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ABSTRACT the various equations used to predict the behaviour of uncorrelated

random matrices are not valid. Therefore, the approach developed in
ﬁ%do not provide a consistent estimator. The purpose of this paper
0 propose consistent subspace estimators when the source signals

This paper is devoted to the subspace DoA estimation using a lar
antennas array when the number of available snapshots is of the sa

orde_r' of magnitude than the ”“".‘bef of sensors. In t.h.'s context, & modelled as non observable deterministic sequences. In practice,
tradlyonal subspace methqu fail becaL_Jse the empirical covanangfis context is relevant whatever the properties of the source signals

matr!x of the observations is a poor estimate of the true covanancgecause realizations of any kind of stochastic processes can be seen
matrix. Mestre et al. proposed recently to study the behaviour ofg jeterministic sequences. The present approach is again based on

the tk;adltl?nal estlhmators when the numberhof anten’WaandUth_e LRMT results, but in contrast with [4], the observation is modelled
number of snapshotd’ converge tot+oo at the same rate. Using .o noisy non zero mean random matrix, a model recently intro-

large random_matrix_ theory res_ults, they showed that the tra_ldition_ uced in [2] and referred to as the "Information plus Noise model”.
subspace estimate is not consistent in the above_asympto_tlc regime rpig paper is structured as follows. In section 2, we present the
and they proposed a new consistent subspace estimate which OUtIOgrg'nal model and the addressed problem. In section 3, we provide

forms the standard subspace method for realistic valudd aind . some background material on the asymptotic eigenvalue distribu-
'Sion of the empirical covariance matrix. In section 4, we evaluate the

;‘_ﬁls are llncfi(iﬁendent atnd |dent_|cetllly distributed in the t_ln:e ?omtr_:u symptotic behaviour of the standard subspace estimate, and propose
€ goal of In€ present paper IS 1o propose new consistent esliMg-p ., - nsjstent estimate. In section 5, numerical results illustrate

tors of the DoAs in _th_e case where the source _signals are modellqﬂe performance of our new approach.

as unknown deterministic signals. This, in practice, allows to use the

proposed approach whatever the statistical properties of the source

signals are. 2. THE ADDRESSED PROBLEM
Index Terms— DoA, Large Random Matrix Theory, MUSIC We assume thak narrow band deterministic source signals

(sk)k=1,...,x are received by an antenna arrayldfelements K’ <

1. INTRODUCTION M. We assume for simplicity that the array is linear with equispaced

antennas. The corresponding dimensional observation signg,
Subspace DoA estimation methods using antenna arrays (sught discrete timer) is supposed to be given by

as MUSIC) have been extensively studied in the past because they

offer good complexity versus performance trade-off. Their statistica Vn = As, +Vvp (1)
performance have been mainly characterized in the case where the
number of snapshot¥ converge to+oo while the number of an-  whereA = (a(61), . ..,a(fx)) is the matrix that contains the steer-

tennas)M remains fixed. In practice, the corresponding conclusionsng vectors of theK sources and where,, is an additive white
are valid in finite sample size iV is much greater than/. How-  noise with covariance matri (v, vY) = o’I. s, is defined

ever, this assumption is often not realistic if the number of antennalsy s,, = (s1.,,,...,5x.,)". We assume that,, is available from
is "large” because in practice, the number of available snapshots is = 1ton = N, and thatM < N, or equivalently that: = %

Iimi_ted. In Qrde_r to study the statistical performance of the su_bspac'g strictly less thanl. We note that it is possible to generalize our
estimates in this context, Mestre et al [4] proposed to consider theesults in case where > 1; the presentation of the corresponding
asymptotic regime in whicli/ and N converge tot-oo at the same  results would however complicate the present paper. We denote by

rate,i.eM, N — +oo,c = % converges towards a strictly positive Y = (y1,...,y~) the observed matrix which can be written as
constant. Using Large Random Matrix Theory (LRMT) results, [4]
proved that the traditional DoAs subspace estimators are asymptot- Y=AS+V 2

ically biased, and proposed consistent estimators which outperform

the standard ones, for realistic valuesMfand N. The work [4]  whereS andV are defined a¥". We denote byIT the orthogonal
however assumes that the various source signals may only be cqrrojection matrix on the "noise subspace”, which in our context is
related in the spatial domain, so that in the time domain they areefined as the orthogonal complement of the column space of matrix
assumed to be independent identically distributed (i.i.d.) sequenceA.. In the following, we assume that the empirical covariance matrix
Hence, when the source signals are correlated in the time domaiof S defined by%SSH is full rank. Therefore, the noise subspace



coincides with the kernel of the covariance malRxdefined as

1 HAH
R=—-ASS"A 3

N 3)
We denote by \x)k=1,..., ;s the eigenvalues of matriR arranged in
increasing order and bfey )x=1,....as the corresponding unit norm
eigenvectors. We note in particular that = ... = Ay—x =0

of RY, dF()\) is absolutely continuous, and its density is contin-
uous onS and differentiable on the interia$ of S. The measure
dF(X) is characterized by its Stieltjes transform(z) defined for
eachz € C— S hy

m(z) = /S Aiz dF(\)

®)

while the remaining eigenvalues are strictly positive and thaiWe note thain(z) is holomorphic orC — S. We denote byf (w) the

M—-K
k=1
servation that the angl€8y,).—1,..., x coincide with theX solutions

H_

of the equatiora(#)*TIa(f) = 0. In order to be able to use this
last observation, it is in practice necessary to estimate the function 7~ 35— T oZem

a(0)"I1a(9) (called "localization function”) for each ¢ [, 7],
or more generically to estimate

n = b"IIb 4
for each deterministid/-dimensional vectob. If N — 4oc while

M is fixed, the empirical covariance matrix of the observatiBnsf
Y defined by

A~ 1 H
R=—-YY 5
N (5)
converges towards the matidx + oI, in the sense that
IR— R+ D[sp =0 as ©)

where||||s., represents the spectral norm and a.s the almost sure con- dw) = w(l — UQf(w)f + (1 - 6)02(1 — (,—Qf(w))

vergence. We denote Iy )»—1,...as the eigenvalues d& arranged
in increasing order and b§é)x—1,....m the corresponding eigen-
vectors. (6) implies thafy:raa — n — 0 a.s wheren, qq is the
traditional estimator of the localization function defined by

M-K
~ H~ ~H
Ntrad = 5 b €rey b
k=1

@)

However, relation (6) does not hold in the asymptotic regime
M, N — +o0in such a way that = % converges towards a non

zero constant. In particular, it is shown in section 4 thatq — n
does not converge @

3. THE ASYMPTOTIC EIGENVALUE DISTRIBUTION OF

MATRIX R

In this section, we review certain results related to the behaviour q

of the eigenvalue distribution of matriR when M, N — +oco in
such a way that = % converges towards a non zero constant.
The eigenvalue distribution @& is characterized by its distribu-
tion functionF'(\) = card{\r : Ax <A, k=1,..., M} where
card denotes the cardinality of a sét()\) represents the proportion
of the eigenvalues dR which are lower than or equal toand its

associated probability measut€'(\) is - S0, §(A — Ax).

erell. The subspace method is based on the obfunction defined byf(w) = & Trace(R — wI) ™!, and we consider

=N
the following equation w.r.tm :

o f(z(1+ o?em)? —o®(1—e)(1 + O'QCm)) 9)

Consider the set™ = {z € C : Im(z) > 0}. For eachz € C™,
m(z) is the unique solution of equation (9) for whitu(m(z)) > 0
andIm(zm(z)) > 0. m(z) also satisfies (9) or € C — S, and
is real valued orR — S. Moreover, for eachr € S the limit
lim, o+ m(xz 4+ iy) exists, and is still denotedn(x) to sim-
plify the notations. Finallyjn(z) satisfies the equation (9) o),
Im(m(z)) > 0 on&, and the function: — ZIm(m(z)) coincides
with the density of measuréF (z).

We now present a characterization®fwhich is more explicit
than the analysis provided in [3]. The proof is omitted due to the lack
of space.

Theorem 1 We recall that we are in the case where: 1. Leto(w)

be the function defined dd — {\1, ..., Aa} by
(10)
The number of local maxima efsatisfying
1—o’f(w) >0 and ¢(w) >0 (12)

is an even numberq).
These local maxima are denotedfy, , w; }4=1.....¢ and they sat-
isfy

w1_<0<wf'§w2_<w;'§...§w5<w5 (12)

If we denote byt; = ¢(w, ) andz] = ¢(w]) the values taken by
¢ at the local maxima, then,

O<mf<mf'§w2_<m;§...§x5<x5 (13)

Moreover,S is the reunion of) compact intervals called "clusters”

S=

Co

(14)

[wg ,7q]
1

Finally, each eigenvalue oR belongs to one of the intervals
(wg ,w).

In order to have a better understanding of this result, we consider the
case where matriR has a finite numbem of distinct eigenvalues
denoted\1, . .., A, Which remain fixed wherd/ and N increase.

In other words, the eigenvalue distribution of matBx converges
towards a Dirac measure concentrated at pointgj—1,...,m. We

.....

We first review some results which follow immediately from [2] note that\; = 0. If c is close to0, matrix R tends to be very close
and [3]. The distribution functio’()) is clearly random and under to R + o*I. Therefore, the asymptotic eigenvalue distributitifi
additional technical assumptions, there exists a deterministic distris itself close from a Dirac measure at poirids; + o2),=1, .. m.

bution functionF’(\) such that'(\) — F(\) — 0 a.sv X (see [2]).
The probability measure associatedApdenoteddF'()), is called
the asymptotic eigenvalue distribution of the mafRxand its char-

For eachg = 1,...,m, [z7,z{] and [w, ,w] ] are small width
intervals containing\, + o2 and )\, respectively. Ifc increases, the
width of the various intervals tend to increase, so that some of the

acterization allows to obtain useful informations on the behaviouintervals may merge.

of the (Ax)x=1.....n. The support oflF'(\) is a compact subset

.....

We now introduce a useful definition.



Definition 1 We say that the eigenvalue, (k = 1,..., M) of the 4. DERIVATION OF A CONSISTENT SUBSPACE

matrix R is associated with the clustér, , x| if \x € [w, , w]]. ESTIMATE
Moreover, we say that an eigenvalig is separated from another _ _ o _ )
eigenvalue\,, if they are not associated with the same cluster. We first give a description of the asymptotic behaviour of the

The first clustefz; , ;"] plays a special role because we see fromconventional MUSIC estimatg:oq of n defined by (7). One can
ey, 27] play P , : show that whem\/, N — +oo, ¢ = 2 — 0, fi;raa CONSistently

Theorem 1 that it is associated with the eigenvdlugf matrix R. timates. H AL N Noou ¢ q

Under a certain condition we omit, the eigenvallis the only one ~ SSUMmates). However, i, V. — oo, ¢ = 7 converges towards

to be associated with the first cluster (i.es separated from the other anon zero ConSta".t"“d becomes inconsistent. We now present our
eigenvalues oR). We now state a conjecture which is necessary fof€W consistent estimator of

the validity of the next section’s results. Theorem 2 As M, N — oo at the same ratey = b TIb is con-
Conjecture 1 Assume thal is separated from the other eigenvalues Sistently estimated by,..., defined by

of R for each largeM, N. Consider an intervala, b) containing
[+, 2] and for whichb < z; . Then, ifM, N are large enough,
almost surely, the first/ — K eigenvalues oR belong to(a, b) and
the other ones do not belong (a, b).

A quite similar result was established in [1] in the context of zeroWhere(Bk)k=1,....n-x are defined by

finew = » _ B b éxéi’b (18)

mean large random matrices. In our context, it has not yet been es- ) M ) M .
tablished formally. However, numerical simulations clearly indicate 3, =1+ o 1 _ 20” )"ﬂ
that this conjecture is correct. See e.g. the discussion [3]. From now N Ay N o— g N =M1 (;\k —A\i)?
on, we assume that the following statement is verified. o N
Assumption 1 The eigenvalué is separated from the other eigen- —o*(1—¢) ( > o - L )
values and Conjecture 1 is correct. Yy R AV vy R LRV
We now state a technical, but very important lemma. (19)
Lemma 1 Letw(z) be the function defined di by and where(3x)k=ar—x 11, are defined by

w(z) = z(1 + o’em(2))? — o*(1 — ¢)(1 + o’em(z))  (15) 5 M—K MoK 5

A o
Then,w(z) is holomorphic onC — S, andIm(w(z)) # 0if z € Br = N Z %A Z B )\
C — R. Moreoverw(z) isreal ifz € R — S. =1 kA = (k= A)
If we denote by the set defined by M-K M=K
- . - +o°(1-0 - 3 (20)
C={w(x):zer,a{}U{w() :ze€ler,2{]} (16) ; /\k — fu ; /\k -

thenC is a closed contour enclosing but no other eigenvalue of

matrix R.. Finally, the winding number af around0 is equal to 1. The(fu)i=1,..., 1 are the solutions (arranged in increasing order) of

. 52 - -1
We finish this section by a useful convergence result. the equationl + Z-Trace (R B mI) =0

Proposition1 As M, N — oo at the same rate,M Trace(R — Sketch of the proof : The starting point is based on Lemma 1 which
zI)~! converges a.s for € C — S towardsm/(z). Moreover, the ~ allows to expresg = b IIb with the Cauchy Integral Formula as
entries of matrix R — zI) ! converge a.s for € C — S towards 1 . )
the entries of the matrif'(z) defined by n=g b" (R — AI)” 'bd\ (21)
o
T(z) = (1+c°em(z)) [R —w(z)I] " 7)

where the notatio® ~ means that the contodt defined by (16) is

Remark: In order to connect Proposition 1 with the results used inpeqgaively oriented. Using the parametrization defined in (16), we

[4], we recall the asymptotic behaviour of the entriegRf— 2I)~* immediately get that
in the case where the source signal is temporally uncorrelated. Let
miia(z) be the solution to the equation 1 - )
n=—Im / b" (R — w(z)I)"'bw (z)dzx (22)
1 - _

mud( ) MTI‘ Tzzd( ) 1

-1 h ! h ivati A i | if
Tua(z) = [(AAT I 021> (1—c— comusa(z)) — zI] wherew’(z) represents the derivative af(z). As w(z) is real i

x € R—S§,(22)is equal to

Then the entries ofR — zI) ~* have the same asymptotic behaviour 1 b I

that the entries of;;4(z). One can verify that the entries @f(z), n=_—Im [/ b" (R —w(z)I)" 'bw (m)dm} (23)
which depend or8, converge to the entries @f;;4(z). Therefore, @

in this context, our estimator is essentially equivalent to the proposa{hereq < z; < z7 < b < 25 . We notice thalm(w(z)) # 0 if

of [4]. However, ifS is not temporally iid, then the entries R — . ¢ C — R, and that the integrand on the right hand side of (22) is

2I)~* do not have the same asymptotic behaviour that the entries (Pfolomorphlc orC — R. Therefore, (23) can be written as
T.:a(z). In this context, the various equations that allow to derive

the estimator of _[4] di_ffe_r from what we propose in the present paper n= i b (R — w(2)I) 'bw'(2)dz (24)
and do not lead in principle to a consistent estimator. 2T Jory



wheredR, represents the negatively oriented boundary of the rectelearly see in the two figures that the performances begin to improve

angleR, = {u+iv:u € [a,b],v € [-y,y]}. Proposition 1 im-
plies thatn is also given by

1

near this SNR value. However, it is quite surprising (in regards to
the remark at the end of Section 3) that the improved estimator in
the unconditional case have the same performance than the new
one, even with time-correlated sources. The link between these two

_ b”T(2)b
"= %in ory 1+0%cm(z)

w'(z)dz (25)

The integrand on the right hand side of (25) can be consistently
estimated using the results in Proposition 1. Indeed, Proposition 1
implies thatm(z) andb™ T(z)b can be consistently estimated by
L Trace(R — 2I)~" andb” (R — 2I)~'b respectively for each

z € OR, . In order to estimate’(z), we evaluatav’(z) in terms

of m(z) andm’(z), and replace these two functions by their corre-

sponding consistent estimates. Hence, the final consistent estimate os

Tinew 1S Obtained by replacing the integrand in (25) by its consistent
estimate, denoted by(z). In other words,

/673’_ g(z) dz

where g(z) is a rational function ok. Therefore, the integral can
be evaluated using the residue theorem. The poleg of are the
eigenvalue$hy)x—1 ... as well as the zeros Of—l»c%Trace(f{—
2I)~'. Conjecture 1 implies that ii and N are large enough, the
first M — K eigenvalues{ﬁ\k)k:L_,_YM,K belong to the rectangle
R, while the last one\;. ) k= x 11

1
2

MNnew =

(26)

,,,,,

.....

These remarks allow to establish thigt., is given by (18).

5. NUMERICAL RESULTS

We compare the results provided by the traditional subspace es-
timate, the new estimate (18) (referred to in the figure as "General
Case”), and the improved estimate of [4] derived under the assump-
tion that the source signals are i.i.d. sequences (referred to as "Un-
conditional Case”).

We consider two closely spaced sources with equal power im-
pinging on a uniform linear array from DoAs ©6° and18° w.r.t the
broadside of the antenna array. The emitted symbols come from a
16-QAM constellation and are filtered by a raised-cosine with a roll-
of of 0.5. The oversampling rate of the two sources are respectively
2 and4. The number of antennasig = 20 and the number of snap-
shots isN = 40. The distance between two consecutive antennas is
half a wavelength. The estimates are obtained by evaluating the three
localization functions fob = a(0) for different values ob. In each
case, the two estimated angles are defined as the two deepest local
minima of the estimated localization function.

We compare in Figure 1 the outlier probability of the three ap-
proaches versus the SNR. An outlier is declared when one of the two

Relative standard deviation

estimators could be an interesting topic.

Outlier Probability (M=20, N=40, correlated sources)
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Fig. 2. Relative Standard Deviation
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