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Abstract

We consider the problem of subspace estimation in situsitidrere the number of available snapshots
and the observation dimension are comparable in magnitadieis context, traditional subspace methods
tend to fail because the eigenvectors of the sample caoelatatrix are heavily biased with respect to the
true ones. It has recently been suggested that this situ@tioere the sample size is small compared to the
observation dimension) can be very accurately modeled hgidering the asymptotic regime where the
observation dimension/ and the number of snapshats converge to+oo at the same rate. Using large
random matrix theory results, it can be shown that traditi@ubspace estimates are not consistent in this
asymptotic regime. Furthermore, new consistent subspstt®ate can be proposed, which outperform
the standard subspace methods for realistic valuéd @nd N. The work carried out so far in this area
has always been based on the assumption that the obsesvat®mandom, independent and identically
distributed in the time domain. The goal of this paper is topmse new consistent subspace estimators
for the case where the source signals are modelled as unkdetenministic signals. In practice, this
allows to use the proposed approach regardless of thetist@tiproperties of the source signals. In
order to construct the proposed estimators, new techresallts concerning the almost sure location of
the eigenvalues of sample covariance matrices of Infoongtius Noise complex Gaussian models are

established. These results are believed to be of indepenterest.
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Index Terms

Subspace-based estimation, random matrix theory, infismglus noise model, limit eigenvalue

distribution.

Notation: Matrix (resp. vectors) quantities are denoted by boldfazaguital (resp. lower case) letters.
The N x N identity matrix is denoted aky. Trace and spectral norm will be denot@&d[-] and |||
respectively, ancﬂ']T and[-]H represent the transpose and the conjugate transpose. &av avge denote
by Int(U/) and ol its interior and boundary respectively. Given a complex bam, Re (z) andIm (z)
denote its real and imaginary parts respectively; stands for complex conjugation andlenotes the
imaginary unit. The upper complex half plane is denotedChy, i.e C+ = {z € C : Im(z) > 0},
and equivalentlyC_ will denote the lower complex half plane. Similarly,. and R_ represent the set
of all positive real numbers and the set of all negative reahlmers respectively. We will also write
R* = R\ {0} andC* = C\ {0}. For a given contou€ on the complex plandnd¢(¢) will denote the
index of the contour with respect to a potht C. The support of a particular functiahwill be denoted
assupp (¢), andC>(R, R) will represent the set of compactly supported real-valumdcth functions

defined onR.

. INTRODUCTION

Subspace estimation methods have been widely proposed tiplawpplications of communications
and signal processing, such as direction of arrival (DoA)neion [1], beamforming [2], channel
identification [3], waveform estimation [4], and many othengral parametric estimation problems based
on multivariate observations [5]. In general terms, thdgerdhms are applicable to the situation where a
number of parameters needs to be extracted from a set ofvaridtie observations, which are composed
of a noise part, with full-rank empirical correlation matrplus a signal contribution that has low-rank
empirical correlation matrix. By exploiting the inherenthlmgonality between the signal subspace (i.e.
the subspace spanned by the columns of the signal empiocalation matrix) and the noise subspace,
one can try to extract the original parameters from the setoidy observations. In general terms, the
resulting estimators are computationally much more a#fbkel and hence are generally preferred over
other estimators such as those based in the Maximum Likediflgd.) principle, which generally perform
better but unfortunately involve an exhaustive search inu#tirdimensional parametric space.

In order to formulate a generic subspace estimator, onefinstdhfer the eigenvectors of the correlation

matrix of the observation. This is generally difficult, becaulse correlation matrix of the multivariate
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observation is generally unknown. In consequence, clalssithspace estimation methods make use of
the empirical correlation matrix, and approximate the migetors of the true correlation matrix as the
eigenvectors of the sample estimate. This procedure islgleptimal when the number of observations
(denoted byN) tends to infinity while the observation dimension (denotgdM) remains constant.
Indeed, under certain ergodicity assumptions, wién— oo for a fixed M, the sample correlation
matrix of the observation converges almost surely to the toe, and consequently whén >> M

the sample eigenvectors (i.e. the eigenvectors of the saogtelation matrix) tend to be very good
representations of the true ones. In practical applicatibowever, the number of available observations
(V) and the observation dimensioi/{) are comparable in magnitude, which leads to strong discreps
between the sample eigenvectors and the true ones. Thimategi what is usually referred to as the
breakdown effect of subspace-based techniques [6].

The fact that sample eigenvectors are not the best estimatdie true ones has been known for
decades, although the study of valid alternatives to thgesaal estimators has been limited by the fact
that investigations basically concentrated on the regirher&/N >> M. However, it has been recently
suggested [7] that finite sample size situations (wher&bgnd M are comparable in magnitude) can
be better examined by investigating the asymptotic regimehich A/ and N converge totoo at the
same rate, i.eM, N — +o0o, whereascy = % converges towards a strictly positive constant. Using
Large Random Matrix Theory (LRMT) results, it was shown in [7]ttbraditional subspace estimators
are asymptotically biased in this asymptotic regime. Furtfoge, consistent estimators for this regime
can be found, which outperform the traditional ones foristiahl values ofM and N. In this context,
LRMT can be very useful (1) to characterize how the samplemsigitors differ from the true ones in
a scenario wheré/ and N are comparable in magnitude and (2) to derive alternatitienators of the
eigenvectors that converge, not only wh&dn— +oo for a fixed M, but also whenM, N — +oo at
the same rate. This was more extensively demonstrated imfB]¥, which respectively considered the
characterization of the sample eigenvectors whenV — +oo at the same rate, and proposed alternative
consistent estimators for these quantities in the new agytropegime.

Unfortunately, the work in [8] and [9] cannot be applied t@ thignal plus noise model considered
here, unless the observations are random multivariatetijeanthat are Gaussian, independent and
identically distributed in the time domain. In practice wever, there are multiple applications in which
the observation does not present this structure, and igrbetbdelled as a deterministic component
(corresponding to the signal part) plus some additive ndlss is generally Gaussian distributed. This

model is usually referred to as the “information plus noismlei” in the LRMT literature [10], as opposed
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to the more classical “sample covariance matrix model” [Ihich was the one used in [7], [8], [9].
The main objective of this paper is to propose improved sulesgstimators for the information plus
noise model, which will represent the case where the sougrmls are as non-observable deterministic
sequences. In order to obtain these estimators, new matilcahrasults related to the almost sure location
of the eigenvalues of the empirical covariance matrix of aisg&n information plus noise model are
derived. These results are believed to be of independentstte

The rest of the paper is organized as follows. Section Il intced the information plus noise model
associated with the specific application addressed heretetlgemination of multiple directions of arrival
(DoA) using an array of antennas. The main objectives of theepan mathematical terms are also
formulated. Section Ill provides some general facts relétethe convergence of the eigenvalues of the
empirical correlation matrix for the information plus neisodel. It is further explained in Section IV
that the eigenvalues of the sample correlation matrix tenmbhcentrate around some clusters when both
M, N — 400 at the same rate. A very simple description of the positiothete asymptotic eigenvalue
clusters is also provided. It is in particular shown thatreeloster is associated with a set of consecutive
eigenvalues of true covariance matrix of the observatiocti®® V presents an intermediate result that
has its own interest. In brief, it is shown that, for sufficlgnarge M, N, with probability one no
eigenvalues of the sample correlation matrix will be lodateitside the asymptotic eigenvalue clusters.
Furthermore, the number of sample eigenvalues that areslbdmieach of these clusters is directly related
to the dimensionality of the corresponding eigenspace eftthe covariance matrix. In order to focus
on the applicative context of the paper, this claim is prot@dthe cluster associated with the noise
subspace, but it can be extended easily to the other cludteis fact generalizes the results derived in
[12] and [13] in the context of source signals independegtiigally distributed in the time domain.
In contrast with [12] and [13], the results presented in tper, inspired by the approach developed
in [14], are only valid in the complex Gaussian case. The abuoeationed results are then used in
Section VI in order to derive an estimator of the localizatfanction of the subspace estimate that is
consistent not only whetv — +oo for fixed M, but also when\/, N — +oc at the same rate. Section
VII provides some numerical examples that illustrate tHeatifveness of the proposed estimators. Finally

Section VIII concludes the paper. Most of the technical @gions have been relegated to the appendices.

The results of this paper have been partly presented in the sbioference paper [15].
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I[I. PROBLEM STATEMENT

In order to motivate and illustrate the signal model thatssduin this paper, we consider the following
DoA estimation problem. Assume th# narrow band deterministic source signals,),— .. x are
received by an antenna array df elements,K < M. The correspondind/ dimensional observation

signaly,, (at discrete timex) can be mathematically described as
Yn = As, + v,

where A = [a(6,),...,a(fk)] is an M x K matrix that contains the steering vectors of #iesources,
s, iIs a K x 1 column vector containing the transmitted signals from Hesources at time instant,
and wherev,, is an additive Gaussian white noise component with zero naahcovariance matrix
E[vn,vi] = 0%Iy. We assume thay,, is available fromn = 1 to n = N, and thatM < N, or

n

equivalently thatey = % is strictly less thanl. It is possible to generalize our results to the situation
wherecy > 1, although the presentation of the corresponding resultsldvbowever complicate the
developments of the present paper.

We denote byYy = [y1,...,yn] the M x N observation matrix, which can be readily written as
Yy =ASy +Vy (1)

whereSy = [s1,...,sy] andVy = [vy, ..., vy]. From this matrix, we can define the empirical spatial
correlation matrix of the observation Rsy = %YNYH, whereas the empirical spatial correlation matrix
associated with the noiseless observation will take the ferAS ySYA¥ . It is worth pointing out here
that, since the number of signals is assumed to be lower timumber of antennas(< M), the
steering matrixA will always be a tall matrix and therefore the empirical satorrelation matrix of
the noiseless observation will never be full rank. In otherds, the minimum eigenvalue of the matrix
%ASNS]’%AH will always be zero and will have multiplicity equal &/ — K.

In order to simplify the notation in the subsequent expositwe define the matricesy, By, Wy

as
Yy ASy Vi
Yy = T = ) Wy =—= 2
so that (1) can be equivalently formulated as
Xn=By+ Wy 3)

whereX y is the (normalized) matrix of observatiod3,; is a deterministic matrix containing the signals

contribution andW  is a complex Gaussian white noise matrix with i.i.d. enttiegt have zero mean and
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variances? /N. We denote bylIy the orthogonal projection matrix on the “noise subspacdiictvin our
context is defined as the orthogonal complement of the colymanesof matrixA. In the following, we
assume that the empirical correlation matrix3of defined by%SNSﬁ is full rank. Therefore, the noise
subspace coincides with the kernel of the empirical cadiicelamatrix of the noiseless signal, namely

ByBH.

Let {y,iN) }k denote the eigenvalues of the empirical correlation maftfrtke signal component,

namelyB yB%, arranged in increasing order and {&t,(CN)} denote the corresponding unit norm

eigenvectors. We note in particular thﬁtN) =...= 7](V][V_)K = 0 while the remaining eigenvalues are

H
strictly positive and thalTy = "M% (V) (eECN)> . The subspace method for the determination of

=1,...,

the K directions of arrival (commonly referred to as MUSIC alglomif) is based on the observation that
the angles{6;},_, _j coincide with theK solutions of the equatioa(f)”"TIya(g) = 0. In order to
be able to use this last observation, it is in practice necgs® estimate the functioa(d)”TIya(0)
(usually referred to as the “localization function”) forabed) € [, 7|, or more generically to estimate
the quantity

nn(b) = bTIIyb

for each deterministid/-dimensional vectob.
If N — +o0o while M is fixed, the empirical correlation matrix of the observasidhy = ENE% of

Yy converges towards the matRy = BNBﬁ + 021, in the sense that

IRy — (BNBY +0°Iy)| =0 as. (4)
where a.s. represents the almost sure convergence. Weeniltel by{f\éN)}k the eigenvalues of
Ry arranged in increasing order and {)&,EN)} " the corresponding eigenvectors. The convergence

30y

result in (4) implies that for eadh, 7%%(a(0)) —nn(a(f)) — 0 a.s. wheren72¢(a(0)) is the traditional

estimator of the localization function defined as
M—K

@) = Y a”@0)e™ (6)" a(o) ©)

k=1
In practice, predictions provided by the asymptotic regtneresponding to lettingy — +oc for fixed

M are reliable only if N is much larger tham/. However, this assumption may be quite restrictive in a
number of important application contexts.Mf and N are comparable in magnitude, then the asymptotic
regime described by letting/, N — +oc in such a way thaty = % converges towards a non zero
constant appears to be more relevant. In this regime, thavimhof various classical estimates are

more complicated, and have to be studied carefully. In @alet, it can be shown tha%(b) — ny (b)
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does not converge t6 when M, N — +oo , which implies that the standard MUSIC estimates are
not consistent under this new asymptotic regime. The purpbseis paper is to introduce an improved
subspace estimatg (b) of ny(b) for each deterministic vectds. The main feature ofjx*(b) is

to be consistent if\/, N — +oc0 in such a way thaty = % converges towards a non zero constant
value. In order to achieve this, we will heavily rely on rasulelated to the asymptotic behavior of the
eigenvalue distribution of the empirical correlation mafR . It is however useful to mention that it is

not established that

sup |7y (a(0)) —nw(a(f))] — 0 (6)
oe[—m,m]

almost surely, a useful, but stronger property. We feel thatproof of (6) would need mathematical

technics different from those which are used in the presepep

[Il. PROPERTIES OF THE ASYMPTOTIC EIGENVALUE DISTRIBUTION OF MARIX RN

In this section, we will review some of the important propestrelated to the asymptotic behavior of
the eigenvalue distribution of the empirical correlatioatrix Ry when M, N — +oo in such a way
thatey = % converges towards a non zero constant, which will be denagegql. This implies that the
observation dimensiodl/ in principle depends o@V, and should be denotet! (N). We will however
drop this dependence aN in order to simplify the exposition. Whenever it is clearrfrdhe context,
we will also drop the dependence on the number of snaps¥idtsmatricesX y, By, Ry, eigenvalues

X§N),. ces XE&V) and yﬁN),. . ,VJ(VZIV), as well as eigenvectors.

Remark 1. From now on,N — oo will implicitly denote the limit as both\/, N — +oc such that%

converges towards a non zero constaptwhere it is assumed thét< ¢, < 1.

Remark 2. All results that are presented in this paper are equally vagdardless of the behavior of
the number of source& when N increases. In other wordgs may scale up withV, or it may stay

constant regardless av.

From now on, we assume that the spectral norms of matflBes x>, remain bounded wheN — oo,
i.e. it existsb,,., > 0 such that

sup |By|| < bimae < 00 (7)
N>1
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The eigenvalue distribution dR y is characterized by the empirical distribution functionitsfeigen-
values, namely

~

1 ~ ~
Fx(\) = Mcard{)\,(cm AN <N k=1, M)

wherecard denotes the cardinality of a set. For eack R, the functionFN()\) gives the proportion of
the eigenvalues oR which are lower than or equal tb. Its associated probability measure, denoted
fin, is given bydan(\) = & M 5(A — A and is carried byR,. In order to characterize the
asymptotic behavior ofiy, it is in practice quite common to characterize the asynptmthavior of its
Stieltjes transform. Ifu is a positive finite measure (i.e(R) < oo), the Stieltjes transform of; is the

function ¥, of complex variable defined as

v, () = [ T4 @

We recall the following well-known properties of the Stiekjtransform, which will be useful in the

mathematical developments throughout the paper.

Lemma 1. Let ¥, be the Stieltjes transform of some positive finite meagufiee. 1 (R) < oo), and let
us denote ass, its support. Then,

1) ¥, is holomorphic onC\S,,.

2) limy 40 —iy ¥, (iy) = u(R)

3) ¥, € Cyif ze C4, whereC, is the upper complex half plane.

4) If p is carried byR, thenzV,(z) € C4 if z € C,.

5) Vz € C\R,
p(R)
U, (2) <
whereIm(z) denotes the imaginary part af Moreover,vz € C\S, it holds that
#(R)
Y < —t

6) Conversely, if’ is a function analytic inC, satisfying
e ¥(z) and z¥(z) belong toC, if z € C4
o sup,~q iy (iy)| < +oo
then, ¥ is the Stieljés transform of a positive finite measure carig R .
7) Yo € C(R,R), (the set of compactly supported real-valued smooth fanstdefined orRk), we

have

/[RCP()\)d/J()\) = ilgﬁ)llm {/[R o(z)¥,(x + iy)dx}
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Having recalled these basic properties of the Stieltjessfoam of a positive finite measure, let us
now go back to the asymptotic characterization of the emgdinmeasurgiy or, quite equivalently, its
Stieltjés transform, which is defined ferc C — R, as

) o dany) TR
mN(z)—/[R+ N _MZ . (10)

] Am — 2

It is worth pointing out thati(z) can be expressed as the normalized trace of the resolvenkmat

which is a matrix-valued function defined as

Qn(z) = (RN — ,zIM)i1 = (TNZF - zIM)i1 (11)

namely my(z) = ﬁTr [Qn(2)]. Except (16), the following results can be more or less imatety

derived from [10] (see also [16])

Theorem 1. There exists a deterministic probability distributipn,; carried by R, such thatiy — un
converges in distribution almost surely towam@svhen N — oo. The measure:, referred to in what
follows as the asymptotic eigenvalue distribution of meRiy, is characterized by its Stieltjes transform

mpy(z) as

mN(z):/[R df\”z(z)\) (12)

which is a solution of the equation
ByBZ 17!
S (13)
1+ GchmN(Z)
for eachz € C — Ry. Let Ty(z) be theM x M matrix valued function defined db — R by

1
mN(z) = MTI‘ |:—Z(1 + O'QCNmN<Z))I]\/[ + 0’2(1 — CN)IM +

ByBY 17!
N 2 201 NDN
Ty(z) = [ 2(1+ o%enympy(2)) Iy + 0“(1 — en)Ins + 1+UQCNmN(Z):| . (14)
Then, Ty (z) is holomorphic onC — R,. Moreover, almost surely,
lim (my(z) —mp(2)) =0 (15)

N—oo
for eachz € C—R,.. Finally, for eachM/—dimensional deterministic vectons,, vy such thasup y [[uy|| <

oo and supy ||[vy]| < oo, it holds that almost surely
Jim uy (Qu(2) - T (2) v =0 (16)

for eachz € C — Ry.

Proof: Convergence ofiy — un towards0 as well as the fact thaty(z) is a solution to (13) is
due to [10]. As for the result in (15), it is a well known conseqce of the convergence ffy — un

towards0. (16) is proved in the Appendix F. [ ]
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10

Theorem 1 is pointing out that the entries of the resolv@at(z) are almost surely asymptotically
close to the entries of the deterministic matrix functi@y;(z) (this statement follows from (16) by
selectinguy andvy as two columns ol ,); and that its normalized tracé;y(z) as defined in (10),
is almost surely asymptotically close tox(z), one of the solutions to the polynomial equation in (13).
Furthermore, the random measuirg is also almost surely equivalent (in distribution) to théedministic
measureuy in this asymptotic regime.

We denote bySy the support of this measurey, which will play a very important role in the
following. The characterization of has been first presented in [17], and is based on the study of
the properties of functiomn (z) which, since it is a Stieltjés transform, is holomorphic ©gSy and
real-valued orR\Sy. In order to characteriz8,, we will also consider the functiotwy (=), introduced

in [17], defined frommy(z) as follows
wy(z) =z (1+ 0261\7m]\/(2))2 — %1 —en)(1 + d?eymn(2)). a7

It will be seen later on that the functiany (z) has very interesting properties that will be crucial for the
derivations in this paper. In particular, we will show in tfelowing that the support ofiy, namelySy,
is in fact equal to the support of the imaginary partua§(z) when z approaches the real axis. Thanks
to this fact, we will be able to characterize the supp®it by studying the properties aby(z) for z
on the real axis.

The next proposition provides some preliminary propertiesng;(z) and wy(z) that will become
useful in the following sections. Most of these properties astablished in [17]. We will denote by

fn(w) the function onC — {~1,...,~va} defined by

1 -1
fu(w) = —Tr [(BNB% — wly) }
which coincides with the Stieltjes transform of the eigeneatlistributionvy (d)\) = ﬁ 224:1 (A=)

associated with the signal matByBZ.

Proposition 1. The following properties hold:
1) The conditioncy < 1 implies thatO does not belong tS&y.
2) For eachz € R, lim,cc, .—. mn(2) exists, and will be denotea v (x). The functionmy(z) thus
defined is continuous ofi; UR, and continuously differentiable op,. UR — 0Sxy. Moreover, for
eachz € R, lim,cc .., mn(z) exists, and is equal tomy(z))*. The measurg:y is absolutely

continuous, its density i$Im(my(z)), and the interiorlnt(Sy) of Sy is given by
Int(Sy) = {z > 0 : Im(my(z)) > 0} (18)
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3) Foreachzx € R, lim.cc, .—, wn(2) exists, and is still denoted byy (x). The function: — wy(2)
is continuous orC UR, and is continuously differentiable d, UR — 0Sy. Moreoverwy (x) =
z(1+ a2cNmN(:L'))2 —0%(1 —en)(1 + o?eymu (). Finally, lim.ec —p wn(2) = wy(z)*.

4) wy(x) does not belong to the séf(y%N), . ,7](\]})} if € R—Sy.

5) Im[wn(z)] > 0 if Imz > 0.

6) Re [1+ cyo®my(z)] > 0 for eachz € C.

7) For anyx € R — dSy, the functionm(z) is solution of the equation in (13)

8) For anyx € R — 0Sy, the functionwy (x) is a solution of the equation
on(wn(z)) =2 (19)
where ¢y (w) is defined by
on(w) = w (1 —eno® fy(w)? + (1 = en)o®(1 — eno? fiv (w)) (20)

Proof: Property 1 is not established in [17], and is proved in Apperfdi As for Property 2, the
existence of the limit ofn (z+1iy) is proved in [17] forz # 0 because [17] did not assume that < 1.
However, Property 1 implies immediately that the limit esigtz = 0 becauseny(z) is holomorphic
in a neighborhood of the origin. The continuity and the déferability of = — my(x) is established in
[17] on R* andR*\0Sy respectively, but it also holds drR and R\0Sy by Property 1 and the fact that
mpy(z) is holomorphicC\Sy. Sincemy(z) is the Stieltjes transform of a positive measure, it is clear
that my(2*) coincides withm},(z). This implies immediately thalim, ¢ ,—.o my(z + iy) = mjy(x).
Finally, (18) is a direct consequence of the continuityrof> my(x). Property 3 follows directly from
Property 2. Properties 4 and 5 are established in [17]. As fopd?ty 6, it was initially proven in [17]
for z € C*, but it can be shown easily that it holds fer= 0 using Property 1 as well as the proof of
Lemma 2-1 of [17]. Finally, [17] established thaty (z) is solution of (13) ifz € int(Sy). This also
holds if z € C\Sy because by Properties 4 and 6, the right hand side of (13) @vtwwphic onC\Sy.
Sincemy(z) is itself holomorphic onC\Sy, the equality in (13) must hold not only di\R,. but also
on C\Sy. Recalling thatSy is a closed set, all this implies thaty (z) is solution of equation (13) for
x € R\OSn.

Let us finally establish Property 8. Thanks to Properties 6 and 7@iiti3), we can write

my (z)
1+ O'2CNmN(ﬂ£')

= fn(wn(z)) (21)
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for eachz € R\OSy. This last equality can be rewritten as

1
1+ o2cympy()

1-— JQCNfN(wN(m)) (22)

where the right hand side is well defined thanks to Property &v, ugging (22) into (17), we obtain

that, forz € R\0Sy, wy(z) is a solution of the equation
on(w) =z (23)

where functiongy (w) is defined in (20). In other words, the functiany (x) satisfies (19) for each

x € R\OSy. [ |
Proposition 1 is establishing the fact that bath;(z) andwy(z) are well defined whern approaches

the real axis, and thaty(z) and wy(z) can be determined as one of the solutions to (13) and (19)

respectively for anyr € R\0Sy. In the next section we will establish some properties tiharacterize

wy (z) out of the set of all the solutions of (19), and this will inrnelp us in the characterization of

the supportSy.

IV. AN ALTERNATIVE CHARACTERIZATION OF Sy

In this section we will provide a characterization of the goh Sy as a simpler alternative to the
study provided in [17]. It must be pointed out that [17] assdnthat the eigenvalue distribution of
matrix ByB4 converges to a limit distribution,(d)\), and showed thaty converges towards a
probability distributionp,. Its Stieltjes transformm, is solution of (13), but in which the discrete
measure/y (d\) = & Zj]‘il (A — fy,(gN)) is replaced by measure,(d\), i.e.

A -1
14+ a2eympy(z2))

Moo(2) = / [—z(l +o?enmp(2)) + 0*(1 —cn) + Voo (dA).

In [17], a detailed analysis of the suppdit, of i, was presented. The corresponding results provide
of course a characterization &y by replacing the general probability distribution,(d\) by the
discrete measurey (d\) = +; ij‘il S(A— y,iN)). However, we show in the following that it is possible
to reformulate the results of [17] in a more explicit manngrthking into account immediately that
ﬁ Zj]‘il 5()\—7,9[)) is a discrete measure. We hope that the following analyasgdbon quite elementary
technics, is easier to follow than the general approach of. [1

Our approach is based on the study of the function(z) that has been introduced in (17). We have
established in Proposition 1 thaty(z) is well defined in the real axis, and that it can be expressed as
one of the roots of the polynomial equation in (19). Let us ne& Bow this function can help us in the

characterization of the suppa$ty.
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Proposition 2. The functionwy (z) defined in(17) satisfies the following properties:
1) Int (Sy) = {z € Ry : Im{wn(x)} > 0}
2) wiy(z) >0, for z € R\Sn.
3) 1-clenfn(wn(z)) >0 VzeR\Sy.

Proof: See Appendix B. [ ]

Remark 3. By taking derivatives with respect toon both sides of the equatiapw (wy(z)) = x, we
see thatw/y (z)¢’y (wn(z)) = 1 holds forz € R — dSy. Property 2 of the above proposition is thus
equivalent to

Py (wn(x)) > 0if z € R\Sy. (24)

Property 1 in Proposition 2 is basically stating the fact that interior of the suppor&y coincides
the region of values oR_. for which the imaginary part ofvx () is strictly positive. Hence, it suffices
to study the behavior dfin [wy(z)] in order to characterize the interior of the suppSit. On the other
hand, we know from Property 8 in Proposition 1 that, for ang R\0Sy, wy(z) is one of the solutions
to the polynomial equation in (19). Proposition 2 is helpirggta identify which one of the roots is in
fact wy(x). More specifically, we will later show that:

o If x € Int(Sy), thenwy(x) will be the unique root of (19) with positive imaginary plarthanks

to Property 1.

o If x € R\Sy, thenwy(x) will be the unique root of (19) such that Properties 2 and 3 .hold

In order to establish the fact that these properties comlyleletermine the value aby (x) out of the
set of roots of the equation in (19), we need to study the fofith@ function¢ in (20) more closely.
The analysis of the roots of the corresponding equation in {@® allow us to determine the intervals

of R for which wy (z) is real-valued and the intervals in which it has a strictlgifiee imaginary part.

A. Characterization of the functiony (w)

In the following, we assume that ttié non-zero eigenvalues of the matidyB%, namely{yj(\]L)KH, - ,yl(\jv)},
have multiplicity 1. Under this hypothesis, the equation in (19) is in fact egjent to a polynomial
equation of degre@(K + 1). This can be readily seen by using the expressioffizdfw) in (20), so that

1The existence and unicity of such root will be established in what follows.
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we can expressy(w) as sums of quotients of polynomials im i.e.

v 2
M- K 1
on(w) =w [1+0? N 2N
M w M TYm — W
m=M—K+1
M
M—-Kec c 1
+(1—cn)o? <1+02 7 - —0’2MN ) : (25)
w B Ym — W
m=M-K+1

M
Hence, multiplying both sides of equatiahy (w) = x by wH (Ym — w)2 we end up with
m=M—-K+1

a polynomial equation of degre¥ K + 1). If certain eigenvalues oByB% are multiple,¢n(w) = x
will be a polynomial equation of degre¥ K + 1) where K represents the number of distinct non zero
eigenvalues oB yBXL. The following results can thus be immediately adapted bjanémg K by K. The
assumptionk = K allows to avoid the introduction of new notations repreisenthe distinct eigenvalues
of BNB]HV in the forthcoming analysis.

1) Zeros of ¢n(w): It is easily seen that the functiopy has exactly2K + 2 different real zeros,

which will be denoted as{™™ < 2"V < ... < M7 < I

*. An elementary analysis of the
function ¢ determines the position of these zeros, as well as the bmhakithe functiongy(w) in
their neighborhood:

o The lowest couple of zeros are located on the negative res) aa'melyz(()N)_, zéN)+ € ]—00,0[.
Furthermore, the functiosy is increasing atz(()N)* and decreasing aéNH, namely¢’y, (zéN)*> >
0 and ¢y (z(()N)+) < 0, where¢/y, denotes the derivative afy.

« The next couple of zeros are located between zero and the fsitvpoeigenvalue oByBL, i.e.

z%N)* z%NH € }O,WJ(V]}QKH [ and it turns out that the functiony is decreasing atEN)* and

increasing atz§N)+, namely ¢’y <z§N)_) < 0 and ¢’y (z%NH) > 0.

« Each one of the remaining couples of zeros is located betweepositive eigenvalues dB B
, lLe. z,gN)*,z,(;V)+ € ]vj(\jv_)KJrk_l,fy](\]}_)K% [ V k= 2,...,K, and the functionpy is always
decreasing at the first zero and increasing at the seconag\j.éz,im_) < 0 and¢y (z,iN)+) > 0,
Vk=2,... K.

In order to obtain these results, one only needs to fagtahw) as the product of two terms, namely
on(w) = [1 — CNUQfN(w)} [w (1— CNO'QfN(w)) +(1- CN>0'2] (26)

and thereforep (w) = 0 if and only if one of these two terms is zero. Out of th& + 2 zeros of the

function ¢y (w), a total of K + 1 are the zeros of the first term in (26). More formally:

e The second zero, namel%NH, is solution of the equatiol — o%cy f (w) = 0.
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o The zerosZ,gN)_ for k =1,..., K are the solutions of the equatidn- o%cy fn(w) = 0.

This allows us to differentiate between intervals of the rasis wherel — o?cy fx(w) > 0 and
intervals wherel — o2cy fn(w) < 0, namely
« The functionl — o?cy fx(w) is positive on the intervals

}_Oovztﬂi H'Yz(\jv—)KJrk—lvzi(cN)_szle’ ]’YJ(VJIV)HFOO[- (27)

This last fact is important, because we know from Property 3 afp®sition 2 that, wher: does
not belong to the suppoty, the solution of the equationy(w) = = corresponding tavy (z) will
be such thatl — o?cy fv(wn(x)) > 0, and therefore will be located inside of one of these interva
In Figure 1 we give a typical representation of functiog(w) in a situation wherek' = 2 (we drop
the dependence oN in all quantities in the figure to simplify the representajiohhe functiong (w)
presents horizontal asymptoteswat= 0 and also at the values of the positive eigenvalueBgBL,
namely{y}ij+l, e ,7](\]4\[)}. The region of the horizontal axis whete- o2cy fy(w) > 0 is shaded

in grey.

Figure 1. Typical representation gfy (w) as a function ofw for K = 2 and Q = 2 (we drop the dependence a¥i for
clarity). The shaded region in the horizontal axis represents the seirasgor whichl — o?cy fx (w) > 0. The shaded region

in the vertical axis represeny .
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2) Local extrema and monotonicity intervals of ¢ (w): Next, we investigate the local extrema of
the function¢y. The following proposition summarizes the most interesfingperties of the positive

local extrema.

Proposition 3. 1) The function¢y admits 2) positive local extrema counting multiplicities (with

1 < Q < K +1) whose preimages, denoted™ ™ < 0 < w{™* <w{™~ ... <wi"" <wi"*,
belong to the sefw € R: 1 — o?cy fy(w) > 0}

2) If we denote by:!™™ = ¢ <w,(€N)_> and2\V" = ¢y (w,iN)+) these positive extrema, then

0< ng)_ < ng)Jr < xéN)_ .. < xgv)_ < gi)Jr (28)

3) Each eigenvalueyl(N) of ByB belongs to one and only one of the interv%ilséN)*,wéNH[,

g=1...Q.
i i i i i _ (N)— (N)+  (N)—
4) The functiongy is increasing on the mterval% 00, W,y } {[wq s Wot ”FLQ%’ and

[w(QNH, +oo} . Moreover,

N ([wéNH,wéﬂ_]) = [:::(N”,:nf]ﬂ_} for eachg=1,...,Q — 1, and

O ([ng>+,+00 D = [ng>+,+00[.

Proof: Except for the inequalities in (28), which are proved in ApgignC, the statements of
Proposition 3 follow directly from an elementary analysistlod functiong . [ ]
We see from Proposition 3 that the local extrema always apipegroups of two, and the actual
number of extremum couple)} will generally depend o2, ¢y and on the positive eigenvalues of
the matrix By B%. For example, in the situation represented in Figure 1, thebew of positive local
extrema was equal to four, which implies th@t= 2. In Figures 2 and 3 we depict other equivalent

examples ofpy, for which we had@Q = 1 and @ = 3 respectively.

B. Characterization ofuvy (x) out of the roots oty (w) = =

We know from Proposition 1 thaty (x) for real valued: will be a solution of the equationy (w) = x.
In this section, we will characterize which one of these soist actuallywy (z). First of all, observe
that, since the equationy(w) = = is equivalent to a polynomial equation of degrdds + 1), the
number of solutions (counting multiplicities) will alwayse equal ta2(K + 1). Out of these solutions,

we can graphically find the real-valued ones by exploring tfessings between the graph of (w)
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Figure 2. Typical representation ¢fy (w) as a function ofw for K = 2 and@ = 1 (we drop the dependence adw for
clarity). The shaded region in the horizontal axis represents the seimisgor whichl — o?cx fv (w) > 0. The shaded region

in the vertical axis represenSy.

and a horizontal line at. This is further illustrated in Figure 4. By the properties be tfunction
on(w) presented in Section IV-A, we can clearly differentiate ew two different situations:

o If z ¢ ngl [:cng)_,x,(CNH , it is easily shown that the equatiafy(w) = x presents exactly
2(K + 1) different real-valued solutions (cf. upper horizontalelim Figure 4). Since the original
equation has degre¥ K + 1), there are no complex-valued solutions. In particulat,(z) will be
real-valued.

e Ifze UL, q:,E:N)*,x,(ﬁNH , in what follows, it will be shown that the equatiafiy(w) = = has
exactly 2K different real-valued solutions (cf. lower horizontaldiin Figure 4). This implies that
there is a couple of complex conjugated solutions to the temuay (w) = .

Let us now see how we can completely charactetizgx) in these two different situations:

1) Case = € R\ U,?:l x,(ﬂN)_,mffNH]: From (24) and Property 3 of Proposition 2, we know that

wy (z) is a root of the equatioty (w) = z such thay (wy(x)) > 0 and thatl —o?cy fx (wy (z)) > 0.
We now prove that this completely characterizeg(z) out of the set of all roots ofy(w) = z, in

the sense that there is only one root@f(w) = = that has these two properties. We first consider
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Figure 3. Typical representation gfy (w) as a function ofw for K = 2 andQ = 3 (we drop the dependence a¥i for
clarity). The shaded region in the horizontal axis represents the seirgsgor whichl — o?cy fx (w) > 0. The shaded region

in the vertical axis represensy .

(N)

the caser < z; * . By Property 4 of Proposition 3py is an increasing one to one correspondence
from }—oo,ng)_ onto} —oo,ng)_ { Its inverseqﬁ]‘\,1 is thus a well defined increasing function from

}—oo,ng)_[ onto}—oo,ng)_ { We claim thatwy (z) coincides with¢y'(x). Indeed, observe that
sincegy (z) < w!™~, we automatically have/y (¢! (z)) > 0 and thatl — o2cy fx(¢5 () > 0. On
the other hand, the behavior ¢fy established in Propositions 2 and 3 implies that the othd+vadaed
solutions of¢y(w) = = do not satisfy eithell — o?cy fx(w) > 0 or ¢y (w) > 0 (see further Figures
1 to 3). Thereforewy (z) can be expressed a8, (), and is the only root ofpy(w) = = such that
1 —o%enfn(w) >0 and ¢y (w) > 0.

The above analysis can be extendedrifbelongs to x,(ﬁN)Jr,a;,(fPf fork =1,....,Q — 1 or if

z > x5"". Indeed, observe first thaty is a bijection betwee w,(CN)Jr,w,(fPl_[ and}xl(cNH@/ng

fork=1,...,0Q0 — 1 and between} wgV)J“,Jroo[ and]xé?NH,Jroo { Hence,qﬁj‘v1 is well defined on
:z:,E;NH, x,(fi)f fork=1,...,Q—1and on} x(QNH, +00 [ Thanks to the form of the functiony, we
see thatp! () is the only root that verified — o2cy fx(w) > 0 and ¢y (w) > 0 (see further Figures
1 to 3), and this implies thaty (z) = ¢ (z). Sincewy (z) is continuous onR, we also get that
wn (M) = w™ as well aswy (z0M) = w™MF for k=1,...,Q.

February 18, 2010 DRAFT



19

/

on(w) = !

Figure 4. One can find the real-valued solutionsgte (w) = x by examining the crossings of the graph; (w) with a
horizontal line atz. In this particular example, wher® = 2, we see thatyn (w) = x present2(K + 1) = 6 real-valued

solutions, whereasy (w) = =’ has only4 real-valued solutions (plus a couple of complex conjugated ones).

2) Casez € U2, x,({N)_,xlgN)+ - In this situation, we establish that the equation(w) = = has

exactly 2K real-valued solutions, plus a couple of complex conjugatees, and thatvy(z) is equal
to the complex-value root with strictly positive imagingsgrt. We can reason from the behaviorgo§
that the polynomial equatiopy(w) = = has at leasRK real-valued solutions located in the intervals
fy](é}f_)KH_l,zl‘ { and}zﬁ,fy](\]f_)KH forl =1,..., K. We however note that none of them can satisfy
both ¢y (w) > 0 and1—o2cy fy(w) > 0. Thereforewy (x) cannot coincide with one of these solutions.
Assume that the two remaining solutions of the equation ea¢ wy (x) of course coincides with one
of these two solutions. The properties of functiog as well as (28) imply the existence of two extrema
of ¢ , denoted byz, < z/, such thatz € |z.,2.[. Moreover, by (28), the two extra solutions must
belong to an interval zf“,fy](\jvf)Kﬂ forl = 1,...,Q — 1. Consequently, these two solutions satisfy
1 — o2cn fn(w) < 0, and cannot coincide withx (), which leads us to contradiction. Therefore, the
two remaing solutions are complex conjugate, ang(x) coincides the solution with strictly imaginary

part.
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C. Characterization of the suppo&y

As the interior ofSy coincides with{z € Ry, Im(wx(z)) > 0} (see Property 1 of Proposition 2), we

have shown the following Theorem.

Theorem 2. The supportSy is given by

Q
U [ (M- 4 . (29)

(N)+ (N) (N)+ (V) (V)+

The above analysis shows m&” <z U <Swmy <...<wzply Swmy’ <z ' coincide

with the set of all positive extrema @fy. Theorem 2 thus establishes a very simple method to determine
the supporiSy. First, one needs to determine all the local extrema ©f(w), namely the solutions to
the polynomial equatiomy, (w) = 0. The solutions will be{ng)_,ngH, , "wgv)—’wng} with
possible repetitions if one of these roots has multiplititg, plus K additional ones (it is easily seen that
on has exactlyK negative local minima). By evaluating the functigrR; at these points, and selecting
those for whichgy is positive, we are determining the valu%sgN)_,:cgNH, .. .,xgv)_,xgvH} that

characterize the support in (29). Observe that the sugheris a disjoint reunion of compact intervals,

which will be referred to as clusters. Each of these clus e@év)* (VT will be associated to an
interval of the type[w(N) ,wéN” ,q=1...Q, in the sense thatf] = ¢on ( ) and ng)+ =
ON (wéNH). On the other hand, we can also clearly see that a spemficwilglenyk Jk=1,.... M,

always belongs to one, and only one of the interanJéN)*,wéNH}. This motivates the following

definition.

Definition 1. We say that the eigenvalu;écN) k=1,...,M, of the matrixByB¥ is associated with

the cIuster[xéN)_,xéNH} if V) e [wéN) L wiT ]

Observe that this is not a one-to-one correspondence, isetige that multiple consecutive eigenvalues

of ByBX may be associated with the same cluster. For instance, inerRjthe three eigenvalues, (

%(V][V)l and 7](\]4\/)) are associated with the same eigenvalue cluster, whilegar€&i3 each eigenvalue is

associated with its own different cluster.

(N)+]

The first cluster[xg plays a special role because it is always associated witkifevalue

0 of matrix ByBZ. As seen below, the main results of this paper will be validarthe assumption that
the strictly positive eigenvalues @ yBZX are not associated to the clus(eﬁN )_,ng )+]. Intuitively,
this means that the eigenvalues corresponding to the noisspace are separated from the eigenvalues

of the signal subspace. Both Figure 1 and Figure 3 satisfy tloiggpty, but not Figure 2.
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More rigorously, we assume from now on that the following diyyeses hold.

. i (N)
: >
(As 1) 3INp € N such thatyN € N, N > Ny, the non zero elgenvalue{Syk }k:M—K—i-l,...,M of
(N)+].

ByB4 are not associated to the first clustprgN)_, xq

(As 2) 3t; > 0,t].,t, € R independent ofV such that
— : (N)— (N)+ + 4 : (N)— >
t; < Ng}f\fo {931 } < ;g}}\)fﬂ {xl } <ty <t, < ng}fv() {9:2 } VN > Ny. (30)
These two assumptions imply that for ea€h> Ny, the eigenvalu® of B yB4 belongs to the interval
wEN)_,waH[ and thus to]wy (t7), wn () [ becausewy(ty) < wi™™ and wy(t}) > wi™*.

Similarly, the non zero eigenvalue{Sy](éV_)KH} « of ByB& SatiSfy’y](é[V_)KH > wy(t3).

I=1,...,

V. CONVERGENCE AND LOCALIZATION OF THE SAMPLE EIGENVALUES

The previous results are related to the properties of the tetierministic distribution.y. The almost
sure convergence @fy — . towards 0 does not mean by itself that the eigenvaluds phbelong almost
surely toSy, or to an interval containing,. As one may imagine, it is important to be able to locate
the eigenvalue$5\,(€N))k:Lm,M of matrix Ry with respect taSy for N large enough. Bai and Silverstein
established in [12], [13] powerful related results in thentext of correlated zero-mean, possibly non
Gaussian, random matrices. In the following, we establistila results for the Information plus Noise
model. However, the mathematical approach we use in theeprgmper has no connection with the
techniques used in [12], [13] also valid in the non Gaussiasec SinceX is assumed Gaussian, we
rather adapt to the Information plus Noise model the ideagldped in [14] in the context of Gaussian
Wigner matrices. We prove in the following two theorems wbhire believed to be of independent

interest.

Theorem 3. Assume that there exists a positive quantity 0, two real values:, b € R, and an integer
Ny such that
la—eb+eNSy=2 VNeN,N >N, (31)

whereSy denotes the support @fy. Then, with probability one, no eigenvalue Rfy appears infa, b]

for all N large enough.
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Theorem 4. If Assumptions 1 and 2 hold, then, for &l large enough, with probability one,
AV e et (32)
AP e >ty (33)
Although Assumptions 1 and 2 depend on the deterministitiloigions 1.5, Theorem 4 shows that

almost surely, the smallest/ — K eigenvalues oy are always separated from the others for sl

large enough.

A. Proof of Theorem 3

We first state the following proposition, the proof of whichdemanding, and is detailed in Appendix

E. The result will play a fundamental role in the proof of Theordm

Proposition 4. Vz € C\R,, we have forN large enough,

£ |3 T Qu )] = 3 BTN + o)
with x is analytic inC — R4 and satisfies
v (2)] < (J2] + C)*P(|Im(2)| ™) (34)

for eachz € C, where(C' is a constantk is an integer independent éf and P is a polynomial with

positive coefficients independent [t
We now follow [18] and [14] and prove the Lemma:

Lemma 2. Let ¢ be a compactly supported real-valued smooth function dgfimeR, i.e. ¢ € C°(R, R).

Ther?,

1

[E[MTr ¢ (ENENH)@ -/ (N dun(A) = O(53) (35)

Proof: We first note that, by Property 7 in Lemma 1, we can write

™ yl0

£ |30 ()| = Lt m { [ o QG )] a

as well as

™ ylO

[ o] = 2t [ ot [T )] o)

2By applying the functions to a Hermitian matrix, we implicitly represent the actiongobn the corresponding eigenvalues.
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Therefore, using Proposition 4, we can express the right hiledos (35) as
! i _ L1y -
E\7 T [0 (BnZy )]] = g, O(aX) = i Im{ o O +iy) dx} (36)

Since the functionyy(z) satisfies the inequality (34), the Appendix of [19] impliesitth

lim sup <C < +oc0

e /[R p(x)xn(z +iy)de

whereC' is a constant independent 8f. Hence, (36) readily implies (35). [ ]

In order to establish Theorem 3, we consider a functioa C2° (R, R) satisfying0 < ¢ <1 and

1 for A€ la,b
P(A) =
0 for NeR—Ja—e¢b+¢f
Condition (31) implies tha}fSN Y(A)dun(X) =0 if N is large enough. Therefore, (35) implies that
1 1
E [MTr [ (zNzﬁ)]] =0 <N2> :
We now establish that
1 1
Var [MTr [ (ENEJHV)}} =0 <N4> (37)
In order to prove (37), we use the Nash-Poincaré inequalidy, [21], [22], [14] which implies that

2
+

e ™ [ (2=)

Var %Tr [ (ENE%)}] < ?\?;E {avavij [J\l/./Tr [ (ENEJHV)]} 2]
J (38)

where W;; denotes thei(j)th entry of matrixW defined in (2). Now, applying e.g. [18, Lemma 4.6]

we can readily see that

0 1 1 ,
s |37 [0 (=) = 5 (26 0 (=), @)
0 1 1.,

e |37 (B = 5 1 (Bt 2 o)
wherey’ denotes the derivative af. Consequently, the sum on the right hand side of (38) can hewr
as

2 2
S| o [ s[5 [ v evm]| | =
7 |19Wy LM NN oW, | M NN
2 !/
= € e[ (=vsE)) =k ]
This yields
1 1 1 ,
Var [MTr [ (ENZ)%)]} <Ok {MTr I (zNzﬁ)szzﬁH (41)
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for some constant’ independent ofV. Next, consider the functioh()), defined asi(\) = A [//(\)]?,

which clearly belongs t€>°(R, R). Lemma 2 implies that

E Hfﬂ[[w’ (zNzﬁ)]QzNzﬁﬂ = /. h(A)duN(AHO(Alﬂ).

But it is clear from (31) thagfsN h(N)dun(X) =0 if N is large enough. Therefore, (41) gives (37).
We are now in position to complete the proof of Theorem 3 as 4. [Applying the classical Markov
inequality together with the above results, we can write (folarge enough)

2

P <1Tr (v (ENvZR)] >

< N8/3F
i )<

‘]\ZTr (v (ENER)]

N4/3

2

— N8/3 (’[E L\ZTr [ (ZNE%)]]

1 1
+ Var [Mﬂ [¥ (zNzﬁ)]D =0 <W> (42)
Then, by Borel-Cantelli lemma, falv large enough, we have with probability one,

1 1
I [ (EaEy)] < i

By the very definition ofy, the number of eigenvalues &ty = Sy in [a,b] is upper-bounded by
Tr [w(zsz{,)} and is therefore é)(Nfi) with probability one. Since this number has to be an integer,
we deduce that folV large enough, there is no eigenvalugdnb|. This completes the proof of Theorem
3.

B. Proof of Theorem 4

The approach we use to establish Theorem 4 differs from theadeth [14] which is inspired by
[13]. The first part our proof is similar to the proof of TheoremaBd thus we will omit certain details.

For the second part, we will need a certain result that we samizm in the following proposition:

Proposition 5. Consider the curve® defined by the complex valued functiany(z) in (17) on the
complex plane as moves fromt; to ¢, concatenated with the functian} () asx moves back from
t] tot;, namely

C={wn(@):ze [ty tf]} U{wy(z):z e [t7,tF]}. (43)

This is a closed curve that encloses the point}?mq‘f, wﬂ (see further Figure 5). Let(z) be a function

holomorphic in a neighborhood af. Then, the contour integraj,_ () dX is well defined by

Y(A)dA =21 Im [/ Y(wy (2))wy(z)dz| . (44)
c- [trt1]
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where w)y(z) denotes the derivative afy(z) and where the symbal~ means thatC is oriented
clockwise.
Finally, let £ € R a point that does not belong t[m)N(tl‘),ng)_] U [w§N)+,wN(tf)]. Then,

(N)—  (N)+

Inde(€) = 1/ dA {1 if EE]wl w! [

2w Jo £ — A 0 if &<wn(ty) or &>wn(t),

Proof: According to the discussion in Section IV-B,:f tl‘,ng)_ , thenwy () is real-valued,

and increases fromy (t; ) to wy (a;gN)*) = ng)*. Forxz ¢ }ng)*,ngH [ the pointwy () belongs

to C. Finally, if z € [ng)Jr, tﬂ , wy(x) is again real-valued, and increases from (ng” = wiMF

to wx(t]). The contourC is therefore well defined and encloses the point%wﬁ"\f)_,ng)Jr [

Let us now prove (44). Observe that the functior- wy (z) is not exactly a piecewise continuously
differentiable function ot ¢] becausduwl (z)| increases without bound when— "~ z{"™)*,
To see thatwy (z) can indeed be used as a valid parametrizatiofi, afe need to see that the integral in
(44) is well defined. It is thus necessary to study the behafiary, around the point{ng)*,ng”}.
The following lemma is an immediate consequence of the aisabfsthe behavior of the density of

measureuy near a point oSy provided in [17] (see Appendix D for a proof).

Lemma 3. There exists neighborhood{é(ng)_) and V (ng>+) of 2\~ and 2\ such that

‘wﬁv(aﬁ + iy)‘ < —C fory>0,z+iy € V(ng)_), andz # ng)— (45)
‘x — x(N)_‘
1
and
‘w?v(x + iy){ < —C fory>0,z+iy e V(a:&NH) and z # ng)'i‘ (46)
o]

In particular, Lemma 3 implies thzﬁt; ] [Y(wn(x))||wy(z)| dz < +o0 so that the right hand side of
(44) is well defined. The reader may check that it is possible#otiie usual results related to integrals over

piecewise continuously differentiable contours. In matar, aslm(wy(z)) > 0 if z € mgN)_,:cgNH [

the index of a point € R which does not belong t(%wN(tf),ng)f] U [ngH,wN(tf)} is equal to
lis¢e }ng)_,ngH[ and to0 if either £ < wx () or w > wy (t). [

Proposition 5 is basically pointing out that the functien;(x) defines a valid parametrization of a
contour that will not intersect with any eigenvalueBfyB4. Furthermore, Assumptions 1 and 2 imply
that

Inde(0) =1 (47)
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and
Inde(yrr—k+1) =0 (48)

for [ = 1,..., K. This means that the contour will only enclose the zero eigleley and none of the
positive eigenvalues dB xB%, which will be of crucial importance in the following dev@iment. Figure

5 gives a schematic representation of the form of the cordour

Re [wy (z)] N
; wy ()
(N)+
L 4w§N)_
1 [ (2)]
— et
w (t7) 0 wn (t7) wn(ty) 71(\2\[—)K+1
wy ()

Figure 5. Representation of the conta@lion the complex plane.

Having introduced the result in Proposition 5, we are now m psition of establishing the proof of

Theorem 4. Let) € C°(R, R) such that) < <1 and

1 VA€ [t t]]

P(A) =

0 VAER-[t] —etf +¢

with e chosen in such a way that + € < t, . Sincey € C°(R, R), we can use Lemma 2 to get
1 o 1
e [ o v = [ v+ (55)-

Assumptions 1 and 2 imply that

V() = g ([0 ]) = (i D)
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for N large enough. This leads to

1 1
E [MTr [ (ENE%)]} = pun([ty ])+O<N2>
As established in (37), we also have
1 1
Var [Mﬂ [¥ (zNzﬁ)ﬂ =0 <N4)
becauseupp(y')NSy = @ for N large enough. Therefore, using again the proof of theoremegj(iality

(42)), we get that

L v (5v3H)] - v ([17.8]) = O (N}w) s, (49)

Let us now find a closed form expression fog ([t ,¢]). Noting thatu is absolutely continuous with

density LIm(my(z)), we can write

pn ([t tF]) = lIm [ § mN(w)dx] .

By expressing the Stieltjés transformias, (z) = fN(w—Nm (see further (22))un ([t;.t]]) can

1—c2cn fn(wn

e ([t5.4]) = 21m [ [ tedel (@)dw]

be written as

T - 1—0 CNfN(wN
In order to expresguy ([t;,t]]) in terms of an integral over the contodr we can use the relation
why(z)¢y (wn(x)) = 1 for eachz € R — 0Sy (see further (19)). Now, using Proposition 5, we see that
_ 1 In(wn (@) ¢y (wn (2)) 1 In(N)gy(N)
t ) = =1 ! de| = — T8 dA
HN ([ 1 D o [/[t— ] 1—o2enfn(wn(x)) wi(@)de 211 Joo 1 —a2enfn(N)

1 f ) (1 —ena®fn(N)? = 2ena®*Afy(N) (1 —eno®fn (V) = eno? (1 —en) fy (V)
271'1 1- UQCNfN()‘)

dA

(50)
The integrand of the right hand side of (50) is a meromorphiction. The contour integral can be thus
evaluated using the residue theorem. The poles of the imtdgree the eigenvalues & yB1 as well as
the solutions of the equation— o2cy fx () = 0. This equation hag& + 1 real-valued solutions that we
have denoted(()N)+, and{zl(N)_}l: (see further Figures 1 to 3). Assumptions 1 and 2 imply that
only the poles{0} and {z(()NH} of the integrand are in fact enclosed 8y Using the residue theorem,
and after some straightforward calculations, we obtainoged form for the above integral, namely

M
_ M- K 1
o ([ 6]) = Mo Ko LS5
k=M-K+1
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with

M 2
(N)_N—K 70201\[ 1 O‘(l—CN)
“T WK (1 v 2 W)t o (51)
I=M—K+1 7] 0
2 2
(N)_( K> g J(l—CN)
ap  =1-— + (52)
N) @ T )
Therefore, we can write
M
_ N - K l—cy (M—-—K 1 1
—+ _ 2
i ([0 H7]) = =3+ gy ( M Lor > W (N)> (53)
0 k=M—K4+1 %0 Vi
N - K
= —*(l—en)fn (ng>+) (54)

but, using the fact that — o%cy fi(2{"'") = 0, we obtain thatuy ([t7,¢]) = =K. Inserting this
into (49), we get

Tr [ (EvEN)] - (M - K)=0 <Ni/3>

with probability 1. Moreover, thanks to theorem 3, no eigenvaluezmzﬁ appears int; — e t;] U
[t ] +¢] almost surely forV large enough. Therefore, almost surely #otarge enoughTr [ (EyE5)]
coincides with the number of eigenvalues®f X4 contained in the intervdlt;, t{ [. This number is
thus equal ta\/ — K. These eigenvalues are moreover ffle- K smallest ones: otherwise the smallest
eigenvalue of y XX would belong to[0, ¢, ], a contradiction by Theorem 3. Finally, Theorem 3 again

implies thatS\S\ZVZKH > t, . This completes the proof of Theorem 4.

VI. CONSISTENT ESTIMATION OF THE LOCALIZATION FUNCTION

We now present a consistent estimajar = bAIIyby of the subspace method localization function.
Here, by represents d/—dimensional deterministic vector, and we assume ghpj; ||by| < oo. The
new consistent estimator presented in this section candre &e an extension of the work in [7], which
implicitely assumes that the useful signals are Gaussiadiora i.i.d. sequences. In order to simplify the

notation, we drop the dependence dnfrom all the sample eigenvalues and sample eigenvectors.

Theorem 5. Under Assumptions 1 and 2, we have with probability one,

ANEW

N —nn —0
wherenR7" is defined by

M
e = &breref by (55)
k=1
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-----

2 M SV M
R PY RPN 1 1
I=M—-K+1 (Ae — A1) I=M—K+1 A=A A —w

. o2ey A+ MoK 1
Ep = — MN Ak Al2_02(1—cN)Z <A — A) (57)
o (A=) — \ A=A -

and Where{dzl}l:L._,’M represent the solutions (arranged in increasing order) s equation

alen

1+ 28T | (SyER - o) | =0, (58)

We remark that the consistent estimator is a linear comioimaif the terms(bﬁékébe)k:Lm’M.
In contrast to the traditional estimatgy,..q = Zﬁi ‘1K bﬁékékH by, it contains contributions of both the
noise subspace and the signal subspace. We also note thegginmptions 1 and 2 and Theorem 4 are
intuitively important because the various sums on the rhgrtd side of (56) and (57) remain bounded:
in (56) and (57), the term)sik — S\l‘ are greater than, — ¢, and it will be shown that a similar property

holds for the termsp\k — @l’.

Remark 4. It is worth pointing out that whenever the number of sampse®iced to be much larger
than the observation dimensiotV(>> M or equivalentlycy — 0), the proposed estimator converges
to the classical sample eigenvector estimate. This can bdilyeseen by taking the limit asy — 0 in
the coefficients of (56) and (57) and noticing tkdat— )\, whency — 0. Hence, ascy — 0 we have
& —1fork=1,....,M—K, and§, — 0fork=M—K+1,..., M, implying thatiie® —ijte¢ — 0.
This shows that the proposed estimator is in fact a genet#dizeof the classical sample eigenvector

estimate.

The remaining of this section is devoted to presenting therpaints of the proof of Theorem 5. The
starting point consists in remarking that Assumptions 1 2nchply that

1

= — ¢ b (ByBY —AI) "' byd
omi ~ (ByBy — Aly) NdA

N
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whereC~ is the closed path defined by (43). This leads to

1 -1
NN = o b% (BNB% — wN(x)IM) wak;(.T)dJZ-l-
-~
1 tf -1 *
~om by (BNB% —wy(x)Iy) by (wy(z)) do =
t

+

%Im </_1 bl (BNB% - wN(x)IM)il bNU}§V(.’E)dZL‘) . (59)

Let gn(z + iy) = b (ByBE —wy(z + iy)IM)_1 bywly (z +iy). The functiony — gn(z +1iy) Is
continuous orR ;. for eachz € R\0Sy thanks to Proposition 1. Lemma 3 and the dominated convergence

theorem imply that

1 o -
NN = lyl?g ;Im </ b (BNBﬁ —wy(z +iy)Iy) ! bywly (z + iy)dx) (60)
-
= lim 17{ N (z)dz — x /y (t] +ih)dh + = /y (t7 —ih)dh (61)
o | 27 3727 2 J_, INt 2m )y INLH

wheredR, is the boundary (clockwise oriented) of the rectanglg defined fory > 0 by
Ry:{u+ivzu€ [tf,tf],ve [—y,y]}. (62)

Notice that the last two integrands vanishya$ 0 (since the functionv — gy (t; +iv) is continuous on

[—v,y]), and thus

1
= lim — dz.
ny = lim o l{%_ gn(z)dz
Moreover, sinceyy(z) is holomorphic int[)\[xg ng> |, the value of the contour integral does not

depend ony > 0, and therefore the limit can be dropped, namely

1

NN = o gn(z)dz.
1 Ry

Using the equality(1 + o%cmy(2))(BNyBE — wn(2)Iy) ™ = Tn(z), which follows easily from the

definition in (14), we can write

gn(z) = bgTN(z)bN%.

Now, the key point of the proof is based on the observation §Rgz) can be estimated consistently

from the elements of matriR . We recall thatiy(z) is defined by

n(z) = 2T [Qu(2)] = 7 Z (63)

)\kfz
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and we defineiy (z) as the function obtained by replacing functioeny (z) with my(z) in the definition
of wy(2), i.e.

wN(Z) =z (1 + 02CNmN(Z))2 — (72(1 — CN) (1 + UchmN<Z)) (64)
We define the corresponding random asymptotic equivalepiygt) by

() = b QN ()b

Observe from the definition ofny and of Qu that the functiongy is meromorphic with poles at
M,... s and atés,... @y, the M real-valued solutions to the polynomial equation (of deghé)

1+ o?cnmn(x) = 0. In the following, it is important to locate thed;)i=1,.. -

Lemma 4. For N large enough, with probability one
5\1,...,5\]\/1_[(,(2)1,...,(2)]\/[_]( E]tl_,tii_[ (65)
AM K1 AM, @M _K41,- -, @) are greater thant; (66)

Theorem 1 implies that almost surelyy (z) — gn(z) — 0 on R, \{t,t] }. In order to be able to
use the dominated convergence theorem, we first state tlosviod inequalities proven in Appendix H:

there existsVy € N such that

sup sup |gn(2)| < o0 (67)
N>N, 2€9R,,

and
sup sup [gn(2)| < +oo (68)
N>Ny z€0R,

almost surely. The dominated convergence theorem thusdmftat

1
o %?)Ry gn(2) — gn(2)dz| — 0 a.s.
We now establish that the integral
A R NOLE
N 2w Jor:

is equal tonR™ defined by (55). This can be shown using residue Theorem.
Lemma 4 implies that fofV large enough

Fnew _ ME_:K [Indm; ()\k) Res (gN, Xk) + Indyp (@) Res (gN,ak)}

whereRes(gn, A) denotes the residue of functign; at point\.
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In order to evaluate these residues, we first remark that
M .

bilée,eb
bRQu(2)by = Y k=8

E—1 )\k —Z

gn (z) can thus be written as
M ~
= > bRerel by [an(z) + Byl2) + r(2)
k=1

where we have defined

N _ 1—|-O'26Nm]v(2)

g (2) 3 (69)
N — 2
A 202 cn 2y (2
Bulz) = 2= ) (70)
N — 2
~ 4 iy (2)
Y(2) = —o en(1 — en)— (71)
<>\k — Z) (1 + O'2CNmN(Z))
and consequently with probability one forf large enough
M M—-K . o .
e = =3 bleelby 3 [Res @ Am) + Res (ﬂk, )\m> + Res (% Am> + Res (35, o) | -
k=1 m=1
Classical residue calculus gives
0' o’cn 1 k 75 m
~ M
Res (ak/\m> - M (72)
<1-|—0‘CNM211)\ )\k> k=m
20’]\461\{ >\k . k
Res (Bk,j\m> = (n=An ) (73)
202 cN —
Zl 1 (): )\k) k=m
A o (1 —en) s k#m
ReS ('A)’k, )\m) - Ml_CN O'ZCN)\k ])\w 1 k; i (74)
1—
Res (3, Gm) = —07 —— (75)
)\k - Ut)m

Next, we definef;, as

— MZ_:K Res (dk, S\m) + Res (Bk, S\m) + Res (%a 5\m) + Res (4, Wm) -
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A olen M 1 202cN M 5\k 1—cpn
be=1-—; >oo— i > S+ M ; (76)
e K1 M T A i=M_K+1 ()\k — )\i) N
M-K MoK M )
+0%(1—cy - — ) (77)
i#k i#k i#k
and fork=M — K +1 M

oen MoK 202cn K e

M—
S > — (78)

(79)

To retrieve the final form of;, given in the statement of the theorem, we notice that
M

1 1
1—|—U2CN— =
W

=0
and use the following lemma proved in Appendix I

Lemma 5. The following identity holds for any =1...M

*Z Z —*Z

)\ - C(Jk -1 wl - )\k‘
z;ék Z7H<7

This establishes thaf)‘new = Tlhew @and completes the proof of Theorem 5.

VII. NUMERICAL RESULTS

In this section, we compare the results provided by theticadil subspace estimate, the new estimate
(55) (referred to in the figure as the "conditional estimgtoahd the improved estimate of [7] derived
under the assumption that the source signals are i.i.d.esegs (referred to as the "unconditional
estimator").

We consider a uniform linear array of antennas the eleménthich are located at half the wavelenght.
The steering vectoa(6) is thus given by

1 . . . T
a(@) = 7M [1’ ewrsm(@)’ o eZ(M—l)TK‘ sin(6) (80)

In the following numerical experiments, source signals @@lizations of mutually independent unit

variance AR(1) sequences with correlation coefficiedt In order to evaluate the performance of the
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various estimators, we use Monte Carlo simulations. Thetigddnoise varies from trials to trials, but,
for fixed M and N, matrix S remains unchanged. Finally, unless otherwise stated, tisteclassociated
to the eigenvalue 0 of matriAS is assumed to be separated from the clusters corresporalitsy rion
zero eigenvalues, i.e. for eaeft, M and NV, it holds that

N) (N) (N)

0 <™ <wi™M <4V (81)

We finally mention that the estimate of [7] is supposed to beonsistent in the context of the following
experiments because the source signals are not i.i.d. seegieHowever, we will see that the performance
of the conditional and the unconditional estimates areeqalibse, a property which will need further
work (see Remark 5).

Experiment 1. We first consider two closely spaced sources,the= 16° andf, = 18°. The number of
antennas is\/ = 20 and the number of snapshotsNs= 40. The separation condition (81) is verified if
the SNR is larger than 10 dB. In order to evaluate the perfoomani the estimates of the localization
function, for each improved estimator (conditional and amditional), we plot versu$ in figure 6 the
ratio of the MSE of the traditional estimator af¢)TIa(6) over the MSE of the improved estimator. The
SNR is equal td 6 dB. Figure 6 shows that the 2 improved estimates have nealgdme performance,
and that they outperform significantly the traditional agmio around the 2 angles. We however notice
that the 3 estimates have nearly the same performangasiffar away fromf; = 16° and f, = 18°.

In order to evaluate more precisely the improvements peavidy the conditional and the unconditional
estimators around;, and 65, we plot vs SNR in figure 7 the mean of the MSEs of the estimates of
a(6,)"TIa(0;) anda(h) " TIa(6s).

In figure 8, we plot for each method the mean of the MSE of the twimased angles versus the SNR.
The estimates of; andf, are defined as the arguments of the two deepest local mininiee @&<timated
localization function. The mean of the two Cramer-Rao bousdsso represented. The performance of
the 2 improved estimates are again quite similar, and theyige an improvement of dB w.r.t the

traditional estimator in the range 15dB-25dB.

We now plot the probability of outlier, i.e. the probabilitihat one of the two estimated angles is
separated from the true one by more than half of the separbBtween the two true sources. In figure
9, we compare the outlier probability of the three approaclesus the SNR of the three estimators. For

a target probability of error af.5, the 2 improved estimators provide a gainsodiB over the traditional
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10
L Ratio Traditional/Conditional
F — — — Ratio Traditionallt i
10" —|
. L 1
K] L
o
10° | —
107 | | | |
5 10 15 20 25 30

Angles (degree)

Figure 6. Ratio (in dB) of the MSE of the traditional estimateadf)’’ ITa(6) over the improved estimates vs angles.

10

E ~— Traditional estimator
E —&— Conditional estimator
—#— Unconditional estimator

10

10"

10

MSE

10

10°

10"

10

10
0
SNR

Figure 7. Mean of the MSE of the estimatesadf; ) TIa(6,) anda(0z)7TIa(0s).
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MSE

107%L| —F— Traditional Estimator |
—=8— Conditional estimator
—%— Unconditional estimator
CRB

10 15 20 25 30 35
SNR

Figure 8. Mean of the MSE of the angles estimates versus SNR

estimate.

—— Traditional Estimator
0.1f| —=— conditional estimator
—%— Unconditional estimator

0 I I
10 15 20

SNR

Figure 9. Outlier Probability vs the SNR
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We finally evaluate the influence @ff and N on the performanceV varies from20 to 200 while the
ratio ¢y is kept constant t@.5, and SNR = 15 dB. In figure 10 we have plotted the mean of the MSEs
on the estimates of(6;)IIa(6;) for i = 1, 2. The separation condition (81) occurs fr > 32. Figure

10 illustrates clearly the unconsistency of that the trad#l estimate.

Figure 10. MSE for the estimators of the localization function vs N

Experiment 2: We now assume that the number of sourééss of the same order of magnitude that

M andN,i.e. K =10, M =20, N = 40. The ten angle§;),—1 .10 are equal t@#; = —40°+ (i —1)10°

fori =1,...,10. The separation condition holds if SNR is greater than 15 dB.ag&n plot versug
in figure 11 the ratio of the MSE of the traditional estimator foé focalization function over the MSE
of its conditional and unconditional estimators. SNR is éqaal6 dB. Figure 11 shows again that the
performance improvement of the conditional and unconditicestimates is optimum around the angles
(0i)i=1,...,10-

Figure 12 represents the mean of the MSEs of the various estiobdgd; )’ TIa(6;) fori =1,...,10
w.r.t. the SNR, and confirms the superiority of the 2 improvetihveges when the separation condition

(81). We note that

Remark 5. All the previous plots clearly show that the conditional estior outperforms the traditional
one, while its difference with the unconditional one is igggle. This is a quite surprising fact. To explain
this, we recall that the unconditional estimator has beerivéel in [7] under the assumption that matrix
Sy is a Gaussian matrix with unit variance i.i.d. entries. Theamditional estimator of [7] is based on

the observation that iy is an i.i.d. Gaussian matrix, then the entries(®, — zI)~' have the same
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Ratio Traditional/Conditional
— — — Ratio TraditionallUnconditionall

o
Angles (degree)

Figure 11. Ratio (in dB) of the MSE of the traditional estimate of the localizatiorctfon over the MSE of its improved

estimates versué

Figure 12. Mean of the MSE of the estimatesagf; ) T1a(¢;) for i = 1,...,10 versus SNR

behaviour than the entries of matriRy ;;4(z) defined by the following equation

1
mn,iid(z) = MTY T iid(2)

TN,z‘z‘d(Z) = [(AAH -+ 021) (1 — CN — CszN,iid(Z)) — ZI] -1

One can verify that the entries @fy (z) defined by (14), which depend 8r;, have the same asymptotic
behaviour than the entries &F v ;;4(2) whenSy is a realization of an i.i.d. matrix. In this case, the

conditional and unconditional estimators have of course same behaviour. If howev&y is not an
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i.i.d. matrix, then the entries o(fRN — 2I)~! do not behave like the entries @fy iia(2) so that the
unconditional estimator should become unconsistent. Teeiquis simulation results tend to indicate that

it is not the case. The explanation of this phenomenon is & tigpifurther researchs.

VIIl. CONCLUSIONS

This paper has considered the use of subspace estimatiaitlaigoin situations where the number of
available samples and the observation dimension are caiigain magnitude. We have considered the
information plus noise signal model, according to which theeived signals are deterministic unknowns
whose empirical spatial correlation matrix is low-rank. Weve derived an estimator of the noise subspace
of the spatial correlation matrix that is consistent, ndiyamhen the number of samples tends to infinity
for a fixed observation dimension, but also when these two tgiganincrease to infinity at the same
rate. This guarantees that the estimator will present a geddnmance even when these two quantities
are comparable in magnitude. In order to establish the stamgiy of the estimator, we have proven new
results concerning the almost sure location of the eigemgabf the sample covariance matrix of an

Information plus Noise Gaussian model.

APPENDIXA

PROOF OFPROPERTY1 OF PROPOSITION1

In order to establish thdt does not belong to the suppdi;, we show that it exists > 0 for which

un ([0, z]) = 0 for eachx €]0, ¢[). In order to show this, we will make us of the functibfin, ) defined

as
1 ByBZ 17!
Observe that the equation = h(m,0) is equivalent to
—1
1 ByBY
= —Tr|o?(1 —ey)Ipy+ ——| .
m= [a (1 —cn)Iy + T a2cNm]

m,0)

Now, the conditioncy < 1 implies that the functionn — h(T is decreasing oIk, . Therefore, the

equationm = h(m,0) has a unique strictly positive solution denoted. Next, we will check that

Oh

- — > 0. (83)
om (m.,0)

Indeed, observe that

Oh 0'2CN 1

1+ o2cnm. 14+ o2enmy

2
ByBZ (2 ByBE )
7 = v 1—cy)Iyy+ ——————
om (m..0) 14+ o02cyme M o ( NI
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so that

Oh o?cy 1 9
b TN Ty |o2(1 - eI

-1
BNB% o2enmy

= <1
1+ o2enymy 14 o2cymy

as required. Hence, the implicit function theorem implibattthere exists an open disk centered at
zero with radiusy > 0, i.e. D(0,7n), and a unique functiomz(z), holomorphic onD(0,7), satisfying
m(0) = m, and such that

m(z) = h(m(z), z) (84)

for |z| < n. Evaluating the successive derivatives of function— h(m(z),z) at the origin, one can
check that for each > 0, m(’)(o) is real-valued. Sincen, > 0, there exists a positive quantity

0 < € < n such thatm(x) is real-valued andn(xz) > 0 if €] — ¢,¢[. On the other hand, it can be
readily checked that it: < 0, the equatiorm = h(m,x) has a unique strictly positive solution. Now, for
x < 0, my(x) is strictly positive, and satisfies this equation. Therefdrkolds thatmy(z) = m(z) for
—e < x < 0. Since the two functions:y andm are holomorphic orD(0, €)\ {[0, ¢[} and coincide on a
set of values with an accumulation point, they must coinadehe whole domain of analicity, namely

D(0,¢)\ {[0,€[}. We recall that for0 < = < ¢, un([0,z]) can be expressed as

1 . r .
por(0.0]) = tim [ TGy s i) ds

Therefore,
1 . v __ .
py((0,2]) = — Tim ; Im(m(s + iy))ds
As m is holomorphic onD(0, €), the dominated convergence theorem implies that
1 £ 1 [*
— lim Im(m(s + iy))ds = / Im(m(s))ds =0
0

T y—0,y>0 0 s

becausen(s) € R if s € [0,z]. This establishes thaty ([0, z]) = 0.

APPENDIX B

PROOF OFPROPOSITIONZ2

In order to prove Property 1, we establish that(wy(x)) > 0 if and only if Im(my(z)) > 0.
Assume thalm(my(z)) > 0, i.e. thatx € Int(Sy), which in particular implies that > 0, and consider
z = x + iy with y > 0. Equation (13) can be written in terms ofy(z) as

my(z)
1+ eno?my(z)

= fn(wn(2)). (85)
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Taking the imaginary part from both sides yields the idgntit
Im(my(2))
11+ o2enmy(2)]
or equivalently,

= Im(wN(z))%Tr (BaBY — wy(2)y)  (ByBY — wiy(2)Ty) "]

Im(my(2)) = Im(wy(z)) }1 + 02cNmN(z)}2 %Tr [(BNB% — wN(z))_l(BNB% — w?v(z))_l]

(86)
_ Im(wN(z))%Tr [T ()T (2)] 87)
It is shown in [17] (see Eqg. (2.6)) that
ST [Ty < <
which implies
Im(my(2)) < Im(wN(z))UQ;Mx’. (88)
If y — 0, we get that
0 < Tm(muy (z)) < Im(wN(x))Uzclm

which implies thatim(wy (x)) > 0. Conversely, assume thah(wy(z)) > 0. Then,my(z) cannot be
real-valued, otherwiseyy (z) = z(1 + o?cymn(x))? — 02(1 — en)(1 + o?cxymy(x)) would be also

real-valued.

Next, we prove Property 2. Sinae— my () is differentiable orR—0Sy,  — wy () is differentiable
on the same subset. By Property 4 of Propositiom(z) does not belong to the spectrum of matrix
ByBY if x € R\Sy. Therefore, the function — fy(wx(z)) is differentiable forz € R\Sy. Since
(85) holds onx € R\Sy, we can differentiate it with respect toon x € R\Sy. This gives

mly (z)
(14 ceyo?mpy(x))?

for € R\Sn. Now, observe thatn/y () > 0 on R\Sy becauseny(z) is the Stieltjés transform of a

wi () fy (wy () =

probability measure carried h§y. On the other hand, the functioff, is of course strictly positive on

R. This in turn shows that (z) > 0 on z € R\Sx.

To establish the last property, we use (13) at pairt R\Sy, and get that
1

T 1+ eno?my(z)

The conclusion follows from the inequality+ cyo?my(x) > 0 if © € R\Sy (see Proposition 1).

1- cNJ2fN(w(x))

(89)
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APPENDIXC

PROOF OF(28) IN PROPOSITION3

We considerw,, ws € {ng)_,ngH, ... ,wgv)_,wgv”}, and denote bys; and ¢, the quantities
én(wy1) and gy (ws) respectively. We defing,, = 1 — ocy fn(w,,) so that we can writé,, = w, h2 +
0%(1 — en)hy, n € {1,2}. Our objective is to show that the quantifyp, — ¢1) / (wo — wy) is always
positive. Note that, by definitiony; andws are inflexion points oty (w) such thath; > 0 andhy > 0.

Using direct substraction of the expressionspgfand ¢, we can write

— hs — w1h has —h
M:(hl—i-hz)w—i-UQ(l—cN) 2 1 — hyhs
W — W1 W — W1 w2 — w1
Consider now the following inequality
M (N) M N) M N)

2 Vi 1 1
S < Zﬁ 23 (90)
M= 08 —w) (" = w2) = o w2 Mim o" —w)?

which can be readily obtained by noting that

(N)) 1/2 (N /2 2
AR

M _w) (N —w)

Using the definition ofh; and ho we can readily write

M N

U)th —wlhl —1— 0'20N Z 7](6 )
_ o N N ’
ws — Wy M= 0 =) (Y = we)

and hence the inequality in (90) is giving us

olen

P2 — ¢1

Wy — Wy

> (h1 + hs) [1 - (fn(wr) + [ (wa) + w1 fy(wr) +w2fj\,(w2))} +

hg — hy

w2 — wq

— hihy + 0%(1 — cy) (91)

where f,(w) denotes the derivative ofy(w). Using again the definition of; andhy, we can rewrite

the last term of the previous expression as

ha — hq O'QCN [ / / 1 U (wg — w1>2
= - In(wi) + fy(w2) — — .
Wy — W1 2 M kz (’Y;(g ) _ wl)g(,Y]gN) — wy)2

By inserting this last equality into (91) and replacifig(w;) with o=2(1—hy), we obtain the expression

M

$2— 01 U4CN(1_CN)LZ (wa — wy)? +h%+h§+

wy — Wy 2 M (N) _ 20 (N) 2 2

k=1 ('Yk w1) ('Yk wo)

B oten(l — ey
2

) ) , B 12 hi + ha
[fN(w1)+fN(w2)] 9 (wlfjv(wl)—kaf]/V(wQ))'

(92)
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Now, bothw; andw, are preimages of local extrema of;, so that forn = 1,2, we have¢'y (w,) =

hZ — 202wy, for (wn)hn — 0*(1 — en) fi (wy,) = 0. Thus, we can write
4 —
T =N [ ) + fy ()]

h2 + h2
% = 02 [wihy fiy (w1) + waha fiy (w2)] + 5
and by inserting the last equality into (92), we obtain
- den(1—en) 1 & —wp)?
b=, otewll —ew) s ) %y — o) fy(an) — s ).

20 MZ o w2 - wa)?
(93)

wo —wy .

ha M%ﬁ’:n) and thus (93)

Using again the fact thaty (w,) = 0, we can writew, fy (w,) = 32 — ==

becomes

_ 4 _ M _ 2 AR
b2 — P1 > 7 en(l—en) 1 Z . (w2 w1]3 . (h1 — hao) N
w2 — W1 2 M 1 (,y](c ) o w1>2(,y’g ) o w2)2 4
- 0(46N> (fjv(wl) - lev(w2)) + 0(461\[)61\/ [hlffv(wg) + h—zf]'\,(wl) (94)
2 1
Clearly, we have
M M
1 (wy — w1)2 [ 2 1
2 it + shtw] = -7 3
M= () — w2 () — wa)? M =y ) (v — )
and thus by multiplying the previous equality withh, and addingh3 f (w1) + h3 fi (w2), we can also
write
M
h ha(wg — wq)?
B2 f1 (1) + h2 £l (ws) Z 1ha(we — wy) N
_ (N) N2
wy)? (719 wy)

k:

1 Y h h i
— hiho [fy(w1) + fiy(w2)] = ﬁz ( (N) - (N) : ) '
=1\ = —W1 Y T w2

The left hand side of the previous equality appears in (94) @snamon factor on the last two terms of

the right hand side of that equation. Hence, plugging it {{®4), we obtain

$2—¢1 _ ofen(l—cn) 1 f: (wg —w1)? n
wy — Wy 4 M (N) _ 20 N) _ 2
=1 (V& w1)* (v wy)
2
(k) oten(1 —cN)1§: ( he )
1 dhhy M2\ T

Finally, noting that all the terms of the above equation ame-negative, we have established (28)

DRAFT
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APPENDIXD

PROOF OFLEMMA 3

The proof of this Lemma is a direct consequence of [17, SectiomNdkt, we provide some details
on how to obtain (45); the same procedure can be applied ier dodobtain (46). As in [17], we define
in this section functiorby (z) by by (z) = 1 + o?cymy(z) for z € C, and denote by, the quantity
by(x7 ) (note that we drop the dependence@nin x;). Sincex; belongs todSy, bothmy(z; ) and
b, are real-valued. Proposition 1 thus implies that> by (z) is continuous at the point; . Similarly,
wn(z] ) = w; is real-valued so that the function— wy(z) is also continuous at; .

Since f)(w; ) > 0, there exists a neighborhoad(w; ) of w; on which fy is biholomorphic. For

z € C4 UR, it follows from (21) that we can write

Fylun(e) = —mvG)___ ] (1‘1>' (99)

14 o2eympy(z)  oZen bn(2)

Sincewy is continuous at; and sincewy(z) € C4 if z € C4 (see Property 5 of Proposition 1), there

exists a neighborhooW(z;) of z;” such that
wy (V(z7) NC4) C V(wy)NCy.

Therefore, applying the holomorphic inverse £§, denoted aqjgl, to both sides of (95) we get, for

wn(2) = fy! <0210N (1 - le(Z)>> '

Using the fact thatoy (z) = 263, (z) — 0?(1 — cn)bn(2) and solving with respect to, we get that

anyz € V(z;)NCy,

z=7Zn (by(2)) zeV(xy)NCy (96)

where Zy is the function defined in an appropriate neighborhood;oby

o2(1 —
Zn(b) = b%fg,l ((j;cN (1 — 2)) + (1bCN)

Next, we recall the following result from [17].

Lemma 6. There exists a neighborhood(b; ) of b; and a function¥ y, biholomorphic fromV(b; )

onto a neighborhood of the origiv’(0) such thatvb € V(b])
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Since the functiorby is continuous at the point;’, and sinceéby(z) € Cy if z € C (which follows
from the definition ofb ), there exist two smaller neighborhood§z; ) C V(z) andV’'(b;) C V(by)

of z; andb; respectively, such that
by(z) € V(b)) NCy VzeV (z7)NCy
Therefore, using (96), we can write
(Un (bn(2)))? =2 — 2y

Vz € V'(z7) N C4. Let us now chooseyz € V'(z7) N Cy,

Uy (by(2)) =4/2 — 2]

where /(-) represents any determination of the complex square rottighzolomorphié on C. and
such thaty/1 = 1 (the following reasoning applies verbatim to the squard oEtermination for which

V1= —1). We denote by, the holomorphic inverse function af v defined onV(0). We have

by(z) = Uy <\/z — $1_> VzeV(z7)NCy

Taking derivatives with respect to at both sides of the previous equality, we obtain
1 _ _
Wy(z) = ——— [\I/Nl]/ <\/z —x1> .
20z =z

Now, sincew ! is holomorphic or(0) by Lemma 6, the functiofi '] will be bounded on the same

neighborhood of) and thus we will have

()] <
‘\/z—xl

for some constant’ independent ot. Therefore, forz = = + iy € V'(x;) N C4, we can write
C

\/‘x—wl_—i—iy‘.

N

(97)

‘wﬁv(x + 1y)’ = ’bN(z)2 + 220 (2) — 02(1 — cN)b'N(z)| <

The inequality

C - C
1/‘x—xf—|—iy‘ B \/‘x—xﬂ
for x # x completes the proof of (45) foy > 0. (45) for y = 0 follows from the observation that

wiy(x) = limy o wiy(z + iy).

3This property must hold for all possible choiceslof; because, by definition x is holomorphic oV (b; ) andby (z) € C
if 2 € C1. Sinceby(z) is holomorphic onV’(z7) N C, ¥ (b (2)) must be holomorphic on the same set.
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APPENDIXE

ProoOF oFPrROPOSITION4

In this section, we drop as much as possible the subsgfifdr an easier reading. In the following,
Pi(|z]) andPg(m) represent generic positive coefficients polynomials of teables|z| andm
whose mean feature is to be independeni\ofThe values ofP; and P, can change from one line to

another.

We rely extensively on the results of the Appendix Il of [2&lated to the properties of matrix
(B+D!/?WD!/2)(B4+D'/2WD'/2)7 whereD andD are deterministic diagonal matrix. We thus use
[23] in the case wher® = ¢I,; andD = oI which corresponds to the context of the present paper.

In order to help the reader, we use the same notations as jrall28long this section. More precisely,

we define
5(2) = oem(z) (98)
5(2) = 6(2) — o= (99)
a(z) = [%Trq@} (100)

a(z) = a(z) —01 i

(101)

We remark thaty(z) is the Stieltjés transform of measutew wherew is the probability measure carried
by R, defined by

w(B) = E(i(B)) (102)
for each Borel sef3. We recall thati represents the empirical eigenvalue distributiorRof = ENE]HV.

Finally, it is easily seen that is the Stieltjes transform of measurey, + o (1 — ¢)dy (5 represents the

Dirac distribution at 0), and that(z), which can be expressed by

a(z) =E [a;[TrQ(z)} (103)
whereQ(z) is defined by
Qlz) = (B — 1) (104)

coincides with the Stieltjés transform of measutes + o(1 — ¢)dp.

Matrix T(z) defined by (14) can be written as

BBY 17!

T(2) = |—2(1 4 06(2))Iy + 11050
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andé(z) is equal to

0(z) = O'%TI‘T(Z) (105)
We also define matrid'(z) by
- BB 17!
T(z) = |—2(14+0d(2) Iy + ——— 106
(2) Z(1+00(2)) Iy 030 (106)
and remark, after simple calculations, that
6(z) = U%TI‘T(Z) (107)
We finally denote byR(z) andR(z) the matrices defined by
i BB# 7'
R(Z) = |:—Z(1 + UO((Z))I]M + 1—|—0'a(2’):| (108)
. BB 17!
R(z) = [—z(l +oa(z))Iy + 1+0d(z)} (109)

Using Property 6 of Lemma 1, it is easily checked that functions(1 + ¢6(z))) ", (—z(l + o—S(z))) 71,
(—2(1+0a(2)) 7", (—2(1 + o@(z))) " are Stieltjés transforms of probability measures carried by
Proposition 5.1 of [16] thus implies that matrix valued fians T (z), T(z), R(z), R(z) are holomorphic
in C — R4, coincide with the Stieltjes transforms of positive matredued measures carried By, the
mass of which are equal @ and their spectral norms are bounded‘ﬁg}w on C.. (see [16] for more
details).

We finally recall that matrice€)(z) and Q(z) satisfy ||Q|| < (Im(z))~! and || Q| < (Im(z))~" for

z € C4 (see e.g. [11], [18], [14], [16]).

In order to establish Proposition 4, we have first to study the te

F (leTrQ(z)> - %Tr R(2)

A. Study oft (1 Tr Q(z)) — + TrR(2)

Let 7(z) and A(z) defined by

Fe)=— [1 ey (W)} (110)
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and

A(z) == Aq(2) + Az(z) + Az(z) (111)
A1) = e QEEET FTHQE) - Q) (112)
02 g
Aole) = et (Q() ~EQ(:)) - Tr 5 Q(2)B] (113)
0'2 g g
85(2) = T et QEIE [T Q) ~EIQE) FTr="QEB] @14

As it will become apparent below, the entries of matxz) converge towards 0.
It is proved in [23] that for each € R*, the following equality holds true
BB# )

L+ A(2) = E[Q(2) (—z(l +OHE s+ s

(115)

As the lefthandside and the righthandside of (115) are #éinady C — R, Eq. (115) holds not only on
R, , but onC — R.. It is shown in [23] thati(z) — 7(z) converges towards O for eache C — R, when
N — +4o00. The general expression afz) — 7(z) given in [23] is complicated. However, the simplicity
of the model considered in this paper (matri@sandD in [23] are reduced toT) allows to derive the

following Lemma.

Lemma 7. For eachz € C — Ry, it holds that
dﬂd—%@»:—a%ﬂA@) (116)

Proof: Multiplying (115) from both sides by and taking the trace, we obtain

1 BPEQ(z))BY M 1 3
o NTT <1+0a(z)> =0—+0=TrA(z) +z(1+07(2)) a(z) (117)

N N
From the definition off(z) (equation (110)), we also have

1 (BHHQQHB

—Tr
7 14+ o0a(z)

N > =z27(z) 14+ oa(z))+o (118)

The two above equalities imply that

alz) —7(z) = - ;NTY A(z) (119)
Using (101), we get that
~ - o1
a(z) —7(z) = _;NTI A(z) (120)
and (116). [ ]

February 18, 2010 DRAFT



49

Writing the righthandside of (115) as

E(Q(2))R(2) ™" + zo(a(2) — 7(2))E(Q(2))

and using (116), we obtain immediately that

E(Q(2)) — R(2) = A(2)R(z) + 02% [Tr A(2)] E(Q(2))R(2) (121)
and that
F HT@@} _ %TrR(z) = 7T (FIQ) R(:) STrA) + %TrA(z)R(z) (122)

The above expression @f [+ Tr Q(z)] — +Tr R(z) allows to prove the following Proposition.
Proposition 6. Vz € C,, we have

‘[ [}VTrQ(z)} - LRG| < LPi(2)Pa(Im() ) (123)

Proof: We first prove the following preliminary result.

Lemma 8. Consider M x M matrices Uy and M x N matrices U, satisfyingsupy |[Un| <

oo, supy ||[Un]|| < co. Then, we have'z € C,

Var | T QU] < CIUIP PPt 5 ) (124)
1 / 1o 1
Var | LT BQUU | < O U PP Pa( ) (125)

where the polynomial®; and P, and constantC' are independent of/, N and U, U".

Proof: As the proofs of the two statements are similar, we just pritnee first statement of the

Lemma. We first remark that

ij
21Q
Eaévzgm = —Qiq (Qz)pj (127)
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The Nash-Poincaré inequality gives
2

0? 1 0QE g, |, |1 x=2Q0)
v [ Tr Q) ] N2 |t N% ow, Uw TRy % ow;, U (129)
< C% Z [[E ) [EHQ(z)UQ(z)]jZ. + [E‘ 2)UQ((2)X ]” 2] (129)
2y
< O Y E[(ETQEUQERe) U Q)T | + (130)
J
O Y E[(21Q(:) 107 Q) Q) UQE)E) (131)
J
< cNirE [Tr (Q)UQ()Q(:)"U"Q(:) 521 + (132)
Cﬁ[ [Tr (Q(2)"U"Q(2)"Q(2)UQ(2)ExH)] (133)
We use the resolvent identity
Q)T = 22Q(2) =1+ 2Q(2) (134)
Therefore,
Var HTrQ(z)U] < O%[E ITr (Q(2)UQ(2)Q(2)" UM (14 2°Q(2)"))| + (135)
CL[E ITr (Q(2)"U"Q(2)"Q(2)U (I+2Q(z)))| (136)
C||U|? ( 12 ! > 137
= YR (TG F TGP (137
1 1
S‘?”[IPIV2<”’*‘1’<|hn<z>4'+\InszS) 139
which establishes the first statement of Lemma 8.
|
We now complete the proof of Proposition 6. For this, we useingualities||Q(z)| < IIm(z)\ and

IR(2)| < for z € C — R. This leads to

e
b
[Im(2)[* | N

1

%Tr (E[Q(2)] R(2)) —Tr A(z )‘ C ST A )—l—%TrAg(z)—i—%TrAg(z) (139)

N

We establish that

STHA())] < 1 Pa((2)P(Tm(z) ) (140)

for i =1,2,3. In order to evaluatglvTr(Ai(z)) for i = 1,2, 3, we first remark that

1 _ !
[2(1+oa(2))|  [Im(z)]
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because—m is the Stieltjés transform of a probability measure. Themfare have

1 2|

1+ 0a(2)] = Jim(z)] (14D)

The resolvent identity (134) implies that
&HM&W2—1%%&FP;ﬁQ@KﬁHm@—Emm} (142)
= Trvar’ Ly (@R ~FQE) §((QE) -FQE)|  (149)

(141) and the first statement of Lemma 8 give immediately (140} £ 1. Similarly, %TI‘(AQ(Z)) can

be written as
2

1 1 1
NI = TS| (TR - BT ) (TRQe)E - B mEeB))
Using again (141), the Schwartz inequality, Lemma 8, and thetity (xy)1/2 < (%ﬂ) forxz >0,y >0,

we get (140) fori = 2. (140) fori = 3 is obtained similarly. This and (139) imply that
o o 1 1
T (E[QE)R(2)) 1 Tr A(2)| < <5 Pu(lD)P(Tm(2)| )
Using the same approach and the idenfiB(z)|| < (|Im(z)|)~!, we obtain easily that

< L Py(2)Py(Im(z) )

‘1Tr A(2)R(z) N

N

(122) thus implies Proposition 6.

Remark 6. It is also possible to establish that € C,, we have

’[E [;]ﬂ Q(z)] - %Trf{(z) < %Pl(|z|)P2(|Im(z)|_l) (144)

because it is shown in [23] that a relation similar to (115)ld¢i®for E(Q(z)). Following the derivation of
(121), we obtain an expression Ef[%Tr Q(z)} — L TrR(2) similar to (122) which allows to establish
(144).

B. Study off (£ TrQ(z)) — +TrT(2)
In order to complete the proof of Proposition 4, we show in tlasagraph that

(2

= la(z) = d(2)| < %Pl(\ZI)Pz(IIm(Z)I_l) (145)

[(&ﬁQ@);ﬂT@
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for eachz € C... For this, we denote by(z) andé(z) the terms defined by

((2) = a(z) o THR(E) = 0 (ExTHQE) - THRE)) (145)
a@=d@—o§ﬂdmm=a(q§n@@»—§ﬂﬁmm) (147)

Proposition 6 and Remark 6 imply that
2] < 105 P2 Pa(JIm() ) (148)
()] < 105 P2 Pa(lIm() ) (149)

for eachz € C... In order to studyy(z)—4(z), we express(z) asa(z) = o+ Tr(R(z))+e€(z). Therefore,
a(z)—6(z) = o5 Tr(R(2) — T(2)) +€(z). We have similarlya(z ) S(z) oL Tr(R(2) —T(2)) +&(2).
We remark thaR(z) — T(z) can be written aR(z) (T~!(2) ~1(2)) T(z), and thatR(z) — T(z) is
equalR(z) (’i‘*l(z) —R*l(z)) T(z). Using the expression dR(z)~!, T(z)~!,R(z)"! and T(z)!

we obtain that

( a(2) - 3(2 ) b ( a(2) - 3(2 ) N ( (2) ) (150)
a(z) - 3(2) a(z) - 3(2) é(2)
where
Do) — ( up() 2w (2) ) as1)
200(2)  1p(2)

with g, Ug, Vg, Vo defined by

1 o’R(z)BBYT(z)
W) =y A e T o0(2) (152)
_ 1 o’R(z)BYBT(z)
uo(2) =="Tr 153
o2) =x (1+ 0a(2))(1 + 0d(2)) (133)
vo(2) :%Tr(ﬂR(z)T(z) (154)
Bo(2) :%Trﬂf{(z)'f(z) (155)

Using the matrix inversion lemma and the observation thatioes R, T, BB” commute, the reader
can check easily thany(z) = tg(z2).

In order to establish (145), we remark that (150) is equiviate the linear system
(I Do(2)) A Y B (156)
a(z) —6(2) €(2)
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In the following, we show matriXI — Dy(z)) is invertible forz € C,, and that the entries of its inverse
can be bounded by terms such Bs(|z|)P2(|]Im(z)|~!). Proposition 4 will follow immediately from
(148) and (149).

We first evaluate a lower bound akt (I — Dy(z)) for z € C4. For this, we introduce matrib(z)

defined by
D(z) = ( uz) ) ) (157)
|2[Po(2)  a(z)
with u, u, v, v defined by
1, 0°T(z)BBYT(z)"
wz) =y TEBIE (158)
o1 o?T(z)BYBT(2)"
u(z) —NTr 1t os() (159)
o(2) :%TMQT(Z)T(,Z)H (160)
5(2) :%TMQT(Z)T(Z)H (161)

and define matrixD’(z) as the analogue dP(z) but in which T, T,d,4 are replaced byR, R, o, &
respectively. The entries d'(z) are denoted by, v, |z|>¢’, 4 . We note that the entries @(z) and
D'(z) are positive, and that, using the matrix inversion lemmads ieasily seen that = @ and that

’

v = 4. These matrices are useful because we have the followinggitam.

Proposition 7. There exists a strictly positive constapisuch that

1 |Im(2)]®
(16)% (n* + [2[*)*

for eachz € C, and for eachN. Moreover, there exist an intege¥, and 2 polynomial9); and Q-,

det (I - D(2)) > (162)

independent ofV, with positive coefficients, such that for eadh> N,
1 [Im(2)]®

det (T-D'(2)) = G307 1 [ (163)
for each element of the setf y defined by
Ey = {2 € Cy, 1 - 15 Qi(12)Q(Im(=)") > 0) (164)
Finally, for eachN > Ny,
det (T — Do(2))] > /Aot — D)) /et @ - D () > (165)

(32)2 V2(? + |2|2)
if z € Ey.
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Proof: We first establish (162). For this, we exprdas(d(z)) andIm(z4(z)) as

Im(6(z)) = %Tr (oTm(T(2))) (166)
Im(z0(z)) = %Tr UIm(z'i‘(z))) (167)

where for each matrity, we definelm(U) by Im(U) = Y5Y%. Writing Tm(T(z)) as4T(z)(T(2) " -

T(2)")T(2)" andIm(T(z)) asa2T(2)((zT(z)) 7 — (2T (2)) ") (2T (2))", we get immediately that

() ) g [ mOE) | e (168)
Im(26(z)) Im(25(2)) w(2)

wherew(z) andw(z) are defined by

w(z) = LTr (62T (2)T(2)H) 1(z) = LTr (%) (169)

This is equivalent to
(1 —u)Imd = vIm(26) + wlmz (170)
(1 — @) Im(20) = |2|> 9 Tmd + @ Imz (171)

As & and ¢ are proportional to the Stieltjés transform of probabilitgasures carried b, Im(8) >
O,Im(zS) > 0 for z € C, (see Property 4 of Lemma 1). Therefore, (170, 171) imply thatt = 1 —a is

strictly positive. After some algebra, we also obtain thet(I — D) = (1 —u)(1 — @) — |z|?v coincides

with
- N Imz
Therefore,
Imz
_ > Ny —
det(I-D) > (1—1u)w ™

As §(z) = oem(z), Property 5 of Lemma 1 implies thdin(5(z)) < 25 or equivalently that2z >

Im(z)
(Im(2))?/oc. Hence,

(1 — @)w(Im(z))?

det(I-D) > e
(170) implies that
| —um - w2 s W)’
Imo oc
We finally get that , \
det (I - D) > 2 ((I:Clg)) (173)
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In order to obtain a lower bound af = - TroTT#, we first remark that, Tr'TTH > | L TvT|* = [m)2

by the Jensen inequality. Therefore,> oc|m|? > oc[Im(m)|?. Im(m(z)) can be written as

Im(m(z)) = Im(z) /IR ﬁ;‘f (:@

We recall that it is shown in [16] that the sequerigey)nv>o is tight. This implies that it existg > 0

for which uy (]n, +o0[) < 1/2 for eachN € N, or equivalently for which

pn([0,n]) > 1/2 (174)

for each integerV. It is clear that

dun(N) T dun(N) 1 1
/[m > R s 0>

Therefore,w > % and Eq. (173) gives (162).

We now establish (163). For this, we express thata(z)) andIm(za(z)) as
Tm(a(z)) = %Tr (oTm(R(2))) + Tm(e(=)) (175)
Im(za(z)) = %Tr (JIm(zf{(z))> + Im(z€(2)) (176)

After some algebra, we obtain that

o) | _ ) (e | (w@ ) (e an
Im(za(z)) Im(za(z)) w (2) Im(z€(2))

wherew' (z) andd’(z) are defined as)(z) andd(z) by replacingT(z), T(z), d(2),6(z) by R(2), R(2), a(z), a(z)

respectively. This is equivalent to
(1 — o)) Ima = vIm(z@) + w Imz + Im(e(2)) (178)
(1 —a)Im(za) = 220 Ima 4+ @ Tmz 4 Im(2¢(2)) (179)

These equations are of course similar to (170, 171) exceptthigarighthandsides of (178, 179) are
corrupted by the two error termisn(e(z)) andIm(zé(z)). In order to prove (163), we follow the proof
of (162) but take into account the presence of the error teénn(s78, 179). Asa anda are proportional
to the Stieltjes transform of probability measures carrigdrly, Im(«) > 0,Im(za) > 0 for z € C,..
Therefore, (178) implies that

(1 — ') Ima > w Im(z) — |e(2)] (180)

In order to determine a subset 6f. on whichl —« = 1 — @ is strictly positive, we evaluate a

lower bound ofw'(z) = +Tr(cR(z)R(2)). For this, we follow what preceds. We express as
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w = oci;Tr(R(2)R(2)") and note thaty' > oc \ﬁTrR}Q. As R(z) is the Stieltjes transform of a
matrix valued measure whose mass is the matyix; TrR(z)) is the Stieltjés transform of a probability
measurely. It is shown in [23] thatL TtR(z) — my(z) — 0 for eachz € C — R,. Therefore, the

sequenceéy — pun)n>o converges weakly torwards @.> 0 being defined by (174), it thus exists an

integer N, for which

1
En([0,m]) > 1 (181)
for eachN > N;. Using the same calculations as above, we obtainthat % Hence, using
(180) and (148), we get
, oc(Im(z))3 1 1

(1 —u)Im(a) > G + 22 WP1(|2DP1((Im(z)) ) (182)

If we denote by, x the subset ol defined by

3

oA PP (Im(2) ) > 0 (183)

64(% + [2[%)2 N2
it is clear thatl —« =1 — 4 > 0 for eachN > N; and each: € E1,n. We note thatE; ; can be

written as
{z € Col — S (J2Sal(m(2) ™) > o} (184)

for some polynomials with positive coefficients.

Using some algebra as well as the identity= @', we get that
’ ot ’ ’ ImZ ’ . ’
det <I—D> = (vw —|—(1—u)w) m—i—vlm(ze)—i—(l—u)lm(e) (185)

Therefore, for eachiV > N; and eachr € £, y, we have

det (1-D) > (1 ') % — |z~ |e]
Moreover, asﬁ% < m using (180), we get
L w(Im(z))> el
1— —
(1=-u)> oc Im(a)

It is shown in [23] that{; Tr(E(Q(z))) — mn(z) — 0 for eachz € C — R... Therefore, the sequence
(wn — ) N>0 converges weakly torwards 0 where measuieis defined by (102)y > 0 being defined

by (174), it thus exists an intege¥, > N; for which

1
wn ([0,7]) > 7 (186)
for eachN > Ny. This allows to show thatm(a) > Sz’rfgf‘(jé) for N > Ny, and that
o w(Im(2)* 8(n* +z%)
1— —
( w)> oc oclm(z) le(2)]
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As |R(z)|| < (Im(2))7!, v" = £ Tro?RRH verifiesv” < o%c(Im(z))~2 while w' = TroRR¥ is less
thanoc(Im(z))~2. Putting all the pieces together, we obtain that

.+ Imz Tm(2)8 64(n2 + |2]2)2
" a7 (64)2(772(42&\2)4 - a?(lrI(L)’)‘i) (=)l (187)

(1—u

and

2c

, Im(2)® 64(n* + |2]*)? o _
o (1=0) > gy~ (et ) 1 el %

for N > Ny and forz € E; . (188) can also be written as

mZS ’ ’
e (1-0) > et (1 s sy )

for N > Ny and forz € E; y for some polynomials with positive coefficients independaiv S; and

S,. We denote by, v the set

By = {Z € Cy, (1 - 15281<rzr>8’2(<1m<z>>-1)) > ;}

We remark that

{re it gsiehsame) ) - 2si

DSy ((m(:) ) > 0f € By NEay
We consider polynomial§); and Q. defined byQ,; = S; + \/58; for i = 1,2 and define the sdiy by
1
= {2 € €t = aQuDQa((tn() ) > 0}

which is included intaE; v N Eg . It is clear that (163) holds.

In order to verify (165), we first remark that the following mealities hold:

|det (T — Dy (2))| = |(1 — uo)(1 — @) — z°voTo] (189)
> |1 — ug||1 — dio| — |2[?|vo||To) (190)
> (1= Juo|)(1 — @o|) — |2[*[vol|Tol (191)

/

' [Y2 = a2 2, Juo < [o]2 |2,

Using the Schwartz inequality, we get thag| = |ig| < |u|'/?

and || < |8]%/2|0'|/2. For N > Ny and forz € Ey, u =@ < 1 andu’ = @ < 1 hold. Therefore, we

obtain that

[det (I =Do(2)] = (1= [ul 2| [2) (L — [a|'[a|V?) — [2[o]2]o V2020 |2 (192)

February 18, 2010 DRAFT



58

As det(I — D(2)) = (1 —u)(1 — @) — |z|*vd anddet(T —D'(2)) = (1 —u)(1 — @) — |2|>'0 are

positive for N > Ny and forz € Ey, it is easy to check that the righthandside of (192) is greian

(det (I — D(z))det (I — D’(z)))l/2 for N > N, and forz € Ey. This shows (165). ]
In order to complete the proof of (145), we expregs) — §(z) as

0(2) = 8(2) = g gy (1~ H0(E)e(2) + zuo )

o?b?

IE and |up(z)| < el (recall that

If N > Ny, and if z € Ey, (165), (148, 149)v(z)| < e

Im(z

bmaz 1S defined by (7)) give immediately

|a(z) = 6(2)] < %Pl(IZI)Pz((Im(Z))_I) (193)

for some polynomial®;, i = 1,2 with positive coefficients. It € C, \ Ey, we follow the trick of [18]

and [14], and remark that
20c

Im(2)

la(z) = 6(2)] < la(z)| +[6(2)] <
If z€Cy\En, 2 < 2:Q1(|2))Qa((Im(2))"") so that

a(z) —6(2)] < oo

(2)
Therefore, forN > Ny, and for each: € C,

Q2D Qe((m(2) ™)

20¢

Im(2)

wherek is an integer( is a positive constant an@ is a positive coefficients polynomial. Proposition

4 follows directly from the identityx(z) — §(2) = oc (E(3;TrQ(2)) — 7 TrT(2)).

()01 < gz (PalsDPa(im() ) + o5 Qu(IDQa((Im(2) ) ) < ef+C)Qm(z) )

APPENDIXF

PROOF OF(16).

We first show that for each € C, ull(Qn(2)—Tn(z))vn converges towards O on a set of probability
1 which, in principle, depends on In order to obtain the almost sure convergence towards @doh
z € C— Ry, we use a standard argument based on Montel's theorem.

We first write

uy (Qn(2) — Tn(2)) vy = uy (Qu(2) — E(Qn(2))) v + uf (E(Qn(2)) — Tn(2)) vy (194)

We study the second term of the righthandside of (194) antkwri

uy (E(Qn(2)) = Tn(2)) viv = uy (E(Qn(2)) — Tn(2)) viv +uly (Ry(2)) — T (2)) viv
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where we recall that matriR x(z) is defined by (108). (145) implies thaty(z) — dn(z) andan(z) —
SN(z) converge toward$® (ay,dxn,dan,dy are defined by (100, 98, 101, 99) respectively) . Using the
identity Ry (2)—Tn(2) = Ry(z) (Ty'(2) — Ry'(2)) Tn(2) allows to expressll (Ry(z)) — Tn(2)) vy
as a linear combination afy(z) — dx(z) andéay(z) —on(2). As |[Ry(2))]| < [Im(z)|~L, | Ta(2))| <
[Im(z)|~!, the coefficients of this linear combination remain boundéemN — +oo. This shows that
ull (Rn(2)) — Tn(z)) v converges towards O.

In order to studyull (E(Qn(z)) — Rn(2)) vy, We use relation (121). Using the Nash-Poincaré in-
equality, it is easy to check thal{ Ry (2) A x(z)vy — 0. (140) implies moreover thag Tr Ay (2) — 0.
(121) thus shows thatf] (E(Qn(z)) — Rn(2)) vy — 0.

It remains to prove thaty(z) = ufl (Qn(2) — E(Qn(z))) viv converges towards O almost surely.

For this, it is sufficient to show that
C(2)
N2

whereC(z) does not depend oiV. We express |z (z)|* as

Eloy(2)* <

(195)

Elay (2)]* = [E@en (2))]" + Var (ex(2))?
We remark that|[E(xN(z)2)]2 < ([E|xN(z)\2)2. Moreover, E(zx(z)) = 0 implies thatE|zy(z2)? =
Var(zy(z)). Therefore,
Flon ()| < (Var(an (2))* + Var |(ex(2))’]

Using the Nash-Poincaré inequality, it is easy to show thatz y(z)) < % and thatVar (zn(2)?) <

C]\(fi) . This establishes (195) and tha{ (Qn(2) — Tn(z)) vy converges towards 0 on a set of probability

1 depending onx.

In order to prove the almost sure convergence for eaehC — R, we use the following standard
argument. We consider a countable sub8gtC C, having an accumulation point. On a s@t of
probability 1 ,ul (Qn(z) — Tn(z)) vy — 0 for eachz € Z.. We fix a realization of the se. We
denote byyy(z) the functionyy(z) = ufl (Qn(2) — Tn(2)) vn. Functionsz — ulQn(z)vy and
z — ull Ty (2)vy are Stieltjes transforms of bounded measures carriell joyTherefore, functionyy
is analytic onC — R, and for each compact subgé€tof C — R, it holds that

C
< - -
lun (2)] < dist(KC, R

for some constant’ (this is a trivial generalization of (9) to the Stieltjés tséorm of a non necessarily
positive bounded measure carriediby). Montel's theorem ([24]) thus implies that it exists a sedpsence

Yy(N) extracted fromyy which converges uniformly on each compact subset ofR ;. towards a certain
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function y,. which is analytic onC — R. However,y.(z) = 0 for eachz € Z., thus showing thay. is
identically 0 onC — R,.. The limit of each converging subsequence extracted fyanis thus identically
0. We thus obtain that the whole sequenge converges uniformly towards 0 on each compact subset

of C — R,.. Therefore, for each realization of the probability 1 Setwe have shown that
ui (Qn(2) = Tn(2) vy — 0

for eachz € C — Ry. This completes the proof of (16).

APPENDIX G

PROOF OFLEMMA 4

An elementary study of functiom — .y () shows thaty, € }X,(CN), )\,(ﬁ)l [ Vk=1,...,M —1 and
that@%}[) > 5\%}”. Therefore, by Theorem 4, we only need to prove th%;{_)K < t{ almost surely for

all sufficiently largeN.

Consider the contou? defined in Proposition 5. Noting th&tencloses{0} on the complex plane and
thatInd¢(0) = 1, we can write

1

1=—¢ X ldx (196)
27Tl c+
tf / * th o
- L wy@)) g, o L[ enle) (197)
2mi Jir \wn(7) 2mi Jir wn(z)

where the notatiorC™ means that the contout is counterclockwise oriented. Since functiohs—

wy(z + ih) and h — w\(z + ih) are continuous ab = 0 for all = €]t , ¢ [ (except for the points

T € {ng*,ng)*}), Lemma 3 together with the Dominated Convergence Theorenyithpt
1 tr / : * 1 t?— / :
| —fim | L / <wzv<x+1y>> de— L[ el tiy) g (198)
ylo | 27 Jim \wny(x +iy) 2mi Ji- wn(z +iy)
1 ! 1 [Y wh(t] —ih 1 (Y why(tf +ih
= lim [7{ wn(z) gy L[ e i) g / wdh] (199)
ylo |27 Jory wn(2) 21 J_y wy(ty —ih) 21 J_y wn(t] +ih)

wheredR, denotes the contour of the rectangle defined in (62) countekalise oriented. The function

w' (x+ih)
hi— w(xz+ih)

two last integrals vanish ag | 0, so that we can write

is a continuous function on the compact $ey, y] for x =t or t], and therefore the

!
1 =lim ! wN(z)dz.

yl0 27 ori WN(2)
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Since the function% is holomorphic om:\[ng)_,ngH], the last integral does not depend on the
value ofy > 0, and thus we can drop the limit, i.e.
/
=t wn(2) g, (200)

27 IRy wn (%)

This identity will be key in order to prove thaty,_x < ¢ almost surely for all sufficiently largev.

Before going further into the proof of this result, let us fieslamine the functionvy (z) defined by

(64) whenz € R. The following result follows from elementary analysis:

Figure 13. Typical representation dfy (x) as a function ofc for M = 3 (we drop the dependence wifti from all quantities

for clarity).

Lemma 9. The functiomvy defined onR by

wy(x) = (1 + chNmN($))2 — (1 —cp) (1 + UQCNmN(ﬁU))

satisfies (see further Figure 13)

lim wy(z) = 400, lim wy(z) =400 (201)
liIJJra wy(z) = +oo, lim wn(x) = —oo. (202)
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Moreover,wy(z) = 0 is a polynomial equation with degre®\/ + 1 with the following zeros:
« One zero in}o S\(N)[ denoted as:{".

« Two zeros in each mterv%l)\( ) )\,(H)l { denoted assu,(g ) Q,EN), k=1...M—1.
« Two zeros m} )\gw), +00 [ denoted a3u§w), zj(vj}/).

Furthermore, we have

A(N)

0 < 2N <« A < o) 5N SV
<A <o <z« S << A <ol < 2.

Now, the functionz — wxy(z), defined onC, is holomorphic everywhere except at poles (of orgler

L)

A .,5\5\1}). Moreover, functionz — zgg is holomorphic everywhere except at the zerosigf

and at the sample eigenvalug€'’, ..., A{}".

Figure 14 gives an schematic representation of the positbtise zeros and poles afy (x) in terms

)

will be inside9R,,, whereas the rest of the sample eigenvalues will be outStken the position of the

zerosdz,iN ) A(

of the contourdR,,. Observe that, for sufficiently highv, Theorem 4 ensures th%t/\

) established in Lemma 9, we see that the position of the sanyewalues determines
that the zeros{wk ,zk MEk=1..M-K- 1} will also be insidedR, for all N sufficiently high.
Furthermore, the remaining zeros will be outsitie,, except for the zeroSéN) w](\]ﬁK and z](\]jZK for
which we can not state anything. In what follows, we will shattthese three zeros are in fact located
inside OR, with probability one for all largelV, which will conclude the proof of Lemma 4. As a first
step, we introduce an intermediate result that establigiasnone of these zeros can converge to a the

boundary point obR, when N — +ooc.

Lemma 10. For all N large enoughz{") # ¢, 7). # ¢} and 207 . # ¢/

Proof: We will just establish thaﬁzg\]j_)K # 17 and 2](\1;)]{ # tf, since the proof thaf ) % t, is

quite similar. For this, we prove the following:

inf inf |wy(x)| >0 203
o int fun(a) (203)
lim  sup |wy(z)—wn(x)] =0a.s (204)
N=Fo0 peftf 15 ]

If (203, 204) hold true, it is clear that almost surely, its#=giN; € N for which

inf inf |wn(z)] >0 a.s. 205
Jnt,nf () (205)
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ORy
~ A~ A~ A 4 N Z N
oAV a0 el Al
i 5 SN
oo o0 *—+o >
~—— AN ~(N S(N) T NG
/ )\g ) )\g ) e )‘5\411( >‘5\/12K+1
5(NV)
Z
0 o5« B g

Figure 14. Schematic representation of the position of the zeros (cimfespoles (crosses) of the functiaiy (z) on the

region enclosed byR,.

a property which implies that Y .  # and2\) . ¢} for N > Ny,
In order to prove (203), we note that Assumptions 1 and 2 intpé/ existence ot > 0 such that
wy(z) >0if z € [t] — €15 + ¢ and N > Ny. Now, we writewy (z) as

o?(1

wy(z) = 2(1 + o0 (2))(1 + 0dn(2)) = 2(1 + o?eymn (2))(1 + o2eymy(z) — Z_CN)) (206)

where we recall thaiy anddy are defined by (98) and (99) respectively. It has been memtiomép-

pendix E that functiorr — — coincides with the Stieltjés transform of a

1 _ 1
z2(1+0dén(2)) — z(1+o2enmn(2))
probability measure carried i, . We denote byyy this measure. Asiy(z) > 0if z € [tf —€t, + e},

function z — is analytic onC; UC_UJt{ — e, t; +¢[ and is real-valued oft] —e¢,t; +¢|.

1
" 2(1+00n(2))
The support of measurgy is thus included intdR, —Jt{” — ¢, 5 + ¢[. Therefore, Property 9 of Lemma
1 implies that

’x(l +020NmN(a:))‘_1 < (207)

A | =

1 _ 1 —
m = T z(Ifo%enmn(2))—02(1—cn) coincides

with the Stieltjes transform of a probability measure carty R,.. Using the same approach as above,

for eachz € [t],¢;]. It can also be shown that— —

we obtain that

|lz(1+ oleymy(z)) — (1 — en) (208)

for eachz € [t],t;]. This, in turn, implies (203).
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In order to establish (204), we note that it is sufficient tabbsh that

lim sup |mpy(z)—mny(z)=0a.s (209)
V=00 aeft 3]

Theorem 4 implies the existence of> 0 for which, almost surely, functioa — 7y (z) is analytic on
C+UC_UJt] —e,t, +¢[ for N > N; whereN; > Ny is a certain integer. Eq. (9) implies that for each
compact subset’ of C; U C_UJt] — ¢, t, + €], there exists a constadt(k) for which almost surely
SUp sy, SUP,ex [y (2)] < C(K). For the same reasons, it holds thab . v, sup,cx [mn(2)] <
C(K). Montel's Theorem ([24]) thus implies that it exists a sulsstEer,, vy —my ) extracted from
("an — my)n=n, Which converges uniformly on each compact subseCofu C_UJt{ — €t + €]
torwards a function..(z), analytic onC; UC_U]t] — e, t; +¢[. Proposition 1 implies that almost surely,
mpy(z)—mpy(z) — 0 for eachz € C\R,. This implies thap.(z) is identically zero. As the limit of each
convergent subsequence extracted fram —my is 0, the whole sequendeny —my)n~n, CONverges
uniformly torwards 0 on each compact subse€afuC_UJt{ —¢, ¢, +¢[. This, of course, implies (209).
This completes the proof of Lemma 10.

[ |

Using the same arguments as above, it is easy to show thatekistsN, € N such thainfy n, inf.cor, [wn(2)| >

0 and such that, almost surelyf n~ v, inf.cor, [Wn(2)] > 0. Italso holds thatup -y, sup.cor, lwy(2)] <
+00 andsup v~ , SUP.cor, [y (2)] < +oco almost surely. Since almost surely the funct@%—m

wn (z)

converges td for eachz € OR,, the Dominated Convergence Theorem ensures that, with Ipifitpa

1 o L)~ 000 7

one,

N

Now, according to Lemma 1(2(()N) # t;djgflK # tf,zj(w )K # t{ with probability one for all large

N. Hence, it is possible to use the argument principle to ioncft;i;((—:)) on contourdR,,.. More precisely,
ERVENTNG
211 Jors wn(2)
and since the previous integral is an integer, using (20@),finally have with probability one folv

dz = card {z €: wn(z) =0} —2(M — K)

large enough
2(M — K)+1=card{z € R, : wn(2) =0}.

We already know thaﬁEN),. .. ,2](\14\[2](_1 and @§N),. .. @J(\JXK_I, which are zeros ofiy(z), belong to

R,. Since the total number of zeros23/ +1, 3 other zeros oty (z) belong toR,, with probability one
for N large enough. However, all the zeroswf;(z) are real-valued, which implies that tBeadditional

zeros necessarily includﬁ}fﬁK. This concludes the proof Lemma 4.
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APPENDIXH
PROOF OF(67) AND (68).

We first establish (67). For this, we recall tHBly(z) is the Stieltjes transform of a positive matrix
valued measur®'y with massI,y. Therefore, functionr — b%TN(z)bN coincides with the Stieltjes
transform of the positive measubd! Ty by . This measure is clearly absolutely continuous w.r.t. measu
Tr(Ty), or equivalently w.r.t. measurgy = ﬁTr(I‘N). The support ofbﬁI‘NbN is thus contained
into Sy. Therefore, it holds that

BTy (b < L
(see (9). We have already mentioned in Appendix E and in Agipea that function: — (—z(l + O'2CNmN(Z)))_1
is the Stieltjés transform of a probability measure carrigdrb. This function is moreover analytic in

C — Sy becausel + o%cympy(z) # 0 on C — Sy (see Property 6 of Proposition 1), a property which

implies that the support of its associated measure is iedudto Sy. Therefore, we have

- 1
—2(1 - -
-2 +otenm(z } dlst (z,Sn)
or equivalently
- 2|
1 JR SO
| +otenmn(z ‘ dlst (z,8N)
Assumptions (1) and (2) imply thahf y y, dist(OR,, Sy) > 0. We thus obtain that
bA Ty (2)b
sup sup | ENIC) v| < 400

N>N, z€0R, |1+ a2enmpy(2))]

Using again thainf v~ y, dist(OR,, Sy) > 0, it can be checked thatip y -y, v(2)] < +oo.

This in turn establishes (67).

In order to prove (68), we recall thaty (z) is the Stieltjés transform of the probability measpire =
ﬁ Z;:; (A — X,E:N)). Assumptions (1) and (2) imply it exist¥, € N such that the distance between
OR, and the support ofiy is lower bounded by a strictly positive term independent\Nof> Nj. It is
easily seen that — bl Qy(2)by is the Stleltjes transform of measuf;,azk 1 \bNek )\26 A— /\(N))
The support of this measure is included w{tbl e M }. Using (9) as above, we deduce from this
that

sup sup bAQy(2)by < 400
N>N, z€0R,

The same arguments can be used to showsthay;~ v, sup.cor, [y (2)] < +o0.
Finally, using Property 6 of Lemma 1, it is easily seen that fiamct — (—z(1 + o—2cm?w(z)))_1 is

the Stieltjes transform of a probability measure. Its supgancluded into the se{tS\(IN), e Xg@”,a%m, e ,@](\]4\7)}.
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Moreover, in the statement of Lemma#4, andt;{ can be replaced by, + ¢; andt] — ¢; wheree;

is chosen in such a way thaf + ¢; < infys ng)* < SUPNs N, x&NH < t{ — e1. Therefore, the
distance betweefR, and{j\gN) AS\]P, § ), e ,wyj)} is lower bounded by a strictly positive term
independent ofV > Ny. This implies that

‘—1

sup sup ‘14—(7 enmy(z < 40

N>Ny z€0R,
This completes the proof of (68).

APPENDIXI

PROOF OFLEMMA 5

We first write the equation i, 1 + o2ery(w) = 0 as

M
0'26]\7 1

= +1=0 210
M 1 )\j—w ( )
j_

and by multiplying the left hand side b]y[f‘il <;\j — w), we define a new polynomia)(w), by

j=11=1 =
I#]
As the monic polynomial functiod) has M roots atw, wyr, We can write
M
Qw)=]] @ -w)
=1
Therefore,
~ M ~ 0'2CN M ~ ~
) = (A—)\>: <)\—)\> 211
Q) =T (@ — M i 1= Ak (211)

=1 =1

ZH O —w) ZH()\wa)iU]\ZNZZ H <5\j—w> (212)
j= ll 1 j= 1515{ m:1ll;nllj;é:7r},l

Evaluating again this function at point,, we obtain

) M M . M . . 20261\/ M M
/ ~ ~ ~
Q(Ak):—X;II(wl—Ak):—ll_{()\l—)\k)— ST (v-A) @
I#] I#k I#k 5k,
or, dividing both sides by the first term on the right hand sifi¢he equation,

M M ~ 3
2= H@ (wl Ak) 4 X % 1
11 (5\1 - 5\1:) M=\ =\
I£k I£k
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Going back to equation (211), one can also write

Zj]\/il H{\il <@l - 5\1@) 2 23{1 Hljvil (@l - 5‘k> 2 M
) AT ) vy L (214)
Hg}g </\l — Ak) M 1Y (dfl - )\k> M= = A
Consequently, we see that we can write
1 20’2CN 1 . O'2CN 1 4 O'2CN f: 1
M= N =\ M o=, M =o— ),
I#k I£k
or, reorganizing the terms of this expression in a conveniety,
2 2 M 2 M 2 M
ocN 1 ocN 1 ocN 1 ocn 1
1+ < + — = — — —. (215)
M No-o, M ;Az—)\k M ;@—Ak M ;Az—)\k
I#k I# I#k
But from the equation inv (210), we obtain
O’QCN 1 J2CN M 1

1+ = + = =0
M No—a&, M ;Al—@k
Ik

and by inserting this expression into (215), we finally getekpression in the lemma.

REFERENCES

[1] R.O. Schmidt, “Multiple emitter localization and signal parameter estimdtiam Proceedings of the RADC, Spectral
Estimation Workshop,Rome (NY), 1979, pp. 243-258, Reprinted in "Modern Spectrallysis II", S.B. Kesler (ed.),
|IEEE Press, New York, 1986.

[2] E.K. Hung and R.M. Turner, “A fast beamforming algorithm forde arrays,” IEEE Transactions on Aerospace and
Electronic Systemsvol. 19, no. 4, pp. 598-607, Jul. 1983.

[3] K.Abed-Meraim, J.F. Cardoso, A.Y. Gorokhov, P. Loubatand E. Moulines, “On subspace methods for blind identification

of single-input multiple-output FIR systemdEEE Trans. on Signal Processingol. 45, pp. 42-55, Jan. 1997.

[4] H. Liu and G. Xu, “A subspace method for signature waveform ediiom in synchronous CDMA systems,JEEE
Transactions on Communicatigneol. 44, no. 10, pp. 1346-1354, Oct. 1996.

[5] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fittimgl ML techniques for parameter estimation from
sensor array dataJEEE Trans. on Signal Processingol. 40, no. 3, pp. 590-600, March 1992.

[6] D.W. Tufts, A.K. Kot, and R.J. VaccaroThe Threshold Effect in Signal Processing Algorithms Which Use an Hstima
Subspace, in SVD and Signal Processing, IlI: Algorithms, AnalysisAqmdications Elsevier, New York, 1991.

[7] X. Mestre and M.A. Lagunas, “Modified subspace algorithms foADestimation with large arraysEEE Transactions

on Signal Processingvol. 56, no. 2, pp. 598, 2008.

[8] X. Mestre, “On the asymptotic behavior of the sample estimates of edigs and eigenvectors of covariance matrices,”

IEEE Transactions on Signal Processingl. 56, no. 11, pp. 5353-5368, Nov. 2008.

[9] X. Mestre, “Improved estimation of eigenvalues and eigenvectbrsogariance matrices using their sample estimates,”

IEEE Transactions on Information Theoryol. 54, no. 11, pp. 5113-5129, 2008.

February 18, 2010 DRAFT



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

68

R.B. Dozier and J.W. Silverstein, “On the empirical distribution ofesigalues of large dimensional information-plus-
noise-type matrices,Journal of Multivariate Analysisvol. 98, no. 4, pp. 678-694, 2007.

J.W. Silverstein, “Strong convergence of the empirical distributibeigenvalues of large dimensional random matrices,”
Journal of Multivariate Analysisvol. 5, pp. 331-339, 1995.

Z.D. Bai and J.W. Silverstein, “No eigenvalues outside the supyfdhe limiting spectral distribution of large-dimensional
sample covariance matricesfnnals of Probability vol. 26, no. 1, pp. 316-345, 1998.

Z.D. Bai and J.W. Silverstein, “Exact separation of eigenvabfdarge dimensional sample covariance matricésyhals

of Probability, vol. 27, no. 3, pp. 1536-1555, 1999.

M. Capitaine, C. Donati-Martin, and D. Féral, “The largest eigareaf finite rank deformation of large Wigner matrices:
convergence and non-universality of the fluctuatiomsihals of Probability vol. 37, no. 1, pp. 1-47, 2009.

P. Vallet, P. Loubaton, and X. Mestre, “Improved subspace Befimation methods with large arrays: The deterministic
signals case,” irProceedings of the 2009 IEEE International Conference on Acous3igsech and Signal Processing
IEEE Signal Processing Society, 2009, pp. 2137-2140.

W. Hachem, P. Loubaton, and J. Najim, “Deterministic equivalentscertain functionals of large random matrices,”
Annals of Applied Probabilityvol. 17, no. 3, pp. 875-930, 2007.

R.B. Dozier and J.W. Silverstein, “Analysis of the limiting spectratritisition of large dimensional information-plus-noise
type matrices,”Journal of Multivariate Analysisvol. 98, no. 6, pp. 1099-1122, 2007.

U. Haagerup and S. Thorbjornsen, “A new application of randoatrices:Ext(C;..4(F2)) is not a group,” Annals of
Mathematicsvol. 162, no. 2, pp. 711, 2005.

M. Capitaine and C. Donati-Martin, “Strong asymptotic freeness @né& and Wishart matrices/ndiana Univ. Math.
Journal vol. 56, pp. 295-309, 2007.

W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastirnew approach for mutual information analysis of
large dimensional multi-antenna channel&§EE Transactions on Information Thegwol. 54, no. 9, pp. 3987-4004, Sep.
2008.

L.A. Pastur, “A simple approach to the global regime of Gaussimemmbles of random matricedJkranian Mathematical
Journal vol. 57, no. 6, pp. 936-966, June 2005.

S. Chatterjee and A. Bose, “A new method for bounding rates n¥egence of empirical spectral distributiondgurnal

of Theoretical Probabilityvol. 17, no. 4, pp. 1003-1019, 2004.

J. Dumont, W. Hachem, S. Lasaulce, P. Loubaton, and J. Nafdn,the Capacity Achieving Covariance Matrix for Rician
MIMO Channels: An Asymptotic ApproachJEEE Transactions on Information Thegrylarch 2010.

J.F. Conway,Functions of one complex variabl&pringer Verlag, 2rd edition, 1978.

February 18, 2010 DRAFT



