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Abstract—This paper is devoted to the study of the performance
of the linear minimum mean-square error (LMMSE) receiver
for (receive) correlated multiple-input multiple-output (MIMO)
systems. By the random matrix theory, it is well known that the
signal-to-noise ratio (SNR) at the output of this receiver behaves
asymptotically like a Gaussian random variable as the number of
receive and transmit antennas converge to �� at the same rate.
However, this approximation being inaccurate for the estimation
of some performance metrics such as the bit error rate (BER) and
the outage probability, especially for small system dimensions,
Li et al. proposed convincingly to assume that the SNR follows
a generalized gamma distribution which parameters are tuned
by computing the first three asymptotic moments of the SNR. In
this paper, this technique is generalized to (receive) correlated
channels, and closed-form expressions for the first three asymp-
totic moments of the SNR are provided. To obtain these results,
a random matrix theory technique adapted to matrices with
Gaussian elements is used. This technique is believed to be simple,
efficient, and of broad interest in wireless communications. Simu-
lations are provided, and show that the proposed technique yields
in general a good accuracy, even for small system dimensions.

Index Terms—Bit-error rate (BER), correlated channels, gamma
approximation, large random matrices, minimum mean-square
error (MMSE), multiple-input multiple-output (MIMO), outage
probability, signal-to-noise ratio (SNR).

I. INTRODUCTION

S INCE the mid-1990s, digital communications over mul-
tiple-input multiple-output (MIMO) wireless channels

have aroused an intense research effort. It is indeed well known
since Telatar’s work [1] that antenna diversity increases signif-
icantly the Shannon mutual information of a wireless link; in
rich scattering environments, this mutual information increases
linearly with the minimum number of transmit and receive
antennas. Since the findings of [1], a major effort has been
devoted to analyze the statistics of the mutual information.
Such an analysis has strong practical impacts: For instance, it
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can provide information about the gain obtained from sched-
uling strategies [2]; it can be used as a performance metric to
optimally select the active transmit antennas [3]; etc.

The early results on MIMO channels mutual information con-
cerned channels with centered independent and identically dis-
tributed (i.i.d.) entries. It is of interest to study the statistics of
this mutual information for more practical (correlated) MIMO
channels. In this course, many works established the asymp-
totic normality of the mutual information in the large-dimen-
sion regime for the so-called Kronecker correlated channels [4],
[5], for general spatially correlated channels [6], and for general
variance profile channels [7].

Another performance index of clear interest is the
signal-to-noise ratio (SNR) at the output of a given receiver.
In this paper, we focus on one of the most popular receivers,
namely the linear Wiener receiver, also called linear minimum
mean-lsquared error (LMMSE) receiver. In this context, an
outage event occurs when the SNR at the LMMSE output
lies beneath a given threshold. One purpose of this paper is to
approximate the associated outage probability for an important
class of MIMO channel models. Another performance index
associated with the SNR is the bit-error rate (BER) which will
be also studied herein.

Outage probability approximations have been provided in re-
cent works for various channels, under very specific technical
conditions (in the case where the moment generating function
(MGF) [8] or the probability density function (pdf) [9] have
closed-form expressions; when a first-order expansion of the pdf
can be derived [10]; in the more general case, where the mo-
ment generating function can be approximated by using Padé
approximations [11], etc.). All these results deal with specific
situations where the statistics of the SNR could be derived for
finite system dimensions.

Alternatively, by making use of large random matrix theory,
one can study the behavior of the SNR in the asymptotic regime
where the channel matrix dimensions grow to infinity. For fairly
general channel statistical models, it is then possible to prove the
convergence of the SNR to deterministic values and even estab-
lish its asymptotic normality (see, for instance, [12] and [13]).
However, this Gaussian approximation is not accurate when the
channel dimensions are small. This is confirmed in, e.g., [14],
where it is shown that the asymptotic BER based on the sole
Gaussian approximation is significantly smaller than the empir-
ical estimate. A more precise approximation of the BER or the
outage probability is expected if one chooses to approximate
the SNR probability distribution with a distribution: 1) which
is supported by (indeed, a Gaussian random variable takes
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negative values which is not realistic), 2) which is adjusted to
the first three moments of the SNR instead of the first two mo-
ments needed by the Gaussian approximation.

In this line of thought, Li, Paul, Narasimhan, and Cioffi [15]
proposed to use alternative parameterized distributions (gamma
and generalized gamma distributions) whose parameters are set
to coincide with the asymptotic moments of the output SNR.
This approach was derived for (transmit) correlated channels,
and asymptotic moments were provided for the special case of
uncorrelated or equicorrelated channels. For the general corre-
lated channel case, only limiting upper bounds for the first three
asymptotic moments were provided. Based on Random Matrix
Theory and especially on the Gaussian mathematical tools elab-
orated in [4] and further used in [16], we derive closed-form ex-
pressions for the first three moments, generalizing the work of
[15] to a general (receive) correlated channel. Using the gener-
alized gamma approximation, we provide closed-form expres-
sions for the BER and numerical approximations for the outage
probability.

Paper Organization

In Section II, we present the system model and derive the
SNR expression. Then we review in Section III the generalized
gamma approximation before providing the asymptotic central
moments in the next section. Finally, we discuss in the last sec-
tion the simulation results.

II. SYSTEM MODEL AND SNR EXPRESSION

We consider an uplink transmission system, in which a base
station equipped by correlated antennas detects the symbols
of a given user of interest in the presence of interfering users.
The -dimensional received signal can be written as

where is the transmitted complex vector
signal with size satisfying , and is the

channel matrix. We assume that this matrix can
be written as

where is an Hermitian nonnegative matrix that cap-
tures the correlations at the receiver, is
the deterministic matrix of the powers allocated to the different
users, and ( being the th column) is
an complex Gaussian matrix with centered unit
variance (standard) i.i.d entries. To detect symbol and to mit-
igate the interference caused by users , the base station
applies the LMMSE estimator, which minimizes the following
metric:

Let , then it is well known that the LMMSE
estimator is given by

Writing the received vector where is the rel-
evant term and represents the interference-plus-noise term,
the SNR at the output of the LMMSE estimator is given by

. Plugging the expression of given
above into this expression, one can show that the SNR is
given by

with and . Let
be a spectral decomposition of . Then, is

written as

where (resp., ) is an vector
with complex independent standard Gaussian entries (resp., an

matrix with independent Gaussian entries).
Under appropriate assumptions, it can be proved that ad-

mits a deterministic approximation as , the ratio
being bounded below by a positive constant and above by a fi-
nite constant. Furthermore, its fluctuations can be precisely de-
scribed under the same asymptotic regime (for a full and rig-
orous computation based on random matrix theory, see [13]).
As it will appear shortly, a deterministic approximation of the
third centered moment of is needed and will be computed
in the sequel.

III. BER AND OUTAGE PROBABILITY APPROXIMATIONS

A. A Quick Reminder of the Generalized Gamma Distribution

Recall that if a random variable follows a generalized
gamma distribution , where and are, respectively,
referred to as the shape and scale parameters, then

and

The pdf of the generalized gamma distribution with parameters
does not have a closed form expression but its MGF

is given as [17]:

if

if

if
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B. BER Approximation

Using quadrature phase-shift keying (QPSK) constellations
with Gray encoding [18], and assuming that the noise at the
LMMSE output is Gaussian, the BER is given by

where and the expectation is taken
over the distribution of the SNR . Based on the asymptotic
normality of the SNR, [19] and [20] proposed to use the approx-
imation of the BER given by

where denotes an asymptotic deterministic approximation
of the first moment of . It was shown however in [15] that
this expression is inaccurate since a Gaussian random variable
allows negative values and has a zero third moment while the
output SNR is always positive and has a nonzero third moment
for finite system dimensions. To overcome these difficulties, Li
et al. [15] approximate the BER by considering first that the
SNR follows a gamma distribution with scale and shape ,
these parameters being tuned by equating the first two moments
of the gamma distribution with the first two asymptotic moments
of the SNR. However, the third asymptotic moment was shown
to be different from the third moment of the gamma distribu-
tion which only depends on the scale and shape . In light of
this consideration, Li et al. [15] refine this approximation and
consider that the SNR follows a generalized gamma distribu-
tion which is adjusted by assuming that its first three moments
equate the first three asymptotic moments of the SNR. As ex-
pected, this approximation has proved to be more accurate than
the gamma approximation, and so will be the one considered
in this paper. Next, we briefly review this technique, which we
will rely on to provide accurate approximations for the BER and
outage probability.

Let and denote, respectively,
the deterministic approximations of the asymptotic central mo-
ments of . Then, the parameters and are determined by
solving

and

thus giving the following values:

and

Using the MGF, one can use the following approximation of
the BER by using the following relation that holds for QPSK
constellation [21]:

(1)

Note that similar expressions for the BER exist for other con-
stellations and can be derived by plugging the following identity
involving the function [21]:

into the BER expression.

C. Outage Probability Approximation

Only the MGF has a closed-form expression. Knowing the
MGF, one can compute numerically the cumulative distribu-
tion function by applying the saddle-point approximation tech-
nique [22]. Denote by the cumulant gener-
ating function, by the threshold SNR and by the solution of

. Let and be given by

and . The saddle-point approximate of the
outage probability is given by

(2)

where and de-
note, respectively, the standard normal cumulative distribution
function and probability distribution function.

So far, we have presented the technique that will be used in
simulations for the evaluation of the BER and outage proba-
bility. This technique is heavily based on the computation of
the three first asymptotic moments of the SNR , an issue that
is dealt with in the next section.

IV. ASYMPTOTIC MOMENTS

A. Assumptions

Recall from Section II the various definitions . In
the following, we assume that both and go to , their
ratio being bounded below and above as follows:

In the sequel, will refer to this asymptotic regime.
We will frequently write and to emphasize the depen-
dence in , but may drop the subscript as well. Assume the
following mild conditions.

Assumption A1: There exist real numbers and
such that

and

where and are the spectral norms of and .
Assumption A2: The normalized traces of and sat-

isfy

and
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B. Asymptotic Moments Computation

In this subsection, we provide closed-form expressions for the
first three asymptotic moments. We shall first introduce some
deterministic quantities that are used for the computation of the
first, second, and third asymptotic moments.

Proposition 1: (cf. [4]) For every integer and any ,
the system of equations in

admits a unique solution satisfying
. Let and be the and diagonal

matrices defined by

and

Note that in particular: and . Define
also and as and . Finally,
replace by and introduce the following deterministic quan-
tities:

As usual, means that is uniformly
bounded as . Then, the first three asymptotic moments
are given by the following theorem.

Theorem 1: Assuming that the matrices and satisfy the
conditions stated in A1 and A2, then the following convergences
hold true.

1) First asymptotic moment [12], [13]

and

2) Second asymptotic moment [12], [13]

and

3) Third asymptotic moment

and

The two first items of the theorem are proved in [13] (beware
that the notations used in this article are the same as those in [4]
and slightly differ from those used in [13]). Proof of the third
item of the theorem is postponed to the Appendix.

Remark 1: One can note that the third asymptotic moment
is of order . This is in accordance with the asymptotic
normality of the SNR, where the third moment of

will eventually vanish, as this quantity becomes closer
to a Gaussian random variable. However, its value remains sig-
nificant for small-dimension systems.

V. SIMULATION RESULTS

In our simulations, we consider a MIMO system in the up-
link direction. The base station is equipped with receiving
antennas and detects the symbols transmitted by a particular
user in the presence of interfering users. We assume that

the correlation matrix is given by with

. Recall that is the matrix of the interfering users’
powers. We set (up to a permutation of its diagonal elements)
to

if
if

where is the power of the user of interest. For with
, we assume that the powers of the interfering sources

are arranged into five classes as in Table I. We investigate the
impact of the correlation coefficient on the accuracy of the
asymptotic moments when the input SNR is set to 15 dB for

(Fig. 1) and (Fig. 2). In these figures, the rela-
tive error on the estimated first three moments ( and

denote, respectively, the asymptotic and empirical moment)
is depicted with respect to the correlation coefficient . These
simulations show that when the number of antennas is small,
the asymptotic approximation of the second and third moments
degrades for large correlation coefficients ( close to one). De-
spite these discrepancies for close to , simulations show that
the BER and the outage probability are well approximated even
for small system dimensions. Indeed, Fig. 3 shows the evolu-
tion of the empirical BER and the theoretical BER predicted by
(1) versus the input SNR for different values of and . In
Fig. 4, the saddle point-approximate of the outage probability
given by (2) is compared with the empirical one. In both Figs. 3
and 4, 2000 channel realizations have been considered, and in
Fig. 4, the input SNR has been set to 15 dB. These figures show
that even for small system dimensions, the BER is well approxi-
mated for a wide range of SNR values. For high SNR values, the
proposed approximation tends to underestimate the BER. This
tends to show that one should go beyond the first three moments
and take into account higher order moments to estimate more
accurately the BER at high SNR. The outage probability is also
well approximated except for small values of the SNR threshold
that are likely to be in the tail of the asymptotic distribution.

APPENDIX I
PROOF OF THEOREM 1

In the sequel, we shall heavily rely on the results and
techniques developed in [4]. In the sequel, and are,
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Fig. 1. Absolute value of the relative error when� � � . (a) First moment of
the SNR. (b) Second moment of the SNR. (c) Third moment of the SNR.

respectively, and diagonal matrices which
satisfy A1 and A2, is an matrix whose entries

TABLE I
POWER CLASSES AND RELATIVE FREQUENCIES

are i.i.d. standard complex Gaussian, is an matrix
defined by

We shall often write where the ’s are the
columns of . We recall hereafter the mathematical tools that
will be of constant use in the sequel.

A. Notations

Define the resolvant matrix by

We introduce the following intermediate quantities:

and

Matrix

is a diagonal matrix defined by

Let . Then, matrix is
an matrix defined by

B. Mathematical Tools

The results below, of constant use in the proof of Theorem 1,
can be found in [4].

1) Differentiation Formulas:

(3)

(4)

2) Integration by Parts Formula for Gaussian Functionals:
Let be a complex function polynomially bounded together
with its derivatives, then

(5)

3) Poincaré–Nash Inequality: Let and be as above, then

(6)
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Fig. 2. Absolute value of the relative error when � � �� . (a) First moment
of the SNR. (b) Second moment of the SNR. (c) Third moment of the SNR.

4) Deterministic Approximations and Various Estimations:
Proposition 2: Let and be two sequences of, re-

spectively, and diagonal deterministic matrices

whose spectral norm are uniformly bounded in , then the fol-
lowing hold true:

Proposition 3: Let and be three se-
quences of and diagonal deterministic
matrices whose spectral norm are uniformly bounded in .
Consider the following functions:

Then,
1) the following estimations hold true:

and

are

2) the following approximations hold true:

(7)

(8)

(9)

Proofs of Propositions 2 and 3 are essentially provided in [4].
In the same vein, the following proposition will be needed.

Proposition 4: Let and be three se-
quences of and diagonal deterministic
matrices whose spectral norm are uniformly bounded in .
Consider the following function:

Then and
.

Proof of Proposition 4 is essentially the same as the proof
of Proposition 3 part 1). It is provided for completeness and
postponed to Appendix II.

C. End of Proof of Theorem 1

We are now in position to complete the proof of Theorem 1.
Using the notations of [4], the SNR can be written as

Authorized licensed use limited to: Telecom ParisTech. Downloaded on September 21, 2009 at 08:07 from IEEE Xplore.  Restrictions apply. 



4392 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 10, OCTOBER 2009

Fig. 3. BER versus input SNR. (a) � � � � � and � � �. (b) � � � � � and � � ���. (c) � � �� � � and � � �. (d) � � �� � � and � � ���.

where . Hence, the third moment is given by

(10)

In order to deal with the first term of the right-hand side of (10),
notice that if is a deterministic matrix and is a standard
Gaussian vector, then

(such an identity can be easily proved by considering the spec-
tral decomposition of ). Hence
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Fig. 4. Outage Probability versus SNR threshold. (a) � � � � � and � � �. (b) � � � � � and � � ���. (c) � � �� � � and � � �. (d) � � �� � �

and � � ���.

The second term of the right-hand side of (10) is uniformly
bounded in . Indeed

which is according to Proposition 3. It remains to deal
with , which can be proved to be uni-
formly bounded in using concentration results for the spectral
measure of random matrices [23] (see also [15, eqs. (86)–(87)],
where details are provided). Consequently, we end up with the
following approximation:

which is deterministic but still depends on the distribution
of the entries via the expectation operator . The rest of the
proof is devoted to providing a deterministic approximation of

depending on and .
Note that , thus

(11)

Authorized licensed use limited to: Telecom ParisTech. Downloaded on September 21, 2009 at 08:07 from IEEE Xplore.  Restrictions apply. 



4394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 10, OCTOBER 2009

Let us deal with the second term of (11). We have

Using the integration by part formula (5), we get

Substituting in the last term where

, we get

Therefore, we have

Multiplying the right- and the left-hand sides by ,
we get

(12)

Plugging (12) into (11), we obtain

Hence

Multiplying the left- and right-hand sides by , we
get

(13)
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Multiplying by , summing over , and dividing by , we
obtain

(14)

where

According to Proposition 3,
is of order . Similarly, . Hence,
using Cauchy–Schwartz inequality, we get the estimation

. It remains to work out the expressions involved in
and by removing the terms with expectation and re-

placing them with deterministic equivalents.
Since by Proposition

3 and by Proposition 4, we
have

(15)

where follows from Proposition 3 part 2) and , from
Proposition 2. Similar arguments yield

(16)

and

(17)

Plugging (16), (15), and (17) into (14), we obtain

Hence

The fact that

is of order is straightforward and its proof is omitted. Proof
of Theorem 1 is completed.

APPENDIX II
PROOF OF PROPOSITION 4

The proof mainly relies on Poincaré–Nash inequality. Using
the Poincaré–Nash inequality, we have
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We only deal with the first term of the last inequality (the second
term can be handled similarly). We have

After straightforward calculations using the differentiation for-
mula (3), we get that

where

Hence

and we get the inequality given at the top of the page. We
only prove that the first term of the right-hand side is of
order ; the other terms being handled similarly. Using
Cauchy-Schwartz inequality, we get

where the first inequality follows by using the fact that
being Hermitian nonnegative ma-

trix and the second follows by applying twice Cauchy–Schwartz
inequalities

and

We end the proof of the first statement by using the fact that
is uniformly bounded in whenever

is a sequence of diagonal matrices with uniformly bounded
spectral norm and is a given integer.

The second statement follows from the resolvent identity

According to the first part of the proposition

Now, and
by Proposition 3 part 1). Hence, applying inequality

yields the desired result. Proof of Proposition 4 is completed.

REFERENCES
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