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ABSTRACT
This article provides a central limit theorem for a consistent
estimator of the population eigenvalues of a class of sample
covariance matrices. An exact expression as well as an empir-
ical and asymptotically accurate approximation of the limiting
variance is also derived. These results are applied in a cognitive
radio context featuring an orthogonal-CDMA primary network
and a secondary network whose objective is to maximise the
coverage of secondary transmissions under low probability of
interference with primary users.

Index Terms— CLT, G-estimation, cognitive radios.

I. INTRODUCTION

Problems of statistical inference based on M independent
observations of an N -variate random variable y, with E[y] = 0
and E[yyH] = R have drawn the attention of researchers from
many fields for years. If the entries of y are the monthly market
evolutions of N retail products, then the largest eigenvalue
and corresponding eigenvector of R characterise the optimal
portfolio for a trader [1]. If y is the sample of alleles of N genes
extracted from a living being, then R predicts gene coexistence
[2]. In wireless communications, if y are signals transmitted
through a multi-dimensional channel, then the eigenvalues of R
are a sufficient statistic for the capacity of this channel [3]. In
the context of cognitive radios, if y is a vector of data observed
by a secondary network and arising from signals transmitted by
K primary users with respective transmit powers P1, . . . , PK ,
then the eigenvalues of R contain information about those Pk,
e.g. [11]. The present work focuses on this example.

Retrieving spectral properties of the population covari-
ance matrix R, based on the observation of M samples
y(1), . . . ,y(M), is therefore paramount to many questions of
general science. If M is large compared to N , then it is
known that ‖RM − R‖ → 0, as M → ∞, for any matrix
norm, where RM is the sample covariance matrix RM ,
1
M

∑M
m=1 y(m)y(m)H. However, one cannot always afford a

large number of samples (this requires long delays in finance and
wireless communications or too many individuals to sample in
biology). In order to cope with this issue, random matrix theory
[4] has proposed new tools, mainly spurred by the G-estimators
of Girko [5]. Other works include convex optimisation methods
[6], [7] and free probability tools [8], [9]. Many of those
estimators are consistent in the sense that they are asymptotically
unbiased as M,N grow large at the same rate. Nonetheless,
it is only recently that new techniques have been unearthed
which allow to estimate individual eigenvalues and functionals
of eigenvectors of R. The main contributor is Mestre [10] who
provided an estimator for every eigenvalue of R under some

separability condition, followed by Couillet et al. [11] and Vallet
et al. [12] for more elaborate models.

These estimators, although proven asymptotically unbiased,
have nonetheless not been fully characterised in terms of higher
order statistics. It is in particular fundamental to evaluate the
variance of these estimators for not-too-large M,N . In the
context of cognitive radios, evaluating the transmit powers and
statistical information about the resulting estimates of primary
users allows a secondary network to characterise the optimal
coverage that ensures both a low probability of interference
towards the primary network and high communication rates for
the secondary users.

The rest of the article is structured as follows: in Section II,
we introduce the system model and recollect the main required
results of random matrix theory. In Section III, we derive the
main result of this paper. In Section IV, this result is applied
in the context of cognitive radios while a comparative Monte
Carlo simulation is performed. Section V concludes this article.

II. SYSTEM MODEL
Consider a primary orthogonal uplink CDMA network com-

posed of K transmitters. Transmitter k uses the nk orthog-
onal N -chip codes wk,1, . . . ,wk,nk

∈ CN . Consider also a
secondary sensor that we assume time-synchronised with the
primary network. From the sensor viewpoint, primary user k
has power Pk. Then, at symbol time m, the sensor receives the
N -dimensional data vector

y(m) =

K∑
k=1

√
Pk

nk∑
j=1

wk,jx
(m)
k,j + σn(m) (1)

with σn(m) ∈ CN the additive white Gaussian noise received
at time m and x

(m)
k,j the signal transmitted by user k on the

carrier code j at time m, which we assume Gaussian as well.
We assume that the sensor knows perfectly σ2 and the number
of users, and desires to the transmit powers of each user. The
sensor may or may not be aware of the number of codewords
employed by each user.

Equation (1) can be compacted under the form

y(m) = WP
1
2 x(m) + σn(m)

with W = [w1,1, . . . ,w1,n1
,w2,1, . . . ,wK,nK

] ∈ CN×n,
n ,

∑K
k=1 nk, P ∈ Cn×n the diagonal matrix with entry

P1 of multiplicity n1, P2 of multiplicity n2, etc. and PK of
multiplicity nK , and x(m) = [x

(m)T
1 , . . . ,x

(m)T
K ]T ∈ Cn where

x
(m)
k ∈ Cnk is a column vector with j-th entry x(m)

k,j .
Gathering M successive independent observations, we obtain

the matrix Y = [y(1), . . . ,y(M)] ∈ CN×M given by

Y = WP
1
2 X + σN =

[
WP

1
2 σIN

] [X
N

]
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Fig. 1. Empirical and asymptotic eigenvalue distribution of RM

for L = 3, t1 = 1, t2 = 3, t3 = 10, N/M = c = 0.1, N = 60.

where X = [x(1), . . . ,x(M)] and N = [n(1), . . . ,n(M)].
The y(m) are therefore independent Gaussian vectors of zero

mean and covariance R , WPWH+σ2IN . Since the question
is to retrieve the powers Pk, while σ2 is known, the problem
boils down to finding the eigenvalues of WPWH + σ2IN .
However, the sensor only has access to Y, or equivalently to
the sample covariance matrix

RM ,
1

M
YYH =

1

M

M∑
m=1

y(m)y(m)H.

The problem of retrieving the eigenvalues of R based on RM

was tackled by Mestre in [10], who proved the following:
Proposition 1 ([10]): Let RM = 1

M T
1
2

MXMXH
MT

1
2

M where
the eigenvalue distribution function FTM of TM ∈ CN×N con-
verges to the distribution function T , composed of L masses in
t1 < . . . < tL with weights N1/N, . . . , NL/N , respectively, and
XM ∈ CN×M has independent CN(0, 1) entries Xij . Denote
λ1 ≤ . . . ≤ λN the eigenvalues of RM and λ = (λ1, . . . , λN )T.
We further assume that FTM = T and N/M = c, Ni/M = ci
for all large M considered. Then, as M,N →∞, if the limiting
support S of the eigenvalue distribution of RM is formed of L
compact disjoint subsets, we have

t̂k − tk → 0

almost surely, where

t̂k =
M

Nk

∑
m∈Nk

(λm − µm) (2)

with Nk = {
∑k−1

j=1 Nj + 1, . . . ,
∑k

j=1Nj} and µ1 ≤ . . . ≤ µN

are the ordered eigenvalues of diag(λ)− 1
M

√
λ
√
λ
T

.
Figure 1 depicts the eigenvalues of RM and the associated

limiting distribution as N,M grow large, for t1 = 1, t2 = 3,
t3 = 10 of equal multiplicity. Notice that we are here in a
scenario where the limiting eigenvalue distribution of RM is
formed of L compact disjoint subsets as required by Proposition
1. In the present scenario, extending [WP

1
2 σIN ] into an

(N + n)× (N + n) matrix filled with zeros, TM is the matrix

WPWH + σ2IN , with tk = Pk + σ2 of multiplicity Nk = nk
for each k, possibly an eigenvalue equal to σ2 of multiplicity
N − n and a last eigenvalue tL = 0 of multiplicity NL = n.

The objective of the article is to study the performance of
the estimator of Proposition 1 and apply it to the model (1).
We will precisely show that, as N,M →∞, the random vector(
M(t̂k − tk)

)
1≤k≤K is asymptotically distributed as N(0,Θ),

where Θ will be characterised exactly and will be given an
approximation Θ̂ based on the observation of Y, such that, as
N,M →∞, Θ̂ij −Θij

a.s.−→ 0.

III. CENTRAL LIMIT THEOREM
III-A. Further discussion on Proposition 1

The work of Mestre relies on tools of random matrix theory,
among which the Stieltjes transform of distribution functions.
The Stieltjes transform mZ(z) of the distribution function FZ of
the eigenvalues of a nonnegative Hermitian matrix Z ∈ CN×N ,
with eigenvalues λ1, . . . , λN , is defined for z ∈ C \ R+ as

mZ(z) ,
∫

1

λ− z
dFZ(λ) =

1

N

N∑
i=1

1

λi − z
.

The proof of Proposition 1 is based on the work of Silverstein
and Bai [13] who prove that the Stieltjes transform mRM

(z) of
the sample covariance matrix RM converges almost surely to
a function m(z) as M,N → ∞ with N/M → c, 0 < c < ∞,
where, for z ∈ C+, m(z) is defined as the unique solution in
C+ of [13]

m(z) = cm(z) + (c− 1)
1

z

m(z) = −
(
z − c

∫
t

1 + tm(z)
dT (t)

)−1

,

with T the limiting distribution function of the eigenvalues of
TM . Moreover, m(z) and m(z) are the Stieltjes transform of
distribution functions F and F , respectively.

When dT is composed of L masses in t1, . . . , tL, based on
the link between m(z) and T and under the condition that S is
formed of L compact disjoint subsets, Mestre writes tk explicitly
as the following complex integral of m(z) [4, Chapter 6]

tk =
1

2πick

∮
Ck

z
m′(z)

m(z)
dz

with Ck a negatively oriented contour that circles around the k-
th cluster in S only. Denote now RM , XH

MTMXM . Defining

t̂k ,
N

2πiNk

∮
Ck

z
m′RM

(z)

mRM
(z)

dz (5)

with mRM
(z) = N

MmRM
(z)+ N−M

M
1
z the Stieltjes transform of

RM , dominated convergence arguments ensure that tk− t̂k
a.s.−→

0. The integral form of t̂k can then be explicitly computed thanks
to residue calculus [14] and we obtain (2).

III-B. Main results
In [15], Bai and Silverstein extend the limiting result on FRM

to a central limit theorem, when XM has entries with fourth
order moment E[|Xij |4] = 2, which is the case for complex
Gaussian Xij .



Θij , −
1

4π2c2cicj

∮
Ci

∮
Cj

[
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

]
1

m(z1)m(z2)
dz1dz2 (3)

Θ̂ij ,
M2

NiNj

 ∑
(a,b)∈Ni×Nj ,a 6=b

− 1

(µa − µb)2m′RM
(µa)m′RM

(µb)
+ δij

∑
a∈Ni

m′′′RM
(µa)

6m′RM
(µa)3

−
m′′RM

(µa)2

4m′RM
(µa)4

 (4)

Proposition 2 ([15]): Under these conditions, for f1, . . . , fp
analytic on R,(

N

∫
fi(x)d(FRM − F )(x)

)
1≤i≤p

⇒ X ∼ N(0,V),

Vij = − 1

4π2

∮ ∮
fi(z1)fj(z2)vij(z1, z2)dz1dz2,

vij(z1, z2) =
m′(z1)m′(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2
(6)

where the integration is over positively oriented contours that
circle around S.

Similar to Mestre who transposed the first order limit of FRM

into a limiting result on the estimator t̂k of tk, the present article
transposes the second order limit of functionals of RM into a
central limit of the variations of t̂k around tk.

To this end, the fundamental tool we use here is the delta-
method [16],

Lemma 1: Let X1, X2, . . . ∈ Rn be a random sequence such
that

an(Xn − µ)⇒ X ∼ N(0,V)

for some an →∞. Then for f : Rn 7→ RN , differentiable at µ,

an(f(Xn)− f(µ))⇒ J(f)X

with J(f) the Jacobian matrix of f .
The basic idea is the following: since (i) t̂k is a function of

mRM
(z), itself being a functional of FRM , and (ii) the limiting

variations of well-behaved functionals of FRM are Gaussian,
we can apply (with some technical care) the delta-method to t̂k.

The outcome of this method are the following two theorems
Theorem 1: Let RM be defined as in Proposition 1 with

E[|Xij |4] = 2. Then,(
M(t̂k − tk)

)
1≤k≤K ⇒ X ∼ N(0,Θ)

with Θij , the entry (i, j) of Θ, given by (3), where the contour
Ck encloses the k-th cluster of S only.

Similar to Proposition 1, it is possible to provide a consistent
estimate Θ̂ij for Θij , 1 ≤ i, j ≤ K. This is given as follows:

Theorem 2: Let Θij be defined as in Theorem 1. Then,

Θ̂ij −Θij
a.s.−→ 0

as N,M →∞, where Θ̂ij is defined in (4), with the quantities
Nk and µ1, . . . , µN defined as in Proposition 1.

Theorem 1 describes the limiting performance of the estimator
of Proposition 1 with an exact characterisation of its variance,
while Theorem 2 introduces an estimator of this variance based
on the observation of the random RM . Theorem 2 is useful in
practice in that one can obtain simultaneously an estimate t̂k
of the values of tk as well as an estimation of the degree of
confidence for each t̂k.

We provide hereafter a sketch of proof of the above results.
Proof: The proof is composed of three steps. The first step

consists in applying the delta method to prove that the terms(
M

[
zi
m′RM

(zi)

mRM
(zi)
− zi

m′(zi)

m(zi)

])
1≤i≤p

,

i.e. the deviation of p points of the integrands in (5), are
asymptotically jointly Gaussian. This unfolds first from Propo-
sition 2 applied to fi(x) = (x − zi)

−1, 1 ≤ i ≤ m, and
fi(x) = (x − zi)

−2, m + 1 ≤ i ≤ 2m, which ensures the
joint Gaussianity of the deviations of N(mRM

(zi) − m(zi))
and N(m′RM

(zi)−m′(zi)). Then, notice that

M

[
z
m′RM

(zi)

mRM
(zi)
− zm

′(zi)

m(zi)

]

= M

[
zim

′
RM

(zi)m(zi)− zim′(zi)mRM
(zi)

mRM
(zi)m(zi)

]

⇒ zi
m′(zi)X −m(zi)Y

m(zi)2

where (X,Y ) is a random variable with law the (Gaussian)
weak limit of (M(mRM

(zi)−m(zi)),M(m′RM
(zi)−m′(zi)))

and the last line unfolds from Slutsky’s lemma [16]. This
last form can be rewritten f(X,Y ) = f(X − 0, Y − 0) =

zi
m′(zi)X−m(zi)Y

m(zi)2
, where f is differentiable at (0, 0). Using

Lemma 1 on M(mRM
(zi)−m(zi)) and M(m′RM

(zj)−m′(zj))
for different i, j, applied to the function f , leads to the result.

In order to propagate the Gaussianity of the deviations in
the integrands of (5) to the deviations in t̂k, it suffices to
study the behaviour of the sum of Gaussian variables over the
integration contour. Since (i) the integral can be written as the
limit of a finite Riemann sum and (ii) a finite Riemann sum
of Gaussian random variable is still Gaussian, it suffices to
ensure that the Riemann sum is still Gaussian in the limit. This
requires an additional ingredient: the tightness of the sequences
M(z

m′
RM

(z)

mRM
(z) − z

m′(z)
m(z) ) for growing M and for all z, see [17,

Theorem 13.1]. This naturally unfolds from a direct application
of [17, Theorem 13.2], following a similar idea to [15].

The last step of the proof is the calculus of the covariance of
the Gaussian limit. This requires to evaluate for all i, j

M2E

∮
Ci

∮
Cj

(
zi
m′RM

(zi)

mRM
(zi)
− zi

m′(zi)

m(zi)

)

×

(
zj
m′RM

(zj)

mRM
(zj)

− zj
m′(zj)

m(zj)

)
dzidzj .

Integrations by parts simplify the result and lead to (3). In order
to obtain (4), residue calculus is finally performed [14].
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Fig. 2. Comparison of empirical against theoretical variances
for three users, P1 = 1, P2 = 3, P3 = 10, n1 = n2 = n3 = 20
codes per user, N = 60, M = 600 and SNR= 20 dB.

IV. PERFORMANCE OF COGNITIVE RADIOS
We consider the system model (1). Assuming the spec-

trum of RM allows one to clearly distinguish the successive
clusters (as in Figure 1), Proposition 1 enables the detection
of primary transmitters and the estimation of their transmit
powers P1, . . . , PK ; this boils down to estimating the largest
K eigenvalues of WPWH + σ2IN , i.e. the Pk + σ2, and to
subtract σ2 (optionally estimated from the smallest eigenvalue
of WPWH + σ2IN if n < N ). Call P̂k the estimate of Pk.

Based on these power estimates, the sensor can determine the
optimal coverage for secondary communications that ensures no
interference to the primary network. A basic idea for instance
is to ensure that the closest primary user, i.e. that with strongest
received power, is not interfered. Our interest is then cast on PK .
Now, since the power estimator is imperfect, it is hazardous for
the secondary network to state that K has power P̂K or to add
some empirical security margin to P̂K . The results of Section
III partially answer this problem.

Theorems 1 and 2 enable the secondary sensor to evaluate the
accuracy of P̂k. In particular, assume that the cognitive radio
protocol allows the secondary network to interfere the primary
network with probability q and denote A the value

A
∆
= inf

a
{Pr(PK − P̂K > a) ≤ q}.

According to Theorem 1, for N,M large, A is well approx-
imated by Θ̂K,KQ

−1(q), with Q the Gaussian Q-function. If
the sensor detects a user with power PK , estimated by P̂K ,
Pr(P̂K + A < PK) < q and then it is safe for the secondary
network to assume the worst case scenario where user K
transmits at power P̂K +A ' P̂K + Θ̂K,KQ

−1(q).
In Figure 2, the performance of Theorem 1 is compared

against 10, 000 Monte Carlo simulations of a scenario of three
users, with n1 = n2 = n3 = 20, N = 60 and M = 600.
It appears that the limiting distribution is very accurate for
these values of N,M . We also performed simulations to obtain
empirical estimates Θ̂k,k of Θk,k from Theorem 2, which
suggest that Θ̄k,k is an accurate estimator as well.

V. CONCLUSION
In this paper, we derived an exact expression and an approx-

imation of the limiting performance of a statistical inference
method that estimates the population eigenvalues of a class
of sample covariance matrices. These results are applied in
the context of cognitive radios to optimize secondary network
coverage based on measures of the primary network activity.
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