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On the Capacity Achieving Covariance Matrix for
Rician MIMO Channels: An Asymptotic Approach
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Abstract—In this paper, the capacity-achieving input covariance
matrices for coherent block-fading correlated multiple input mul-
tiple output (MIMO) Rician channels are determined. In contrast
with the Rayleigh and uncorrelated Rician cases, no closed-form
expressions for the eigenvectors of the optimum input covariance
matrix are available. Classically, both the eigenvectors and eigen-
values are computed numerically and the corresponding optimiza-
tion algorithms remain computationally very demanding. In the
asymptotic regime where the number of transmit and receive an-
tennas converge to infinity at the same rate, new results related
to the accuracy of the approximation of the average mutual in-
formation are provided. Based on the accuracy of this approxi-
mation, an attractive optimization algorithm is proposed and ana-
lyzed. This algorithm is shown to yield an effective way to compute
the capacity achieving matrix for the average mutual information
and numerical simulation results show that, even for a moderate
number of transmit and receive antennas, the new approach pro-
vides the same results as direct maximization approaches of the
average mutual information.

Index Terms—Multiple input multiple output (MIMO) Rician
channels, ergodic capacity, large random matrices, capacity
achieving covariance matrices, iterative waterfilling.

I. INTRODUCTION

S INCE the seminal work of Telatar [38], the advantage of
considering multiple antennas at the transmitter and the

receiver in terms of capacity, for Gaussian and fast Rayleigh
fading single-user channels, is well understood. In that paper,
the figure of merit chosen for characterizing the performance of
a coherent1 communication over a fading multiple input mul-
tiple output (MIMO) channel is the ergodic mutual information
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1Instantaneous channel state information is assumed at the receiver but not
necessarily at the transmitter.

(EMI). Assuming the knowledge of the channel statistics at
the transmitter, an important issue is to maximize the EMI
with respect to the channel input distribution. Without loss of
optimality, the search for the optimal input distribution can
be restricted to circularly Gaussian inputs. The problem then
amounts to finding the optimum covariance matrix.

This optimization problem has been addressed extensively
in the case of certain Rayleigh channels. In the context of the
so-called Kronecker model, it has been shown by various au-
thors (see, e.g., [16] for a review) that the eigenvectors of the op-
timal input covariance matrix must coincide with the eigenvec-
tors of the transmit correlation matrix. It is therefore sufficient to
evaluate the eigenvalues of the optimal matrix, a problem which
can be solved by using standard optimization algorithms. Note
that [39] extended this result to more general (non Kronecker)
Rayleigh channels.

Rician channels have been comparatively less studied from
this point of view. Let us mention the work [20] devoted to the
case of uncorrelated Rician channels, where the authors proved
that the eigenvectors of the optimal input covariance matrix are
the right-singular vectors of the line of sight component of the
channel. As in the Rayleigh case, the eigenvalues can then be
evaluated by standard routines. The case of correlated Rician
channels is more complicated as the eigenvectors of the op-
timum matrix have no closed form expressions. Moreover, the
exact expression of the EMI being complicated (see, e.g., [23]),
both the eigenvalues and the eigenvectors have to be evaluated
numerically. In [41], a barrier interior-point method is proposed
and implemented to directly evaluate the EMI as an expecta-
tion. The corresponding algorithms are however computation-
ally very demanding as they heavily rely on intensive Monte
Carlo simulations.

In this paper, we address the optimization of the input covari-
ance of Rician channels with a two-sided (Kronecker) correla-
tion. As the exact expression of the EMI is very complicated,
we propose to optimize the approximation of the EMI, first pre-
sented in [35], valid when the number of transmit and receive
antennas converge to infinity at the same rate.

This will turn out to be a simpler problem. The results of
the present contribution have been presented in part in the short
conference paper [13].

The asymptotic approximation of the mutual information has
been obtained by various authors in the case of MIMO Rayleigh
channels, and has shown to be quite reliable even for a moderate
number of antennas, see [10], [40], and [29]. The case of Rician
channels has been considered more recently. Using the replica
method, [30] obtained the asymptotic expression of the ergodic
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mutual information together with the variance of the mutual in-
formation in the case of uncorrelated Rician channels. These re-
sults were generalized to the context of general bicorrelated Ri-
cian channels in [35] and [37]. Using large random matrix tech-
niques, an asymptotic approximation of the EMI is provided in
[18] in the case of a Rician channel whose random entries are in-
dependent random variables with nonseparable variance profile.
If the variance profile is separable, this channel is equivalent (up
to unitary invariance) to a bicorrelated Rician channels, and one
can recover the expression of the EMI given in [35], [37]. Fi-
nally, [36] generalizes the results of [35] and [37] to the case of
a Rician channel with interference and proposes to optimize the
approximation of the EMI in order to obtain a capacity achieving
covariance matrix in the context of a Rician channel with inter-
ference. The optimization algorithm of the large system approx-
imant of the EMI proposed in [36] is however different from the
algorithm studied here.

In this paper, we consider the closed-form asymptotic approx-
imation for the mutual information as it appeared in [35], [37],
and [18] and present new results concerning its accuracy. We
prove in particular that the relative error decreases at rate
where represents the number of transmit antennas. Such an
analysis is new in the context of a Rician channel with two-sided
correlation.

We then address the optimization of the large system approxi-
mation with respect to the input covariance matrix and propose a
simple iterative maximization algorithm which, in some sense,
can be seen as a generalization to the Rician case of [43] de-
voted to the Rayleigh context: Each iteration will be devoted
to solve a system of two nonlinear equations as well as a stan-
dard waterfilling problem. Among the convergence results that
we provide: It is proved that the asymptotic equivalent of the
average mutual information is concave with respect to the input
covariance matrix. This garantees good convergence properties
if any, and also a good speed of convergence. It is also proved
that the algorithm converges towards the optimum input covari-
ance matrix as long as it converges2. Concavity and convergence
issues are not addressed in [43] and [36]. Finally, we also prove
that the matrix which optimizes the large system approximation
asymptotically achieves the capacity. This result, which has not
been previously established for any approximation results, has
an important practical range as it asserts that the optimization
algorithm yields a procedure that asymptotically achieves the
true capacity. Finally, simulation results confirm the relevance
of our approach.

The paper is organized as follows. Section II is devoted
to the presentation of the channel model and the underlying
assumptions. The asymptotic approximation of the ergodic
mutual information is given in Section III. In Section IV, the
strict concavity of the asymptotic approximation as a function
of the covariance matrix of the input signal is established; it is
also proved that the resulting optimal argument asymptotically
achieves the true capacity. The maximization problem of the
EMI approximation is studied in Section V. Numerical results
are provided in Section VI.

2Note however that we have been unable to prove formally its convergence.

II. PROBLEM STATEMENT

A. General Notations

In this paper, the notations stand for scalars, vec-
tors and matrices, respectively. As usual, represents the
Euclidian norm of vector and stands for the spectral
norm of matrix . The superscripts and represent,
respectively, the transpose and transpose conjugate. The trace
of is denoted by . The mathematical expectation op-
erator is denoted by and the symbols and denote,
respectively, the real and imaginary parts of a given complex
number. If is a possibly complex-valued random variable,

represents the variance of .
All along this paper, and stand for the number of transmit

and receive antennas. Certain quantities will be studied in the
asymptotic regime in such a way that

. In order to simplify the notations, should
be understood from now on as and

. A matrix whose size depends on is said to
be uniformly bounded if .

Several variables used throughout this paper depend on
various parameters, e.g., the number of antennas, the noise
level, the covariance matrix of the transmitter, etc. In order to
simplify the notations, we may not always mention all these
dependencies.

B. Channel Model

We consider a wireless MIMO link with transmit and re-
ceive antennas. In our analysis, the channel matrix can possibly
vary from symbol vector (or space-time codeword) to symbol
vector. The channel matrix is assumed to be perfectly known at
the receiver whereas the transmitter has only access to the sta-
tistics of the channel. The received signal can be written as

(1)

where is the vector of transmitted symbols at time
is the channel matrix (stationary and ergodic

process) and is a complex white Gaussian noise distributed
as . For the sake of simplicity, we omit the time
index from our notations. The channel input is subject to a
power constraint . Matrix has the following
structure:

(2)

where matrix is deterministic, is a random matrix and con-
stant is the so-called Rician factor which expresses the
relative strength of the direct and scattered components of the
received signal. Matrix satisfies while is
given by

(3)

where is a matrix whose entries are in-
dependent and identically distributed (i.i.d.) complex circular
Gaussian random variables , i.e.,

where and are independent centered real
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Gaussian random variables with variance . The matrices
and account for the transmit and receive antenna

correlation effects, respectively, and satisfy and
. This correlation structure is often referred to as

a separable or Kronecker correlation model.

C. Maximum Ergodic Mutual Information

We denote by the cone of nonnegative Hermitian ma-
trices and by the subset of all matrices of for which

. Let be an element of and denote by
the ergodic mutual information (EMI) defined by

(4)

Maximizing the EMI with respect to the input covariance ma-
trix leads to the channel Shannon capacity for
fast fading MIMO channels, i.e., when the channel vary from
symbol to symbol. This capacity is achieved by averaging over
channel variations over time.

We will denote by the maximum value of the EMI over
the set

(5)

The optimal input covariance matrix thus coincides with the ar-
gument of the above maximization problem. Note that

is a strictly concave function on the convex set , which
guarantees the existence of a unique maximum (see [27]).
When , , [20] shows that the eigenvec-
tors of the optimal input covariance matrix coincide with the
right-singular vectors of . By adapting the proof of [20], one
can easily check that this result also holds when and

and share a common eigenvector basis. Apart from
these two simple cases, it seems difficult to find a closed-form
expression for the eigenvectors of the optimal covariance ma-
trix. Therefore the evaluation of requires the use of numer-
ical techniques (see, e.g., [41]) which are very demanding since
they rely on computationally intensive Monte Carlo simulations.
This problem can be circumvented in the following way: The
EMI can be approximated by a simple expression denoted
by (see Section III) as , this expression is in turn
optimized with respect to (see Section V).

D. Summary of the Main Results.

The main contributions of this paper can be summarized as
follows:

1) The approximation of as presented in
[35], [37] can be written as

(6)

where and are two positive terms defined
as the solutions of a system of two equations [see (28)].
Functions and are given in closed form and depend
on , , and on the noise vari-
ance .

We prove that the error term is of order
. As is known to increase linearly with , the

relative error is of order . This supports
the fact that is an accurate approximation of ,
and that it is relevant to study in order to obtain some
insight on .

2) We prove that the function is strictly con-
cave on . As a consequence, the maximum of over

is reached for a unique matrix . We also show that
where we recall that is the

capacity achieving covariance matrix. Otherwise stated,
the computation of (see below) allows one to (asymp-
totically) achieve the capacity .

3) We study the structure of and establish that is so-
lution of the standard waterfilling problem

where and

This result provides insights on the structure of the ap-
proximating capacity achieving covariance matrix, but
cannot be used to evaluate since the parameters
and depend on the optimum matrix . We therefore
propose an attractive iterative maximization algorithm of

where each iteration consists in solving a standard
waterfilling problem and a 2 2 system characterizing the
parameters .

III. ASYMPTOTIC BEHAVIOR OF THE ERGODIC

MUTUAL INFORMATION

In this section, the input covariance matrix is fixed
and the purpose is to evaluate the asymptotic behavior of the
ergodic mutual information as (recall that
means and ).

As we shall see, it is possible to study the accuracy of ap-
proximation of . The starting point of our approach
is partly based on the results of [18] devoted to the study of
the asymptotic behavior of the eigenvalue distribution of matrix

where is given by

(7)

matrix being a deterministic matrix, and being a
zero mean (possibly complex circular Gaussian) random

matrix with independent entries whose variances are given by

. Notice in particular that the variables
are not necessarily identically distributed. We

shall refer to the triangular array
as the variance profile of ; we shall say that it is separable if

where for and for
. Due to the unitary invariance of the EMI of Gaussian

channels, the study of will turn out to be equivalent to the
study of the EMI of model (7) in the complex circular Gaussian
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case with a separable variance profile. We however stress that
the mathematical technics used in the present paper completely
differ from the tools used in [18] (see Remark 2 below).

A. Introduction of the Virtual Channel

The purpose of this section is to establish a link between the
simplified model (7): where

being a matrix with i.i.d entries, and being di-
agonal matrices, and the Rician model (2) under investigation.
As we shall see, the key point is the unitary invariance of the
EMI of Gaussian channels together with a well-chosen eigen-
value/eigenvector decomposition.

Proposition 1: Let be a matrix whose individual
entries are i.i.d. random variables. The two ergodic
mutual informations

and

are equal provided that
• Channel is given by with
• The following eigenvalue/eigenvector decompositions

hold true:

and (8)

where and are the eigenvectors matrices while and
are the eigenvalues diagonal matrices.

• Matrices and are related via the identity

(9)

Proof: We introduce the virtual channel

(10)

where is the deterministic unitary matrix defined by

. The virtual channel has
thus a structure similar to , with , respec-
tively, replaced . Consider now
the decomposition (8). It is then clear that the ergodic mutual
information of channel coincides with the EMI of

. Matrix can be written as where
is given by (9) and with .

As matrix has i.i.d. entries, so has matrix
due to the unitary invariance (note that the entries

of are independent since and are diagonal). Proposition
1 is proved.

B. Study of the EMI of the Equivalent Model (7)

We first introduce the resolvent and the Stieltjes transform as-
sociated with (Section III-B-1); we then introduce aux-
iliary quantities (Section III-B-2) and their main properties, to-
gether with the approximation of the EMI.

1) The Resolvent, the Stieltjes Transform: Denote by
and the resolvents of matrices and defined
by

(11)

These resolvents satisfy the obvious, but useful property

(12)

Recall that the Stieltjes transform of a nonnegative measure
is defined by . The quantity coin-
cides with the Stieltjes transform of the eigenvalue distribution
of matrix evaluated at point . In fact, denote by

its eigenvalues, then

where represents the empirical distribution of the eigenvalues
of , that is the probability distribution where

represents the Dirac distribution at point . The Stieltjes
transform is important as the characterization of the
asymptotic behavior of the eigenvalue distribution of is
equivalent to the study of when for each . This
observation is the starting point of the approaches developed
by Pastur [28], Girko [14], Bai and Silverstein [1], etc.

2) Important Auxiliary Quantities and Asymptotic Approxi-
mation of the EMI: We gather in this section many results of
[18] that will be of help in the sequel.

Assumption 1: Let be a family of de-
terministic matrices such that:

.

Theorem 1: Consider the random matrix , where
and represent the diagonal matrices

and ,
respectively, and where is a matrix whose entries are i.i.d.
complex centered with variance one. The following facts hold
true:

i) (Existence and uniqueness of auxiliary quantities) For
fixed, consider the system of equations

(13)

Then, among the solutions of (13), there is a unique
couple of strictly positive solutions . De-
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note by and the following matrix-valued
functions:

(14)

Matrices and satisfy

(15)

ii) (Representation of the auxiliary quantities) The solutions
and of system (13) are given by

(16)

and can be written as

(17)

where and are nonnegative scalar measures with re-
spective total mass and . Similarly, there
exist probability measures and such that

(18)

iii) (Asymptotic approximation of the EMI) Assume that As-
sumption 1 holds and that

and

For every deterministic matrices and satisfying
and , the following

limits hold true almost surely:

(19)

Denote by the EMI
associated with matrix . Then writes

(20)

Define by the quantity

(21)

Then can be expressed as

(22)

or equivalently

(23)

Moreover, the following convergence holds true:

as (24)

Proof of is provided in Appendix I (note that in [18], the
existence and uniqueness of solutions to (13) is proved in a cer-
tain class of analytic functions depending on ; this implies
the existence of a solution when is fixed, but not the
uniqueness; we provide in Appendix I an elementary proof of
the existence which immediately implies the uniqueness). The
rest of the statements of Theorem 1 have been established in
[18], and their proof is omitted here.

Remark 1: As shown in [18], the results in Theorem 1 do not
require any Gaussian assumption for . Notice that (19) im-
plies in some sense that the entries of and have the
same behavior as the entries of the deterministic matrices
and [which can be evaluated by solving (13)]. In partic-
ular, using (19) for , it follows that the Stieltjes trans-
form of the eigenvalue distribution of behaves like

, which is itself the Stieltjes transform of a proba-
bility measure (see, for instance, [18]).

In order to evaluate the precision of the asymptotic approx-
imation , we shall improve (24) and get the speed

in the next theorem. This result completes those
in [18] and in Theorem 1-(iii) but heavily relies on the Gaussian
structure of . We first introduce very mild extra assumptions:

Assumption 2: Let be a family of deterministic
matrices such that

Assumption 3: Let and be, respectively, and
diagonal matrices such that

and

Assume moreover that

and

Theorem 2: Consider the simplified model as in Theorem 1:
, with . Assume moreover that

Assumptions 2 and 3 hold true. Then, for every deterministic
matrices and satisfying and

, the following facts hold true:

(25)
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Moreover

(26)

and

(27)

The proof is given in Appendix II. We provide here some
comments.

Remark 2: The proof of Theorem 2 takes full advantage of
the Gaussian structure of matrix and relies on two simple
ingredients: An integration by parts formula that provides
an expression for the expectation of certain functionals of
Gaussian vectors, widely used in Random Matrix Theory [26],
[31] and Poincaré-Nash inequality that bounds the variance
of functionals of Gaussian vectors. Although well known, the
application of this inequality to random matrices is fairly recent
[7], [32], and also [17].

Remark 3 (Gaussian versus Non-Gaussian): Equations (25)
also hold in the non Gaussian case and can be established by
using the so-called Resolvent FORmula Martingale (REFORM)
method introduced by Girko [14].

Equations (26) and (27) are specific to the complex
Gaussian structure of the channel matrix . In particular,
in the non-Gaussian case, or in the real Gaussian case, one
would get . These two facts are in
accordance with [2] in which a weaker result is proved
in the simpler case where , and the predictions of the
replica method in [29] (respectively, [30]) in the case where

(respectively, in the case where and ).

Remark 4 (Standard Deviation and Bias): Equation (25) im-
plies that the standard deviation of
and are of order terms. How-
ever, their mathematical expectations (which correspond to the
bias) converge much faster towards 0 as (26) shows (the order
is ).

Remark 5: Both and increase linearly with .
Equation (27), thus, implies that the relative error
is of order . This remarkable convergence rate strongly
supports the observed fact that approximations of the EMI re-
main reliable even for small numbers of antennas (see also the
numerical results in Section VI). Note that similar observations
have been done in other contexts where random matrices are
used, see, e.g., [3], [29], [35], and [37].

C. Study of the EMI

We now apply the previous results to the study of the EMI of
channel . We first state the corresponding result.

Theorem 3: For , consider

(28)

where and are given by

(29)

(30)

Then (28) has a unique strictly positive solution
.

Furthermore, assume that ,
, and . Assume also that
where represents the smallest

eigenvalue of . Then, as

(31)

where the asymptotic approximation is given by

(32)

or equivalently by

(33)
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Proof: We rely on the virtual channel introduced in
Section III-A and on the eigenvalue/eigenvector decomposition
performed there.

Matrices as introduced in Proposition 1 are
clearly uniformly bounded, while

due to the model specifications and
as

. Therefore, matrices and clearly satisfy the
assumptions of Theorems 1 and 2.

We first apply the results of Theorem 1-(i) to matrix (and
use the same notations). Using the unitary invariance of the trace
of a matrix, it is straightforward to check that:

(34)

(35)

Therefore, is solution of (28) if and only if
is solution of (13). As (13) admits a unique

strictly positive pair of solutions, say , (28) satisfies the
same property and the corresponding pair is related to

by

(36)

In order to justify (32) and (33), we note that coincides
with the EMI . Moreover, the unitary invariance of the de-
terminant of a matrix together with (36) imply that de-
fined by (32) and (33) coincide with the approximation given
by (22) and (23). This proves (31) as well.

In the following, we denote by and the fol-
lowing matrix-valued functions:

(37)

(38)

They are related to matrices and defined by (14) by

(39)

and their entries represent deterministic approximations of
and .

As and , the quanti-
ties and are the Stieltjes transforms of prob-
ability measures and introduced in Theorem 1-(ii). As ma-
trices and (resp. and ) have
the same eigenvalues, one can notice that the eigenvalue distri-
bution of (respectively, ) behaves like
(respectively, ).

We finally mention that and are given by

(40)

and that the following representations hold true:

and

(41)

where and are positive measures on satisfying
and .

IV. STRICT CONCAVITY OF AND APPROXIMATION OF THE

CAPACITY

A. Strict Concavity of

The strict concavity of is an important issue for opti-
mization purposes (see Section V). The main result of the sec-
tion is as follows.

Theorem 4: The function is strictly concave on
.
As we shall see, the concavity of can be estab-

lished quite easily by relying on the concavity of the EMI
. The strict concavity is more

demanding.
In the sequel, we shall rely on the following straightforward

but useful result:

Proposition 2: Let be a real function. Then is
strictly concave if and only if for every matrices

of , the function defined on by

is strictly concave.
Recall that is concave on

(see, for instance, [27]).
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1) Using Another Auxiliary Channel to Establish the Con-
cavity of : Denote by the Kronecker product of matrices.
We introduce the following matrices:

(42)

Matrix is of size , matrices and are of size
, and is of size . Let us now introduce

and

where is a matrix whose entries are i.i.d
-distributed random variables. Denote by the

EMI associated with channel

Applying Theorem 3 to the channel , we conclude that
admits an asymptotic approximation defined

by (29)–(30) and (32), where one will substitute the quantities
related to channel by those related to channel , i.e.

(43)

Due to the block-diagonal nature of matrices and
, (28) associated with channel is exactly the same as

the one associated with channel . Moreover, a straightforward
computation yields

It remains to apply the convergence result (31) to conclude that

Since is concave, is concave as
a pointwise limit of concave functions.

2) Uniform Strict Concavity of the EMI of the Auxiliary
Channel—Strict Concavity of : In order to establish the
strict concavity of , we shall rely on the following lemma.

Lemma 1: Let be a real function such that
there exists a family of real functions satisfying:

i) The functions are twice differentiable and there exists
such that

(44)

ii) For every .

Then is a strictly concave real function.
Proof of Lemma 1 is straightforward and is therefore omitted.

Let in ; denote by ,

. Let be the matrix
associated with the auxiliary channel and denote by

We have already proved that

. In order to fulfill assumptions of Lemma 1, it is
sufficient to prove that there exists such that for every

,

(45)

The proof of (45) is omitted, but available upon request (see also
the extended version [44]).

B. Approximation of the Capacity

Since is strictly concave over the compact set , it admits
a unique argmax we shall denote by , i.e.

As we shall see in Section V, matrix can be obtained by a
rather simple algorithm. Provided that is bounded,
(31) in Theorem 3 yields as . It
remains to check that goes asymptotically to
zero to be able to approximate the capacity. This is the purpose
of the next proposition.

Proposition 3: Assume that ,
, , and

. Let and be the maximizers over
of and , respectively. Then the following facts hold true:

i) .
ii) .

iii) .
Proof: The proof of items (i) and (ii) is postponed to

Appendix III. Let us prove (iii). As

(46)

where the two terms of the LHS are nonnegative due to the fact
that and are the maximizers of and , respectively. As a
direct consequence of (46), we have
and the proof is completed.

V. OPTIMIZATION OF THE INPUT COVARIANCE MATRIX

In the previous section, we have proved that matrix
asymptotically achieves the capacity. The purpose of this
section is to propose an efficient way of maximizing the asymp-
totic approximation without using complicated numerical
optimization algorithms. In fact, we will show that our problem
boils down to simple waterfilling algorithms.
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A. Properties of the Maximum of

In this section, we shall establish some of ’s properties. We
first introduce a few notations. Let be the function
defined by

(47)

or equivalently by

(48)

Note that if is the solution of system (28), then:

Denote by the solution of (28)
associated with . The aim of the section is to prove that
is the solution of the following standard waterfilling problem:

Denote by the matrix given by

(49)

Then, also writes

(50)

which readily implies the differentiability of
and the strict concavity of ( and

being frozen).
In the sequel, we will denote by the derivative of the

differentiable function at point and by the value
of this derivative at point . The following proposition captures
the main features needed in the sequel.

Proposition 4: Let be a concave and differen-
tiable function. Then:

i) (necessary condition) If attains its maximum for
, then

(51)

ii) (sufficient condition) Assume that there exists
such that

(52)

Then admits its maximum at (i.e., is an argmax
of over ).

These results are standard (see for instance [5, Ch. 2]), there-
fore, the proof is omitted.

In the following proposition, we gather various properties re-
lated to .

Proposition 5: Consider the functions and
from to . The following properties hold true:

i) Functions and are differentiable
(and in particular continuous) over .

ii) Let . The following property:

holds true if and only if .
iii) Denote by and the quantities and

. Matrix is the solution of the standard
waterfilling problem: Maximize over the
function or equivalently the function

.
Proof: (i) is straightforward and its proof is therefore

omitted. Let us establish (ii). Recall that is strictly con-
cave by Theorem 4 (and therefore its maximum is attained at
most one point). On the other hand, is continuous by (i)
over which is compact. Therefore, the maximum of
is uniquely attained at a point . Item (ii) follows then from
Proposition 4.

Proof of item (iii) is based on the following identity, to be
proved

(53)

where denote the derivative of with respect to
’s third component, i.e., with

. Assume that (53) holds true. Then item (ii)
implies that for every

. As is strictly concave on
is the argmax of by Proposition 4 and

we are done.
It remains to prove (53). Consider and in , and use the

identity

We now compute the partial derivatives of and obtain

(54)
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where and are defined by (29) and (30). The first rela-
tion follows from (47) and the second relation from (48). As

is the solution of (28), (54) imply that

(55)
Letting and taking into account (55) yields:

and (iii) is established.

Remark 6: The quantities and depend on matrix
. Therefore, Proposition 5 does not provide by itself any op-

timization algorithm. However, it gives valuable insights on the
structure of . Consider first the case and .
Then, is a linear combination of and matrix

. The eigenvectors of thus coincide with the right sin-
gular vectors of matrix , a result consistent with the work [20]
devoted to the maximization of the EMI . If and

can be interpreted as a linear combina-
tion of matrices and . Therefore, if the transmit an-
tennas are correlated, the eigenvectors of the optimum matrix

coincide with the eigenvectors of some weighted sum of
and . This result provides a simple explanation of the

impact of correlated transmit antennas on the structure of the
optimal input covariance matrix. The impact of correlated re-
ceive antennas on is however less intuitive because matrix

has to be replaced with .

B. The Optimization Algorithm.

We are now in position to introduce our maximization algo-
rithm of . It is mainly motivated by the simple observation that
for each fixed , the maximization with respect to of
function defined by (50) can be achieved by a stan-
dard waterfilling procedure, which, of course, does not need the
use of numerical techniques. On the other hand, for fixed,
the equation (28) have unique solutions that, in practice, can be
obtained using a standard fixed-point algorithm. Our algorithm
thus consists in adapting parameters and separately by
the following iterative scheme:

• Initialization: are defined as the
unique solutions of (28) in which .
Then, define as the maximum of function

on , which is obtained through a stan-
dard waterfilling procedure.

• Iteration : assume available.
Then, is defined as the unique solution of (28)
in which . Then, define as the maximum of
function on .

One can notice that this algorithm is the generalization of
the procedure used by [43] for optimizing the input covariance
matrix for correlated Rayleigh MIMO channels.

We now study the convergence properties of this algorithm,
and state a result which implies that, if the algorithm converges,
then it converges to the unique argmax of .

Proposition 6: Assume that the two sequences and
verify

(56)

Then, the sequence converges toward the maximum
of on .
Proof: First note that the sequence belongs to the

compact set . Therefore, in order to show that the sequence
converges, it is sufficient to establish that the limits of all con-
vergent subsequences coincide. We thus consider a convergent
subsequence extracted from , say , where
for each is an integer, and denote by its limit. If we
prove that

(57)

for each , Proposition 5–(ii) will imply that coin-
cides with the argmax of over . This will prove that the
limit of every convergent subsequence converges towards ,
which in turn will show that the whole sequence con-
verges to .

In order to prove (57), consider the iteration of the
algorithm. The matrix maximizes the function

. As this function is strictly concave and
differentiable, Proposition 4 implies that

(58)

for every (recall that represents the derivative of
with respect to ’s third component). We now con-

sider the pair of solutions of the system
(28) associated with matrix .

Due to the continuity of and , the convergence
of the subsequence implies the convergence of the sub-
sequences towards a limit .
The pair is the solution of (28) associated with

i.e., and ; in particular

[see, for instance, (55)]. Using the same computation as in the
proof of Proposition 5, we obtain

(59)

for every . Now (56) implies that the subsequence
also converges toward . As a con-

sequence

(60)
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TABLE I
AVERAGE TIME PER ITERATION IN SECONDS

Fig. 1. Comparison with the Vu-Paulraj algorithm I.

Inequality (58), thus, implies that

and (59) allows us to conclude the proof.

Remark 7: If the algorithm is convergent, i.e., if sequence
converges towards a matrix , Proposition 6 implies

that . In fact, functions and
are continuous by Proposition 5. As and

, the convergence of thus implies the
convergence of and , and (56) is fulfilled. Proposi-
tion 6 immediately yields .

Remark 8: Although we have not been able to prove the con-
vergence of the algorithm, we believe that it can be used in prac-
tice because its possible nonconvergence can be easily checked
by evaluating and for each . If
one of the above sequences does not converge toward 0, Remark
7 implies that the algorithm does not converge. In this case, a
simple solution consists in modifying the initialization point as
many times as necessary. We, however, notice that all the numer-
ical experiments we have conducted indicate that the algorithm
converges if initialized at .

VI. NUMERICAL EXPERIMENTS

In this section, we compare the proposed algorithm with Vu
and Paulraj’s algorithm as presented in [41], and based on the
maximization of .

Recall that Vu-Paulraj’s algorithm is based on a Newton
method and a barrier interior point method. Moreover, the
average mutual informations and their first and second deriva-
tives are evaluated by Monte Carlo simulations. In Fig. 1, we
have evaluated versus the SNR for

. Matrix coincides with the example considered in
[41]. The solid line corresponds to the results provided by the

Fig. 2. Comparison with the Vu-Paulraj algorithm II.

Vu-Paulraj’s algorithm; the number of trials used to evaluate
the mutual informations and its first and second derivatives is
equal to 30.000, and the maximum number of iterations of the
algorithm in [41] is fixed to 10. The dashed line corresponds
to the results provided by our algorithm: Each point represents

at the corresponding SNR, where is the argmax of
; the average mutual information at point is evaluated by

Monte Carlo simulation (30.000 trials are used). The number
of iterations is also limited to 10. Fig. 1 shows that our asymp-
totic approach provides the same results than the Vu-Paulraj’s
algorithm. However, our algorithm is computationally much
more efficient as Table I shows. The table gives the average
executation time (in sec) of one iteration for both algorithms
for . We finally notice that
the algorithm proposed in [36] provides on the same channel
matrix similar results (compare [36, Fig. 2 to Fig. 1]).

In Fig. 2, we again compare Vu-Paulraj’s algorithm and our
proposal. Matrix is generated according to the model

(61)

where and is a diagonal ma-
trix whose entries represent the complex amplitudes of the line
of sight (LOS) components. The angles of arrivals are chosen
randomly according to a uniform distribution. The transmit and
receive antennas correlations are exponential with parameter

and , respectively. In the experi-
ments, , while various values of and of the
Rice factor have been considered. As in the previous experi-
ment, the maximum number of iterations for both algorithms is
10, while the number of trials generated to evaluate the average
mutual informations and their derivatives is equal to 30.000. Our
approach again provides the same results than Vu-Paulraj’s al-
gorithm, except for low SNRs for

where our method gives better results: at these points, the
Vu-Paulraj’s algorithm seems not to have converged at the 10th
iteration.
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VII. CONCLUSION

In this paper, the accuracy of the large system approxima-
tion of the ergodic mutual information for Rician MIMO chan-
nels with transmit and receive antenna correlation is studied.
It is shown that the relative error of the approximation is a

term. The approximation of the EMI is exploited to de-
rive an efficient optimization algorithm providing an approxi-
mation of the optimum covariance matrix and of the capacity of
the channel. The relative errors of these approximations are also

terms.

APPENDIX I
PROOF OF THE EXISTENCE AND UNIQUENESS OF (13)

We consider functions and defined by

(62)

We have to establish that (62) has a pair of strictly positive solu-
tions, and that this particular pair is unique [i.e., there is no other
strictly positive pair satisfying (62)]. For this, we construct a
strictly positive pair satisfying the equation. This shows the ex-
istence. The uniqueness is an easy consequence of the construc-
tion above, and is therefore omitted.

In order to construct the pair of strictly positive solutions, we
first remark that for each fixed, function
is clearly strictly decreasing, converges toward if
and converges to 0 if . Therefore, there exists a unique

satisfying . As this solution depends on , it
is denoted in the following. We claim that

• (i) Function is strictly decreasing for ,
• (ii) Function is strictly increasing for .

In fact, consider . It is easily checked that for
each . Hence, the solution and

of the equations and satisfy
. This establishes (i). To prove (ii), we use the

obvious relation . We denote
by the matrices

It is clear that . We express
as

and use the identity

(63)

Using the form of matrices , we eventually obtain that

where and are the strictly positive terms defined by

(64)

and

As ,
implies that . Hence,

is a strictly increasing function as expected. From this, it follows
that function is strictly decreasing for

. This function converges to if and to 0 if
. Moreover, it is easily seen that function is continuous.

Therefore, function is itself continuous, so that
the equation with respect to

has a unique strictly positive solution . Denote by the strictly
positive term . It is clear that
or equivalently that and . We have
therefore shown that is a strictly positive pair solution of
(13).

APPENDIX II
PROOF OF THEOREM 2

This section is organized as follows. We first recall in
Section II-A some useful mathematical tools. In Section II-B,
we establish (25). In Section II-C, we prove (26) and (27).

We shall use the following notations. If is a random vari-
able, the zero mean random variable is denoted by

. If is a complex number, the differential opera-
tors and are defined, respectively, by and

. Finally, if are given matrices, we denote,
respectively, by their columns.

A. Mathematical Tools

1) The Poincaré-Nash Inequality: (see, e.g., [8] and [22]).
Let be a complex Gaussian random vector
whose law is given by , , and .

Let be a complex func-
tion polynomially bounded together with its partial derivatives.
Then the following inequality holds true:

(65)

where and
. Let be the matrix

, where has i.i.d. entries
and consider the stacked vector . In
this case, Poincaré-Nash inequality writes

(66)
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2) The Differentiation Formula for Functions of Gaussian
Random Vectors: With and given as above, we have the
following

(67)

This formula relies on an integration by parts, and is thus re-
ferred to as the Integration by parts formula for Gaussian vec-
tors. It is widely used in Mathematical Physics ([15]) and has
been used in Random Matrix Theory in [26] and [31].

If coincides with the vector ,
(67) becomes

(68)

Replacing matrix by matrix also provides

(69)

3) Some Useful Differentiation Formulas: The following par-
tial derivatives and for each and

will be of use in the sequel. Straightfor-
ward computations yield

(70)

B. Proof of (25)

We just prove that the variance of is a term.
For this, we note that the random variable can be
interpreted as a function of the entries of matrix , and
use the Poincaré-Nash inequality (66) to . Function
is equal to

Therefore, the partial derivative of with respect to is
given by which, by (70), coincides
with

As and , it is clear that

It is easily seen that

As and
is less than . Moreover, coin-
cides with , which is itself less than

, a uniformly bounded term. Therefore,
is a term. This proves that

It can be shown similarly that
. The conclusion

follows from Poincaré-Nash inequality (66).

C. Proof of (26) and (27)

As we shall see, proofs of (26) and (27) are demanding. We
first introduce the following notations: Define scalar parameters

as

(71)

and matrices as

(72)

We note that, as and , then

(73)

It is difficult to study directly the term . In
some sense, matrix can be seen as an intermediate quantity
between and . Thus the proof consists into two steps:
1) for each uniformly bounded matrix , we first prove that

and converge to 0 as ;
2) we then refine the previous result and establish in fact that

and are terms.
This, of course, imply (26). Equation (27) eventually follows
from (26), the integral representation

(74)

which follows from (20) and (21), as well as a dominated con-
vergence argument that is omitted.

1) First Step: Convergence of and
to Zero: The first step consists in showing

the following Proposition.

Proposition 7: For each deterministic matrix , uni-
formly bounded (for the spectral norm) as , we have

(75)

(76)
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Proof: We first prove (75). For this, we state the following
useful Lemma.

Lemma 2: Let and be deterministic
matrices, respectively, uniformly bounded with respect to the
spectral norm as . Consider the following functions of

:

(77)

Then, the following estimates hold true:

The proof, based on the Poincaré-Nash inequality (66), is
omitted.

In order to use the Integration by parts formula (68), notice
that

(78)

Taking the mathematical expectation, we have for each

(79)

A convenient use of the Integration by parts formula allows to
express in terms of the entries of . To see
this, note that

For each can be written as

(80)
Using (68) with function and (69) with

, and summing over index yields

(81)

Equation (25) for implies that , or

equivalently that . We now complete proof
of (75). We take (81) as a starting point, and write as

. Therefore,

Plugging this relation into (81), and solving with respect to
yields

(82)

Writing , and summing over provides the fol-
lowing expression of :

(83)

The resolvent identity (78) thus implies that

(84)

In order to simplify the notations, we define and by

For , we write as

Thus, (84) can be written as

(85)

We now establish the following lemma.

Lemma 3:

(86)
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where is defined by

Proof: We express as

(87)

and evaluate using formula (67) for
. This gives

By (70)

Therefore

Writing again , we get that

(88)

Solving this equation with respect to yields

(89)

or equivalently

(90)
Equation (86) immediately follows from (87), (90), and

.

Plugging (86) into (85) yields

(91)

where is the matrix defined by

(92)

for each or equivalently by

(93)

Using , we obtain that

(94)

Therefore, the term

is equal to

which, in turn, coincides with , where is defined by

(95)

Equation (91) is, thus, equivalent to

(96)

or equivalently to

(97)

or to

(98)

We now verify that if is a deterministic, uniformly bounded
matrix for the spectral norm as , then

. For this, we write as
where
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We denote by the term

and notice that . Equation (25) implies that

and are terms. Moreover, matrix
is uniformly bounded for the spectral norm as [see (73)].

Lemma 2 immediately shows that for each
is a term. The Cauchy-Schwarz inequality eventually
provides .

In order to establish (75), it remains to show that .
For this, we remark that exchanging the roles of matrices and

leads to the following relation:

(99)

where is defined by

(100)

and where , the analogue of , satisfies

(101)

for every matrix uniformly bounded for the spectral norm.
Equations (98) and (99) allow to evaluate and . More pre-

cisely, writing and using (99) of , we
obtain that

(102)
Similarly, replacing by (98) into the expression (95) of ,
we get that

(103)

Using standard algebra, it is easy to check that the first term of
the right-hand side (RHS) of (103) coincides with ).
Substracting (103) from (102), we get that

(104)

where

(105)

Using the properties of and , we get that .
Similar calculations allow to evaluate and , and to obtain

(106)

where

(107)

and where . (106), (104) can be written as

(108)

If the determinant of the 2 2 matrix governing
the system is nonzero, and are given by

(109)

As matrices and are less than and matrices and
are less than , it is easy to check that are

uniformly bounded. As and are terms, and
will converge to 0 as long as the inverse

of the determinant is uniformly bounded. For the moment, we
show this property for large enough. For this, we study the
behavior of coefficients for large enough values of

. It is easy to check that

(110)

As , it is clear that there exists and an integer for
which for and

. Therefore, for and .
Equation (109), thus, implies that if , then and

are of the same order of magnitude as ,
and therefore converge to 0 when . It remains to prove
that this convergence still holds for . For this,
we shall rely on Montel’s theorem (see, e.g., [6]), a tool fre-
quently used in the context of large random matrices. It is based
on the observation that, considered as functions of parameter

and can be extended to holo-
morphic functions on by replacing by a complex
number . Moreover, it can be shown that these holomorphic
functions are uniformly bounded on each compact subset of

, in the sense that and
. Using Montel’s theorem, it

can thus be shown that if and con-
verge towards zero for each , then for each ,

and converge as well towards 0. This in
particular implies that and con-
verge towards 0 for each . For more details, the reader
may, e.g., refer to [18]. This completes the proof of (75).
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We note that Montel’s theorem does not guarantee that
and are still terms for . This is one of the
purpose of the proof of Step 2 below.

In order to finish the proof of Proposition 7, it remains to
check that (76) holds. We first observe that

. Using the expressions of and , multiplying
by , and taking the trace yields

As the terms and
are uniformly bounded, it is

sufficient to establish that and converge
towards 0. For this, we note that (75) implies that

(111)

where and converge towards 0. We express
. Using , mul-

tiplying by from both sides, and taking the trace yields

(112)

Similarly, we obtain that

(113)

Equations (112) and (113) can be interpreted as a linear systems
with respect to and . Using the same approach
as in the proof of (75), we prove that and con-
verge towards 0. This establishes (76) and completes the proof
of Proposition (7).

2) Second Step: and
are Terms: This section is devoted to the proof of the
following proposition.

Proposition 8: For each deterministic matrix , uni-
formly bounded (for the spectral norm) as , we have:

(114)

(115)

Proof: We first establish (114). For this, we prove that the
inverse of the determinant of linear system (108)

is uniformly bounded for each . In order to state the
corresponding result, we define by

(116)

The expressions of nearly coincide with the expres-
sions of coefficients , the only difference being
that, in the definition of , matrices are both
replaced by matrix , matrices are both replaced by
matrix and scalars are replaced by scalars . (75)
and (76) immediately imply that can be written
as

(117)

where converge to 0 when . The behavior
of is provided in the following Lemma, whose proof is
given in Appendix II-C3 below.

Lemma 4: Coefficients satisfy: (i) , (ii)
and ; (iii) and

.
Equation (117) and Lemma 4 immediately imply that it exists
such that for each and

(118)

This eventually shows and are of the same order of
magnitude than and , i.e., are terms.

In order to prove (115), we first remark that, by (114), and
defined by (111) are terms. It is thus sufficient to

establish that the inverse of the determinant of the linear system
associated to (112) and (113) is uniformly bounded. Equation
(76) implies that the behavior of this determinant is equivalent to
the study of . Equation (115) thus follows from Lemma
4. This completes the proof of Proposition 8.

3) Proof of Lemma 4: In order to establish item (i), we notice
that a direct application of the matrix inversion Lemma yields:

(119)

The equality immediately follows from (119).
The proofs of (ii) and (iii) are based on the observation that

function is increasing while function
is decreasing. This claim is a consequence of (17) that

we recall below
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where and . Note that
is decreasing because is decreasing and

is increasing because is increasing. Denote by the
differentiation operator with respect to . Then,
and for each . We now differentiate (16) with respect
to . After some algebra, we obtain

(120)

As , the first equation of (120) implies that .
As , this yields . As clearly holds, the
first part of (ii) is proved.

We now prove that . The first equation of (120)
yields

(121)

In the following, we show that
and that .

By (17)

and

As for .
Therefore, the term is lowerbounded by .
As , we have .

We now establish that . We first use Jensen’s
inequality: As measure is a probability
distribution:

(122)

In other words, satisfies

As aforementioned, is lower-bounded by
. Therefore, it remains to establish that ,

or equivalently that . For this, we assume that
(we indicate that depends both on

and ). Therefore, there exists an increasing sequence of
integers for which , i.e.,

where is the positive

measure associated with . As is uniformly bounded,
the sequence is tight. One can, therefore, extract

from a subsequence that converges
weakly to a certain measure which of course satisfies

This implies that , and thus , while the

convergence of gives

by assumption (3). Therefore, the assumption
leads to a contradiction. Thus, and
is proved.

We finally establish that is lower-bounded, i.e., that
. For any Hermitian positive matrix ,

We use this inequality for . This leads to

Therefore, . Using the same ap-
proach as above, we can prove that . Proof of (ii) is
completed.

In order to establish (iii), we use the first equation of (120)
to express in terms of , and plug this relation into the
second equation of (120). This gives

(123)

The RHS of (123) is negative as well as . Therefore,
. As is positive, is also positive. Moreover,

et are strictly less than 1. As and are both strictly positive,
is strictly less than 1. To complete the proof of (iii), we

notice that by (123)

clearly satisfies and is thus upper bounded

by . (ii) implies that . It remains to verify that
. Denote by .

Authorized licensed use limited to: Telecom ParisTech. Downloaded on March 15,2010 at 05:59:51 EDT from IEEE Xplore.  Restrictions apply. 



1066 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 3, MARCH 2010

In order to use Jensen’s inequality, we consider ,

and notice that . can be written as

By Jensen’s inequality

Moreover

Finally

Since , we have and the proof
of (iii) is completed.

APPENDIX III
END OF PROOF OF PROPOSITION 3

Proof of Proposition 3 relies on properties of established
in Proposition 5–(iii). Denote by

and

(124)

Proof of (i): Recall that by Proposition 5–(iii), maxi-
mizes . This implies that the eigen-
values are the solutions of the waterfilling equation

where is tuned in such a way that . It is clear
from this equation that . If then

. If then
and we have . Hence,

. In both cases, we have

(125)

It remains to prove

(126)

and we are done. To this end, we first show that
for all . From (37) and (40), we have

(127)

where follows from Jensen’s Inequality and is due to the
facts that and when

is a nonnegative matrix. We now find an upper bound for .
From (39) and (15), we have . Using (40) we
then have

(recall that . Getting back to (127), we easily obtain

(128)

where is a certain constant term. Hence we have
. By inspecting the expression (49) of , we then

obtain

and (126) is proven. It remains to plug this estimate into (125)
and (i) is proved.

Proof of (ii): We begin by restricting the maximization
of to the set

of the diagonal matrices within , and show
that satisfies where
the bound is a function of only. The set is
clearly convex and the solution is given by the Lagrange
Karush-Kuhn-Tucker (KKT) conditions

(129)

where and the Lagrange mul-
tipliers and the are associated with the power constraint and
with the positivity constraints, respectively. More specifically,
is the unique real positive number for which , and
the satisfy if and if . We have
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where the th column of . By consequence,
. As is a Gaussian vector,

the RHS of this inequality is defined and, therefore, by the
Dominated Convergence Theorem, we can exchange
with in (129) and write

(130)

Let us denote by the matrix that remains after
extracting from . Similarly, we denote by the

diagonal matrix that remains after deleting row
and column from . Writing ,
we have by the Matrix Inversion Lemma ([21, Sec. 0.7.4])

By plugging this expression into the RHS of (130), the La-
grange-KKT conditions become

(131)

where . A consequence of this last equation is
that for every . Indeed, assume that for
some . Then hence ,
therefore, (131), which implies that , a contradic-
tion. As a result, in order to prove that , it will
be enough to prove that . To this end, we shall
prove that there exists a constant such that

(132)

Indeed, let us admit (132) temporarily. We have

where , and the inequality is due to
the fact that the function is increasing. As

by (132), we have

Getting back to the Lagrange KKT condition (131) we therefore
have for large enough for every

. By consequence

for large . Summing over and taking into account the power
constraint , we obtain , i.e.,
and

(133)

which is the desired result. To prove (132), we make use

of MMSE estimation theory. Recall that

. Denoting by and the columns

of the matrices and , respectively, we have

We decompose as where is the condi-
tional expectation , in
other words, is the MMSE estimate of drawn from the
other columns of . Put

(134)

Then

(135)

Let us study the asymptotic behavior of . First, we note
that due to the fact that the joint distribution of the el-
ements of is the Gaussian distribution, and

are independent. By
consequence, and are independent. Let us derive

the expression of the covariance matrix .
From the well-known formulas for MMSE estimation ([33]),
we have .
To obtain , we note that the covariance matrix of the vector

is (just check that

. Let us denote by
and the scalar , the th vector column

of without element , and the matrix that
remains after extracting row and column from , respec-
tively. With these notations we have .
Recalling that and are independent, one may
see that the first term of the RHS of (134) is negligible

while the second is close to .
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More rigorously, using this independence in addition to
and , we can

prove with the help of [1, Lemma 2.7] or by direct calculation
that there exists a constant such that

(136)

In order to prove (132), we will prove that the are bounded
away from zero in some sense. First, we have

(for see [21, Sec. 0.7.3] and for , use the fact that
for any element of a matrix . By

consequence

where is Jensen Inequality and is due to
when is a nonnegative matrix. As

with probability one ([1]), and furthermore,
, we have with probability one

(137)

Choose the constant in the left-hand side (LHS) of (132) as
. From (132) we have

where is Tchebychev’s Inequality, is due to
, and is due to (136) and to

(137).
We have proven (132) and hence that

satisfies . \cr In

order to prove that satisfies
, we begin by noticing that

(138)
where is the group of unitary matrices. For a given
matrix , the inner maximization in (138) is equivalent
to the problem of maximizing the mutual information over
when the channel matrix is replaced with

. Here, matrix is

defined by , where
is the unitary matrix . As , we

clearly have , , and
. By consequence, the bounds and , and hence the

constant in the left hand member of (132) (which depends
only on remain unchanged when we replace

with . By consequence, for every the matrix
that maximizes sat-

isfies [see (132) which is independent
of ]. Hence, which terminates the proof
of (ii).
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