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Abstract—This paper adresses the behavior of the mutual in-
formation of correlated multiple-input multiple-output (MIMO)
Rayleigh channels when the numbers of transmit and receive an-
tennas converge to �� at the same rate. Using a new and simple
approach based on Poincaré–Nash inequality and on an integra-
tion by parts formula, it is rigorously established that the mutual
information when properly centered and rescaled converges to a
standard Gaussian random variable. Simple expressions for the
centering and scaling parameters are provided. These results con-
firm previous evaluations based on the powerful but nonrigorous
replica method. It is believed that the tools that are used in this
paper are simple, robust, and of interest for the communications
engineering community.

Index Terms—Central limit theorem (CLT), correlated mul-
tiple-input multiple-output (MIMO) channels, large random
matrix theory, mutual information, Poincaré–Nash inequality.

I. INTRODUCTION

I T is widely known that high spectral efficiencies are at-
tained when multiple antennas are used at both the trans-

mitter and the receiver of a wireless communication system. In-
deed, consider the classical transmission model ,
where is the received signal, is the vector of transmitted
symbols, is a complex white Gaussian noise, and is the

multiple-input multiple-output (MIMO) channel ma-
trix with antennas at the receiver’s site and antennas at the
transmitter’s. Due to the mobility and to the presence of a large
number of reflected and scattered signal paths, the elements of
the channel matrix are often modeled as random variables.
Assuming a random model for this matrix, Telatar [1] and Fos-
chini [2] realized in the mid-1990s that Shannon’s mutual infor-
mation of such channels increases at the rate of for a
fixed transmission power [1]. The authors of [1] and [2] assumed
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that the elements of the channel matrix are centered, indepen-
dent and identically distributed (i.i.d.) elements. In this context,
a well-known result in Random Matrix Theory (RMT) [3] states
that the eigenvalue distribution of the Gram matrix where

is the Hermitian adjoint of converges to a deterministic
probability distribution as goes to infinity and converges
to a constant . Denote by
the mutual information of channel for a signal-to-noise ratio
at a receiver antenna equal to . One consequence of [3] is
that the mutual information per transmit antenna , being
an integral of a function with respect to the empirical eigen-
value distribution of , converges to a constant. This fact al-
ready observed in [1] sustains the assertion of a linear increase
of mutual information with the number of antennas. In addition,
this convergence proves to be sufficiently fast. As a matter of
fact, the asymptotic results predicted by the RMT remain rele-
vant for systems with a moderate number of antennas.

The next step was to apply this theory to channel models that
include a correlation between paths (or entries of ). One of the
main purposes of this generalization is to better understand the
impact of these correlations on Shannon’s mutual information.
Let us cite in this context the contributions [4]–[8], all devoted
to the study of the mutual information in the case where the el-
ements of channel’s matrix are centered and correlated random
variables. In [9], a deterministic equivalent is computed under
broad conditions for the mutual information based on Rice chan-
nels modeled by noncentered matrices with independent but not
identically distributed random variables. The link between ma-
trices with correlated entries and matrices with independent en-
tries and a variance profile is studied in [10].

One of the most popular correlated channel models used for
these mutual information evaluations is the so-called Kronecker
model where is a matrix with Gaussian
centered i.i.d. entries, and and are and ma-
trices that capture the path correlations at the receiver and at the
transmitter sides, respectively, [11], [12]. This model has been
studied by Chuah et al. in [5]. With some assumptions on ma-
trices and , these authors showed that converges to
a deterministic quantity defined as the fixed point of an integral
equation. Later on, Tulino et al. [8] obtained the limit of
for a correlation model more general than the Kronecker model.
Both these works rely on a result of Girko describing the eigen-
value distribution of the Gram matrix associated with a matrix
with independent but not necessarily identically distributed en-
tries, a close model as we shall see in a moment.

In [7], Moustakas et al. studied the mutual information for the
Kronecker model by using the so-called replica method. They
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found an approximation of accurate to the order
in the large regime. Using this same method, they also

showed that the variance of is of order one and
were able to derive this variance for large .

Although the replica technique is powerful and has a wide
range of applications, the rigorous justification of some of its
parts remains to be done. In this paper, we propose a new method
to study the convergence of and the fluctuations of .
Beside recovering the results in [7] and especially the strik-
ingly simple form of the variance, we establish the Central Limit
Theorem (CLT) for (for a related CLT in a non-
Gaussian context, see [13]). The practical interest of such a re-
sult is of importance since the CLT leads to an evaluation of the
outage probability, i.e., the probability that lies beneath a
given threshold, by means of the Gaussian approximation. Many
other works have been devoted to CLT for random matrices.
Close to our present article are [14]–[16].

In this article, we also would like to advocate the method used
to establish both the approximation of in the large regime
and the CLT. Due to the Gaussian nature of the entries of Matrix

, two simple ingredients are available. The first one is an In-
tegration by parts formula (17) that provides an expression for
the expectation of certain functionals of Gaussian vectors. This
formula has been widely used in RMT [17]–[19]. The second in-
gredient is Poincaré–Nash inequality (18) that bounds the vari-
ance of functionals of Gaussian vectors. Although well known
[20], [21], its application to RMT is fairly recent [19], [22] (see
also [23] and [24] where general concentration inequalities are
derived for functions of random matrices). This inequality en-
ables us to control the decrease rate of the approximation er-
rors such as the order error (note that the
Gaussian structure enters in two places: First the reduction to
matrices with independent entries and varying variance and then
integration by part and Poincaré–Nash bounds for the variance
of relevant spectral characteristics1). We believe that these tools
of rigorous and explicit analysis might be of great interest for
the communications engineering community (see, for instance,
the estimates obtained in [25] in the context of Ricean MIMO
channels).

The paper is organized as follows. In Section II, we introduce
the main notations; we also state the two main results of the
article. In Section III, we recall general matrix results and the
two aforementioned Gaussian tools. Section IV is devoted to
the proof of the first order result, that is the approximation of

. The CLT, also refered to as the second order result,
is established in Section V. Proof details are postponed to the
Appendix.

II. NOTATIONS AND STATEMENT OF THE MAIN RESULTS

A. From a Kronecker Model to a Separable Variance Model

Consider a MIMO system represented by a matrix
where is the number of antennas at the transmitter and

1It is interesting to note that once the first reduction has been made, others
techniques are available without assuming the Gaussian character—see for in-
stance [19].

is the number of antennas at the receiver and where is a
sequence of integers such that

(1)

a condition we shall refer to by writing . As-
suming the transmitted signal is a Gaussian signal with a
covariance matrix equal to (and thus, a total power equal
to one), Shannon’s mutual information of this channel is

, where is the in-
verse of the additive white Gaussian noise variance at each
receive antenna. The general problem we address in this paper
concerns the behavior of the mutual information for large
values of and in the case where the channel matrix ,
assumed to be random, is described by the Kronecker model

. In this model, and are, respectively,
and deterministic matrices and is random

with independent entries distributed acccording to the com-
plex circular Gaussian law with mean zero and variance one

.
It is well known that this model can be replaced with a simpler

Kronecker model involving a matrix with Gaussian independent
(but not necessarily identically distributed) entries. Indeed, let

(resp., ) be a Singular Value
Decomposition (SVD) of (resp., ), where (resp., )
is the diagonal matrix of eigenvalues of (resp., ),
then writes

where is a matrix, and are,
respectively, and diagonal matrices, i.e.

and

and has i.i.d. entries with distribution
since and are deterministic unitary ma-

trices. Since every individual entry of has the form

, we call a random matrix with a
separable variance profile.

B. Assumptions and Notations

The centered random variable will be denoted by
. Element of a matrix will be either denoted or

. Element of vector will be denoted or . Column
of matrix will be denoted . The transpose, the Hermitian

adjoint (conjugate transpose) of , and the matrix obtained by
conjugating its elements are denoted, respectively, , , and

. The spectral norm of a matrix will be denoted . If
is square, refers to its trace. Let , then the

operators and where is a complex number

are defined by and
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where and are the standard partial derivatives with respect
to and .

Throughout the paper, notation will denote a generic con-
stant whose main feature is not to depend on . In particular,
the value of might change from a line to another as long as
it never depends upon . Constant might depend on
and whenever needed, this dependence will be made more ex-
plicit. As usual, notation is a flexible shortcut for

and , for with as
(in the sense of (1)).

In order to study a deterministic approximation of and
its fluctuations, the following mild assumptions are required
over the two triangular arrays and

.

A1) The real numbers and are nonnegative and

the sequences and are uniformly bounded,

i.e., there exist constants and such that

and

where and are the spectral norms of and
.

A2) The normalized traces of and satisfy

and

In the sequel, we shall frequently omit the subscript and the
superscript .

The resolvent associated with is the matrix

. Of prime importance is the
random variable and its expectation

. We furthermore introduce the
deterministic matrix defined by

where

and the related quantity . In a symmetric
fashion, the matrix is defined by

where

We finally introduce the solutions of a deterministic
system.

Proposition 1: For every , the system of equations in

(2)

admits a unique solution satisfying ,

. Moreover, there exist nonnegative measures and
over such that

and (3)

where and .
Proof of Proposition 1 is postponed to the Appendix.
With and properly defined, we introduce the following

and diagonal matrices:

and

Notice in particular that and
by (2). We finally introduce the following quantities which are
required to express the fluctuations of :

(4)

Proposition 2: Assume that Assumptions A1) and A2) hold
and denote by

(5)

where and are given by (4). Then is well de-
fined, i.e., for . Moreover, there exist
nonnegative real numbers and such that

for (6)

Finally, is upper bounded uniformly in and for
, i.e., .

Proof of Proposition 2 is postponed to the Appendix .
1) Summary of the Main Notations: In order to improve the

readability of the paper, we gather all the notations in Table I.
As expressed there, there are three kinds of quantities:

1) Random quantities,
2) Deterministic quantities depending on the law of

via the expectation with respect to the entries of ,
3) Deterministic quantities which only depend on the ma-

trices and , sometimes via and (as defined in
Proposition 1) which are easily computable.

The main goal of the forthcoming computations will be to ap-
proximate elements of the first and second kind by elements of
the third kind.

C. Statement of the Main Results

We now state the main results. Theorem 1 describes the first
order approximation of the mutual information while
Theorem 2 describes its fluctuations when centered with respect
to its first order approximation.
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TABLE I
SUMMARY OF THE MAIN NOTATIONS

Theorem 1: Let be a matrix whose elements
are independent complex Gaussian variables such that

and where the diagonal matrices
and satisfy Assumptions A1) and A2). Let

. Then, we have

(7)

as (in the sense of (1)) where

and where is the unique positive solution of the
system

Theorem 2: Assume that the setting of Theorem 1 holds and
let

where and are defined in (4). Then the following
convergence holds true:

where stands for the convergence in distribution.

III. MATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensively all
along the paper. In Section III-A, we recall well-known matrix

results; in Section III-B, we present two fundamental proper-
ties of Gaussian models: The Integration by parts formula and
Poincaré–Nash inequality for Gaussian vectors. Section III-C
is devoted to a cornerstone approximation result which roughly
states that and can be replaced with and up to some
well-quantified error. In Section III-D, various variance esti-
mates and approximation rules are stated.

A. General Results

1) Some Matrix Inequalities: Let and be two
matrices with complex elements. Then

(8)

Assuming is Hermitian nonnegative, we have

(9)

where is the spectral norm (see [26]).
2) The Resolvent: The Resolvent matrix of matrix

is defined as . It is of con-
stant use in this paper and we give here some of its properties.
The following identity, also known as the Resolvent identity:

(10)

follows from the mere definition of . Furthermore, the spec-
tral norm of the resolvent is readily bounded by one

for (11)

3) Bounded Character of the Mean of Some Empirical Mo-
ments: Let , , be
a sequence of deterministic diagonal matrices. Assume
(A1) and furthermore that . Then, for every
integer , we have

(12)
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Let us give a sketch of proof. Expanding the left-hand side of
(12) yields

A close look at the argument of the operator implies that, due
to the independence of the , we only have degrees of
freedom in the choice of the indices and . As all moments
of the Gaussian law exist and as , , and are
bounded, this sum is of order 1 as .

4) Differentiation Formulas: Let be a complex
matrix and let . Let be a perturbation
of . Then

(13)

where is negligible with respect to in a neigh-
borhood of 0. Writing , we need the ex-

pression of the partial derivative . Using (13), we
have

(14)

where is the Kronecker function, i.e., otherwise
. Similarly, we can establish

(15)

The differential of is given by
. We use this equation

to derive the expression of also needed below:

(16)

B. Gaussian Tools

1) An Integration by Parts Formula for Gaussian Func-
tionals: Let be a complex Gaussian random
vector whose law is determined by , ,
and . Let be a

complex function polynomially bounded together with its
derivatives, then

(17)

This formula relies on an integration by parts and thus is referred
to as the Integration by parts formula for Gaussian vectors. It is

widely used in Mathematical Physics [27] and has been used in
Random Matrix Theory in [17], [18].

2) Poincaré–Nash Inequality: Let and be as pre-
viously and let and

. Then the following in-
equality holds true:

(18)

A proof of this inequality is available in [19] in the real case; see
also [22]. When is the vector of the stacked columns of matrix

, i.e., , formula (17) becomes

(19)

while inequality (18) writes

(20)
Poincaré–Nash inequality turns out to be extremely useful to

deal with variances of various quantities of interest related to
random matrices. In order to give right away the flavor of such
results, we state and prove the following.

Proposition 3: Assume that the setting of Theorem 1 holds
and let be a real diagonal matrix whose spectral
norm is uniformly bounded in . Then

Proof: We apply inequality (20) to the function
. Using (14), we have

Therefore, denoting by the upper bound and
noticing that , we have:

where inequality follows from (9), follows from (11) and
from the boundedness of and , and follows from
(12).
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C. Approximation Rules

The following theorem is crucial in order to prove Theorems
1 and 2. Roughly speaking it allows to replace matrices and

by and up to a well-quantified small error.

Theorem 3: Let and be two sequences of respec-
tively and diagonal deterministic matrices whose
spectral norm are uniformly bounded in , then the following
hold true:

(21)

(22)

Proof of Theorem 3 is postponed to the Appendix.

D. More Variance Estimates and More Approximation Rules

We collect here a few results whose proofs rely on the Integra-
tion by parts formula (19), on Poincaré–Nash inequality, and on
Theorem 3. The proofs of these results, although systematic, are
somewhat lengthy and are therefore postponed to the Appendix.
These results will be used extensively in Section V.

Proposition 4: In the setting of Theorem 1, let and
be two sequences of respectively and diag-
onal deterministic matrices whose spectral norm are uniformly
bounded in . Consider the following functions:

Then,
1) The following inequalities hold true:

2) The approximations hold true as shown in (23)–(24) at the
bottom of the page.

IV. FIRST-ORDER MOMENT APPROXIMATION: PROOF OF

THEOREM 1

This section is devoted to the proof of the following approx-
imation:

(25)

where

(26)

This result already appears in [7] and is proved under greater
generality in [9]. The proof presented here is new and relies on
Gaussian tools.

Outline of the Proof: The proof is divided into three
steps. We first make some preliminary remarks. No-
tice that the mutual information can be expressed as

. In particular

(27)

In order to study the asymptotic behavior of , it is thus

enough to study for up to an integra-
tion. The Resolvent identity (10) yields

We are therefore led to the study of . We now de-
scribe the three steps of the proof.

A. In the first part of the proof, we expand with the
help of the Integration by parts formula (19). This deriva-
tion will bring to the fore the deterministic diagonal ma-
trix , and Poincaré–Nash inequality will then allow us
to obtain the following approximation:

for every diagonal matrix with a bounded spectral
norm. Here are the main steps, gathered in an informal
way. Differentiating the term , we obtain

from which we will extract later on. At this point,
Poincaré–Nash inequality yields some decorrelation up to

and we obtain

This approximation allows us to isolate
shown in the equation at the bottom of the following page.
Now summing over and using the Resolvent identity

in the previous equa-
tion yields

that is

All the technical details are provided in Section IV-A.

(23)

(24)
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B. The second step follows from the approximation rule (21)
stated in Section III-C, which immediately yields

This in turn will imply that

where follows from the fact that
.

C. In the third step, we integrate the previous equality:

We identify with as given by (26),
and check that .

A. Development of and Approximation by

In order to study , we first consider the diagonal
entries of . For each index , we have

We now apply the Integration by parts formula (19) to the sum-
mand of the right-hand side for function defined as

. This yields

(28)

Therefore

(29)

from which we extract later on. Recall at this point that
by Proposition 3. Recall also

the following notations: , , and
Plugging the relation into (29), we get

(30)

Solving this equation w.r.t. provides

where for (31)

Summing (31) over yields

(32)

where is the diagonal matrix

and . In order to obtain an expression for ,
we plug the identity (32) into the Resolvent identity

and obtain

(33)

with . Let be a diagonal matrix
with bounded spectral norm. Multiplying (33) by ’s compo-
nents and summing over yields

where . As is zero-mean,

. In particular, Cauchy–Schwarz inequality
yields

Recall that by Proposition 3. Since
and are both bounded by Assumption A1) and by the
definitions of and , one can directly apply the result of
Proposition 4 to in order to get .

We have, therefore, proved the following proposition.

Proposition 5: In the setting of Theorem 1, let be a uni-
formly bounded diagonal matrix. Then for every

,

(34)

B. The Deterministic Approximation

Proposition 5 provides a deterministic equivalent to
since the matrix is deterministic; however

its elements still depend on , which itself
depends on , an unknown parameter.
The next step is therefore to apply Theorem 3 to approximate
the matrix by , which only depends on and and
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on and , the solutions of (2). Theorem 3 together with (34)
imply that:

(35)

Since only depends on and , (35) provides a deterministic
equivalent of in terms of and . Note that taking

yields in particular while a direct
application of Theorem 3 for yields .

We are now in a position to describe the behavior of
by using the Resolvent identity. From (10)

and (35), taking , we immediately obtain

As , we
eventually get that

(36)

where the error is a term.

C. Recovering the Deterministic Approximation of

As mentionned previously, is a term, i.e.,
. One can easily keep track of in the

derivations that lead to (36) and prove that is bounded on
the compact interval . In particular, on
the compact interval for some . The proof of this
fact is omitted.

As is uniformly bounded on , we have
. Therefore

Consider now

where function is defined by

One can easily check that

and

As the pair satisfies (2), the above partial derivatives
evaluated at point are zero. Therefore

(37)

which in turn implies (7). Theorem 1 is proved.

Remark 1 (on the Deterministic Approximation ): The de-
terministic approximation can be used to approximate func-

tionals of the eigenvalues of other that the mutual infor-
mation (see for instance [9]). This
relies on a specific representation of . The spectral theorem
for Hermitian matrices yields the integral representation:

where represents the empirical distribution of the eigen-
values of . It can be shown that admits a similar
representation:

where is a probability measure. Finally, one can prove that
converges to zero almost

surely for every continuous bounded function (see [9], for de-
tails).

V. SECOND-ORDER ANALYSIS: PROOF OF THEOREM 2

This section is devoted to the proof of the Central Limit The-
orem

(38)

Denote by the characteristic
function of . We first reduce the problem in the
following way.

Proposition 6: Assume that for every ,

(39)

then (38) holds true.

Proof: 2 We first prove that the sequence is
tight (we drop the dependence in ). Recall from Proposition 2
that . Let . For small
enough, we have

Moreover, since , the Dominated Conver-
gence Theorem yields

for large enough. Now, given a real random variable with
characteristic function , the following inequality holds true:

(see, for instance, [28, eq. (26.22), Theorem 26.3]). Applying
this inequality to , we obtain

2This proof simplifies an earlier proof by the authors and was suggested by
one of the reviewers whom the authors would like to thank.
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for large enough; in other words, is tight. Tightness
of follows from the fact that . We
are now in position to conclude. Since is tight,
one can extract a subsequence such that
converges. Now, since belongs to a compact set, one can
extract a converging subsequence from , say , such that

. From (39), we have

or equivalently , and the limit of

(which is the same as the one of the subse-
quence ) is necessarily .

We have proved that for every subsequence such that
converges,

The result remains true for the whole sequence
by Corollary of [28, Theorem 25.10]

Outline of the Proof of (39): The proof of the convergence of
toward zero is divided into two steps.

A. We first differentiate with respect to in order to
obtain a differential equation of the form:

(40)

In order to obtain the differential (40), we first develop
with the help of the Integration by parts formula

(19). We then use Poincaré–Nash inequality to prove that
relevant variances are of order . This will en-
able us to decorrelate various expectations, i.e., to express
them as products of expectations up to negligible terms.
We shall then use the approximation rules stated in Propo-
sition 4 in Section III-D to deal with the obtained expec-
tations.

B. The second step is devoted to identify the variance, that is
to prove the identity

where is given by (5), i.e.,
.

C. The third step is devoted to the integration of (40). Instead
of directly integrating (40), we introduce

which satisfies the following differen-
tial equation:

(41)

Taking into account the obvious facts that ,
and therefore that , we shall

obtain that

and prove that . This
will yield in turn that

where follows from Proposition 2.

The theorem will then be proved.

A. The Differential Equation

Recall that where
. As by (37), we obtain

(42)

Since by (27), we have:

(43)

Applying the Integration by parts formula (19) to
(which can be written for

) and using the differentiation formulas
(15) and (16) yields

(44)

We now sum over index and obtain

where . Writing yields

(45)

We now take into account that and sum
over : see (46) at the top of the following page.

By the Resolvent identity (10),

. Replace now in (46), recall that

and sum over to obtain
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(46)

(47)

Thanks to Theorem 3

(48)

In order to deal with , we apply the results of Proposition
4 related to in the particular case where and

. In this case, writes and
Cauchy–Schwarz inequality yields

Therefore

We now use the approximation for given in Proposi-
tion 4. By Theorem 3, we can replace (resp., ) by (resp.,

) in the obtained expression. We, therefore, obtain (49) shown
at the bottom of the page.

The term can be handled similarly. We apply the re-
sults of Proposition 4 related to in the particular case
where and . In this case, writes

and Cauchy–Schwarz inequality
yields

We therefore obtain

(50)

where follows from Theorem 3. It remains to deal with the

term . To this end, we shall rely on (46) and develop

the term . The Resolvent identity yields

Plugging this equality into (46) and using ,
after some computations, we obtain (51) shown at the bottom
of the page, where follows from Theorem 3, Proposition 4,
and Proposition 5. We therefore obtain

(49)

(51)
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Plugging (51) into (50), and the result together with (48) and
(49) into (47), and getting back to (43) and (42), we obtain

where

(52)

Equation (40) is established, and the first step of the proof is
completed.

B. Identification of the Variance

In order to finish the proof, it remains to prove that

where
(53)

To this end, we first begin by computing the derivatives of
and . We shall prove that

and

(54)

We only derive , the computations being similar in the other
case. We first expand the expression of , and obtain

(55)

Let us now compute

(56)

A similar computation yields . Com-
bining both equations yields

We now plug this into (55) and obtain

(57)

Recall now that the mere definition of , , , and yields

(58)

Using (58), we obtain

(59)

(60)

It remains to plug (59) in(57) to conclude the proof of (54).
We are now in position to prove (53). The main idea in the

following computations is to express (52) as a symmetric quan-
tity with respect to and on the one hand and and , on
the other hand. To this end, we split in (52) as

. We first work on

where follows from (59), and from (60). We now look
at as shown in the first equation at the bottom of the page,
where the last equality follows (58) again. We therefore have the
second equation at the bottom of the page, where follows
from (54). This concludes the identification of the variance.

C. Integration of the Differential (40)

Let us introduce . Due to (40),
readily satisfies the following differential equation:

(61)
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As in Section IV-C, one can easily prove that for
every . As , we get

Due to Proposition 5, is bounded from above uniformly
in and . This fact, together with implies
that

This in turn yields

where the last equality follows from the fact that is uni-
formly bounded by by Proposition 2.

APPENDIX

A. Proof of Proposition 1

Let us first establish the existence and uniqueness of the so-
lution of (2). To this end, we plug the expression of in (2).
The system of two equations reduces to the single equation

where is defined by

(62)

which is itself equivalent to where we get the equa-
tion at the bottom of the page. The function is con-
tinuous, decreasing and satisfies and

. Therefore, the equation has a unique solution
.

The integral representation (3) of and is related to the
Stieltjes representation of a class of analytic functions. We refer
to [9, Sec. 3.2] where a more general result is proven and skip the
details. Be aware however that in this paper and in [9] slightly
differ (but are related by ), so do
the ’s.

B. Proof of Proposition 2

In order to prove Proposition 2, it is sufficient to first prove
that is bounded away from zero and then to prove that
the same quantity is strictly lower than 1, uniformly in . We
shall proceed into four steps.

1) A priori estimates for , , and : The mere definition of
and yields

and

(63)

Using these upper estimates, one gets the following lower
estimates:

and (64)

One can notice that due to Assumption (A2), these lower
bounds are uniformly bounded in away from zero. Fi-
nally a straightforward application of Jensen’s inequality
yields:

i.e.

Similarly (65)

2) An estimate over . The following equalities are straight-
forward (see, for instance, (56)):

and

(66)

In particular,
which is eventually bounded. Recall that admits the
following representation:

where is a nonnegative mesure satisfying
. In particular, one obtains

(67)
3) The quantity is bounded away from zero, uni-

formly in and for . Eliminating between the
two equations in (66) yields
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where the last equality follows from the identity
which yields .

Otherwise stated

This immediately implies that is positive. In order
to check that it is bounded away from zero uniformly in ,
notice first that . Collecting now the
previous estimates (65) and (67), we obtain

Using (64) and Assumption (A1), we obtain that is
bounded away from zero, uniformly in and for .

4) The quantity is strictly bounded above from , uni-
formly in : The inequalities (65) together with(64) yield

This completes the proof of Proposition 2.

C. Proof of Theorem 3

We first give a sketch of the proof to emphasize the main ideas
over the technical aspects of the proof.

1) We first prove that the asymptotic behavior of
is directly related to the be-

havior of . Similarly, is

related to .
2) We extend the definition of from to

and establish an integral representation

As a consequence of the integral representations for ,
and , we prove that , and are bounded analytic func-
tions on every compact subset of .

3) As a consequence of this detour in the complex plane, we
prove the following weaker result. For every uniformly
bounded diagonal matrix , the following holds true:

4) We then refine the previous result in order the get the
sharper rate of convergence instead of .

The theorem will then be proved.
1) The Asymptotic Behavior of and

its Relation With : The standard matrix identity

immediately yields

and

Therefore

(68)

2) An Integral Representation for , and Bounds Over ,
and : Recall that .
This function readily extends from to .
Moreover, the following representation holds true:

(69)

where is a uniquely defined positive measure on such
that . To prove this, we introduce the eigen-
value/eigenvector decomposition of matrix

where and
represent its eigenvalues and eigenvectors, respectively. The

random variable can be
written as

where is the nonnegative random measure defined by

Consider now the measure defined by , that is
for every Borel set . It is clear that

is given by (69), and that
is given by

As , as expected and repre-
sentation (69) implies that is analytic over .

Let stand for the distance from element
to . Then the following holds true for every :

(70)

Similarly, (3) yields that

(71)

A similar result holds for . These upper bounds imply in
particular that , and are uniformly bounded on
each compact subset of .
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3) A Weaker Result as a Consequence of Montel’s Theorem:
We first establish that for every diagonal matrix uniformly
bounded

(72)

We take (68) as a starting point. Matrices , , , and
have their spectral norms bounded by one for

and matrices , , and are also uniformly bounded by
assumption. Therefore, the terms and

are also bounded. In order to prove (72),
it is sufficient to prove that . To this end, we
make use of Proposition 5 and write as

where . Using relation (68) for , we
immediately get that

(73)

As , we have

as soon as , where is defined in (1). Therefore, if
, then

for large enough. Equation (73) thus implies that

i.e.,

for (74)

This in particular implies that for ;
however, it remains to establish this convergence for . To
this end, observe that is analytic in and
bounded on each compact subset of . Montel’s theorem
asserts that the sequence of functions is compact
and therefore that there exists a converging subsequence which
converges toward an analytic function. Since this limiting func-
tion is zero on by (74), it must be zero everywhere due
to the analycity. Therefore from every subsequence, one can
extract a subsequence that converges toward zero. Necessarily,

converges to zero for every and in
particular for . This establishes (72).

Even if the convergence rate of is
for , Montel’s theorem does not imply that the conver-
gence rate of remains elsewhere. There-
fore, there remains some work to be done in order to prove that

for each .

4) End of the Proof: We take (73) as a starting point. Equa-
tion (72) imply that for each

(75)

where and . Thanks to
Proposition 6, (75) implies that

Equation (73) thus clearly implies that is of the same
order of magnitude as , i.e., that .
Theorem 3 is proved.

D. Proof of Proposition 4 -(1)—Variance Controls

Consider first . We use
Poincaré–Nash inequality (20) to control the variance of

. It writes

(76)

We have .
From the differentiation formula (14), we have

Therefore, after a straightforward computation, we obtain
with

and

The first term of the right-hand side of inequality (76) can be
treated as follows:

(77)
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Let . Using inequalities (8), (9) and (11) and
Cauchy–Schwarz inequality, we have (78) shown at the bottom
of the page, where the last inequality is due to (12). Turning
to the second term of the right-hand side of (77), we have (79)
shown at the bottom of the page. The second term of the right-
hand side of Inequality (76) is treated similarly. This proves that

.

Consider now . The
proof being quite similar to the previous one, we just
give its main steps. By (20) we have

. A com-

putation similar to above yields
where

We have the third equation at the bottom of the page. The first
two terms of the right-hand side can be bounded by a series of
inequalities similar to inequalities (78). The third term can be
bounded as in (79). This ends the proofs of the variance controls
in Proposition 4.

E. Proof of Proposition 4-(2)—Approximation Rules

Consider first . We write

and apply the Integration by parts formula (19) to the summand.
Using identity (15), we have the fourth equation at the bottom
of the page. By taking the sum over the index , we obtain

(78)

(79)
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Writing now and then grouping together the terms
with , we obtain

We now sum over and , and obtain

with

Applying Cauchy–Schwarz inequality, Proposition 3 and the
variance controls in Proposition 4, we get .

By Theorem 3,

. By Theorem 3 and Proposition 5, we obtain
. This ends the

proof of (23).
Consider now In order to

compute , we shall need the following intermediate re-
sult:

Lemma 1: In the setting of Theorem 1, let
. Then

1) The following estimate holds true:

2) moreover

Proof: In order to prove Lemma 1-(1), we use the Resol-
vent identity (10) and write

Since , we only need to
deal with each term of the right-hand side. By Proposition
3, and by Proposition 4 -(1),

and the proof of Lemma
1-(1) is completed.

Let us now prove Lemma 1-(2). The Resolvent identity (10)
yields

(80)

We then write

and apply the differentiation formula (14) to the summand. After
derivations similar to (44)–(45), we obtain

(81)

Taking the sum over and combining with (80) yields

(82)

Taking now the sum over , we obtain

(83)

where

Let us first deal with the terms and . Cauchy–Schwarz in-
equality together with Proposition 3 and Proposition 4-(1) yield

. Proposition 5 together with Theorem 3 yield
. We now look at . Due to Proposition

4-(1) and to Lemma 1-(1), we have
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where follows from (23) in Proposition 4. It remains to plug
the values obtained for , and into (83) to obtain

Recalling Proposition 2, we can divide by and obtain
the desired result.

We can now go back to the computation of . Let us
give the main steps of the derivation. Expanding yields:

We replace the summand by the ex-

pression given by (81). We then replace the term
in (81) by the expression given by (82). We sum over and and
notice afterwards that the terms where is involved are of order

. We therefore end up with the first equation at the top of
the page. We first decorrelate by using the variance estimates
in Proposition 4-(1) and Lemma 1-(1) and obtain the second
equation at the top of the page. It remains to apply Theorem 3,
Proposition 4 and Lemma 1-(2) to the terms in the right-hand
side of the previous equality to conclude.
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