l1+l′1+···+lk+l′k=n−k

ml1(ρ)m′
l′1

(ρ) · · ·mlk(ρ)m′
l′k

(ρ).

Example 5.1: As an example, it is proved in [15] that the
law µλ of definition 2.1 has rectangular free cumulants with
ratio λ given by cn(µλ) = δn,1 for all n ≥ 1.

The additive free convolution can be computed from the
free cumulants via the following characterization [13].

Theorem 5.2: For σ, τ compactly supported, σ �+
λ τ is the

only distribution m such that for all n ≥ 1, cn(m) = cn(σ)+
cn(τ).

C. The rectangular free deconvolution

The moments/cumulants method can also be used to im-
plement the rectangular free deconvolution. The rectangular
free deconvolution with ratio λ of a probability measure m on
[0,+∞[ by a measure τ is (when it exists) the only measure
σ such that m = σ�+

λ τ . In this case, σ is denoted by m�λ τ .
By Theorem 5.2, when it exists, m �λ τ is characterized by
the fact that for all n ≥ 1,

cn(m �λ τ) = cn(m)− cn(τ).

4In [13], these numbers were not called rectangular free cumulants of ρ,
but rectangular free cumulants of its symmetrized square root.
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  computed via the rectangular free convolution, with A diagonal matrix  
       with Bernouilli independent entries and G gaussian matrix.        
                  Dimensions of A and G = 1500 by 2000.                  

order of the moment

re
la

ti
v
e
 d

is
ta

n
c
e

Fig. 6. Relative distance between the actual moments of the eigenvalue
istribution of (M + N)(M + N)∗ and the ones computated via rectangular
free convolution. Dimensions of M and N: 1500× 2000.

D. Simulations for finite size matrices

In Figure 6, one can read the value, for n = 1, . . . , 20, of∣∣∣∣mn(ρ[(M + N)(M + N)∗])
mn(ν �+

λ µλ)|
− 1

∣∣∣∣ (12)

for λ = 0.75, A diagonal n× p random matrix with indepen-
dent diagonal entries distributed according to ν = (δ0 + δ1)/2
and G Gaussian n × p (= n/λ) as in definition 2.1. The
dimensions of M and N are 1500 × 2000. It can be seen
on this figure that the values of (12) are very small, which
means that the moments/free cumulants approach is a good
way to compute the spectrum of sums of independent random
matrices. In Figure 7, we illustrated the efficiency of the
combinatorial method to recover, for M large rectangular
matrix, the spectrum of MM∗ from those of NN∗ and of
(M + N)(M + N)∗. We simulated a random n× p diagonal
matrix M such that MM∗ has eigenvalue distribution µ =
(δ1 + δ0)/4 and a random n × p Gaussian matrix N such
that the eigenvalue distribution of NN∗ is the measure µλ

of definition 2.1. Then we compared the actual moments of
MM∗ with their approximations obtained by free rectangular
deconvolution of the (symmetric square root of) the eigenvalue
distribution of (M + N)(M + N)∗ by the limit (symmetric
square root of) the eigenvalue distribution of NN∗. We
plotted, for n = 1, . . . , 11,∣∣∣∣mn(ρ[(M + N)(M + N)∗] �λ µλ)

mn(ρ[MM∗])
− 1

∣∣∣∣ . (13)

E. Special cases

1) λ = 0: It is proved in [13] that if λ = 0, then �+
λ =

�. This means that if M,N are independent n×p random
matrices which dimensions n, p both tend to infinity such that
n/p → 0, then (under the hypothesis that M or N is invariant,
in distribution, under multiplication by unitary matrices)

eigenvalue distribution((M + N)(M + N)∗)
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Fig. 7. Relative distance between the actual moments of the eigenvalue
istribution of MM∗ and the ones computated via rectangular free deconvo-
lution of (M + N)(M + N)∗, with N gaussian. Dimensions of M and N:
3000× 40000.

' eigenvalue distribution(MM∗ + NN∗).

2) λ = 1: It is proved in [13] that if λ = 1, then for all σ, τ
probability measures on [0,+∞[, σ �+

λ τ is the push forward
by the function t 7→ t2 of the free convolution

√
σ �

√
τ of

the symmetrized square roots
√

σ,
√

τ of σ and τ .

VI. DISCUSSION

A. Methods based on analytic functions

1) The R-transform method: The previous method of com-
putation of the additive free convolution is very appealing
and can be used in practice. From a more general theoretical
point of view, it has two drawbacks. The first drawback
is the fact that the method only works for measures with
moments and the second one is that for µ, ν measures, it
characterizes the measures µ � ν only by giving its moments.
We shall now expose a method, developed by Voiculescu
and Bercovici [24], but also, in an indirect way, by Pastur,
Bai, and Silverstein which works for any measure and which
allows, when computations are not involved, to recover the
densities. Unfortunately, this method is interesting only in
very few cases, because the operations which are necessary
here (the inversion of certain functions, extension of analytic
functions) are almost always impossible to realize practically.
It has therefore very little practical use. However, we provide
in the following an example where this method works and give
a simulation to sustain the theoretical results. In particular, note
that in [25], Rao and Edelman provided similar computations
of this method.

For ρ probability a measure on the real line, the R-transform
Kρ of ρ is the analytic function on a neighborhood of zero in
{z ∈ C ; =z > 0} defined by the equation

Gρ

(
Kρ(z) + 1

z

)
= z, (14)

The Cauchy transform of ρ is Gρ(z) =
∫

t∈R
1

z−tdρ(t).
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              Histogram and theoretical density of the spectrum of A+B,               
with A, B n by n independent  isotropic random projectors with rank n/2, for n = 1500.

Fig. 8. Histogram and theoretical density of the spectrum of A + B, with
A,B independent n by n isotropic random projectors with rank n/2, for
n = 1500.

Note that in the case where ρ is compactly supported, the
notations of (14) and of (2) are in accordance. Hence we have,
for all pair µ, ν of probability measures on the real line:

Kµ�ν(z) = Kµ(z) + Kν(z). (15)

Note that since, as proved in [19], for any probability
measure ρ on the real line, ρ is the weak limit, as y →
0+, of the measure with density x 7→ − 1

π=(Gρ(x + iy)),
which allows us to recover Gµ�ν via (14). Therefore, (15)
theoretically determines µ � ν.

Example 6.1: As an example, for µ = δ0+δ1
2 , µ � µ is the

measure with density 1

π
√

x(2−x)
on [0, 2].

Figure 8 illustrates the previous example.
2) The S-transform method: As for the additive free convo-

lution (see sectionVI-A.1), there exists an analytic method for
the theoretical computation of �, called the S-transform [24]:
for ρ 6= δ0 a probability measure on [0,+∞[, the S-transform
Sρ of ρ is the analytic function on a neighborhood of zero in
C\[0,+∞) defined by the equation

Mρ

(
z

1 + z
Sρ(z)

)
= z, (16)

where Mρ(z) =
∫

t∈R
zt

1−ztdρ(t). But the method based on
this transform works only in some limited cases, because the
formulas of S-transforms are almost never explicit.

3) The rectangular R-transform method: λ ∈ [0, 1] is still
fixed. For τ probability measure on [0,+∞[, we shall define
an analytic function Cτ (z) in a neighborhood of zero (to be
more precise, in a neighborhood of zero in C\R+) which, in
the case where τ is compactly supported, has the following
series expansion:

Cτ (z) =
∑
n≥1

cn(τ)zn. (17)

It implies, by Theorem 5.2, that for all compactly supported
probability measures σ, τ ,

Cσ�+
λ τ (z) = Cσ(z) + Cτ (z). (18)
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Hence the analytic transform Cρ somehow ”linearizes” the
binary operation �+

λ on the set of probability measures on
[0,+∞[. The analytic function Cρ is called the rectangular
R-transform5 with ratio λ of ρ.

It happens, as shown below, that for any probability measure
ρ on [0,+∞[, Cρ can be computed in a direct way, without
using the definition of (17).

Let us define Mρ(z) =
∫

t∈R+
zt

1−ztdρ(t). Then the analytic
function Cρ is defined in a neighborhood of zero (in C\R+)
to be the solution of

Cρ[z(λMρ(z) + 1)(Mρ(z) + 1)] = Mρ(z). (19)

which tends to zero for z → 0.
To give a more explicit definition of Cρ, let us define

Hρ(z) = z(λMρ(z) + 1)(Mρ(z) + 1).

Then

Cρ(z) = U

(
z

H−1
ρ (z)

− 1
)

with

U(z) =

{
−λ−1+((λ+1)2+4λz)

1
2

2λ if λ 6= 0,
z if λ = 0,

where z 7→ z
1
2 is the analytic version of the square root defined

on C\R− such that 1
1
2 = 1 and H−1

ρ is the inverse (in the
sense of the composition) of Hρ.

To recover ρ from Cρ, one has to go the inverse way:

H−1
ρ (z) =

z

(λCρ(z) + 1)(Cρ(z) + 1)

and

Mρ(z) = U

(
Hρ(z)

z
− 1

)
,

from what one can recover ρ, via its Cauchy transform.
Note that all this method is working for non compactly

supported probability measures, and that (18) is valid for any
pair of symmetric probability measures.

As for � and �, analytic functions give us a new way to
compute the multiplicative free convolution of two symmetric
probability measures τ, σ. However, the operations which are
necessary in this method (the inversion of certain functions,
the extension of certain analytic functions) are almost always
impossible to realize in pratice. However, in the following
example, computations are less involved.

Example 6.2: Suppose λ > 0. Then δ1 �+
λ δ1 has support

[(2− κ), (2 + κ)] with κ = 2(λ(2− λ))1/2 ∈ [0, 2], and it has
a density

δ1 �+
λ δ1 =

[
κ2 − (x− 2)2

]1/2

πλx(4− x)
(20)

on its support.
It means that if A is an n×p matrix with ones on the diagonal

and zeros everywhere else, and U,V are random n×n, p×p

5Again, to make the notations of this paragraph coherent with the ones
of the paper [13], where the rectangular machinery was build, one needs to
use the duality between measures on [0, +∞) and their symmetrized square
roots, which are symmetric measures on the real line.
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Spectrum histogram of A+UAV^* and theoretical limit computed via rectangular convolution,
             for a 1000 by 1333 diagonal matrix A with ones on the diagonal.             

Fig. 9. Spectrum histogram of A + UAV∗ and theoretical limit computed
via rectangular convolution, for a 1000× 1333 diagonal matrix A with ones
on the diagonal.

orthogonal matrices with Haar distribution, then as n, p tend
to infinity such that n/p → λ,

eigenvalue distribution of (A + UAV)(A + UAV)∗

has density

'
[
κ2 − (x− 2)2

]1/2

πλx(4− x)
on [2− κ, 2 + κ].

Indeed, [κ2−(x−2)2]1/2

πλx(4−x) is the density of the square of a random
variable with density (20).

This point is illustrated in Figure 9.

B. Other methods

Deconvolution techniques based on statistical eigen-
inference methods using large Wishart matrices [26], random
Matrix theory [27] or other deterministic equivalents à la
Girko [28], [29], [30], [31] exist and are possible alternatives.
Each one has its advantages and drawbacks. We focus here
mainly on the random matrix approach. These are semi-
parametric, grid-based techniques for inferring the empirical
distribution function of the population from the sample eigen-
spectrum. Unfortunately, they can only apply when all the
matrices (M or N) under consideration are Gaussian. For ease
of understanding, let us focus on the particular case where mi

(i = 1, . . . , p) are zero mean Gaussian vectors of size n × 1
with covariance Σ and ni (i = 1, . . . , p) are i.i.d. Gaussian
vectors with covariance σ2I. In this case, H = M + N is
a Gaussian vector with covariance Σc = Σ + σ2I and can
be rewritten H = WΣc

1
2 where Y is an n × p matrix

whose entries are i.i.d. The deconvolution framework allows to
recover the eigenvalues of Σc based only on the knowledge of
H. Before going further, let us introduce some definitions. In
this case, one can use the following theorem due to Silverstein
[32]:

Theorem 6.3: Let the entries of the n×p matrix W be i.i.d.
with zero mean and variance 1

n . Let Σc be a p×p a Hermitian
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matrix with an empirical distribution converging almost surely
in distribution to a probability distribution PΣc(x) as p →∞.
Then almost surely, the empirical eigenvalue distribution of
the random matrix:

HH∗ = WΣcW∗

converges weakly, as p, n → ∞ with p
n fixed, to the unique

nonrandom distribution function whose Stieltjes transform
satisfies:

− 1
GHH∗(z)

= z − p

n

∫
ydPΣc(y)

1 + yGHH∗(z)
.

Let us now explain the deconvolution framework in this
specific case.
• In the first step, one can compute GHH∗(z) =

1
n trace(HH∗ − zI)−1 for any z. The algorithm starts
by evaluating GHH∗ on a grid of a set of values (zj)

Jn

j=1.
The more values are considered (big value of Jn), the
more accurate the result will be.

• In the second step, dPΣc is approximated by a weighted
sum of point masses:

dPΣc(y) ∼
K∑

k=1

wkδ(tk − y)

where tk, k = 1, ..K is a chosen grid of points and wk ≥
0 are such that

∑K
k=1 wk = 1. The approximation turns

the problem of optimization over measures into a search
for a vector of weights {w1, ...wK} in RK

+ .
• In this case, we have that:∫

ydPΣc(y)
1 + yGHH∗(z)

∼
K∑

k=1

wk
tk

1 + tkGHH∗(z)

Hence the whole problem becomes an optimization prob-
lem: minimize

max
j=1,..Jn

max (| <(ej) |, | =(ej) |)

subject to
∑K

k=1 wk = 1 and wk ≥ 0 for all k, where

ej =
1

1
n trace(HH∗ − zjI)−1

+ zj

− p

n

∑
k=1

Kwk
tk

1 + tk
1
n trace(HH∗ − zjI)−1

.

The optimization procedure is a Linear program which can
be solved numerically. Note that although there are several
sources of errors due to the approximations of the integrals and
the replacement of asymptotic quantities by non-asymptotic
ones, [27] shows remarkably that the solution is consistent (in
terms of size of available data and grid points on which to
evaluate the functions).

The assumptions for the cumulants approach are a bit more
general, because we do not suppose the random matrices we
consider to be Gaussian. But the main difference lies in the
way we approximate the distribution PΣc : we give moments,
whereas here, PΣc is approximated by a linear combination
of Dirac masses.

VII. ENTROPY RATE AND SPECTRUM

In wireless intelligent random networks, devices are au-
tonomous and should take decisions based on their sensing
capabilities. Of particularly interest are information measures
such as capacity, signal to noise ratio, estimation of powers or
even topology identification. Information measures are usually
related to the spectrum (eigenvalues) of the matrices modelling
the underlying network and not on the specific structure
(eigenvectors). This entails many simplifications that make
free deconvolution a very appealing framework for the design
of these networks. In the following, we provide only one
example of the applications of free deconvolution to wireless
communications. Others can be found in [9].

The entropy rate [33]of a stationnary Gaussian stochastic
process, upon which many information theoretic performance
measures are based, can be expressed as:

H = log(πe) +
1
2π

∫ π

−π

log(S(f))df,

where S is the spectral density of the process. Hence, if one
knows the autocorrelation of the process, one has therefore
a full characterization of the information contained in the
process. Moreover, as side result, one can also show that the
entropy rate is also related to the minimum mean squared
error of the best estimator of the process given the infinite
past [34], [35]. This remarkable result is of main interest
for wireless communications as one can deduce one quantity
from the other, especially as many receivers incorporate an
MMSE (Minimum Mean Square Error) component. These
results show the central importance of the autocorrelation
function for Gaussian processes. In the discrete case when
considering a random Gaussian vector x of size n, the entropy
rate per dimension (or differential entropy) is given by:

H = log(πe) +
1
n

log det(R)

= log(πe) +
1
n

n∑
i=1

log(λi), (21)

where R = E(xix∗i ) and λi the associated eigenvalues.
The covariance matrix (and more precisely its eigenvalues)
carries therefore all the information of Gaussian networks.
The Gaussianity of these networks is due to the fact that the
noise, the channel and the signaling are very often Gaussian.
Hence, in order to get a reliable estimate of the rate (and in
extension of the capacity which is the difference between two
differential entropies), one needs to compute the eigenvalues
of the covariance matrix. For a number of observations p of
the vector xi, i = 1, ..., p, the covariance matrix R is usually
estimated by:

R̂ =
1
p

p∑
i=1

xix∗i (22)

= R
1
2 SS∗R

1
2 (23)

Here, S = [s1, .., sp] is an n × p i.i.d zero mean Gaussian
vector of variance 1

p . In many cases, the number of samples p
is of the same order as n. This is mainly due to the fact that
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the network is highly mobile and the statistics are considered
to be the same within a number p of samples, which restricts
the use of classical asymptotic signal processing techniques.
Therefore, information retrieval must be performed within a
window of limited samples. Example (23) is unfortunately
rarely encountered in practice in wireless communications.
The signal of interest si is usually distorted by a medium,
given by mi = f(si) where f is any function. Moreover,
the received signal yi is altered by some additive noise
ni (not necessarily Gaussian) but in many respect unitarily
invariant (due to the fact that all the dimensions have the
same importance). In this case, the model is known as the
Information plus Noise model:

yi = mi + ni,

which can be rewritten in the following matrix form by
stacking all the observations:

Y = M + N. (24)

We have therefore a signal Y = M + N, with M,N
independent n × p (n, p >> 1, n/p ' λ) random matrices,
M = R

1
2 S, with S having i.i.d. N(0, 1) entries, and N (the

noise) has i.i.d. N(0, σ) entries. σ is known and supposed to
be measured by the device. From (21), the entropy rate H is
given by:

H = log(πe) +
1
n

n∑
i=1

log(λi),

where the λi’s are the eigenvalues of R. Hence H can be
computed with the previous method, since H = log(πe) +∫

log(x)dµR(x), where µR denotes the eigenvalue distribu-
tion of R. Indeed, µR is given by the formula:

µR = (µ 1
p YY∗ �λ µ 1

p NN∗) � µ 1
p SS∗ ,

where the eigenvalues distributions µ 1
p NN∗ , µ 1

p SS∗ are known,
by definition 2.1, to be the Marchenko-Pastur distribution
(rescaled by the factor σ in the case of µ 1

p NN∗ ). Using
a polynomial approximation of the logarithm (because µR

is computed via its moments), we have implemented the
algorithms based on the previous developments, and plotted
the results in Figure 10. The moments are related to the
eigenvalues through the Newton-Girard formula as suggested
in [2].

Interestingly, the cumulants approach provides a good match
between the theoretical and finite size approach.

VIII. CONCLUSION

In this paper, we reviewed classical and new results on free
convolution (and deconvolution) and provided a useful frame-
work to compute free deconvolution based on the cumulants
approach when one of the matrices is unitarily invariant. The
recursive cumulant algorithm extends the work on product and
sum of square random matrices. For the information plus noise
model (which is of main interest in wireless communications
to compute information measures on the network), we have
shown through simulations that the results are still valid for
finite dimensions. It turns out that the free deconvolution
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Estimation of H for 800 by 1000 matrices

Number of moments used in the estimation

H

estimation of H via deconvolution

Fig. 10. In red (horizontal line): the real value of H . In blue (other line):
the estimation using deconvolution and approximation of the logarithm by
a polynomial which degree is represented on the X axis. Dimension of the
matrices: n = 800, p = 1000.

approach based on moments/cumulants can be extended to
much broader classes of matrices as recently advocated in
[20], [21]. The research in this field is still in its infancy and
the authors are convinced that many other models (than the
invariant measure case) can be treated in the same vein.
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