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Eigenvalue Estimation of Parameterized Covariance
Matrices of Large Dimensional Data

Jianfeng Yao, Abla Kammoun, and Jamal Najim

Abstract—This article deals with the problem of estimating the
covariance matrix of a series of independent multivariate obser-
vations, in the case where the dimension of each observation is of
the same order as the number of observations. Although such a
regime is of interest for many current statistical signal processing
and wireless communication issues, traditional methods fail to
produce consistent estimators and only recently results relying on
large random matrix theory have been unveiled. In this paper, we
develop the parametric framework proposed by Mestre, and con-
sider a model where the covariance matrix to be estimated has a
(known) finite number of eigenvalues, each of it with an unknown
multiplicity. The main contributions of this work are essentially
threefold with respect to existing results, and in particular to
Mestre’s work: To relax the (restrictive) separability assumption,
to provide joint consistent estimates for the eigenvalues and their
multiplicities, and to study the variance error by means of a
Central Limit Theorem.

Index Terms—Central limit theorem, covariance matrix estima-
tion, moment method, random matrix theory, Stieltjes transform.

I. INTRODUCTION

E STIMATING the covariancematrix of a series of indepen-
dent multivariate observations is a crucial issue in many

signal processing applications. A reliable estimate of the covari-
ance matrix is for instance needed in principal component anal-
ysis [1], direction of arrival estimation for antenna arrays [2],
blind subspace estimation [3], capacity estimation [4], estima-
tion/detection procedures [2], [5], etc.
In the case where the dimension of the observations is

small compared to the number of observations, the empir-
ical covariance matrix based on the observations often provides
a good estimate for the unknown covariance matrix. This esti-
mate becomes however much less accurate, and even not con-
sistent with the dimension getting higher (see for instance
([6], Theorem 2)).
An interesting theoretical framework for modern estimation

of multi-dimensional variables occurs whenever the number of
available samples grows at the same pace as the dimen-
sion of the considered variables. Shifting to this new as-
sumption induces fundamental differences in the behavior of the
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empirical covariance matrix as analyzed in Mestre’s work [6],
[7]. Recently, several attempts have been done to address this
problem (cf. [6]–[11]) using large random matrix theory which
proposed powerful tools, mainly spurred by Girko’s G-estima-
tors [12], to cope with this new context. In [6], [7], Mestre con-
siders the eigenvalue estimation of a parameterized model of
covariance matrices similar to the model we shall study in this
article. In [8] and [11], grid-based techniques for inverting the
Marčenko-Pastur equation are proposed. In [10], the problem of
estimating a specific linear functional of the eigenvalues of an
unknown covariance matrix is addressed. In [9], the eigenvalues
of an unknown parameterized covariance matrix are estimated
by resorting on the empirical moments of the observations. This
technique, which goes back to Pisarenko’s ideas [13], will be
also combined to large random matrix theory in the present ar-
ticle.
We shall consider the case where the dimension of each obser-

vation together with the number of samples go to infinity
at the same pace, i.e., their ratio converges to some nonnegative
constant . In order to present the contribution provided in
this paper, let us describe the model under study.
Consider an matrix whose entries are in-

dependent and identically distributed (i.i.d.) random variables.
Let be an Hermitian matrix with ( being fixed
and known) distinct eigenvalues with re-
spective multiplicities (notice that ).
Consider now

The matrix is the concatenation of
independent observations, where each observation writes

with . In particular, the covariance
matrix of each observation is (matrix is
sometimes called the population covariance matrix).
In this article, we consider the problem of estimating individ-

ually the eigenvalues as well as their multiplicities in the
case where the total number of eigenvalues is fixed and known.
Such a scenario is customary in applications for wireless

communications. A relevant example concerns uplink CDMA
systems operating over flat fading channels, where users
employ distinct power amounts . Considering
that the -th user utilizes exclusively spreading codes, the
received matrix can be modeled as:

where are represent respectively the signature matrix
assumed to be orthogonal and the noise matrix, while

, i.e., is diagonal with a finite number
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Fig. 1. Empirical and asymptotic eigenvalue distribution of for

. In this case, there are 3 clusters in the limiting eigenvalues distribution and
the separability assumption holds true.

Fig. 2. Empirical and asymptotic eigenvalue distribution of for

. In this case, there is only one cluster in the limiting eigenvalue distribution
while there are 3 underlying eigenvalues to be estimated: The separability as-
sumption does not hold true any more.

of power amounts ’s, each with multiplicity . In a decen-
tralized context, where each user selects its own power from
this finite set according to a defined control energy strategy,
the base station which stands for the receiver can have to es-
timate the number of users in each class as well as their cor-
responding powers. Obviously, this problem amounts to esti-
mating the eigenvalues of the theoretical covariance matrix as
well as their corresponding multiplicities1. Similar scenarios are
studied in [14], [15].

1Note that one can also consider amore complexmodel
where is a diagonal matrix accounting for the channel response. More

precisely, if writes similarly , where each
entry corresponds to the channel response for the -th user, then the resulting
diagonal matrix capturing the covariance matrix of has distinct eigen-
values , each with multiplicity , and therefore also falls into
the framework considered here.

Among the proposed parametric techniques, we cite the one
developed by Mestre [7] and taken up by Vallet et al. [16] and
Couillet et al. [17] for more elaborated models. Although being
computationally efficient, this technique requires a separability
condition, namely the assumption that the number of samples is
large compared to the dimension of each sample (small limiting
ratio ). In such a case, the limiting spectrum
of the empirical covariance matrix possesses as many clusters2

as there are eigenvalues to be estimated, and each eigenvalue
can be estimated by a contour integral surrounding the related
cluster. Mestre’s technique cannot be applied any more in the
case where is larger (which reflects a higher dimension of the
observations relatively to the sample dimension). In fact, the
dimension of the clusters may grow and neighbouring clusters
may merge, violating the one-to-one correspondence between
clusters and eigenvalues to be estimated (see for instance Figs. 1
and 2).
A way to circumvent the separability condition has recently

been proposed by Bai, Chen and Yao [9], based on the use of
the empirical asymptotic moments:

which can be shown to be a sufficient statistic to estimate
. Although being robust to sep-

arability condition, this technique suffers from numerical
difficulties, since the proposed estimator has no closed-form
expression and thus should be determined numerically. An
interesting contribution, although not directly focused on
estimating the covariance of the observations is the work by
Rubio and Mestre [18], where an alternative way to estimate
the moments

for all is proposed, yielding an explicit (yet lengthy) for-
mula.
In this article, we improve existing work in several directions:

With respect to Mestre’s seminal papers [6], [7], we propose
a joint estimation of the eigenvalues and their multiplicities,
and drop the separability assumption. The proposed estimator
is close in spirit to the one developed by Bai et al. 3 in [9], al-
though we carefully establish the existence and uniqueness of
the estimator, which is not explicit in [9]. Comparisons on the
relative numerical efficiency of both procedures is provided in
the simulations section. Finally, we study the fluctuations of the
estimator and establish a Central Limit Theorem (CLT).
The remainder of the paper is organized as follows. In

Section II, the main assumptions are provided and Mestre’s
estimator [7] is briefly reviewed. In Section III, the proposed
estimator is described. Its fluctuations are studied in Section IV,
where a CLT is stated. Simulations are presented in Section V,
and a conclusion ends the paper in Section VI. Finally, the
remaining technical details are postponed to the Appendix.

2By cluster, we mean a connected component of the support of the limiting
probability distribution of the spectrum.
3We shall also mention an ongoing work by Li and Yao, not yet disclosed to

our knowledge.
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II. MAIN ASSUMPTIONS AND GENERAL BACKGROUND

A. Notations

In this paper, the notations stand for scalars, vectors
and matrices, respectively. Superscripts and respec-
tively stand for the transpose and transpose conjugate; trace of
is denoted by ; determinant of , by ; the

mathematical expectation operator, by . If , then
and respectively stand for ’s real and imaginary parts,
while stands for stands for ’s conjugate.
If is a nonnegative Hermitian matrix with eigen-

values , we denote in the sequel by the em-
pirical distribution of its eigenvalues (also called spectral dis-
tribution of ), i.e.,:

where stands for the Dirac probability measure at .
Convergence in distribution will be denoted by , in prob-

ability by ; and almost sure convergence, by .

B. Main Assumptions

Consider the model

At first, an assumption about the matrix is needed:
Assumption 1: is an Hermitian non-negative def-

inite matrix with ( being fixed and known) distinct eigen-
values with respective multiplicities

(notice that ).
As mentioned earlier, we consider the asymptotic regime

where the number of samples and the dimension grow
to infinity at the same pace, together with the multiplicities of
each eigenvalue of .
Assumption 2: Let be integers such that: When

,

(1)

for . This assumption will be shortly referred to as
.

The following assumption is standard and is sufficient for es-
timation purposes.
Assumption 3: Let be a matrix whose

entries are i.i.d. random variables in such that
with finite fourth moment: .

Remark 1: In order to establish the fluctuations of the estima-
tors, the Gaussianity of the entries of is needed (although
this technical condition may be removed with substantial extra
work).
Assumption 3b: The entries of the matrix
are i.i.d. standard complex Gaussian variables, i.e.,
, where are both independent real Gaussian random

variables .

It is well-known in large randommatrix theory that under As-
sumptions 1, 2 and 3, converges to a limiting probability
distribution. In Mestre’s paper [7], a separability condition4 is
needed in order to derive the estimator of ’s eigenvalues:
Assumption 4: The support of the limiting probability dis-

tribution of is composed of compact connected disjoint
subsets, and not reduced to a singleton.
Remark 2: Note that when , matrix is singular

and thus admits eigenvalues equal to zero. Hence, the
limiting spectrum of has an additional mass in zero with
weight , which will not be considered among the clusters.
The separability condition is illustrated in Figs. 1 and 2. In

both figures, the limiting distribution of is drawn (red
line). In Fig. 1, ’s eigenvalues are ,
they have the same multiplicity and the ratio is equal to 0.1.
In this case, the separability condition is satisfied as the limiting
distribution exhibits 3 clusters. The separability condition is no
longer satisfied in Fig. 2, when and

. In this case, the limiting distribution only exhibits a
single cluster.

C. Background on Large Random Matrices, Mestre’s
Estimators and Their Fluctuations

The Stieltjes transform has proved since Marčenko and
Pastur’s seminal paper [19] to be extremely efficient to describe
the limiting spectrum of large random matrices. Given a proba-
bility distribution defined over , its Stieltjes transform is
a -valued function defined by:

In the case where is the spectral distribution associated to
a nonnegative Hermitian matrix with eigenvalues

, the Stieltjes transform of takes the
particular form:

which is exactly the normalized trace of the resolvent
.

An important result associated to the model presently under
investigation is Bai and Silverstein’s description of the limiting
spectral distribution of [20] (see also [19]):
Theorem 1: [20] Assume that Assumptions 1, 2, 3 hold true

and denote by the limiting spectral distribution of , i.e.,
. The spectral distribution

of the sample covariance matrix converges (weakly and
almost surely) to a probability distribution as ,
whose Stieltjes transform satisfies:

4The precise technical statement of the separability condition together with a
mathematical interpretation are available in [7], but are not necessary here.
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for , where is defined as
the unique solution in of:

Remark 3: Note that is also a Stieltjes transform whose
associated probability distribution function will be denoted ,
which turns out to be the limiting spectral distribution of
where is defined as:

Remark 4: Denote by and the Stieltjes

transforms of and . Notice in particular that

(2)

Remark 5: Denote by and the finite-dimen-
sional counterparts of and , respectively, defined by
the relations:

(3)

It can be shown that and are Stieltjes transforms of
given probability measures and , respectively (cf. ([21],
Theorem 3.2)).
In [7], Mestre proposes a novel approach to estimate the

eigenvalues of the population covariance
matrix based on the observations under the additional
Assumption 4. His approach relies on large random matrix
theory and the separability condition presented above plays a
major role in the mere definition of the estimators. As it will be
a useful background in the sequel, we provide hereafter a brief
description of Mestre’s results:
Theorem 2: [7] Denote by the ordered

eigenvalues of . Under Assumptions 1, 2, 3, 4 and assuming
moreover that the multiplicities are known, the fol-
lowing convergence holds true:

(4)

where

(5)

with and
the (real and) ordered solutions of:

(6)

repeated with their multiplicities. When , we use
the convention , whereas

are the positive solutions of the above
equation.
Remark 6: Notice that (6) associated to (2) readily implies

that for non null . Otherwise stated, the ’s

are the zeros of . This fact will be of importance in the
sequel.

Sketch of Proof: We can now describe the main steps of
Theorem 2. By Cauchy’s formula, write:

where is a positively oriented (clockwise) contour taking
values in and only enclosing . With the
change of variable and the condition that the lim-
iting support of the eigenvalue distribution of is formed
of distinct clusters (cf. Fig. 1), we can write:

(7)

where denotes positively oriented contours which enclose
the corresponding clusters . Defining

(8)

dominated convergence arguments ensure that ,
almost surely. The integral form of can then be explicitly
computed thanks to residue calculus, and this finally yields (5).

Recently, a CLT has been derived [15] for this estimator under
the extra assumption that the entries of are Gaussian:
Theorem 3: [15] With the same notations as before,

under Assumptions 1, 2, 3b, 4 and with known multiplicities
, then:

where refers to a real -dimensional Gaussian distribution,
and is a matrix whose entries are given in (9),

(9)

where (resp. ) is a closed counterclockwise oriented con-
tour which only contains the k-th cluster (resp. -th).
The proof of this theorem is based on [22] and the continuous

mapping theorem. Details are available in [15].
The main objective of this article is to provide estimators for

the ’s without relying any more on the separability condition
(i.e., to removeAssumption 4). A Central Limit Theoremwill be
established as well for the proposed estimator. As a by-product,
the knowledge of the multiplicities will no longer be needed,
and they will be estimated as well.

III. ESTIMATION OF THE EIGENVALUES

In this section, we provide a method to estimate consistently
the eigenvalues of the population covariance matrix and their
multiplicities without the need of the separability condition (cf.
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Fig. 2). Our method is based on the asymptotic evaluation of the
moments of the eigenvalues of ,

(10)

If are the empirical moments of the sample
eigenvalues, then it is well-known that except for
cannot be approximated by . Consistent estimators for are
provided in [18], where it has been proved that:

where

(11)

being some given coefficients that depend on the system
dimensions and on the empirical moments [18]. An alterna-
tive is to use the Stieltjes transform:
Lemma 1: Let Assumptions 1, 2 and 3 hold true. Let be

the real quantities given by:

where is a counterclockwise oriented contour which encloses
the support of the limiting distribution of the eigenvalues of

. Let be the theoretical moments as given in (10). Then,
for ,

The proof of this lemma is postponed to Appendix A. While the
estimates proposed by [18] are better in practice, estimates
will be of interest in order to establish the Central Limit The-
orem, and to obtain a closed-form expression of the asymptotic
variance.
An interesting remark is that the map that links the eigen-

values and their multiplicities to their first moments is
invertible. Retrieving the eigenvalues from the estimates of the

moments is thus possible. This is the basic idea on which
our method is founded [see (12) at the bottom of the page].
The main result is stated as below.

Theorem 4: Let Assumptions 1, 2, 3 hold true and let
be as in Lemma 1. Consider the following system

of equations:

(13)

where and are unknown parameters.
Then for large enough, the system of equations (13) has
one and only one real solution with

. Moreover, is a con-
sistent estimator of , i.e.,

with for .
Remark 7: The condition of separability is not required in the

previous theorem. Moreover, the multiplicities are assumed to
be unknown and thus have to be estimated. Fig. 2 represents a
case where the three clusters are merged into one cluster. In such
a situation, the estimator in [7] is biased whereas the proposed
one is asymptotically consistent.
Remark 8: We use the estimator proposed in Lemma 1. How-

ever, the proof below does not depend on the estimator of the
moments we choose. In fact, for any consistent estimator of the
moments , the above theorem always holds true.

A. Proof of Theorem 4

The proof can be split into two main steps. By using the in-
verse function theorem, we can prove the almost sure existence
of a real solution. Then, the uniqueness is ensured by a matrix
inversion argument.
1) Existence of a Real Solution of the System: The first task

is to show that the system of equations (13) admits, for suf-
ficiently large, one real solution satis-
fying . We shall also establish the con-
sistency of the obtained solution. The proof of the existence of
a real solution follows in the same way as in [9]. It is merely
based on the use of the inverse function theorem which ensures
the existence as soon as the Jacobian matrix of the considered
transformation is invertible. We recall below the inverse func-
tion theorem [23]:
Theorem 5: [23] Let : be a continuously differen-

tiable function. Let and be vectors of such that .
If the Jacobian matrix of at is invertible, then there exists
a neighborhood containing such that is a
diffeomorphism, i.e., for every there exists a unique

...
. . .

. . .
. . .

. . .
...

(12)
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such that . In particular, is invertible in .
Consider the functional defined as:

Consider and denote by
; we then obtain the Jacobian matrix

given in (12).
As proven in ([9], Proposition 1), matrix is invertible.

The inverse function theorem then applies. Denote by
for . There exists a neighbor-

hood of and a neighborhood of
such that is a diffeomorphism from onto

. On the other hand, we have:

As , therefore, almost surely,
for and large enough. Hence, a real solution

exists. And by the continuity, one can get easily that:

for .
2) Uniqueness of the Solution of the System: Consider the

polynomial with degree defined as:

where . Denote by . It is clear that
is a homeomorphism. It remains thus to

show that vector is uniquely determined by .
It is clear that each is also the zero of the polynomial func-

tions given by:

where . In other words, for , we get:

or equivalently:

(14)

Summing (14) over , we obtain:

(15)

for . Since , (15) becomes:

(16)

for .
Writing (16) in a matrix form, we get: where

...
. . .

. . .
...

...

(17)

On the other hand, we have , where
and

...
...

...
(18)

Then,

Therefore, the vector is then uniquely determined by and
and is given by:

Hence the unicity. Proof of Theorem 4 is completed.

B. Summary of the Main Steps of the Estimation Procedure

The proof of the uniqueness shows that the solutions of the
system of equations (13) can be directly obtained from the esti-
mates of the first moments.More precisely, the estimation
of the eigenvalues and their corresponding multiplicities can be
performed through the following steps:
1) Set to 1.Estimate the first moments

using (11). Coefficients are computed
using (46) in [18].

2) Construct the matrix and using (17).
3) Compute the vector as .
4) Determine (by using for instance func-

tion roots of MATLAB) the roots
of the polynomial whose coefficients
are given by vector .

5) Construct matrix as specified by (18),
and vector .

6) The coefficient estimates

are thus given by:
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Remark 9: Note that while the existence of a real solution
is only proven for and large enough, the previous algo-
rithm always yield a solution, even for very small dimensions.
However, in such scenarios, the validity of the obtained solu-
tion is not ensured. In fact, if and are not large enough,
themoment estimates are not accurate, and the solution of the al-
gorithm may yield complex or negative eigenvalues. This event
completely disappears when and or only take higher
values. In practice, getting such inadequate solutions should
warn that more samples are required.

IV. FLUCTUATIONS OF THE ESTIMATOR

In this section, we shall study the fluctuations of themultiplic-
ities and eigenvalues estimators intro-
duced in Theorem 4. In particular, we establish a Central Limit
Theorem for the whole vector in the case where the entries of
matrix are Gaussian.
Theorem 6: Let Assumptions 1, 2, 3b hold true. Let

be the estimators obtained in Theorem
4. Then

...

...

where is a matrix admitting the decomposition
and matrix is the Jacobian matrix of

evaluated for and is defined in (12) and

where is a matrix whose entries are given
in (19), where and are two closed contours non-overlap-
ping which contain the support of and are counterclockwise
oriented.

(19)

Proof: The proof relies on the same techniques as devel-
oped in [15]. We outline hereafter the main steps and then pro-
vide the details.
By Theorem 4, the estimate vector

verifies the following system of equations:

where the ’s are the moment estimates provided by Lemma 1.

Using the integral representation of and
(cf. Section A in the Appendix and Formula

(24)), we get:

for . Denote by the set of contin-
uous functions from to endowed with the supremum norm

. In the same way as in [15], consider the
process: , where

Then, can be written as:

On the other hand, using the decomposition
, we can prove that:

for .
The main idea of the proof of the theorem lies in the following

steps:
1) Prove the convergence of the processes

and over the con-
tour by using Bai and Silverstein’s theorem [22].

2) Prove the convergence of
to a Gaussian

random vector with the help of the continuous mapping
theorem (cf. Theorem 7).
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3) Compute the limiting covariance between
and .

4) Conclude by expressing
as a linear function of the vector

.

A. Convergence of the Processes and

The cornerstone of the first step is the convergence of the
process

to a Gaussian process which is ensured in ([24], Lemma
9.11).
For the process , it has been proved

in ([15], Lemma 1) that it indeed converges to the process
where is a Gaussian process with mean

function zero and covariance function given by:

For the process , since

converges in distribution to . The convergence of the
process is achieved.

B. Fluctuations of the Moments

The next step is to prove the convergence of the vector
.

The convergence of to a Gaussian
random variable has been established in [15] where it has been
proved that:

where

The next task is to prove the convergence in distribution
of over the contour , for . Let

be defined as:

We want to show that converges in distribution
to a Gaussian vector. The continuous mapping theorem is useful
to transform one convergence to another.

Theorem 7 (cf. ([25], Th. 4.27)): For any metric spaces
and , let be random elements in with

and consider some measurable mappings :
and ameasurable set with a.s. such that

as . Then .

Consider the set:

Then, since (see ([24], Section 9.12)), the dom-
inated convergence theorem implies that the convergence of

leads to .
The continuous mapping theorem applies, thus giving:

It now remains to prove that the limit law is Gaussian.
For that, it suffices to notice that the integral can be written as
the limit of a finite Riemann sum and that a finite Riemann sum
of the elements of a Gaussian random vector is still Gaussian.
The convergence of and

to Gaussian random variables is not
sufficient to establish a CLT for the whole vector. It
remains to prove that any linear combination of

converges toward a Gaussian distribution, which can easily be
established in the same way as before. It implies that this
vector converges to a Gaussian vector. This ends the proof of
the fluctuations of the moments.

C. Computation of the Variance

We now come to the third step. We shall therefore evaluate
the quantities:

The details of the calculations are in Appendix B and yield the
formula (12) Let . We
have just proved that the vector converges asymptotically
to:

where

and is the matrix whose entries are
given by 19.
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Remark 10: The zeros in the variance simply follow from the
fact that [see (20) at the bottom of the page].

D. Fluctuations of the Eigenvalues Estimates

To transfer this convergence to
, we shall use Slutsky’s lemmawhich

is as below.
Lemma 2 (cf. [26]): Let be sequences of vector or

matrix random elements. If converges in distribution to a
random element , and converges in probability to a con-
stant , then

provided that is invertible.
We will show that satisfies the following linear system:

(21)

where is defined in (20) and converges in probability to
which is given by (12).
To this end, let us work out the expression of , the -th

element of .
If , it is easy to see that .
For is given by:

Then we take defined in (20). We can easily check that
(21) is satisfied and converges in probability to . It re-
mains to check that is invertible. Note that the non-singu-
larity of matrix has already been established in Section III,
where this property was required to prove the existence of an es-
timator. As a consequence, using Slutsky’s lemma, we deduce
that:

This ends the proof for the fluctuation.

Fig. 3. ExperiencedMSEwith when and .

V. SIMULATIONS

In this section, we compare the performance of the proposed
estimator with Mestre’s estimator [7] in Section V.A; we then
compare the proposed estimator with the estimator proposed by
Bai et al. [9] in Section V.B. We finally verify by simulations
the accuracy of the Gaussian approximation stated by the CLT
in Section V.C.

A. Comparison With Mestre’s Estimator—With and Without
Separability

As will be seen below, the separability assumption is com-
pulsory for Mestre’s method to be effective. If this assumption
holds true, a simple clustering procedure enables to estimate the
unknown multiplicities and Mestre’s method outperforms our
moment estimator (see Fig. 3).
If, however, the separability assumption is not met, then it is

not clear how to directly estimate (even roughly) the multiplici-
ties; and even if those were known, Mestre’s estimation method
has no methodological foundations (as the estimator is not even
consistent in this case!) and the computation of Mestre’s esti-
mator yields a systematic error (see Fig. 4 for instance).
A final remark is in order with respect to the separability as-

sumption: Although it is easy in simulations to generate data ful-
filling or violating the separability assumption, it is not an easy
task, while facing real data, to decide whether the separability
assumption holds true or not. Building such a test remains an
open problem, advocating for our procedure by default-unless

...
. . .

. . .
. . .

. . .
...

(20)
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Fig. 4. Experienced MSE with when and .

any extra argument emerges to support a separability assump-
tion. Otherwise stated, the non-separability assumption is much
more realistic in practical cases.
In the first experiment, we consider the case where the sepa-

rability condition holds true.We assume also that the covariance
matrix has three different eigenvalues ,
which are distributed as: . The ratio
is set to . The separability condition being met, the

clusters are well separated so that the multiplicities can be esti-
mated in a heuristic way based on the difference of the ordered
eigenvalues.More precisely, an empirical method for estimating
the multiplicities consists in the following steps:
• Arrange the eigenvalues of the covariance matrix in in-
creasing order: .

• Take indexes satisfying:

...

• Arrange these indexes in the increasing order:
. Empirical estimates of the multiplicities are thus given

by:

...

This empirical method has proved to be efficient in the asymp-
totic regime5.

5Applying exact separation results from Bai and Silverstein [27], [28], it
can be proved that the estimates of the normalized multiplicities are
asymptotically consistent.

Fig. 3 compares the performance of the Mestre’s estimator
using the aforementioned method for estimating the multiplici-
ties with that of the proposed estimator, in terms of MSE:

In this case, Mestre’s estimator outperforms the proposed esti-
mator. This can be attributed to numerical difficulties which will
be discussed in the next section.
In the second experiment, we consider the case where the

separability condition does not hold. In particular, we assume
that the covariance matrix has three different eigenvalues

, each with the same multiplicity, i.e.,
. We also set the ratio between the dimen-

sion of variables and the number of samples to 3/8, a ratio
which is too high for the separability condition to hold true. We
assume for our estimator that the multiplicities are not known,
a hypothesis that obviously cannot be used for Mestre’s esti-
mator. We thus favour Mestre’s estimator by assuming that it
knows perfectly the multiplicities. Fig. 4 compares the obtained
results in terms of MSE: for different values of and satis-
fying a constant ratio and 1000 realizations.
We note that as and increase, the estimator in [7] exhibits
an error floor, underlying the fact that without the separability
assumption, Mestre’s estimators are no longer consistent.

B. Comparison With Bai, Chen and Yao’s Method

The estimator proposed in [9] and our proposed estimator
are similar at first sight. The main difference lies in the inter-
mediate quantities which are estimated before estimating the
eigenvalues and their multiplicities. While the technique of [9]
is based on the numerical computation of the empirical mo-
ments , our technique rather relies on building
consistent estimators of the theoretical moments .
This difference induces important numerical consequences in
the computation of the estimates: In [9], the functional relation
between the quantities to be estimated and the empirical mo-
ments yields a system of equations whose
resolution relies on iterative methods (based for instance on the
functions fsolve or fminsearch in MATLAB) which are ex-
tremely slow.
On the other hand, the method proposed in this article is based

on a bijective system of equations that links the theoretical mo-
ments to the eigenvalues and their multiplicities, whose reso-
lution relies on simple computations: A matrix inversion and
solving a polynomial (see for instance end of Section III).
Simulation results indicate that our algorithm allows a great

gain of complexity compared to [9], while keeping the same
level of performance. Execution times for one realization are
provided in the following Table I for the same simulation setting
as the second experiment. Note that unlike our method which
exhibits low complexity, the complexity of the method of [9]
tends to increase exponentially as the dimensions and in-
crease.
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TABLE I
EXECUTION TIME TO OBTAIN AN ESTIMATOR FOR ONE REALIZATION (IN

SECONDS)

Fig. 5. Comparison of empirical against theoretical variances for
and and .

C. Accuracy of the Gaussian Approximation

Finally, we verify by simulations the accuracy of the Gaussian
approximation. We consider the case where there are two dif-
ferent eigenvalues and that are uniformly dis-
tributed. Unlike the first experiment, we assume that the multi-
plicities are not known. We represent in Fig. 5 the histogram for
and when and .We also represent in red

line, the corresponding Gaussian distribution. We note that as it
was predicted by our derived results, the histogram is similar to
that of a Gaussian random variable.

VI. CONCLUSION

The present work is a theoretical contribution to the important
problem of estimating the covariance matrices of large dimen-
sional data. Two important assumptions (separability condition,
exact knowledge of the multiplicity) have been in particular re-
laxed with respect to previous works. From a numerical point
of view, it should be noticed however, that the situation is more
contrasted: If the eigenvalues of are far away from each
other, then only the largest eigenvalue is well-estimated because
in the expression of the moments, the term corresponding to
the largest eigenvalue prevails. On the other hand, if the eigen-
values are too close to each other, matrix is ill-conditioned,
thus enlarging the induced error. These phenomena are inherent
to the moment method, and preliminary studies show that using

trigonometric moments might help mitigating these numerical
problems.

APPENDIX A
PROOF OF LEMMA 1

By Cauchy’s formula, write:

where is a counterclockwise oriented contour that surrounds
all the eigenvalues . Performing the changing vari-
able in the same manner as in [7], we get:

where the contour is counterclockwise oriented which con-
tains the whole support .
From (3), we can establish that:

thus yielding:

(22)

Plugging the relation:

into (22), we obtain:

(23)

Since is the derivative of ,

The second term on the right hand side of (23) is then equal
to zero. It remains thus to deal with . If , by
integration by parts, we obtain:

We thus obtain:

(24)
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This proves that the theoretical moments admit the following
integral representation:

(25)

(26)

Finally, we show that consistent estimates of can be obtained
by substituting the unknown term by its asymptotic
equivalent . Let the real quantities
given by:

...

Then, by the dominated convergence theorem and the fact that
with probability one ([24], Section 9.12), for all large
enough,

one obtains: for all

Consequently:

APPENDIX B
CALCULATION OF THE VARIANCE

In this section, we will show the calculations of the variance
matrix . The computation of has been carried out in [15]
where it was shown that is given by:

with and defined in the theorem. Using the fact that
together with Fubini’s theorem, the quantity

for , becomes:

Substituting by , we obtain Formula
(12) of for .
Finally, it remains to compute . Expanding

and , we obtain:

By integration by parts, we obtain:

Hence,

This extends the expression of for any
, thus yielding Formula (12).
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