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Abstract—In this paper, a new blind OFDM multicell detection
method is proposed to determine the number of base stations
in a cellular system. Using recent results of free deconvolution,
the algorithm enables the terminal to count the number of
surrounding base stations as well as the received power using
only a limited number of snapshots. This is in sharp contrast with
classical asymptotic blind techniques and a theoretical analysis
is proposed to study the impact of frequency selectivity and the
number of receive/transmit antennas. Simulations are provided
to sustain the theoretical claims and comparisons are provided
with classical techniques.

I. I NTRODUCTION

The ever increasing demand of high data rate has pushed
system designers to exploit the wireless channel medium to
the smallest granularity. In this respect, OFDM (Orthogonal
Frequency Division Multiplexing) modulation has been chosen
as the next common standard for most wireless technologies
(e.g. Wi-Max [3], LTE [2]). OFDM is known to convert a
frequency selective fading channel into a set of flat fading
channels [12], providing therefore a high flexibility in terms
of power and rate allocation. Due to this flat fading nature,
OFDM suffers however from a lack of diversity and is
severely interfered in multi-cell systems. This requires either
system level interference management (with proper multi-cell
scheduling) solutions from a network MIMO point of view
([16],[4]). In order to design a viable network solution for
OFDM systems, a key parameter that needs to be estimated
is the Signal to Interference plus Noise (SINR) ratio that is
the power of the base station dedicated to the terminal over
the cumulated power of the interfering base stations and the
background noise power. Ideally, one needs to access the
respective Signal to Noise Ratio of every cell, defined as
SNRk, for base stationk (the ratio between the power of the
signal received by the terminal that originated from transmitter
k and the noise levelσ2). Usually, this difficult problem of
source separation is treated with respect to the signal statistics
[13],[14],[15] (through second order statistics and constraints
on the input signal), with a hypothesis of a high number of
received snapshots. However, in practice, this hypothesiscan
never be met due to the high mobility of the users.

In this paper, using results on free deconvolution, we show
that, in a downlink OFDM environment, one can have access
to the powerPk of every base station,k ∈ [1,M ], where
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Fig. 1. System Model

M is the assumed maximum number of relevant cells in the
network, with no need for any prior knowledge on the input
signal constellations (apart from their second order statistics)
and using a limited number of received samples (compared to
the FFT size). Interestingly, one can derive all theSNRk’s
as the ratiosPk/σ2 and also count the numberNB ≤ M
of effective surrounding cells. To the authors knowledge, no
previous contribution has ever considered this OFDM multiple
SNR detection setting. The work makes extensive use offree
deconvolution techniques. Those techniques were initially used
in [5] to derive the respective powers of users in a Code
Division Multiple Access (CDMA) network.

The paper is structured as follows: In section II, we in-
troduce the multicell environment model. In section III, we
review classical methods used to derive SINR in OFDM envi-
ronments. In section IV, we provide the algorithm to determine
the per-cell SNR. A discussion on the gains and limitations of
this novel method is then carried out in section V, before we
show the simulation results that sustain the theoretical claims.
Finally, in section VII we draw our conclusions.

II. D OWNLINK MODEL

In the following, boldface symbolsx represent vectors,X-
type characters are used for matrices (IN is the identity matrix
of size N ) with Hermitian transpose(·)H . diag(x) turns the
vector x into a diagonal matrix.Ck

n is used for binomial
coefficients.trN (·) will be used for the normalized trace of
an N × · matrix andE[·] is the expectation symbol.

Let us consider, as depicted in figure II, a set ofNB base
stations and one UE (User equipment) withNr = 1 receiving



antenna working under a sizeN FFT OFDM modulation. Let
us also fix an integerM meant to count all the base stations
(ideally NB ≤ M ). In the following, we shall actually only
deal with M and forget aboutNB , considering then that we
haveM base stations, some of which could be of null power.
The link between the UE and the base stationk is a fast-
fading complex Gaussian channel vectorhk of sizeN coupled
with a slow-fading path lossLk = 1/Pk with Pk the power
received at the UE from data of base stationk. The UE also
suffers Additive White Gaussian Noise (AWGN) of power
σ2. The base stationk sends at timel the OFDM symbol
s
(l)
k = (s

(l)
1k , . . . , s

(l)
Nk)T that we suppose standard Gaussian (ie,

with zero mean and unit variance) under AWGN noiseσn(l),
with n(l) = (n

(l)
1 . . . , n

(l)
N )T also a standard Gaussian vector.

Therefore, the received signal vectory(l) = (y
(l)
1 , . . . , y

(l)
N )T

at time instantl reads

y(l) =

M−1
∑

k=0

P
1

2

k Dks
(l)
k + σn(l) (1)

with Dk = diag(hk) = diag([hk1 . . . hkN ]).
This summation over theM cells can be rewritten

y(l) = HP
1

2 θ
(l) + σn(l) (2)

with θ
(l), the size-MN vectorθ(l) = (s

(l)
1 , . . . , s

(l)
M )T

H is the concatenated matrix of sizeN × MN of the
matricesDk, k ∈ [1,M ]

H =







h11 · · · 0 · · · hM1 · · · 0
...

. ..
... · · ·

...
.. .

...
0 · · · h2N · · · 0 · · · hMN






(3)

andP the diagonal matrix of widthNM

P = diag([P1P2 · · ·PM ]) ⊗ IN (4)

where the symbol⊗ stands for the Kronecker product.
Let us now assume that theM channels are slowly varying,

so that we can concatenateL samplesy(l) (L = 1, . . . , L) into
anN×L matrixY = [y(1) · · ·y(L)] and have the more general
matrix product

Y = HP
1

2 Θ + σN (5)

where againΘ andN are respectively theMN×L andN×L
concatenation matrices of theL sampling time instants ofθ(.)

and n(.) and the entries ofH are fixed over theL channels
uses.

This then imposes the minimum of allM channel coherence
times to be greater thanLTs with Ts the OFDM symbol
period.

III. C LASSICAL POWER DETECTION

Usual power detectors consider the second and higher order
statistics of the received signals. This consists in computing the
following empirical moments:( 1

L
YYH)k. These techniques

work well when L, the number of samples, go to infinity
while N , the size of the observation vector is finite or at least

N = 256, P = {P1, P2, P3} = {4, 2, 1}

L EstimatedP̃ [our algorithm] ‖P − P̃‖2

512 {6.24, 2.3, -1.5} [{4.14, 1.73, 1.16}] 11.33
1024 {5.08, 2.56, -0.7} [{3.99, 2.02, 1.02}] 4.44
2048 {4.52, 2.69, -0.2} [{4.11, 1.89, 1.03}] 2.2
4096 {4.2, 2.65, 0.18} [{3.98, 1.95, 1.03}] 1.13
8192 {4.1, 2.28, 0.58} [{4.1, 1.8, 1.11}] 0.27
16384 {3.97, 2.42, 0.89} [{4.06, 1.81, 1.35}] 0.19
32768 {4.07, 1.95, 0.99} [{3.93, 1.88, 1.16}] 0.01

Fig. 2. Classical moment-based method

when the ratioN/L tends to zero when bothN and L go
to infinity. Indeed, whenL grows, ( 1

L
YYH − σ2IN )k tends

to E[(HPHH)k], which is related to the power expression
needed.

As a consequence, one can retrieve the values of thePk ’s
(as will be proved in section IV) directly from the normalized
traces of 1

L
(YYH − σ2IN )k when L is large compared

with N . However, in practice, this case is rarely met due to
mobility of the UE. In fact, we wishN to be fairly large
(such that the ratio between theN -subcarrier bandwidth over
the coherence bandwidth is large) whileL is limited by the
channel coherence time. Therefore, even ifN andL are large,
the problem fall in a situation where the ratioN/L is non
trivial (ie, not close to 0) so that expectation-based methods
are far from accurate. In this context, the previous classical
method does not work since the expectation taken for largeL
is no more valid whenN grows along withL. This is shown in
table (2) that uses the same algorithm as described in section
(IV-A) based on the moments of1

L
(YYH − σ2IN ) (instead

of the moments of1
L
HPHH for which comparative results,

based on the algorithm of section IV, are presented between
brackets).

For a deeper analysis of those classical techniques, please
refer to [17]. In this contribution, we shall also use moments-
based techniques but in the light of the recent work onRandom
Matrix Theory (RMT) [6] andFree Deconvolution [5], that are
briefly introduced in the following.

IV. A PPLICATION OFFREE DECONVOLUTION TO

MULTIPLE SNR DETECTION

In order to recover thePi values, as suggested in the
previous section, one needs to have access to the entries
of HPHH . As shall be shown later, one needs only to
have access to the eigenvalue distribution ofHPHH . This
distribution is called in the RMT context theempirical dis-
tribution of the matrixHPHH and is denotedµHPHH . For
those distributions, we associatefree moments Mk of orderk
defined asMk = E[trN (HPHH)k]. When anN ×N random
matrix A is a standard Wishart matrix, which can be written
A = 1

L
XXH , with X an N × L standard Gaussian random

matrix (that is a matrix with standard iid Gaussian entries),
then its empirical distribution is the Marchenko-Pastur law [6]
that we denoteµηc

, with c = N/L. Those Wishart matrices



have a generalized version in which the column entries of
X are correlated through a covariance matrixΣX. Recent
work on Free Probability [7] and RMT [5], [9] have provided
several tools to derive the empirical distributions of the sum,
product... of random matrices. In particular, when the matrix
at hand is of theinformation plus noise type (those random
matrices are deeply studied in [5]), then it is possible to access
the empirical distribution of the information signal giventhe
empirical distribution of the received information plus noise
signal. This is the main result that we use in this work, which
enters the general framework offree deconvolution. We shall
use in the following the symbols⊞, ⊟, ⊠ and� respectively
to retrieve the empirical distribution of the sum, difference,
product and inverse of two random matrices. For instance

µA+B = µA ⊞ µB (6)

µC = µA � µB (7)

with C such thatA = CB.
In our problem, described in the form of model (5), it turns

out that theN × N matrix 1
L
YYH is an information plus

noise matrix with N a Gaussian random matrix (then1
L
NNH

is a Wishart matrix). Therefore, for large(N,L) values, one
can derive the empirical distribution of1

L
HP

1

2 ΘΘHP
1

2 HH

(ie, µ
1

L
HP

1

2 ΘΘHP
1

2 HH
) from µ 1

L
YYH . This requires to know

the noise levelσ2 and reads [5]

µ
1

L
HP

1

2 ΘΘHP
1

2 HH
=
(

(µ 1

L
YYH � µηc

) ⊟ δσ2

)

⊠ µηc
(8)

wherec = N/L since the noise matrix isN × L.
Also, the matrixΘ in equation (5) was made such that

its random entries are standard Gaussian and independent.
Therefore 1

L
P

1

2 HHHP
1

2 ΘΘH is a generalized Wishart ma-
trix with covarianceP

1

2 HHHP
1

2 .
As such, µ

P
1

2 HHHP
1

2

can be recovered from
µ

1

L
P

1

2 HHHP
1

2 ΘΘH
when the couple (N,L) is large

with a constant ratioc′ = MN/L (M is constant) [5]

µ
P

1

2 HHHP
1

2

= µ
1

L
P

1

2 HHHP
1

2 ΘΘH
� µη

c′
(9)

Note that the left expression of equation (8) is slightly
different from the desired expression in the right part of
equation (9). Still, thanks to the trace property, we have the
trivial link [6]

µ
1

L
P

1

2 HHHP
1

2 ΘΘH
=

1

M
µ

1

L
HP

1

2 ΘΘHP
1

2 HH
+

(

1 −
1

M

)

δ0

(10)
Finally, we similarly connect the left part of equation (9) to

µHPHH through

µ
P

1

2 HHHP
1

2

=
1

M
µHPHH +

(

1 −
1

M

)

δ0 (11)

As a consequence, we have shown that, thanks to the link
between their associated empirical distributions, the free mo-
mentsdk = E[trN (HPHH)k] can be retrieved from the free
momentsmk = E[trN ( 1

L
YYH)k]. Quite surprisingly, it is

shown [8] that for any of the free classical operations (additive

convolution, deconvolution...), the ensemble of the firstk
moments of the operation result can be exactly recovered from
the ensemble of thek first moments of the operands (and vice-
versa). This substancially reduces the computational effort.

The details of how to recover the momentsdk from the
momentsmk as well as fundamentals of Random Matrix
Theory and Free Deconvolution are provided in [17].

Our interest though is to find the diagonal values ofP. Quite
remarkably, it turns out that the matrixHPHH is diagonal.
Therefore, for large(N,L) couples, we can easily derive all
the theoreticalfree moments dk of the distributionµHPHH [6]
since all the(HPHH)

p
are diagonal matrices of(i, j) entry

{

(HPHH)
p
}

ij
=

(

M
∑

k=1

Pk|hki|
2

)p

δj
i (12)

and then thepth order momentdp = E[trN (HPHH)p] of
HPHH can then be approximated for largeN by

dp =
1

N

N
∑

j=1

(

M
∑

k=1

Pk|hkj |
2

)p

(13)

At this point, thedp’s expression (13) contains too many
unknowns since, in addition to thePk’s, also thehij are
unknown. In fact, as is discussed in section (V), these are
those very unknownhij that allow for the multiple SNR re-
covery provided that the channelcoherence bandwidth (ie, the
frequency range in which the channel frequency responses are
correlated) is short compared to the system bandwidth. In the
following we therefore discuss the frequency selective scenario
under the hypothesis that the ratiocoherence bandwidth over
system bandwidth is short.

A. Finding the Pk’s

To deduce the cell power values from the momentsdp,
we need to derive independant equations from thosedp’s in
the variables{Pk, k ∈ [1,M ]}. Again, as will be discussed
in section (V), the channels’ (associated to every emitting
base station) frequency diversity is the key to provide those
equations. Let us then start by deriving, for largeL, the
momentsdp as in (13), which, forp ∈ [1,M ], forms a system
of M equations in theM unknowns{Pk, k ∈ [1,M ]}.

In this case, sinceN is large, (13) can be approximated by

Eh

(

M
∑

k=1

Pk|hkj |
2

)p

= dp (14)

whereEh denotes the expectation over the variableshij .
With N as we chose (ie, much larger than the typical

coherence bandwidth size), we then have a high confidence
that the channel correlations do not have a strong impact in
the final results and then, based on the classical moments of
the Rayleigh-distributed variables|hkj |, we can derivedp as

dp =
p!

22p

∑

k1,...,kM
P

i
ki=p

M
∏

i=1

{

ki
∑

k=0

(2k)!(2[ki − k])!

(k!)2([ki − k]!)2

}

P ki

i (15)



the proof of formula (15) and further details about the “large
N ” hyptothesis are provided in [17].

Therefore the system of equations formed by (15) for
p ∈ [1,M ] is constituted of multivariate polynomials in
P1, . . . , PM . This homogenous symmetric multivariate poly-
nomial system can be rewritten

M
∑

k=1

P p
k = Qp(d1, . . . , dp) (16)

for polynomial functionsQk ∈ R[d1, . . . , dk] to be deter-
mined.

System (16) is then easier to solve. Its solution, the vector
of powers(P1, . . . , PM ), is unique and corresponds to theM
roots (counted with their multiplicities) of the polynomial in
X of degreeM

XM − Π1X
M−1 + Π2X

M−2 − . . . + (−1)MΠM (17)

where the elementsΠk are related to the
∑

j P i
j through the

Newton-Girard formula [10]

(−1)kkΠk +
k
∑

i=1

(−1)k+i





M
∑

j=1

P i
j



Πk−i = 0 (18)

A thorough and clear study of the particularM = 3 case is
derived in [17], as well as the complete derivations that lead
to find theQk polynomials.

V. D ISCUSSION

A few points are worth being discussed in the light of the
previous study.

First, as already mentioned in the previous sections, our al-
gorithm simplifies to a mere power detector when the number
of sampling periodsL available is rather large compared to
the FFT sizeN . This would be valid either whenL is fairly
larger thanN but this imposes very long accumulations, which
is no longer valid for the typical coherence time encountered
in OFDM or whenN is limited to a very few elements but
then ones looses much of the provided information, which will
heavily degrade the performance.

A second item is the channel aspect that is of prior im-
portance. Indeed, if only one simulation shot is run (with
sufficiently largeN and L), and if the channel is typically
very short, then the channel frequency response will be rather
flat over the whole bandwidth.

This implies that all the moments ofHPHH will form
a correlated system of equations and (16) cannot be derived
since equation (15) does not stand anymore. The best we can
figure out from this situation is the approximated total power
received from all cells.

This is why a short coherence bandwidth (with respect to
the total bandwidth) is desired, so to keep (15) true.

If this short coherence bandwidth is not provided, then the
scheme can be extended to use multiple antennaes to introduce
independent channel realizations. Then, intead of using anN×
L Y matrix at the reception, we can easily extend the scheme
to use anNNr×L data matrix withNr the number of receive
antennaes at the UE.
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Fig. 3. Cell power detection,N = 512, L = 1024, Averaged over 1000
trials

VI. SIMULATION AND RESULTS

In the following, we use the results that were previously
derived in the case of a three-cell network that the UE wishes
to track. The set of cells studied along this part are of relative
powersP1 = 4, P2 = 2, P3 = 1.

In a first simulation, in order to increase the performance
accuracy, we shall average the estimateddp values on 1000
channel realizations that are exponential decaying OFDM
channels of length varying from1 to N/4 symbols of an
OFDM symbol.

In figure (3), we took matrices ofN = 512 FFT size and
L = 1024 sampling periods and a Rayleigh channel of length
N/8. A hundred realisations of this process are run. The SNR
is 10dB. Histogram (3) shows that(P1, P2, P3) is clearly
well recovered.

The next experiment consists in estimating the noise level
impact on the cell recovery. This is obtained by comparing the
SNR = 30dB case to theSNR = −10dB scenario. Figure
(5) provides the results (with 1000 accumulations over 100
trials) and shows that, surprisingly, whatever the noise level
(even if it actually perfectly matches one specific cell power),
the cell power recovery is substancially the same when(N,L)
is large enough.

Also, we need to test the robustness of our algorithm
against practical channels and not only theoretical exponential
decaying channels. This is done in figure (4) that proposes a
comparison between the ideal long channel situation and the
3GPP-Long Term Evolution (LTE) [2] standardized Extended
Vehicular A (EVA) and Extended Typical Urban (ETU) chan-
nels with characteristics

Channel Type RMS Delay Spread Channel Length
EVA 357ns N/27
ETU 991ns N/13

We considered here a mobile handset situation provided
with 2 antennaesNr = 2, working under a sizeN = 256-FFT,
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with SNR = 10dB. L is taken equal to1024 and the results
are averaged over a thousand trials, for fair comparison with
the previous results. The Cumulated Distribution Functionof
the detected power distribution for those channels is provided
in (4) that shows a rather good behaviour of both ETU and
EVA channels that nonetheless suffer from their being rather
short, which leads to less performant results. It is also to
be noted that a certain bias in the mean power estimates is
introduced in this case.

Quite surprisingly, it turns out that no matter the chosen
zero mean unit variance modulation distribution of the input
signalss(l), the results show the same performance. This is
a general observation in Free Deconvolution which has not
been proven yet. Therefore in our simulations, QPSK modu-
lations showed the exact same behaviour as purely Gaussian
distributed signals. Also, we carried out some simulationsin
which we purposely tookNB larger thanM (eg, four base
stations emitting while only three are assumed). This has fairly
bad consequences in that the characteristic polynomial (17)
often has non-real solutions. As a consequence, the number
of base stations should always be upper bounded.

The Uplink scenario in which a base station wants to
determine the powers of multiple UE’s in its cell can be
equally derived by changingM into the number of potential
users in the cell andNr into the number of antennaes at the
base station.

VII. C ONCLUSION

In this contribution, we demonstrated a practical way to
blindly detect neighboring cells in a distributed OFDM net-
work. Assuming constant transmission of those cells on a
fairly large bandwidth (large enough to ensure that the channel
coherence bandwidth is small in comparison), we showed that
one can blindly determine the individual SNR of every cell.
This is particularly suitable to next generation OFDM systems
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which aim at reducing the amount of synchronization sequence
required to keep track of the neighboring cells.
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