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ABSTRACT

This paper deals with the detection of a continuous random
process described by an Ornstein-Uhlenbeck (O-U) stochas-
tic differential equation. Randomly spaced sensors or equiva-
lently a random time sampler which deliver noisy samples of
the process are used for this detection. Two types of tests are
considered: either HO refers to the presence of the noisy O-U
process or HO refers to the sole presence of noise. For any
fixed false alarm probability, it is shown that the Type II er-
ror probability decreases to zero exponentially in the number
of samples. The exponents, which do not depend on the false
alarm probability, are characterized. This work completes for-
mer contributions that consider noiseless O-U process with a
random sampling or noisy O-U processes with a regular sam-
pling.

Index Terms— Error Exponents, Neyman-Pearson De-
tection, Ornstein-Uhlenbeck Processes, Sensor Networks,
Stability of Markov Processes.

1. INTRODUCTION

Problem Description

Let (X (t),t > 0) be the continuous time process defined as
the solution of the Ornstein-Uhlenbeck stochastic differential
equation

dX(t) = —a X(t)dt + bdB(t) (1)

where B(t) is a Brownian motion and (a,b) € R’ x R are
known!. It is assumed that the initial value X (0) is inde-
pendent of (B(¢),t > 0) and follows the law N (0, ¢) with
¢ = b?/(2a), which ensures that the solution (X (t),t > 0)
of (1) is a strict sense stationary process on the positive real
line. Let (T}, )nen be a random point process (with 0 = T <
T, < Ty < ---) which represents the sampling moments of
X (t). Note that the parameter ¢ might be a location param-
eter instead of being a time parameter, in which case the 7;,
represent random sensor locations. It will be assumed that the
so called holding times I,, = T}, 1 — T;, are independent and

"Eq. (1) is sometimes written X’ (t) = —aX (t) + bN(t) where N(t) is
a “white noise”.
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identically distributed (iid) random variables®. In particular,
when the distribution of the I,, is exponential, (7},) is a Pois-
son process. It is furthermore assumed that (7;,) is indepen-
dent of (X (¢),t > 0). Solving Equation (1) between T, and
T+1, it is well known that the process (X,,) = (X(T},))n>1
is characterized by the difference equation

Xppp=e "X, +U,, neN ()

with the initial condition Xy ~ AN(0,¢). The “input pro-
cess” (U,) is characterized statistically by the fact that the
sequence (U,, I,) is an iid sequence independent of X, and
the distribution of U,, conditionally to the holding time I,, is
N (0,¢(1 — e~2eIn)). Note that if the holding times are all
equal to a constant, in other words, if the sampling of X ()
is regular, then (X,,) is a Gaussian autoregressive process of
order one.

We assume that the sensor’s output is corrupted by an iid noise
(V,,) such that V;, ~ N(0,1) and we denote by (Y, )n=1,... ~
the signal received in a window of size N. We shall consider
in turn the two following hypothesis tests:

) HO Y,=X,+V, -
Test 1 : { H1 . Y, =V, forn=1,...,N.
3)

HO Y, =V, _
Test 2 : { HI : Y, =X, +V, forn=1,...,N
4

Our performance analysis of these tests will be based on the
following result. Let Yi.n = (Y1,...,Yn) and T1.xn =
(Th,...,Tn), and for i = 0,1, let f; n(y | t) be the den-
sity of Y7.n conditionnally to 77.x according to hypothesis
Hi. Denote by

LyYin | Tin) = 1 g (fO’N(YliN | Tl:N)> )

o
N fin(Yin | Tin)

the associated Log Likelihood Ratio (LLR). Fix ¢ € (0, 1),
and denote by () the minimum over all tests of the Type
IT error probability when the false alarm probability « is
constrained to satisfy &« < e. The minimum f(¢) is at-
tained by a Neyman-Pearson (N-P) test. If the sequence

2When E[I,,] < oo, process (T, ) is called a renewal process.
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(Ln(Y1.nv | T1.n)) converges in probability towards a con-
stant £ as N — oo under HO, then (see for instance [1])

1
— loghle) T ——¢.

The constant ¢ is called the error exponent of the N-P test.
The study of the behavior of ¢ with respect to parameters
such as a, the Signal to Noise Ratio (SNR), or the probability
distribution of the I,, leads to interesting guidelines to assess
the detector performance or the sensor network dimensioning.

There is a number of papers devoted to the detection of
correlated Gaussian signals by means of sensor networks,
see e.g. the tutorial paper [2]. In this context, contributions
[3, 4,5, 6] study the error exponents of N-P or Bayesian tests.
The closest contributions to this paper are [3] and [6]. Sung
et.al. [3] consider Test 2 above with regularly spaced sensors.
Following the approach of [7], they develop the LLR Ly in
terms of an innovation process. Our approach starts from the
same idea (see Section 2). In [6], sensor location is random
and the detector discriminates among two noiseless O-U pro-
cesses (Eq. (2)). Due to the noisy character of the received
signal, our technique for establishing the existence of ¢ and
for characterizing this error exponent differs substantially
from the one used in [6].

The main results of the paper will be provided in Section 2
along with the main ideas of the proofs. Some implications of
these results will be discussed in Section 3. Some numerical
illustrations will be also shown in Section 3.

2. MAIN RESULTS

The asymptotic behaviors of the minimum Type II error prob-
abilities for Tests 1 and 2 are provided by the two following
theorems:

Theorem 1 Given two real numbers a > 0 and ¢ > 0, con-
sider the stochastic process (X,,) described by Equation (2)
where

e The initial value X is independent of the process

(Un, I,) and follows the probability law N'(0, c).

o The sequence (Up,I,) is iid with P[I, = 0] <
1 and the distribution of U, conditional to I, is
N (0,¢(1 — e 2en)).

Let (V},) be an iid sequence independent of (Xo, (U, I )nen)
such that V,, ~ N(0,1). Consider Test I described in (3)
where N samples of the sequence (Y, Ip)n=1, . N are ob-
served. Then the following assertions hold true:

.....

1. Forp € Ry, letne(p,.) be the probability distribution of

the random variable exp(—2aly) ( ;47 — c) +c. There
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exists a unique probability measure i that satisfies the
equation

ptdn) = [ n(p.du) ).

Moreover, the support of  is included in [0, c|.

2. Lete € (0,1). For a given N, let Oy () be the mini-
mum of the Type I error probabilities over all tests for
which the false alarm probability o satisfies a < e.
Then

1
~ v loefnle) T2

§Ho:Signal = % (C - /log(l +p)ﬂ(dp)>
€ (0,00). (6)

Theorem 2 Assume the setting of Theorem 1 with the differ-
ence that the roles of HO and H1 are interchanged (Test 2
described in (4)). Then the following hold true:

1. Foru = (z,p) € RxRy, letTI(u,.) be the probability
distribution of the random vector

X P
u_ — [ P — _
W [GXP( a 1)<p+1+ 31)7

P
xp(—2al — —c |+
exp(—2aly) < T c> c}
where it is recalled that Y1 ~ N (0, 1) and I, are inde-

pendent. There exists a unique probability measure v
on R x Ry that satisfies the equation

v(dw) = /H(u, dw)v(du) . (7
2. The minimum of the Type Il error probabilities satisfies

1
Ty losine) o

€H0.'Noise - % </ log (1 +p) ,Ld(dp)

—/pilu(de/pljl V(dr,dp)>
€ (0,00) (8)

where the law (i is the one described in the statement of
Theorem 1. It coincides with the marginal law v(R, .).

Theorems 1 and 2: Sketch of the Proof

In the contexts of both Theorems 1 and 2, we have to prove
that £y converges in probability to constant values which will
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be £HO:Signal and &po:Noise Tespectively.

Denote by fv (resp. fs) the density of Y7.y conditionnally to
T1.n for the model Y;, = V,, (resp. for the model YV, = X, +
V). Hence, Test 1 assumes fo v = fs and fi1 nv = fv while
Test 2 assumes the opposite. Let us derive the expressions of
these two densities. Obviously fy is the standard multivariate
Gaussian density. Considering fs, we have

N
fs(in | Tun) =[] #s (Yn \ (ﬁl*lafn))
n=1

where we recall that Y, | = (Y1,...,Y,—1) and T, =
(Ty,...,T,). The conditional densities at the right hand side
of this equation are Gaussian, and write

fs (Yn | (Y_;L—LT;L)) =

1 (Yn - }/}n)Q
= exp |
\/2mA2 P 2A2
where ?n =E [Yn | }7”,1, fn} is the mean of Y, conditional

to its “past” and A2 = E {(Yn — V)2 | T'n} is the innovation
variance of the model Y,, = X,, + V,,.

As is well known, these two quantities can be calculated re-
cursively with the help of the Kalman filter equations. Recall
that the received signal Y, is decribed by the state equations

Xn+1 = e—aIan +U,
Y, =X,,+V,.

Defining )/(\'n and P, as )?n = E[X, | (?n_l,ﬂl)] and
P, = E[(X, — X,)?|T,], the Kalman recursions that
give ()?nH, P, 1) in terms of ()?n, P,) are provided by e.g.
[8, Prop. 12.2.2]:

~ ~

—al,
e @ P,

Xpg1 = X, +e ="y, 9

) +e Pl 9
P

Poyg=e 20 2" 1 Q, 10

y1=e€ Pl +Q (10)

where we put Q,, = E[U2 | I,] = ¢(1 — e~2%I»). The condi-
tional mean and variance Y;, and A2 are then given by

¥ =E [X7L+Vn|}7n,1,fn} =X, (11)
(12)

Using these results, the LLR (5) writes in the setting of The-
orem 1 (where fO,N = fs and fl,N = fv)

Ai:E{(Xn—i—Vn—)A(n)ﬂfn} =P, +1.

1 & s LR (Y=Y 1 L,
Ev="9n glogA"_zN 2o Az Ton ;Y"
) (13)

where the (Y,,, A2) are given by Equations (9)-(12).
To prove Theorem 1, we have to study the asymptotic behav-
ior of £ assuming the conditional density of Y7.n is fs. To
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that end, some results pertaining to the asymptotic behavior of
Markov chains are used. Consider for instance the first term
at the right hand side of Eq. (13), denoted as x1,n. Recall that
A% = P, + 1 where P, is decribed by the recursion (10). By
(10) the sequence (P,,) forms a homogeneous Markov chain.
The asymptotic behavior of 1, is intimately related with the
stability (or ergodicity) of the chain (P,,). Similarly, to prove
Theorem 2, we need to establish the convergence in probabil-
ity of — L towards a constant and characterize this constant,
the conditional density of Y7,y being this time fy. In this case
also, the Kalman recursion (9)-(10) generates a homogeneous
Markov chain whose stability will be established.
The asymptotic behavior of these Markov chains is the core
of our proof. Eventually, in the setting of Theorem 2 we show
that the R x R -valued Markov chain (X,,, P,,) given by (9)-
(10) with Y,, iid ~ A/(0,1) is stable and its stationary distri-
bution v is its unique invariant distribution (given as such by
Eq. (7). Let (X, P ) be a random vector with law v. We
show that the error exponent &go:noise Writes as

> (14)

Similarly, the error exponent {Ho:signal provided by Th. 1 is

X2 - Py

§H0:Noise — Poo 1

% (]E [log(1+ Py)] +E

Eh0Signal = % (¢ — E[log (1 + Pso)]) (15)

These equations coincide with Eq. (8) and (6) respectively.

3. DISCUSSION AND NUMERICAL ILLUSTRATION

Comments and consequences of Theorems 1 and 2

We provide here some observations on the influence of the
system design parameters on the error exponents. The first
parameter we consider is the parameter a which captures the
effects of both the “memory” of the O-U process and the mean
sensor spacing (assuming w.l.o.g. E[,,] = 1). Another key
parameter is the Signal to Noise Ratio SNR = E[X2] (re-
call that E[V/?] = 1). Recalling that X,, = X(7},) and that
X (t) is stationary and independent from (73,) we simply have
SNR = E[X(T},,)?] = E[X(t)?] = c. Notice that the error
exponents for both Tests 1 and 2 are completely determined
by the parameters a and SNR and by the probability law of
1.

A few remarks are in order. These assertions will not be
proven because of lack of space:

1. In the case of a regular sampling (I,, = 1), we obtain
explicit expressions for £Ho:signal and {xo:Noise. Note that
the expression of {yo:Noise 10 this case has been found in
[3, Th. 1].

2. If a is large, i.e., the continuous O-U process (Eq. (1))
is weakly correlated and/or the sensors are far apart, we
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Fig. 1. Test 1: &no:signat Vs a for SNR = —3,0 and 3 dB

have
1
gHO:Signal — 5 (SNR — log(l + SNR)) N
1 SNR
‘Noise -1 1 NR) — ——
EHoN P 9 ( og(1 + SNR) SNR + 1)

3. Inthe setting of Theorem 1, the error exponent &xo:signal

decreases as a increases. Moreover, limg_.o &Ho:Signal =
SNR/2.
One practical implication of this assertion is the fol-
lowing: from the stand point of the error exponent the-
ory, when HO stands for the presence of a noisy O-U
signal, one has an interest in choosing close sensors if
one wants to reduce the Type II error probability. This
probability is reduced by exploiting the correlations be-
tween the X,,.

Numerical illustration

We begin this paragraph by describing the simulation tech-
nique. By ergodicity of the Markov process (X,,, P,,), to
estimate the error exponents, we simply replace the expecta-
tion operators in the equations (14)-(15) above with empirical
means taken on ()?n, P,)n=1,. n, for a large snapshot size
N.

In Fig. 1, the error exponent &yo.signat is plotted vs a for
SNR = —3,0 and 3 dB. Poisson sampling as well as reg-
ular sampling is considered in this figure. Remarks 2 (for
&Ho:Signal) and 3 are confirmed. One interesting observation is
that the error exponent with Poisson sampling is better than
the error exponent with regular sampling in the context of
Test 1.

In Fig. 2, £Ho:Noise 18 plotted vs a also for SNR = —3,0 and
3 dB. We notice that Eponoise increases for SNR = 0 and 3
dB while it has a maximum with respect to a for SNR = —3
dB. This behavior has been established in [3] in the case of
a regular sampling. We also notice that Poisson sampling is

.....
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Fig. 2. Test 2: {o:Noise VS @ for SNR = —3,0 and 3 dB

worse than regular sampling for SNR > 0 dB and better than
regular sampling for SNR < 0 dB from the viewpoint of the
error exponent.
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