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A Central Limit Theorem for the SINR at the LMMSE
Estimator Output for Large-Dimensional Signals
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Abstract—This paper is devoted to the performance study of the
linear minimum mean squared error (LMMSE) estimator for mul-
tidimensional signals in the large-dimension regime. Such an esti-
mator is frequently encountered in wireless communications and
in array processing, and the signal-to-interference-plus-noise ratio
(SINR) at its output is a popular performance index. The SINR
can be modeled as a random quadratic form which can be studied
with the help of large random matrix theory, if one assumes that
the dimension of the received and transmitted signals go to infinity
at the same pace. This paper considers the asymptotic behavior of
the SINR for a wide class of multidimensional signal models that in-
cludes general multiple-antenna as well as spread-spectrum trans-
mission models.

The expression of the deterministic approximation of the SINR
in the large-dimension regime is recalled and the SINR fluctuations
around this deterministic approximation are studied. These fluc-
tuations are shown to converge in distribution to the Gaussian law
in the large-dimension regime, and their variance is shown to de-
crease as the inverse of the signal dimension.

Index Terms—Antenna arrays, central limit theorem, code-divi-
sion multiple access (CDMA), linear minimum mean squared error
(LMMSE), martingales, multiple-carrier (MC)-CDMA, multiple-
input multiple-output (MIMO), random matrix theory.

I. INTRODUCTION

L ARGE Random Matrix Theory (LRMT) is a powerful
mathematical tool used to study the performance of mul-

tiuser and multiple-access communication systems such as mul-
tiple-input multiple-output (MIMO) digital wireless systems,
antenna arrays for source detection and localization, spread
spectrum communication systems as code-division multiple
access (CDMA) and multiple-carrier CDMA (MC-CDMA)
systems. In most of these communication systems, the -di-
mensional received random vector is described by the
model

(1)

where is the unknown random vector of
transmitted symbols with size satisfying ,
the noise is an independent additive white Gaussian noise
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(AWGN) with covariance matrix whose variance
is known, and matrix represents the known “channel”

in the wide sense whose structure depends on the particular
system under study. One typical problem addressed by LRMT
concerns the estimation performance by the receiver of a given
transmitted symbol, say .

In this paper, we focus on one of the most popular estimators,
namely, the linear Wiener estimator, also calledthe linear min-
imum mean squared error LMMSE for linear minimum mean
squared error estimator: the LMMSE estimate of
signal is the one for which the vector minimizes

. If we partition the channel matrix as ,
where is the first column of and where matrix has di-
mensions , then it is well known that vector is given
by . Usually, the performance of this es-
timator is evaluated in terms of the signal-to-interference-plus-
noise ratio (SINR) at its output. Writing the received vector
as where is the relevant term and rep-
resents the so-called interference-plus-noise term, the SINR is
given by . Plugging the expression of
given above into this expression, one can prove that the SINR

is given by the well-known expression

(2)

In general, this expression does not provide a clear insight into
the impact of the channel model parameters (such as the load
factor , the power distribution of the transmission data
streams, or the correlation structure of the channel paths in the
context of multiple-antenna transmissions) on the performance
of the LMMSE estimator.

An alternative approach, justified by the fluctuating nature
of the channel paths in the context of MIMO communications
and by the pseudorandom nature of the spreading sequences
in spread-spectrum applications consists to model matrix as
a random matrix (in this case, becomes a random SINR).
The simplest random matrix model for , corresponding to the
most canonical MIMO or CDMA transmission channels, cor-
responds to independent and identically distributed (i.i.d.) en-
tries with mean zero and variance . In that case, LRMT
shows that when and the load factor converges
to a limiting load factor , the SINR converges almost
surely (a.s.) to an explicit deterministic quantity which
simply depends on the limiting load factor and on the noise
variance . As a result, the impact of these two parameters on
the LMMSE performance can be easily evaluated [1], [2].

The LMMSE SINR large-dimensional behavior for more
sophisticated random matrix models has also been thoroughly
studied (cf. [1], [3]–[9]) and it has been proved that there
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exists a deterministic sequence , generally defined as the
solution of an implicit equation, such that a.s.
as and remains bounded away from zero and from
infinity.

Beyond the convergence , a natural question
arises concerning the accuracy of for finite values of .
A first answer to this question consists in evaluating the Mean
Squared Error (MSE) of the SINR for large . A
further problem is the computation of outage probability, that is
the probability for to be below a certain level. Both
problems can be addressed by establishing a Central Limit The-
orem (CLT) for . In this paper, we establish such a
CLT (Theorem 3 below) for a large class of random matrices

. We prove that there exists a sequence such that
converges in distribution to the standard normal

law in the asymptotic regime. One can therefore infer
that the mean square error (MSE) asymptotically behaves like

and that the outage probability can be simply approximated
by a Gaussian tail function.

The class of random matrices we consider in this paper is
described by the following statistical model: Assume that

(3)

where the complex random variables are i.i.d. with
, , and , and where

is an array of real numbers.

Due to the fact that , the array is referred
to as a variance profile. An important particular case is when

is separable , that is, writes

(4)

where and are two vectors of real
positive numbers.

Applicative Contexts:

Among the applicative contexts where the channel is de-
scribed appropriately by model (3) or by its particular case (4),
let us mention the following.

• Multiple-antenna transmissions with distant sources
sending their signals toward an array of antennas. The
corresponding transmission model is where

, matrix is an random
matrix with complex Gaussian elements representing the
radio channel, is the (determin-
istic) matrix of the powers given to the different sources,
and is the usual AWGN satisfying . Write

, and assume that the columns are
independent, which is realistic when the sources are dis-
tant one from another. Let be the covariance matrix

and let be a spectral decom-
position of where is the
matrix of eigenvalues. Assume now that the eigenvector
matrices are all equal (to some matrix , for
instance), a case considered in, e.g., [10] (note that some-
times they are all identified with the Fourier matrix

[11]). Let . Then matrix is described by the
statistical model (3) where the are standard Gaussian
i.i.d., and . If we partition as
similarly to the partition above, then the SINR

at the output of the LMMSE estimator for the first ele-
ment of vector in the transmission model is

due to the fact that is a unitary matrix. Therefore, the
problem of LMMSE SINR convergence for this MIMO
model is a particular case of the general problem of con-
vergence of the right-hand member of (2) for model (3).
It is also worth to say a few words about the particular case
(4) in this context. If we assume that and
these matrices are equal to , then
the model for is the well-known Kronecker model with
correlations at reception [12]. In this case

(5)

where is a random matrix with i.i.d. standard Gaussian
elements. This model coincides with the separable variance
profile model (4) with and .

• CDMA transmissions on flat-fading channels. Here is
the spreading factor, is the number of users, and

(6)

where is the signature matrix assumed
here to have random i.i.d. elements with mean zero and
variance , and where is the
user’s power matrix. In this case, the variance profile is
separable with and . Note that elements
of are not Gaussian in general.

• Cellular MC-CDMA transmissions on frequency-selective
channels. In the uplink direction, the matrix is written as

(7)

where
is the radio channel matrix of user in the dis-
crete Fourier domain (here is the number of frequency
bins) and is the signature
matrix with i.i.d. elements as in the CDMA case above.
Modeling this time the channel transfer functions as deter-
ministic functions, we have

In the downlink direction, we have

(8)

where is
the radio channel matrix in the discrete Fourier domain,
the signature matrix is as above, and

is the matrix of the powers given to
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the different users. Model (8) coincides with the separable
variance profile model(4) with

and .

About the Literature:

The asymptotic approximation (first-order result) is con-
nected with the asymptotic eigenvalue distribution of Gram ma-
trices where elements of are described by the model
(3), and can be found in the mathematical LRMT literature in
the work of Girko [13] (see also [14] and [15]). Applications in
the field of wireless communications can be found in, e.g., [6]
in the separable case and in [8] in the general variance profile
case.

Concerning the CLT for (second-order result), only
some particular cases of the general model (3) have been con-
sidered in the literature among which the i.i.d. case
is studied in [16] (and based on a result of [17] pertaining to
the asymptotic behavior of the eigenvectors of ). The more
general CDMA model (6) has been considered in [18], using a
result of [19]. The model used in this paper includes the models
of [16] and [18] as particular cases.

Approximations of the distribution of the SINR at the
LMMSE output have been studied in [20]. The authors of [20]
propose to approximate the SINR distribution with Gamma and
generalized Gamma distributions by adjusting the asymptotic
moments of this SINR.

In another line of thought, performance of nonlinear detec-
tors has been studied in the large-dimensional regime by using
statistical mechanics techniques, as in [21], [22].

Fluctuations of other performance indexes such as Shannon’s
mutual information have also been
studied at length. Let us cite [23] where the CLT is established
in the separable case and [24] for a CLT in the general variance
profile case. Similar results concerning the mutual information
are found in [25] and [26].

Limiting Expressions Versus -Dependent Expressions:

As one may check in Theorems 2 and 3 below, we deliberately
chose to provide deterministic expressions and which
remain bounded but do not necessarily converge as .
For instance, Theorem 2 only states that a.s. No
conditions which would guarantee the convergence of are
added. This approach has two advantages: 1) such expressions
for and exist for very general variance profiles
while limiting expressions may not, and 2) they provide a nat-
ural discretization which can easily be implemented.

Statements about these deterministic approximations are
valid within the following asymptotic regime:

and (9)

Note that is not required to converge. In the remainder of the
paper, the notation “ ” will refer to (9).

We note that in the particular case where and the
variance profile is obtained by a regular sampling of a contin-
uous function i.e., , it is possible to prove

that and converge towards limits that can be character-
ized by integral equations.

Principle of the Approach:

The approach used here is simple and powerful. It is based
on the approximation of by the sum of a martingale differ-
ence sequence and on the use of the CLT for martingales [27].
We note that apart from the LRMT context, such a technique
has been used recently in [28] to establish a CLT on general
quadratic forms of the type where is a deterministic
matrix and is a random vector with i.i.d. elements.

Paper Organization:

In Section II, first-order results, whose presentation and un-
derstanding are necessary to state the CLT, are recalled. The
CLT, which is the main contribution of this paper, is provided
in Section III. In Section IV, simulations and numerical illus-
trations are provided. The proof of the main theorem (Theorem
3) in given in Section V while the Appendix gathers proofs of
intermediate results.

Notations:

Given a complex matrix , denote by
its spectral norm, and by its maximum row sum

norm, i.e., . Denote by
the Euclidean norm of a vector and by its (or )
norm.

II. FIRST-ORDER RESULTS: THE SINR DETERMINISTIC

APPROXIMATION

In the sequel, we shall often show explicitly the dependence
on in the notations. Consider the quadratic form (2)

where the sequence of matrices is given
by

Let us state the main assumptions:
A1: The complex random variables

are i.i.d. with , and
.

A2: There exists a real number such that

Let be complex numbers, then
refers to the diagonal matrix

whose diagonal elements are the ’s. If is a square
matrix, then refers to the matrix . Consider
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the following diagonal matrices based on the variance profile
along the columns and the rows of :

(10)

A3: The variance profile satisfies

Since , one has . The following as-
sumption is needed.

A4: At least one of the following conditions is satisfied:

or

Remark 1: If needed, one can attenuate the assumption on the
eighth moment in A1. For instance, one can adapt without diffi-
culty the proofs in this paper to the case where
for . We assumed because at some places
we rely on results of [24] which are stated with the assumption
on the eighth moment.

Assumption A3 is technical. It has already appeared in [29].
Assumption A4 is necessary to get a nonvanishing variance

in Theorem 3.

The following definitions will be of help in the sequel. A com-
plex function belongs to class if is analytical in the
upper half plane , if for
all and if is bounded over the upper half
plane .

The Stieltjes transform (ST) of a probability measure is
the complex function

One can check that the ST of a probability measure belongs to
the class .

Let be the set of eigenvalues of the Gram
matrix . The spectral measure of this matrix is the
random probability measure defined as

where is the Dirac measure at . Denote by and
the resolvents of and , re-

spectively, that is, the and matrices defined by

and

We have

in other words, the normalized trace of the resolvent is the ST
of the spectral measure of .

A. The SINR Deterministic Approximation

It is known [13], [29] that there exists a deterministic diag-
onal matrix function with the following proper-
ties: First, the normalized trace is the ST of a deter-
ministic probability measure . Second, approximates
the resolvent in the following sense: Given any diagonal
deterministic matrix with bounded spectral norm, the quantity

converges a.s. to zero as . By this
means (take and consider the STs), one can show that

approximates the spectral measure of .
It is also known that the approximation of the SINR is

simply related to (cf. Theorem 2). As we shall see, matrix
also plays a fundamental role in the second-order result

(Theorem 3). In the following theorem, we recall the definition
and some of the main properties of .

Theorem 1: The following statements hold true.
1) [29, Theorem 2.4] Let

be a sequence of arrays of real numbers and con-
sider the matrices and defined in (10). The
system of functional equations

(11)
where

admits a unique solution among the diagonal ma-
trices for which the ’s and the ’s belong to class .
Moreover, functions and admit analytical
continuations over which are real and positive
for .

2) [29, Theorem 2.4] There exist probability measures
and with support in such that

and

3) [29, Theorem 2.5] Assume from now on that Assumptions
A1 and A2 hold true. Consider the sequence of random
matrices where has dimensions
and whose entries are given by . For every
sequence of diagonal matrices and every se-
quence of diagonal matrices with

the following limits hold true a.s.:

4) [29, Corollary 2.7] Denote by and the spectral
measures of and , respec-
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tively. Then for any bounded and continuous function

and

almost surely.

The following lemma which reproduces [30, Lemma 2.7] will
be used throughout the paper. It characterizes the asymptotic
behavior of an important class of quadratic forms.

Lemma 1: Let be an vector where
the are centered i.i.d. complex random variables with unit
variance. Let be a deterministic complex matrix. Then,
for any , there exists a constant depending on only
such that

(12)

Noticing that and that
, we obtain the simpler inequality

(13)

which is useful in case one has bounds on .

Using Theorem 1 and Lemma 1, we are in position to charac-
terize the asymptotic behavior of the quadratic form given
by (2). We begin by rewriting as

(14)

where the vector is given by
and the diagonal matrix is given by (10). Recall that and

are independent and that by A2. Furthermore,
one can easily notice that .

Denote by the conditional expectation with respect to ,
i.e., . From inequality (13), there exists a constant

for which

By the Borel–Cantelli lemma, we therefore have

a.s.

Using this result, simply apply Theorem 1–part 3 with
(recall that ) to obtain the following.

Theorem 2: Let where is
given by Theorem 1–part 1. Assume A1 and A2. Then

a.s.

B. The Deterministic Approximation in the Separable Case

In the separable case , matrices
and are written as and

where and are the diag-
onal matrices

(15)

and one can check that the system of equations leading
to and simplifies into a system of two equations, and
Theorem 1 takes the following form.

Proposition 1 [29, Sec. 3.2]:
1) Assume . Given , the

system of two equations

(16)

where and are given by (15) admits a unique solution
. Moreover, in this case, matrices

and provided by Theorem 1–part 1 coincide with

and

(17)

2) Assume that A1 and A2 hold true. Let matrices
and be as in Theorem 1–part 3. Then, al-

most surely and

as .

With these equations we can adapt the result of Theorem 2 to
the separable case. Notice that and that given
by the system (16) coincides with , hence we have the
following.

Proposition 2: Assume that , and
that A1 and A2 hold true. Then

a.s.

where is given by Proposition 1–part 1.

Let us provide a more explicit expression of which will
be used in Section IV to illustrate the SINR behavior for the
MIMO model (5) and for MC-CDMA downlink model (8). By
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combining the two equations in system (16), it turns out that
is the unique solution of the implicit equation

(18)

Recall that in the case of the MIMO model (5), and
, while in the case of the MC-CDMA downlink model

(8), and again.
Here is the power of the user of interest (user 0), and
therefore is the normalized SINR of this user. Notice that

is almost the same for all users, hence the normalized
SINRs for all users are close to each other for large . Their
common deterministic approximation is given by (18) which is
the discrete analogue of the integral (16) in [6].

This example will be continued in Section III.

III. SECOND-ORDER RESULTS: THE CENTRAL LIMIT THEOREM

The following theorem is the main result of this paper. Its
proof is postponed to Section V.

Theorem 3:
1) Assume that A2, A3, and A4 hold true. Let and

be the matrices

and

(19)

where is defined in Theorem 1–part 1. Let be the
vector

Then the sequence of real numbers

(20)

is well defined and furthermore

2) Assume in addition A1. Then the sequence
satisfies

in distribution where is defined in the
statement of Theorem 2.

Remark 2: (Comparison With Other Performance Indexes):
It is interesting to compare the “mean squared error” (MSE)

related to the SINR : MSE , with
the MSE related to Shannon’s mutual information per transmit
dimension (studied in [24], [25] for
instance)

MSE while MSE

Remark 3 (On the Achievability of the Minimum of the Vari-
ance): Recall that the variance writes

As , one clearly has
with equality if and only if with proba-
bility one. Moreover, we shall prove in the sequel (Sec-
tion V-B) that . Therefore,

is nonnegative, and is zero if
and only if with probability one. As a consequence,

is minimum with respect to the distribution of the
if and only if these random variables have their values on the
unit circle. In the context of CDMA and MC-CDMA, this is
the case when the signature matrix elements are elements of
a phase-shift keying (PSK) constellation. In multiple-antenna
systems, the ’s are frequently considered as Gaussian
which induces a penalty on the SINR asymptotic MSE with
respect to the unit norm case.

In the separable case, where is given by the
following corollary.

Corollary 1: Assume that A2 is satisfied and that
. Assume moreover that

(21)

where and are given by (15). Let and

. Then the sequence

(22)

satisfies . If, in addi-
tion, A1 holds true, then

in distribution.

Remark 4: Condition (21) is the counterpart of Assumption
A3 in the case of a separable variance profile and suffices to
establish
(see for instance [23]), hence, the fact that

. The remainder of the proof of Corollary 1
is postponed to Appendix B.

Remark 5: As a direct application of Corollary 1 (to be used
in Section IV below), let us provide the expressions of and
for the MIMO model (5) or MC-CDMA downlink model (8).
From (15)–(17), we get
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where we recall that for model (5),
for model (8), and is the so-

lution of (18).

In the context of Corollary 1, if we further assume that ,
then we recover the results of [18] and [16] (the latter being
specific to the case where in addition).

Corollary 2: Assume the setting of Corollary 1 with .
Then

(23)

where is the probability measure which ST is as
shown in the statement of Theorem 1.

This corollary will be proven in Appendix C.

IV. SIMULATIONS

A. The General (Not Necessarily Separable) Case

In this section, the accuracy of the Gaussian approximation is
verified by simulation. In order to validate the results of Theo-
rems 2 and 3 for practical values of , we consider the example
of a MC-CDMA transmission in the uplink direction. We re-
call that is the number of interfering users in this context.
In the simulation, the discrete time channel impulse response
of user is represented by the vector with coefficients

. In the simulations, these vectors are
generated pseudo-randomly according to the complex multi-
variate Gaussian law . Setting the number of fre-
quency bins to , the channel matrix for user in the fre-
quency domain (see (7)) is

where

the norm is the Euclidean norm of , and is the power
received from user . Concerning the distribution of the user
powers , we assume that these are arranged into five power
classes with powers and with relative fre-
quencies given by Table I. The user of interest (user 0) is as-
sumed to belong to Class 1. Finally, we assume that the number

of interfering users is set to .
In Table II, the signal to noise ratio (SNR) for the user of

interest is fixed to 10 dB. The evolution of

TABLE I
POWER CLASSES AND RELATIVE FREQUENCIES

TABLE II
SINR NORMALIZED MSE VERSUS � �SNR � 10 dB�

TABLE III
SINR NORMALIZED MSE VERSUS SNR �� � ���

for this user (where is measured numerically) is
shown with respect to . We note that this quantity is close to
one for values of as small as .

In Table III, is set to , and the SINR normal-
ized MSE is plotted with respect to the
input SNR . This figure also confirms the fact that the MSE
asymptotic approximation is highly accurate.

Fig. 1 shows the histogram of for
and . This figure gives an idea of the similarity

between the distribution of and .
More precisely, Fig. 2 quantifies this similarity through a

quantile–quantile (Q-Q) plot.

B. The Separable Case

In order to test the results of Proposition 2 and Corollary 1, we
consider the following multiple-antenna (MIMO) model with
exponentially decaying correlation at reception:

where with is the covariance
matrix that accounts for the correlations at the receiver side,

is the matrix of the powers given to the
different sources, and is an matrix with Gaussian
standard i.i.d. elements. Let denote the vector containing the
powers of the interfering sources. We set (up to a permuta-
tion of its elements) as shown in the equation at the bottom of
the following page. For with , we assume
that the powers of the interfering sources are arranged into five
classes as in Table I. We set the SNR to 10 dB and to

. We investigate in this section the accuracy of the Gaussian
approximation in terms of the outage probability. In Fig. 3, we
compare the empirical 1% outage SINR with the one predicted
by the CLT. We note that the Gaussian approximation tends to
underestimate the 1% outage SINR. We also note that it has a
good accuracy for small values of and for enough large values
of .

Observe that all these simulations confirm a fact announced
in Remark 3 above: compared with functionals of the channel
singular values such as Shannon’s mutual information, larger
signal dimensions are needed to attain the asymptotic regime
for quadratic forms such as the SINR (see for instance outage
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Fig. 1. Histogram of
�
��� � �� � for � � �� and � � ��.

Fig. 2. Q-Q plot for
�
��� � �� �,� � �� and� � ��; dash-dotted line

is the 45 line.

probability approximations for mutual information in [25] and
in [26]). This observation holds for first-order as well as second-
order results.

V. PROOF OF THEOREM 3

This section is devoted to the proof of Theorem 3. We begin
with mathematical preliminaries.

A. Preliminaries

The following lemma gathers useful matrix results, whose
proofs can be found in [31].

Lemma 2: Assume and are complex
matrices. Then

1) For every , . In particular,
.

2)
3) For , the resolvent satisfies

.
4) If is Hermitian nonnegative, then

.

Let be a spectral decomposition of where
is the matrix of singular values of . For

a real , the Schatten -norm of is defined as
. The following bound over the Schatten -norm of

a triangular matrix will be of help (for a proof, see [28], [32,
p. 278]).

Lemma 3: Let be an complex ma-

trix and let be the strictly lower triangular
matrix extracted from . Then for every , there exists a
constant depending on only such that

if
if
if
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Fig. 3. Theoretical and empirical 1% outage SINR.

The following lemma lists some properties of the resolvent
and the deterministic approximation matrix . Its proof is

postponed to Appendix A.

Lemma 4: The following facts hold true.
1) Assume A2. Consider matrices

defined by Theorem 1–part 1. Then for every

(24)

2) Assume in addition A1 and A3. Let
and let matrices be as in the statement of The-

orem 1–part 3. Then

(25)

B. Proof of Theorem 3–Part 1

We introduce the following notations. Assume that is a real
matrix, by we mean for every element .
For a vector , is defined similarly. In the remainder of

the paper, denotes a
positive constant whose value may change from line to line.

The following lemma, which directly follows from [24,
Lemma 5.2 and Proposition 5.5], states some important proper-
ties of the matrices defined in the statement of Theorem 3.

Lemma 5: Assume A2 and A3. Consider matrices de-
fined by (19). Then the following facts hold true.

1) Matrix is invertible, and .
2) Element of the inverse satisfies

for every .
3) The maximum row sum norm of the inverse satisfies

.

Due to Lemma 5–part 1, is well defined. Let us prove
that . The first term of the right-hand side of
(20) satisfies

(26)
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due to . Recall that by Lemma 4–
part 1. Therefore, any element of satisfies

(27)

by A2, hence . From Lemma 5–part 3 and (26),
we then obtain

(28)

We can prove similarly that the second term in the right-hand
side of (20) satisfies .
Hence, .

Let us prove that . We have

where follows from the fact that
(Lemma 5–part 1, and the straightforward inequalities

and ), follows from Lemma 5–part 2
and , follows from the elemen-
tary inequality , and is due to
Lemma 4–part 1 and Lemma 2-part 4. Similar derivations yield

by A3. Therefore, if A4 holds true, then and
Theorem 3–part 1 is proved.

C. Proof of Theorem 3–Part 2

Recall that the SINR is given by (14). The random vari-
able can therefore be decomposed as

(29)

Thanks to Lemma 4–part 2 and to the fact that
, we have which implies that in

probability as . Hence, in order to conclude that

in distribution

it is sufficient by Slutsky’s theorem to prove that
in distribution. The remainder of the section

is devoted to this point.

Remark 6: Decomposition (29) and the convergence to zero
(in probability) of yield the following interpretation: The
fluctuations of are mainly due to the fluctuations
of vector . Indeed, the contribution of the fluctuations1 of

, due to the random nature of , is negligible.

Denote by the conditional expectation
. Put

and note that . With these
notations at hand, we have

(30)

Consider the increasing sequence of -fields

Then the random variable is integrable and measur-
able with respect to ; moreover, it readily satisfies

. In particular, the sequence
is a martingale difference sequence with respect to

. The following CLT for martingales is the
key tool to study the asymptotic behavior of :

Theorem 4: Let be a martingale
difference sequence with respect to the increasing filtration

. Assume that there exists a sequence of real
positive numbers such that

in probability. Assume further that the Lyapunov condition
holds

Then converges in distribution to as
.

Remark 7: This theorem is proved in [27], gathering The-
orem 35.12 (which is expressed under the weaker Lindeberg

1In fact, one may prove that the fluctuation of ����� �������� � are of order� ,
i.e., ����� �������� � asymptotically behaves as a Gaussian random variable. Such
a speed of fluctuations already appears in [24], when studying the fluctuations
of the mutual information.
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condition) together with the arguments of Section 27 (where
it is proved that Lyapunov’s condition implies Lindeberg’s
condition).

In order to prove that

in distribution (31)

we shall apply Theorem 4 to the sum and the
filtration . The proof is carried out into four steps:

Step 1: We first establish Lyapunov’s condition. Due to the
fact that , we only need to show that

(32)

Step 2: We prove that satisfies

in probability (33)

Step 3: We first show that

in probability.

(34)
In order to study the asymptotic behavior of ,
we introduce the random variables for

(the one of interest being ). We then prove that
the ’s satisfy the following system of equations:

(35)

where

(36)
and the perturbations satisfy where we recall
that is independent of .

Step 4: We prove that satisfies

(37)

with . This equation combined with (33) and
(34) yields in probability. As

, this implies in
probability, which proves (31) and thus ends the proof of
Theorem 3.

Write and recall from (30)
that . We have

Hence

(38)

Step 1: Validation of the Lyapunov Condition: The following
inequality will be of help to check Lyapunov’s condition.

Lemma 6 (Burkholder’s Inequality): Let be a complex
martingale difference sequence with respect to the increasing
sequence of –fields . Then for , there exists a constant

for which

Recall Assumption A1. Equation (38) yields

(39)

where we use the fact that (cf. Lemma 2–
part 1) and the convexity of . Due to Assumption A1,
we have

(40)

Considering the second term at the right-hand side of (39), we
write the equation at the top of the following page, where
follows from Lemma 6 (Burkholder’s inequality), the filtration
being and follows from the bound

(cf. Lemma 2–
part 1). Now, notice that

This yields . Gathering this re-
sult with (40), getting back to (39), taking the expectation and
summing up finally yields

which establishes Lyapunov’s condition (32) with .
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Step 2: Proof of (33): Equation (38) yields

Note that the second term of the right-hand side writes

Therefore, writes

where denotes the real part of a complex number. We intro-
duce the following notations:

and

Note in particular that is the strictly lower triangular matrix
extracted from . We can now rewrite as

(41)

We now prove that the third term of the right-hand side vanishes,
and find an asymptotic equivalent for the second one. Using
Lemma 2, we have

In particular, and

in probability (42)

Consider now the second term of the right-hand side of (41). We
prove that

in probability. (43)

By Lemma 1 (12), we have

Notice that where is the Schatten
-norm of . Using Lemma 3, we have
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Therefore

which implies (43). Now, due to the fact that , we have

(44)

Gathering (41)–(44), we obtain (33). Step 2 is proved.
Step 3: Proof of (34) and (35): We begin with some identities.

Write and . Denote
by the column number of and by the row number of

. Denote by the matrix that remains after deleting column
from and by the matrix that remains after deleting row

from . Finally, write and
. The following formulas can be established

easily (see for instance [31, Secs. 0.7.3 and 0.7.4])

(45)

(46)

Lemma 7: The following hold true.
1) (Rank one perturbation inequality ) The resolvent

satisfies for any ma-
trix .

2) Let Assumptions A1–A3 hold. Then

(47)

The same conclusion holds true if and are replaced
with and , respectively.

We are now in position to prove (34). First, notice that

(48)

Now

where the last inequality follows from (48) together with
Lemma 7–part 2. Convergence (34) is established.

We now establish the system of (35). Our starting point is the
identity

Using this identity, we develop as

(49)

Lemma 4–part 2 with yields

(50)

where . Consider now the term

Using (45) and (46), we have

Hence

(51)

By Cauchy–Schwartz inequality

We have .
Using in addition Lemma 7–part 2, we obtain

Consider . From (45) and (46), we have
. Hence, we can develop as

(52)
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Consider . Notice that and are independent. Therefore,
by Lemma 1, we obtain

where by (13). Applying twice Lemma 7–part 1
to

yields . Note in addition that
. Thus, we obtain

(53)

where , which yields .
We now turn to . First introduce the following random

variable:

Then

and one can prove that with help of Lemma 1,
together with Cauchy–Schwarz inequality. In addition, we can
prove with the help of Lemma 7 that

where and are random variables satisfying
by Lemma 7, and by
Lemma 4–part 2. Using the fact that ,
we end up with

(54)

where is given by (36), and where .

Plugging (50)–(54) into (49), we end up with
with . Step 3

is established.
Step 4. Proof of (37): We rely on results of Section V-B, in

particular on Lemma 5. Define the following vectors:

where the ’s and ’s are defined in (35). Recall the definition
of the ’s for and , define
for and consider the matrix

.
With these notations, system (35) writes

(55)

Let . We have in particular

(recall that , , and are defined in the statement of The-
orem 3).

Consider a square matrix which first column is equal to

, and partition as . Recall that

the inverse of exists if and only if exists, and in this case
the first row of is given by

(see for instance [31]). We now apply these results to the system
(55). Due to (55), can be expressed as

By Lemma 5–part 1, exists hence exists

with . Gathering the estimates of Section V-B
together with the fact that , we get (37). Step
4 is established, so is Theorem 3.

APPENDIX

A. Proof of Lemma 4

Let us establish (24). The lower bound immediately follows
from the representation
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where follows from A2 and . The upper bound
requires an extra argument: As proved in [29, Theorem 2.4],
the ’s are STs of probability measures supported by , i.e.,
there exists a probability measure over such that

. Thus

and (24) is proved.
We now briefly justify (25). We have

In [24, Lemma 6.3] it is stated that
. Furthermore, in the proof of [24, Theorem 3.3] it is shown

that , hence

by Lemma 2–part 2. The result follows.

B. Proof of Corollary 1

Recall that in the separable case, and .
Let be the vector . In the separable case,
(20) is written as

(56)

where is defined in the statement of the corollary. Here, vector
and matrix are given by

and

By the matrix inversion lemma [31], we have

Noticing that

we obtain

Plugging this equation into (56), we obtain (22).

C. Proof of Corollary 2

Expression (22) can be rewritten as

As , we have

(57)

and from (17) we have . It results
in

hence, coincides with the second term at the
right-hand side of (23). We now turn to the term .
By (17) we have

(58)

Symmetrically, we have . Replacing by its
value in (58), we obtain

(59)

Now we have . Hence

Plugging into (59) and using (57), we end up with

where the second equality is due to (57). Equation (23) is
proven.

D. Proof of Lemma 7

The proof of Part 1 can be found in [24, Proof of Lemma 6.3]
(see also [14, Lemma 2.6]). Let us prove Part 2. We have from
(11) and (45)

Hence

by Lemma 1 and Lemma 4–part 2, which proves (47).
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