THE EMPIRICAL EIGENVALUE DISTRIBUTION OF A GRAM MATRIX: FROM INDEPENDENCE TO STATIONARITY

W. HACHEM, P. LOUBATON AND J. NAJIM

ABSTRACT. Consider a $N \times n$ matrix $Z^*_n = (Z^*_n)_{j_1,j_2}$ where the individual entries are a realization of a properly rescaled stationary Gaussian random field:

$$Z^*_n = \frac{1}{\sqrt{n}} \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2) U(j_1 - k_1,j_2 - k_2),$$

where $h \in \ell^1(\mathbb{Z}^2)$ is a deterministic complex summable sequence and $(U(j_1,j_2); (j_1,j_2) \in \mathbb{Z}^2)$ is a sequence of independent complex Gaussian random variables with mean zero and unit variance.

The purpose of this article is to study the limiting empirical distribution of the eigenvalues of Gram random matrices such as $Z_n Z^*_n$ and $(Z_n + A_n)(Z_n + A_n)^*$ where A_n is a deterministic matrix with appropriate assumptions in the case where $n \to \infty$ and $\frac{N}{n} \to c \in (0,\infty)$.

The proof relies on related results for matrices with independent but not identically distributed entries and substantially differs from related works in the literature (Boutet de Monvel et al. [3], Girko [7], etc.).

Key words and phrases: Random Matrix, Empirical Eigenvalue Distribution, Stieltjes Transform.

1. INTRODUCTION

The model. Let $Z_n = (Z^*_n)_{j_1,j_2}, 0 \leq j_1 < N, 0 \leq j_2 < n$ be a $N \times n$ random matrix with entries

$$Z^*_n = \frac{1}{\sqrt{n}} \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2) U(j_1 - k_1,j_2 - k_2),$$

where $(U(j_1,j_2), (j_1,j_2) \in \mathbb{Z}^2)$ is a sequence of independent complex Gaussian random variables (r.v.) such that $\mathbb{E} U(j_1,j_2) = 0, \mathbb{E} U(j_1,j_2)^2 = 0$ and $\mathbb{E} |U(j_1,j_2)|^2 = 1$, and $(h(k_1,k_2), (k_1,k_2) \in \mathbb{Z}^2)$ is a deterministic complex sequence satisfying

$$\sum_{(k_1,k_2) \in \mathbb{Z}^2} |h(k_1,k_2)| < \infty.$$

The bidimensional process Z^*_n is a stationary Gaussian field. Indeed, $\text{cov}(Z^*_n, Z^*_n) = n^{-1} C(j_1,j_2) - j_1 - j_2 - j_2'$ where

$$C(j_1,j_2) = \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2) h^*(k_1 - j_1,k_2 - j_2) \quad (1.1)$$
distribution functions: \(\text{mod} \) denotes modulo.

\[Z \] follows:

The motivations. The motivations for such a work are twofold. First of all, we believe that this line of proof is new. Let us briefly describe the three main elements of it.

Motivations. The motivations for such a work are twofold. First of all, we believe that this line of proof is new. Let us briefly describe the three main elements of it.

The first one is a periodization scheme popular in signal processing and described as follows:

\[\tilde{Z}_n = (\tilde{Z}_{j_1j_2}^n) \quad \text{where} \quad \tilde{Z}_{j_1j_2}^n = \frac{1}{\sqrt{n}} \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2)U((j_1 - k_1) \mod N, (j_2 - k_2) \mod n), \]

where \(\text{mod} \) denotes modulo.

The second element is an inequality due to Bai [1] involving the Lévy distance \(\mathcal{L} \) between distribution functions:

\[\mathcal{L}^4(F^{AA*}, F^{BB*}) \leq \frac{2}{N^2} \text{Tr}(A-B)(A-B)^* \text{Tr}(AA^* + BB^*), \]

where \(F^{AA*} \) denotes the empirical distribution function of the eigenvalues of the matrix \(AA^* \) and \(\text{Tr}(X) \) denotes the trace of matrix \(X \). With the help of this inequality, we shall prove that \(Z_n Z_n^* \) and \(\tilde{Z}_n \tilde{Z}_n^* \) have the same limiting spectral distribution.

The third element comes from the advantage of considering \(\tilde{Z}_n \). In fact, \(\tilde{Z}_n \) is congruent (via Fourier unitary transforms) to a random matrix with independent but not identically distributed entries. Therefore, we can (and will) rely on results established in [8] for Gram matrices with independent but not identically distributed entries.

The second motivation comes from the field of wireless communications. In a communication system employing antenna arrays at the transmitter and at the receiver sides, random matrices extracted from Gaussian fields are often good models for representing the radio communication channel. In this course, the stationary model as considered above is often a realistic channel model. The computations of popular receiver performance indexes such as Signal to Interference plus Noise Ratio or Shannon channel capacity heavily rely on the knowledge of the limiting spectral distribution of matrices of the type \(Z_n Z_n^* \) (see [5],[10] and also the tutorial [11] for further references).

About the literature. Various Gram matrices based on Gaussian fields have already been studied in the literature. The study of the general case \((Z_n + A_n)(Z_n + A_n)^* \) has been undertaken by Girko in [7]. Since no assumptions are done on the structure of \(A_n \), there might not be any limiting spectral distribution. Girko finds asymptotic approximations of the Stieltjes transform of \((Z_n + A_n)(Z_n + A_n)^* \). The method developed in [7] is based on an exhaustive study of each entry of the resolvent \(((Z_n + A_n)(Z_n + A_n)^* - zI)^{-1} \) added to the
property that sufficiently remote entries are asymptotically independent.

Boutet de Monvel et al. [3] have also studied Gram matrices based on stationary Gaussian fields in the case where the matrix has the form \(V_n + Z_n Z_n^* \), \(V_n \) being a deterministic Toeplitz matrix. Their line of proof is based on a direct study of the resolvent, taking advantage of the gaussianity of the entries.

Disclaimer. In this paper, we study in detail the case where the entries of matrix \(Z_n \) are complex. In the real case, the general framework of the proof works as well if one considers the real counterpart of the Fourier unitary transforms, however the computations are more involved. We provide some details in Section 5.

2. Assumptions and useful results

2.1. Notations, Assumptions, Stieltjes transforms and Stieltjes kernels. Let \(N = N(n) \) be a sequence of integers such that

\[
\lim_{n \to \infty} \frac{N(n)}{n} = c.
\]

We denote by \(i \) the complex number \(\sqrt{-1} \), by \(1_A(x) \) the indicator function over set \(A \) and by \(\delta_{x_0}(x) \) the Dirac measure at point \(x_0 \). A sum will be equivalently written as \(\sum_{k=1}^n \) or \(\sum_{k=1}^n \). We denote by \(\mathcal{CN}(0,1) \) the distribution of the Gaussian complex random variable \(U \) satisfying \(E[U] = 0, E[U^2] = 0, \) and \(E[|U|^2] = 1 \) (equivalently, \(U = A + iB \) where \(A \) and \(B \) are real independent Gaussian r.v.’s with mean 0 and standard deviation \(\frac{1}{\sqrt{2}} \) each).

Assumption A-1. The entries \((Z_{n, j_1, j_2} \cdot \ 0 \leq j_1 < N, 0 \leq j_2 < n, n \geq 1)\) of the \(N \times n \) matrix \(Z_n \) are random variables defined as:

\[
Z_{n, j_1, j_2} = \frac{1}{\sqrt{n}} \sum_{(k_1, k_2) \in \mathbb{Z}^2} h(k_1, k_2) U(j_1 - k_1, j_2 - k_2),
\]

where \((h(k_1, k_2), (k_1, k_2) \in \mathbb{Z}^2)\) is a deterministic complex sequence satisfying

\[
h_{\text{max}} := \sum_{(k_1, k_2) \in \mathbb{Z}^2} |h(k_1, k_2)| < \infty
\]

and \((U(j_1, j_2), (j_1, j_2) \in \mathbb{Z}^2)\) is a sequence of independent random variables with distribution \(\mathcal{CN}(0,1) \).

Remark 2.1. Assumption (A-1) is a bit more restrictive than the related assumption [3], which only relies on the summability of the covariance function of the stationary process.

For every matrix \(A \), we denote by \(F^{AA^*} \), the empirical distribution function of the eigenvalues of \(AA^* \). Since we will study at the same time the limiting spectrum of the matrices \(Z_n Z_n^* \) (resp. \((Z_n + A_n)(Z_n + A_n)^*)\) and \(Z_n^* Z_n \) (resp. \((Z_n + A_n)^*(Z_n + A_n))\), we can assume without loss of generality that \(c \leq 1 \). We also assume for simplicity that \(N \leq n \).

When dealing with vectors, the norm \(|| \cdot || \) will denote the Euclidean norm. In the case of matrices, the norm \(|| \cdot || \) will refer to the spectral norm. Denote by \(\mathbb{C}^+ \) the set \(\mathbb{C}^+ = \{ z \in \mathbb{C}, \text{Im}(z) > 0 \} \) and by \(C(X) \) the set of bounded continuous functions over a given topological space \(X \) endowed with the supremum norm \(|| \cdot ||_\infty \).
Let μ be a probability measure over \mathbb{R}. Its Stieltjes transform f is defined by:

$$f(z) = \int_{\mathbb{R}} \frac{\mu(d\lambda)}{\lambda - z}, \quad z \in \mathbb{C}^+.$$

We list below the main properties of the Stieltjes transforms that will be needed in the sequel.

Proposition 2.1. The following properties hold true:

1. Let f be the Stieltjes transform of μ, then
 - the function f is analytic over \mathbb{C}^+,
 - the function f satisfies: $|f(z)| \leq \frac{1}{\text{Im}(z)}$,
 - if $z \in \mathbb{C}^+$ then $f(z) \in \mathbb{C}^+$,
 - if $\mu(-\infty, 0) = 0$ then $z \in \mathbb{C}^+$ implies $zf(z) \in \mathbb{C}^+$.

2. Conversely, let f be a function analytic over \mathbb{C}^+ such that $f(z) \in \mathbb{C}^+$ if $z \in \mathbb{C}^+$ and $|f(z)||\text{Im}(z)|$ bounded on \mathbb{C}^+. If $\lim_{y \to +\infty} -iyf(iy) = 1$, then f is the Stieltjes transform of a probability measure μ and the following inversion formula holds:

$$\mu([a,b]) = \lim_{\eta \to 0^+} \frac{1}{\pi} \int_a^b \text{Im}f(\xi + i\eta) d\xi,$$

where a and b are continuity points of μ. If moreover $zf(z) \in \mathbb{C}^+$ if $z \in \mathbb{C}^+$ then, $\mu(\mathbb{R}^-) = 0$.

3. Let \mathbb{P}_n and \mathbb{P} be probability measures over \mathbb{R} and denote by f_n and f their Stieltjes transforms. Then

$$\left(\forall z \in \mathbb{C}^+, \ f_n(z) \xrightarrow{n \to \infty} f(z) \right) \Rightarrow \mathbb{P}_n \xrightarrow{\mathcal{D}} \mathbb{P}.$$

Denote by $\mathcal{M}_C(\mathcal{X})$ the set of complex measures over the topological set \mathcal{X}. In the sequel, we will call Stieltjes kernel every application

$$\pi : \mathbb{C}^+ \to \mathcal{M}_C(\mathcal{X})$$

either denoted $\pi(z, dx)$ or $\pi_z(dx)$ and satisfying:

1. $\forall z \in \mathbb{C}^+, \forall g \in C(\mathcal{X})$,

$$\left| \int g d\pi_z \right| \leq \|g\|_{\infty} \text{Im}(z)$$

2. $\forall g \in C(\mathcal{X})$, $\int g d\pi_z$ is analytic over \mathbb{C}^+,

3. $\forall z \in \mathbb{C}^+, \forall g \in C(\mathcal{X})$ and $g \geq 0$ then $\text{Im} \left(\int g d\pi_z \right) \geq 0$,

4. $\forall z \in \mathbb{C}^+, \forall g \in C(\mathcal{X})$ and $g \geq 0$ then $\text{Im} \left(z \int g d\pi_z \right) \geq 0$.

2.2. A quick review of the results for matrices with independent entries.

In order to establish the convergence of the empirical distribution of the eigenvalues, we will rely on the results based on matrices with independent but not identically distributed entries. Let us recall here those of interest (the assumptions and the statements are based on [8]).

Consider a $N \times n$ random matrix Y_n where the entries are given by

$$Y_{j_1 j_2}^n = \frac{\Phi(j_1/N, j_2/n)}{\sqrt{n}} X_{j_1 j_2}^n$$
where X_{j_1,j_2}^n and Φ are defined below.

Assumption A-2. The complex random variables $(X_{j_1,j_2}^n : 0 \leq j_1 < N, 0 \leq j_2 < n, n \geq 1)$ are independent and identically distributed (i.i.d.). They are centered with $\mathbb{E}|X_{j_1,j_2}^n|^2 = 1$ and there exists $\epsilon > 0$ such that $\mathbb{E}|X_{j_1,j_2}^n|^{4+\epsilon} < \infty$.

Assumption A-3. The function $\Phi : [0,1] \times [0,1] \rightarrow \mathbb{C}$ is such that $|\Phi|^2$ is continuous and therefore there exist a non-negative constant Φ_{\max} such that

$$\forall (t_1, t_2) \in [0,1]^2, \quad 0 \leq |\Phi(t_1, t_2)|^2 \leq \Phi_{\max}^2 < \infty. \quad (2.1)$$

Theorem 2.2 (independent entries, the centered case [6]). Assume that (A-2) and (A-3) hold. Then the empirical distribution of the eigenvalues of the matrix $Y_n \lambda_n^*$ converges a.s. to a non-random probability measure μ whose Stieltjes transform f is given by

$$f(z) = \int_0^1 g(u) \frac{|\Phi|^2(u, t)}{1 + c_\lambda t \int_0^1 |\Phi|^2(u, t) \pi_z(u, t) \, du} \, dt,$$

where π_z is the unique Stieltjes kernel with support included in $[0,1]$ and satisfying

$$\forall g \in C([0,1]), \quad \int_0^1 g(u) \, du = \int_0^1 \int_0^1 g(u) \frac{|\Phi|^2(u, t)}{1 + c_\lambda t \int_0^1 |\Phi|^2(u, t) \pi_z(u, t) \, du} \, dt. \quad (2.2)$$

If one adds a deterministic pseudo-diagonal matrix Λ_n to the matrix Y_n, the limiting equation is modified and in fact becomes a system of equations.

Assumption A-4. Let $\Lambda_n = (\Lambda_{ij}^n)$ be a complex deterministic $N \times n$ matrix whose non-diagonal entries are zero. We assume moreover that there exists a probability measure $H(du, d\lambda)$ over the set $[0,1] \times \mathbb{R}$ with compact support \mathcal{H} such that

$$\frac{1}{N} \sum_{i=1}^N \delta\left(\pi_{\frac{i}{N}} \left| \Lambda_{ij}^n \right|^2\right)(du, d\lambda) \xrightarrow{\mathcal{D}} H(du, d\lambda). \quad (2.3)$$

Denote by \mathcal{H}_c the support of the image of probability measure H under the application $(u, \lambda) \rightarrow (cu, \lambda)$ and by \mathcal{R} the support of the measure $1_{[c,1]}(du) \otimes \delta_0(d\lambda)$ where \otimes denotes the product of measure. The set $\mathcal{H} = \mathcal{H}_c \cup \mathcal{R}$ will be of importance in the sequel (see also Remarks 2.4 and 2.5 in [8] for more information).

Theorem 2.3 (independent entries, the non-centered case [8]). Assume that (A-2), (A-3) and (A-4) hold. Then the empirical distributions of the eigenvalues of matrices $(Y_n + \Lambda_n)(Y_n + \Lambda_n)^*$ and $(Y_n + \Lambda_n)^*(Y_n + \Lambda_n)$ converge a.s. to non-random probability measures μ and $\bar{\mu}$ whose Stieltjes transforms f and \bar{f} are given by

$$f(z) = \int_{\mathcal{H}} \pi_z(dx) \quad \text{and} \quad \bar{f}(z) = \int_{\bar{\mathcal{H}}} \bar{\pi}_z(dx),$$

where π_z and $\bar{\pi}_z$ are the unique Stieltjes kernels with supports included in \mathcal{H} and $\bar{\mathcal{H}}$ and satisfying

$$\int g \, d\pi_z = \int \frac{g(u, \lambda)}{-z(1 + \int |\Phi|^2(u, \lambda) \bar{\pi}_z(u, \lambda) + \int \pi_z(u, \lambda) \, du, d\lambda})} H(du, d\lambda). \quad (2.4)$$
\[\int g \, d\hat{\pi}_z = c \int -z(1 + c \int |\Phi|^2(t, cu)\pi(z, dt, d\zeta)) + \frac{\lambda}{1 + \int |\Phi|^2(t, u)\pi(z, dt, d\zeta)} \, H(du, d\lambda) \]
\[+ (1 - c) \int_1^1 -z(1 + c \int |\Phi|^2(t, u)\pi(z, dt, d\zeta)) \, du \]

where (2.4) and (2.5) hold for every \(g \in C(H) \)

3. The limiting distribution in the centered stationary case

We first introduce the following complex-valued function \(\Phi : [0, 1] \times [0, 1] \rightarrow \mathbb{C} \) defined by:
\[\Phi(t_1, t_2) = \sum_{(l_1, l_2) \in \mathbb{Z}^2} h(l_1, l_2) e^{2\pi i(l_1 t_1 - l_2 t_2)} \]
\[\Phi(t_1, t_2) = \sum_{(l_1, l_2) \in \mathbb{Z}^2} h(l_1, l_2) e^{2\pi i(l_1 t_1 - l_2 t_2)} \]
(3.1)

We also introduce the \(p \times p \) Fourier matrix \(F_p = (F_{j_1, j_2})_{0 \leq j_1, j_2 < p} \) defined by:
\[F_{j_1, j_2} = \frac{1}{\sqrt{p}} \exp 2\pi i \left(\frac{j_1 j_2}{p} \right) \]
(3.2)

Note that matrix \(F_p \) is a unitary matrix.

Theorem 3.1 (stationary entries, the centered case [3, 7]). Let \(Z_n \) be a \(N \times n \) matrix satisfying (A-1). Then the empirical distribution of the eigenvalues of the matrix \(Z_n^*Z_n \) converges in probability to the non-random probability measure \(\mu \) defined in Theorem 2.2.

3.1. **Proof of Theorem 3.1.** Recall that
\[Z_{j_1, j_2}^n = \frac{1}{\sqrt{n}} \sum_{(k_1, k_2) \in \mathbb{Z}^2} h(k_1, k_2) U(j_1 - k_1, j_2 - k_2). \]

We introduce the \(N \times n \) matrix \(\tilde{Z}_n \) whose entries are defined by
\[\tilde{Z}_{j_1, j_2}^n = \frac{1}{\sqrt{n}} \sum_{(k_1, k_2) \in \mathbb{Z}^2} h(k_1, k_2) U(j_1 - k_1 \mod N, j_2 - k_2 \mod n). \]

For simplicity, we shall write \(\tilde{U}^n(j_1, j_2) \) instead of \(U(j_1 \mod N, j_2 \mod n) \). Recall that \(\mathcal{L} \) stands for the Lévy distance between distribution functions. The main interest in dealing with matrix \(\tilde{Z}_n \) lies in the following two lemmas.

Lemma 3.2. Consider the \(N \times n \) matrix \(Y_n = F_N \tilde{Z}_n F_n^* \). Then the entries \(Y^n_{l_1, l_2} \) of \(Y_n \) can be written
\[Y^n_{l_1, l_2} = \frac{1}{\sqrt{n}} \Phi \left(\frac{l_1}{N}, \frac{l_2}{n} \right) X^n_{l_1, l_2} \]
where \(\Phi \) is defined in (3.1) and the complex random variables \(\{X^n_{l_1, l_2}, 0 \leq l_1 < N, 0 \leq l_2 < n\} \) are independent with distribution \(\mathcal{CN}(0, 1) \).
Proof of Lemma 3.2. We first compute the individual entries of matrix $Y_n = F_n \tilde{Z}_n F_n^*$:

$$
Y_{l_1l_2}^n = \sum_{j_1 = 0 : N - 1} e^{2\pi \left(\frac{i j_1}{N} \right)} \frac{(j_1 - j_2)}{\sqrt{N n}} \tilde{Z}_{l_1l_2}^n
$$

$$
= \frac{1}{\sqrt{n}} \sum_{j_1 = 0 : N - 1} e^{2\pi \left(\frac{i j_1}{N} \right)} \frac{(j_1 - j_2)}{\sqrt{N n}} \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1, k_2) \tilde{U}^n(j_1 - k_1, j_2 - k_2)
$$

$$
= \frac{1}{\sqrt{n}} \sum_{j_1 = 0 : N - 1} e^{2\pi \left(\frac{i j_1}{N} \right)} \frac{(j_1 - j_2)}{\sqrt{N n}} \sum_{m_1 = 0 : N - 1} U(m_1, m_2) \sum_{m_2 = 0 : n - 1} h(j_1 + k_1 N, j_2 + k_2 n)
$$

$$
= \frac{1}{\sqrt{n}} \Phi \left(\frac{l_1}{N}, \frac{l_2}{n} \right) \sum_{m_1 = 0 : N - 1} U(m_1, m_2) e^{2\pi \left(\frac{m_1 l_1}{N} \right)} \frac{1}{\sqrt{N n}}.
$$

Let $X_{l_1l_2}^n$ be the random variable defined as

$$
X_{l_1l_2}^n = \sum_{m_1 = 0 : N - 1} U(m_1, m_2) e^{2\pi \left(\frac{m_1 l_1}{N} \right)} \frac{1}{\sqrt{N n}}
$$

for $0 \leq l_1 \leq N - 1$ and $0 \leq l_2 \leq n - 1$. Denoting by X_n and U_n the $N \times n$ matrices with entries $X_{l_1l_2}^n$ and $U(l_1, l_2)$ respectively, we then have $X_n = F_n U_n F_n^*$. Define vec(A) to be the vector obtained by stacking the columns of matrix A. Then the $Nn \times 1$ vectors $X = \text{vec}(X_n)$ and $U = \text{vec}(U_n)$ are related by the equation $X = (F_n \otimes F_N) U$ (Lemma 4.3.1 in [9]), where \otimes denotes the Kronecker product of matrices. The vector X is a complex Gaussian random vector that satisfies $\mathbb{E} X = (F_n \otimes F_N) \mathbb{E} U = 0$ and $\mathbb{E} X X^T = (F_n \otimes F_N) \mathbb{E} U U^T (F_n \otimes F_N) = 0$. After noticing that the matrix $(F_n \otimes F_N)$ is unitary, we furthermore have $\mathbb{E} X X^* = (F_n \otimes F_N) \mathbb{E} U U^* (F_n \otimes F_N)^* = I_{pN}$ where I_p is the $p \times p$ identity matrix. In short, the entries of X_n are independent and have the distribution $\mathcal{CN}(0,1)$. Lemma 3.2 is proved. \hfill \Box

Lemma 3.3. Let B_n be a $N \times n$ deterministic matrix such that the sequence $\frac{1}{n} \text{Tr} B_n B_n^*$ is bounded. Then

$$
\mathcal{L} \left(F(Z_n + B_n)(Z_n + B_n)^*, F(\tilde{Z}_n + B_n)(\tilde{Z}_n + B_n)^* \right) \xrightarrow{P} 0,
$$

where P denotes convergence in probability.

Proof of Lemma 3.3. Bai’s inequality yields:

$$
\mathcal{L}^4 \left(F(Z_n + B_n)(Z_n + B_n)^*, F(\tilde{Z}_n + B_n)(\tilde{Z}_n + B_n)^* \right) \leq 2 \frac{2}{n^2} \text{Tr}(Z_n - \tilde{Z}_n)(Z_n - \tilde{Z}_n)^* \\
\times \text{Tr} \left((Z_n + B_n)(Z_n + B_n)^* + (\tilde{Z}_n + B_n)(\tilde{Z}_n + B_n)^* \right)
$$

where P denotes convergence in probability.
We introduce the following notations:

\[
\begin{align*}
\alpha_n &= \frac{1}{n} \text{Tr}(Z_n - \hat{Z}_n)(Z_n - \hat{Z}_n)^*, \\
\beta_n &= \frac{1}{n} \text{Tr}(Z_n + B_n)(Z_n + B_n)^*, \quad \tilde{\beta}_n = \frac{1}{n} \text{Tr}(\hat{Z}_n + B_n)(\hat{Z}_n + B_n)^*.
\end{align*}
\]

With these notations, Inequality (3.3) becomes:

\[
\mathcal{L}^4 \left(F(Z_n + B_n)(Z_n + B_n)^*, F(\hat{Z}_n + B_n)(\hat{Z}_n + B_n)^* \right) \leq 2\alpha_n(\beta_n + \tilde{\beta}_n).
\]

In order to prove that \(\mathcal{L}(F(Z_n + B_n)(Z_n + B_n)^*, F(\hat{Z}_n + B_n)(\hat{Z}_n + B_n)^*) \overset{P}{\to} 0\), it is sufficient to prove that \(\alpha_n(\beta_n + \tilde{\beta}_n) \overset{P}{\to} 0\), which follows from \(\alpha_n \overset{P}{\to} 0\) and \(\beta_n\) and \(\tilde{\beta}_n\) being tight. Indeed,

\[
\begin{align*}
\mathbb{P}\{\alpha_n(\beta_n + \tilde{\beta}_n) \geq \epsilon\} &\leq \mathbb{P}\{\alpha_n \beta_n \geq \epsilon/2\} + \mathbb{P}\{\alpha_n \tilde{\beta}_n \geq \epsilon/2\} \\
&\leq \mathbb{P}\left\{\alpha_n \geq \frac{\epsilon}{2K}\right\} + \mathbb{P}\{\beta_n \geq 2K\} + \mathbb{P}\left\{\alpha_n \geq \frac{\epsilon}{2K}\right\} + \mathbb{P}\{\tilde{\beta}_n \geq 2K\}.
\end{align*}
\]

Let us first prove that

\[
\alpha_n \overset{P}{\to} 0. \tag{3.4}
\]

Since \(\alpha_n\) is non-negative, it is sufficient by Markov’s inequality to prove that \(\mathbb{E}\alpha_n \to 0\).

\[
\begin{align*}
\alpha_n &= \frac{1}{n} \text{Tr}(Z_n - \hat{Z}_n)(Z_n - \hat{Z}_n)^* \\
&= \frac{1}{n^2} \sum_{j_1 = 0}^{N-1} \sum_{j_2 = 0}^{n-1} \left| Z_{j_1,j_2}^n - \hat{Z}_{j_1,j_2}^n \right|^2 \\
&= \frac{1}{n^2} \sum_{j_1 = 0}^{N-1} \sum_{j_2 = 0}^{n-1} \left| \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2)V(j_1 - k_1,j_2 - k_2) \right|^2,
\end{align*}
\]

where \(V(j_1,j_2)\) stands for \(U(j_1,j_2) - \hat{U}^n(j_1,j_2)\). Thus

\[
\mathbb{E}\alpha_n = \frac{1}{n^2} \sum_{j_1 = 0}^{N-1} \sum_{j_2 = 0}^{n-1} \sum_{(k_1,k_2) \in \mathbb{Z}^2} \sum_{(k_1',k_2') \in \mathbb{Z}^2} h(k_1,k_2)h^*(k_1',k_2')\mathbb{E}V(j_1 - k_1,j_2 - k_2)V^*(j_1 - k_1',j_2 - k_2').
\]

Introduce the set \(\mathcal{J} = \{0, \cdots, N-1\} \times \{0, \cdots, n-1\}\). Then

\[
\mathbb{E}V(l_1,l_2)V^*(l_1',l_2') = \mathbf{1}_{\mathbb{Z}^2 - \mathcal{J}}(l_1,l_2) \mathbf{1}_{\mathbb{Z}^2 - \mathcal{J}}(l_1',l_2') \\
\times \left(\mathbf{1}_{(l_1,l_2)}(l_1',l_2') + \sum_{(m_1,m_2) \in \mathbb{Z}^2} \mathbf{1}_{(l_1,l_2)}(l_1' + m_1 N, l_2' + m_2 n) \right)
\]

\[
\times \left(\mathbf{1}_{(l_1',l_2')} + \sum_{(m_1,m_2) \in \mathbb{Z}^2} \mathbf{1}_{(l_1',l_2')}(l_1 + m_1 N, l_2 + m_2 n) \right).
\]
and $\mathbb{E} \alpha_n$ becomes $\mathbb{E} \alpha_n = \mathbb{E} \alpha_{n,1} + \mathbb{E} \alpha_{n,2}$, where

$$\mathbb{E} \alpha_{n,1} = \frac{1}{n^2} \sum_{j_1 = 0}^{n-1} \sum_{j_2 = 0}^{N-1} |h(k_1, k_2)|^2 \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2),$$

$$\mathbb{E} \alpha_{n,2} = \frac{1}{n^2} \sum_{j_1 = 0}^{n-1} \sum_{j_2 = 0}^{N-1} \sum_{(k_1, k_2) \in \mathbb{Z}^2} h(k_1, k_2) h^*(k_1', k_2') \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2) \times \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1', j_2 - k_2') \sum_{(m_1, m_2) \in \mathbb{Z}^2} \mathbf{1}_{(k_1, k_2)}(k_1' + m_1 N, k_2' + m_2 n).$$

Let us first deal with $\mathbb{E} \alpha_{n,2}$.

$$\mathbb{E} \alpha_{n,2} \leq \frac{1}{n^2} \sum_{j_1 = 0}^{N-1} \sum_{j_2 = 0}^{N-1} \sum_{(k_1, k_2) \in \mathbb{Z}^2} |h(k_1, k_2)| \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2) \times \sum_{(k_1', k_2') \in \mathbb{Z}^2} |h(k_1', k_2')| \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1', j_2 - k_2') \times \sum_{(m_1, m_2) \in \mathbb{Z}^2} \mathbf{1}_{(k_1, k_2)}(k_1' + m_1 N, k_2' + m_2 n).$$

Since h is summable over \mathbb{Z}^2 by (A-1),

$$\sum_{(k_1', k_2') \in \mathbb{Z}^2} |h(k_1', k_2')| \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1', j_2 - k_2') \sum_{(m_1, m_2) \in \mathbb{Z}^2} \mathbf{1}_{(k_1, k_2)}(k_1' + m_1 N, k_2' + m_2 n)$$

is bounded by h_{max} and

$$\mathbb{E} \alpha_{n,2} \leq \frac{h_{\text{max}}}{n^2} \sum_{j_1 = 0}^{N-1} \sum_{j_2 = 0}^{N-1} \sum_{(k_1, k_2) \in \mathbb{Z}^2} |h(k_1, k_2)| \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2). \quad (3.5)$$

Since

$$\mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2) = 1 \iff \begin{cases} j_1 - k_1 < 0 \quad \text{or} \quad j_1 - k_1 \geq N, \\ j_2 - k_2 < 0 \quad \text{or} \quad j_2 - k_2 \geq n \end{cases}$$

we get:

$$\sum_{(k_1, k_2) \in \mathbb{Z}^2} |h(k_1, k_2)| \mathbf{1}_{\mathbb{Z}^2}^k(j_1 - k_1, j_2 - k_2)$$

$$= \sum_{k_1 = -\infty}^{j_1 - N} |h(k_1, k_2)| + \sum_{k_2 = j_2 + 1}^{\infty} |h(k_1, k_2)|$$

$$+ \sum_{k_1 = -\infty}^{j_1 + 1} |h(k_1, k_2)| + \sum_{k_2 = -\infty}^{j_2} |h(k_1, k_2)|.$$
By performing similar changes of variables, one gets:

$$\sum_{j_1 = 0 : N - 1} \sum_{j_2 = 0 : n - 1} |h(k_1, k_2)| \mathbf{1}_{\mathcal{Z}_2 - \mathcal{J}}(j_1 - k_1, j_2 - k_2)$$

$$= \sum_{j_1 = 0 : N - 1} \sum_{k_2 = 0 : n - 1} \sum_{k_1 = j_1 + 1 : \infty} |h(-k_1, -k_2)| + |h(-k_1, k_2)| + |h(k_1, -k_2)| + |h(k_1, k_2)|.$$

In order to check that

$$\frac{1}{n^2} \sum_{j_2 = 0 : n - 1} S(j_1, j_2) \rightarrow 0,$$ \hspace{1cm} (3.6)

we introduce $T(j) = \sum_{k_1 + k_2 \geq j + 2} |h(-k_1, -k_2)| + |h(-k_1, k_2)| + |h(k_1, -k_2)| + |h(k_1, k_2)|$. Is straightforward to check that $T(j) \rightarrow 0$ and that $S(j_1, j_2) \leq T(j_1 + j_2)$. We prove (3.6) by a Cesaro-like argument: Let $n_0 \leq N$ be such that $T(n_0 + 1) \leq \epsilon$. We have

$$\frac{1}{n^2} \sum_{j_2 = 0 : n - 1} S(j_1, j_2) = \frac{1}{n^2} \sum_{0 \leq j_1 + j_2 \leq n_0} S(j_1, j_2) + \frac{1}{n^2} \sum_{n_0 + 1 \leq j_1 + j_2; \ j_1 \leq N - 1, \ j_2 \leq n - 1} S(j_1, j_2).$$

If n is large enough, then the first part of the right handside of (3.7) is lower than ϵ. Moreover,

$$\frac{1}{n^2} \sum_{n_0 + 1 \leq j_1 + j_2; \ j_1 \leq N - 1, \ j_2 \leq n - 1} S(j_1, j_2) \leq \frac{1}{n^2} \sum_{n_0 + 1 \leq j_1 + j_2; \ j_1 \leq N - 1, \ j_2 \leq n - 1} T(n_0 + 1) \leq \epsilon$$

and (3.6) is proved. By plugging (3.6) into (3.5), we prove that $\mathbb{E}\alpha_{n,2} \rightarrow 0$. Using the same kind of arguments, one proves that $\mathbb{E}\alpha_{n,1} \rightarrow 0$. Finally, (3.4) is proved: $\alpha_n \overset{P}{\rightarrow} 0$.

Let us now check that

$$\exists K > 0, \hspace{0.5cm} \mathbb{E}\beta_n \leq K \hspace{1cm} \text{and} \hspace{1cm} \exists \tilde{K} > 0, \hspace{0.5cm} \mathbb{E}\tilde{\beta}_n \leq \tilde{K}. \hspace{1cm} (3.8)$$

This will imply the tightness of β_n and $\tilde{\beta}_n$.

Recall that by assumption there exists B_{max} such that $\sup_n \frac{1}{n} \text{Tr} B_n B_n^* \leq B_{\text{max}}$. Consider now:

$$\frac{1}{n} \text{Tr}(Z_n + B_n)(Z_n + B_n)^* \leq \left(\frac{1}{n} \text{Tr} Z_n Z_n^* \right)^{\frac{1}{2}} + \left(\frac{1}{n} \text{Tr} B_n B_n^* \right)^{\frac{1}{2}}$$

$$\leq \left(\frac{1}{n} \text{Tr} Z_n Z_n^* \right)^{\frac{1}{2}} + B_{\text{max}}^{\frac{1}{2}}$$

In particular,

$$\mathbb{E} \frac{\text{Tr}(Z_n + B_n)(Z_n + B_n)^*}{n} \leq \mathbb{E} \frac{\text{Tr} Z_n Z_n^*}{n} + 2B_{\text{max}}^{\frac{1}{2}} \mathbb{E} \left(\frac{\text{Tr} Z_n Z_n^*}{n} \right)^{\frac{1}{2}} + B_{\text{max}}$$

$$\overset{(a)}{\leq} \mathbb{E} \frac{\text{Tr} Z_n Z_n^*}{n} + 2B_{\text{max}}^{\frac{1}{2}} \left(\mathbb{E} \left(\frac{\text{Tr} Z_n Z_n^*}{n} \right) \right)^{\frac{1}{2}} + B_{\text{max}} \hspace{1cm} (3.9)$$
where (a) follows from Jensen’s inequality. Notice that (3.9) still holds if one replaces Z_n by \bar{Z}_n. Therefore in order to prove (3.8), it is sufficient to prove that:

$$\exists K' > 0, \quad \mathbb{E}\left(\frac{\text{Tr} Z_n Z_n^*}{n}\right) \leq K'$$

and

$$\exists \tilde{K}' > 0, \quad \mathbb{E}\left(\frac{\text{Tr} \bar{Z}_n \bar{Z}_n^*}{n}\right) \leq \tilde{K}'.$$

Consider

$$\mathbb{E}\left(\frac{\text{Tr} Z_n Z_n^*}{n}\right) = \frac{1}{n} \sum_{j_1 = 1 : N}^{j_2 = 1 : n} \mathbb{E}|Z_{j_1,j_2}|^2 = N\mathbb{E}|Z_{11}|^2 = \frac{N}{n} C(0,0),$$

where C is defined by (1.1). This quantity is asymptotically bounded. From lemma 3.2, we have

$$\mathbb{E}\left(\frac{\text{Tr} \bar{Z}_n \bar{Z}_n^*}{n}\right) = \mathbb{E}\left(\frac{\text{Tr} Y_n Y_n^*}{n}\right) = \frac{1}{n^2} \sum_{j_1 = 1 : N}^{j_2 = 1 : n} \Phi\left(\frac{j_1}{N}, \frac{j_2}{n}\right)^2 \mathbb{E}|X_{j_1,j_2}|^2 \leq \frac{N}{n} \Phi_{\text{max}}^2,$$

which is also asymptotically bounded. Eq. (3.8) is proved and so is Lemma 3.3.

Proof of Theorem 3.1. Lemma 3.3 implies that

$$\mathbb{P}\left\{ \mathcal{L}\left(F^{Z_n^* Z_n^*}, F^{Z_n^* Z_n^*}_p\right) \geq \epsilon \right\} \xrightarrow{n \to \infty} 0 \quad \text{for every } \epsilon > 0. \quad (3.10)$$

By lemma 3.2, $F_N \tilde{Z}_n \tilde{Z}_n^* F_N^* = Y_n Y_n^*$. Since F_N is unitary, $\tilde{Z}_n \tilde{Z}_n^*$ and $Y_n Y_n^*$ have the same eigenvalues. Moreover, matrix Y_n fulfills (A-2) and the variance profile Φ defined in (3.1) satisfies (A-3) since $(h(k_1, k_2) \in (k_1, k_2)Z^2)$ is summable; therefore one can apply Theorem 2.2. In particular,

$$F^{\tilde{Z}_n \tilde{Z}_n^*}_n \xrightarrow{n \to \infty} \mu \quad \text{a.s.} \quad \implies \forall \epsilon > 0, \quad \mathbb{P}\left\{ \mathcal{L}\left(F^{\tilde{Z}_n \tilde{Z}_n^*}, \mu\right) \geq \epsilon \right\} \xrightarrow{n \to \infty} 0 \quad (3.11)$$

where μ is the probability distribution defined in Theorem 2.2. Eq. (3.10) together with (3.11) imply that $F^{Z_n^* Z_n^*}_p \xrightarrow{p} \mu$ and Theorem 3.1 is proved.

4. The limiting distribution in the non-centered stationary case

Recall the definitions of function Φ and matrix F_p (respectively defined in (3.1) and (3.2)).

Theorem 4.1 (stationary entries, the non-centered case). Let Z_n be a $N \times n$ matrix satisfying (A-1); let A_n be a $N \times n$ matrix such that $A_n = F_N A_n F_n^*$ is $N \times n$ pseudo-diagonal and satisfies (A-4). Then the empirical distributions of the eigenvalues of matrices $(Z_n + A_n)(Z_n + A_n)^*$ and $(Z_n + A_n)^*(Z_n + A_n)$ converge in probability to the non-random probability measures μ and $\bar{\mu}$ defined in Theorem 2.3.

Proof of Theorem 4.1. We denote by $F^n = F(Z_n + A_n)(Z_n + A_n)^*$ and $\bar{F}^n = F(\bar{Z}_n + A_n)(\bar{Z}_n + A_n)^*$. Since A_n satisfies (A-4), $\frac{1}{n}\text{Tr} A_n A_n^* = \frac{1}{n}\text{Tr} A_n A_n^*$ is bounded and Lemma 3.3 implies that

$$\mathbb{P}\left\{ |\mathcal{L}(F^n, \bar{F}^n)| \geq \epsilon \right\} \xrightarrow{n \to \infty} 0 \quad \text{for every } \epsilon > 0. \quad (4.1)$$

By lemma 3.2 and the assumption over A_n,

$$(Z_n + A_n)(Z_n + A_n)^* = F_N(Y_n + A_n)(Y_n + A_n)^* F_N^*.$$
Since the Fourier matrix F_n is unitary, $(Z_n + A_n)(Z_n + A_n)^*$ and $(Y_n + \Lambda_n)(Y_n + \Lambda_n)^*$ have the same eigenvalues. Since Φ defined in (3.1) satisfies (A-3), the matrices Y_n and Λ_n fulfill assumptions (A-2), (A-3) and (A-4) therefore one can apply Theorem 2.3. In particular,

$$\hat{F}_n \xrightarrow{n \to \infty} \mu \quad \text{a.s.} \implies \forall \epsilon > 0, \quad \mathbb{P} \left\{ |\mathcal{L}(\hat{F}_n, \mu)| \geq \epsilon \right\} \xrightarrow{n \to \infty} 0 \quad (4.2)$$

where μ is the probability distribution defined in Theorem 2.3. Eq. (4.1) together with (4.2) imply that $F_n \xrightarrow{d} \mathbb{P}$ and Theorem 4.1 is proved. \hfill \Box

In the square case $n \times n$, we can deal with slightly more general matrices A_n.

Assumption A-5. The $n \times n$ matrix A_n is a Toeplitz matrix defined as $A_n = (a(j_1 - j_2))_{0 \leq j_1, j_2 < n}$ where $(a(j))_{j \in \mathbb{Z}}$ is a deterministic sequence of complex numbers satisfying:

$$\sum_{j \in \mathbb{Z}} |a(j)| < \infty.$$

Let $\psi : [0, 1] \to \mathbb{C}$ be the so called symbol of A_n defined as

$$\psi(t) = \sum_{j \in \mathbb{Z}} a(j)e^{2\pi j t}. \quad (4.3)$$

Due to (A-5), ψ is bounded and continuous.

Theorem 4.2 (stationary entries, the non-centered square case). Let Z_n be a $n \times n$ matrix satisfying (A-1); let A_n be a $n \times n$ matrix satisfying (A-5). Then the empirical distributions of the eigenvalues of matrices $(Z_n + A_n)(Z_n + A_n)^*$ and $(Z_n + A_n)^*(Z_n + A_n)$ converge in probability to non-random probability measures μ and $\tilde{\mu}$ whose Stieltjes transforms f and \tilde{f} are given by

$$f(z) = \int_{[0,1]} \pi_z(dx) \quad \text{and} \quad \tilde{f}(z) = \int_{[0,1]} \tilde{\pi}_z(dx)$$

where π_z and $\tilde{\pi}_z$ are the unique Stieltjes kernels with supports included in $[0, 1]$ and satisfying the system of equations:

$$\int g \, d\pi_z = \int_0^1 \frac{g(u)}{-z(1 + \int \Phi(u, \cdot)^2 \, d\pi_z) + \frac{|\psi(u)|^2}{1 + \int \Phi(u, \cdot)^2 \, d\pi_z}} \, du \quad (4.4)$$

$$\int g \, d\tilde{\pi}_z = \int_0^1 \frac{g(u)}{-z(1 + \int \Phi(\cdot, u)^2 \, d\pi_z) + \frac{|\tilde{\psi}(u)|^2}{1 + \int \Phi(\cdot, u)^2 \, d\pi_z}} \, du \quad (4.5)$$

for every function $g \in C([0,1])$.

Proof. The proof is based on the fact that a Toeplitz matrix A_n is very close to a Toeplitz circulant matrix \tilde{A}_n defined in such a way that the diagonal matrix $\Lambda_n = F_n \tilde{A}_n F_n^*$ satisfies assumption (A-4). Denoting by ψ_n the truncated function $\psi_n(t) = \sum_{j=-n}^n a(j)e^{2\pi j t}$, we choose \tilde{A}_n to be the matrix whose entries are defined by

$$\tilde{a}_{j_1, j_2} = \frac{1}{n} \sum_{k=0}^{n-1} \psi_n \left(\frac{k}{n} \right) \exp \left(\frac{-2\pi i (j_1 - j_2)}{n} \right).$$

Notice that in this case, $\Lambda_n = F_n \tilde{A}_n F_n^*$ is given by $\Lambda_n = \text{diag} \left([\psi_n(0), \psi_n(\frac{1}{n}), \ldots, \psi_n(\frac{n-1}{n})] \right)$ where $\text{diag}(v)$ is the diagonal matrix bearing the entries of the vector v on its diagonal.
One can also prove that the complex number \(\tilde{a}^n(j_1 - j_2) = \tilde{a}^n_{j_1j_2} \) satisfies \(\tilde{a}^n(0) = a(0) + a(n) + a(-n) \) and
\[
\tilde{a}^n(j) = \begin{cases}
 a(j) + a(j - n) & \text{if } n - 1 \geq j > 0, \\
 a(j) + a(j + n) & \text{if } -n - 1 \leq j < 0.
\end{cases}
\]

We denote by \(F^n \) and \(\tilde{F}^n \) the distribution functions \(F^n = F(Z_n + A_n)(Z_n + A_n)^* \) and \(\tilde{F}^n = F(Z_n + \tilde{A}_n)(Z_n + \tilde{A}_n)^* \). We shall prove that \(\mathcal{L}(F^n, \tilde{F}^n) \rightarrow 0 \) as \(n \rightarrow \infty \).

Bai’s inequality yields:
\[
\mathcal{L}^A(F^n, \tilde{F}^n) \leq \frac{2}{n^2} \text{Tr}(A_n - \tilde{A}_n)(A_n - \tilde{A}_n)^* \text{Tr}(A_n A_n^* + \tilde{A}_n \tilde{A}_n^*).
\] (4.6)

We first prove that \(n^{-1} \text{Tr}(A_n A_n^*) \) and \(n^{-1} \text{Tr}(\tilde{A}_n \tilde{A}_n^*) \) are bounded:
\[
\frac{1}{n} \text{Tr}A_n A_n^* = \frac{1}{n} \sum_{j_1, j_2 = 0}^{n-1} |a(j_1 - j_2)|^2 = \sum_{j = -n+1}^{n-1} |a(j)|^2 \left(1 - \frac{|j|}{n} \right) \leq \left(\sum_{j \in \mathbb{Z}} |a(j)| \right)^2.
\] (4.7)

Moreover,
\[
\frac{1}{n} \text{Tr}A_n A_n^* = \frac{1}{n} \text{Tr}A_n A_n^* = \frac{1}{n} \sum_{j = 0}^{n-1} |\psi_n\left(\frac{j}{n}\right)|^2 \leq \left(\sum_{j \in \mathbb{Z}} |a(j)| \right)^2.
\] (4.8)

We now prove that
\[
\frac{1}{n} \text{Tr}(A_n - \tilde{A}_n)(A_n - \tilde{A}_n)^* \xrightarrow{n \rightarrow \infty} 0.
\] (4.9)

Indeed,
\[
\frac{1}{n} \text{Tr}(A_n - \tilde{A}_n)(A_n - \tilde{A}_n)^* = \frac{1}{n} \sum_{j_1, j_2 = 0}^{n-1} |a(j_1 - j_2) - \tilde{a}^n(j_1 - j_2)|^2
\]
\[
= \sum_{j = -(n-1)}^{n-1} |a(j) - \tilde{a}^n(j)|^2 \left(1 - \frac{|j|}{n} \right)
\]
\[
= |a(-n) + a(n)|^2 + \sum_{j = 1}^{n-1} \left(|a(j - n)|^2 + |a(n - j)|^2 \right) \left(1 - \frac{j}{n} \right)
\]
\[
= |a(-n) + a(n)|^2 + \sum_{j = 1}^{n-1} \frac{j}{n} \left(|a(j)|^2 + |a(-j)|^2 \right)
\]
\[
\leq |a(-n) + a(n)|^2 + \frac{1}{n} \sum_{j = 1}^{n} \left(|a(j)|^2 + |a(-j)|^2 \right) + \sum_{j = n+1}^{\infty} \left(|a(j)|^2 + |a(-j)|^2 \right)
\]

By first taking \(J \) large enough then \(n \) large enough, the claim is proved by a 2\(\epsilon \)-argument. Eq. (4.6) together with the arguments provided by (4.7), (4.8) and (4.9) imply that
\[
\mathcal{L}(F^n, \tilde{F}^n) \xrightarrow{n \rightarrow \infty} 0.
\]

It remains to prove that \(\tilde{F}^n \) converges towards the non random probability distribution characterized by equations (4.4) and (4.5). As previously, the variance profile \(\Phi \) defined in (3.1) satisfies (A-3). Moreover, we have
\[
\frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{i}{n}|\psi_n\left(\frac{i}{n}\right)|^2\right) \xrightarrow{n \rightarrow \infty} H(du, d\lambda)
\]
where $H(du,d\lambda)$ is the image of the Lebesgue measure over $[0,1]$ under $u \mapsto (u,|\psi(u)|^2)$. Therefore A_α satisfies (A-4) and Theorem 4.1 can be applied. This completes the proof of Theorem 4.2.

\section{Remarks on the real case}

In the case where the entries of matrix Z_n are given by

$$Z^n_{j_1,j_2} = \frac{1}{\sqrt{n}} \sum_{(k_1,k_2) \in \mathbb{Z}^2} h(k_1,k_2)U(j_1-k_1,j_2-k_2),$$

where $(h(k_1,k_2), (k_1,k_2) \in \mathbb{Z}^2)$ is a deterministic real and summable sequence and where $U(j_1,j_2)$ are real independent gaussian r.v.'s, the conclusion of Lemma 3.2 is no longer valid. In fact the entries of $Y_n = F_n^* \tilde{Z}_n F_n^*$ are far from being independent since straightforward computation yields:

$$Y^n_{l_1,l_2} = Y^n_{N-l_1,n-l_2} \quad \text{for} \quad 0 < l_1 < N \text{ and } 0 < l_2 < n.$$

We introduce the $p \times p$ orthogonal matrix $Q_p = (Q_{j_1,j_2})_{0 \leq j_1,j_2 < p}$ defined by:

$$Q^n_{0,j_2} = \frac{1}{\sqrt{p}} \quad 0 \leq j_2 < p.$$

In the case where p is even, the entries $Q^n_{j_1,j_2}$ ($j_1 \geq 1$) are defined by

$$Q^n_{2j_1-1,j_2} = \sqrt{\frac{2}{p}} \sin \left(\frac{2\pi j_1 j_2}{p} \right) \quad \text{if} \quad 1 \leq j_1 \leq \frac{p}{2} - 1, \, 0 \leq j_2 < p,$$

$$Q^n_{2j_2,j_2} = \sqrt{\frac{2}{p}} \cos \left(\frac{2\pi j_1 j_2}{p} \right) \quad \text{if} \quad 1 \leq j_1 \leq \frac{p}{2} - 1, \, 0 \leq j_2 < p,$$

$$Q^n_{p-1,j_2} = \frac{(-1)^{j_2}}{\sqrt{p}} \quad \text{if} \quad 0 \leq j_2 < p.$$

In the case where p is odd, they are defined by

$$Q^n_{2j_1-1,j_2} = \sqrt{\frac{2}{p}} \cos \left(\frac{2\pi j_1 j_2}{p} \right) \quad \text{if} \quad 1 \leq j_1 \leq \frac{p-1}{2}, \, 0 \leq j_2 < p,$$

$$Q^n_{2j_1,j_2} = \sqrt{\frac{2}{p}} \sin \left(\frac{2\pi j_1 j_2}{p} \right) \quad \text{if} \quad 1 \leq j_1 \leq \frac{p-1}{2}, \, 0 \leq j_2 < p.$$

In the sequel, $\lfloor x \rfloor$ stands for the integer part of x. The following result is the counterpart of Lemma 3.2 in the real case.

\begin{lemma}
Consider the $N \times n$ matrix $W_n = Q_n^* \tilde{Z}_n Q_n^T$ where A^T is the transpose of matrix A. Then the entries $W^n_{l_1,l_2}$ of W_n can be written as

$$W^n_{l_1,l_2} = \frac{1}{\sqrt{n}} \left| \Phi \left(\frac{1}{N} \left[\frac{l_1+1}{2} \right] \right) \, \frac{1}{n} \left[\frac{l_2+1}{2} \right] \right| X^n_{l_1,l_2},$$

where Φ is defined in (3.1) and the real random variables $\{X^n_{l_1,l_2}, 0 \leq l_1 < N, 0 \leq l_2 < n\}$ are independent standard gaussian r.v.'s.
\end{lemma}

The proof is computationally more involved but similar in spirit to that of Lemma 3.2. It is thus omitted.

As a consequence of this lemma, Theorems 3.1 and 4.1 remain true with the following minor modification: In Eq. (2.2), (2.4) and (2.5), the quantity $|\Phi|^2$ must be replaced by Φ_R^2 where

$$\Phi_R(u,v) = |\Phi(u/2, v/2)|.$$
Similarly, in the case where the Toeplitz matrix A_n introduced in (A-5) is real, Theorem 4.2 remains true if one replaces in (4.4) and (4.5) the quantities $|\Phi|^2$ and $|\psi|^2$ by Φ_R^2 and ψ_R^2 where

$$\psi_R(u) = |\psi(u/2)|.$$

The proof of Theorem 4.2 can be modified by replacing the Fourier matrices F_p by Q_p (see also [4], chap. 4 for elements about the pseudo-diagonalization of a real Toeplitz matrix via real orthogonal matrices Q_p).

References

Walid Hachem,
Supélec (Ecole Supérieure d’Electricité)
Plateau de Moulon, 3 rue Joliot-Curie
91192 Gif Sur Yvette Cedex, France.
e-mail: walid.hachem@supelec.fr

Philippe Loubaton,
IGM LabInfo, UMR 8049, Institut Gaspard Monge,
Université de Marne La Vallée, France.
5, Bd Descartes, Champs sur Marne,
77454 Marne La Vallée Cedex 2, France.
e-mail: loubaton@univ-mlv.fr

Jamal Najim,
CNRS, Télécom Paris
46, rue Barrault, 75013 Paris, France.
e-mail: najim@tsi.enst.fr