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Performance of Statistical Tests for Single-Source
Detection Using Random Matrix Theory

P. Bianchi, M. Debbah, M. Maida, and J. Najim

Abstract—This paper introduces a unified framework for the de-
tection of a single source with a sensor array in the context where
the noise variance and the channel between the source and the sen-
sors are unknown at the receiver. The Generalized Maximum Like-
lihood Test is studied and yields the analysis of the ratio between
the maximum eigenvalue of the sampled covariance matrix and its
normalized trace. Using recent results from random matrix theory,
a practical way to evaluate the threshold and the �-value of the test
is provided in the asymptotic regime where the number � of sen-
sors and the number � of observations per sensor are large but
have the same order of magnitude. The theoretical performance of
the test is then analyzed in terms of Receiver Operating Character-
istic (ROC) curve. It is, in particular, proved that both Type I and
Type II error probabilities converge to zero exponentially as the
dimensions increase at the same rate, and closed-form expressions
are provided for the error exponents. These theoretical results rely
on a precise description of the large deviations of the largest eigen-
value of spiked random matrix models, and establish that the pre-
sented test asymptotically outperforms the popular test based on
the condition number of the sampled covariance matrix.

Index Terms—Cooperative spectrum sensing, generalized likeli-
hood ratio test, hypothesis testing, large deviations, random matrix
theory, ROC curve.

I. INTRODUCTION

T HE detection of a source by a sensor array is at the heart
of many wireless applications. It is of particular interest in

the realm of cognitive radio [1], [2] where a multisensor cogni-
tive device (or a collaborative network1) needs to discover or
sense by itself the surrounding environment. This allows the
cognitive device to make relevant choices in terms of informa-
tion to feed back, bandwidth to occupy or transmission power to
use. When the cognitive device is switched on, its prior knowl-
edge (on the noise variance for example) is very limited and can
rarely be estimated prior to the reception of data. This unfortu-
nately rules out classical techniques based on energy detection
[4]–[6] and requires new sophisticated techniques exploiting the
space or spectrum dimension.
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1The collaborative network corresponds to multiple base stations connected,
in a wireless or wired manner, to form a virtual antenna system [3].

In our setting, the aim of the multisensor cognitive detection
phase is to construct and analyze tests associated with the fol-
lowing hypothesis testing problem:

(1)

where is the observed com-
plex time series, represents a complex circular
Gaussian white noise process with unknown variance , and
represents the number of received samples. Vector is
a deterministic vector and typically represents the propagation
channel between the source and the sensors. Signal de-
notes a standard scalar independent and identically distributed
(i.i.d.) circular complex Gaussian process with respect to the
samples and stands for the source signal to be
detected.

The standard case where the propagation channel and the
noise variance are known has been thoroughly studied in the
literature in the Single Input Single Output case [4]–[6] and
Multi-Input Multi-Ouput [7] case. In this simple context, the
most natural approach to detect the presence of source is
the well-known Neyman-Pearson (NP) procedure which con-
sists in rejecting the null hypothesis when the observed like-
lihood ratio lies above a certain threshold [8]. Traditionally,
the value of the threshold is set in such a way that the Prob-
ability of False Alarm (PFA) is no larger than a predefined
level . Recall that the PFA (resp. the miss proba-
bility) of a test is defined as the probability that the receiver
decides hypothesis (resp. ) when the true hypothesis is

(resp. ). The NP test is known to be uniformly most
powerful i.e., for any level , the NP test has the min-
imum achievable miss probability (or equivalently the max-
imum achievable power) among all tests of level . In this
paper, we assume that:

• the noise variance is unknown;
• vector is unknown.

In this context, probability density functions of the observations
under both and are unknown, and the classical NP

approach can no longer be employed. As a consequence, the
construction of relevant tests for (1) together with the analysis
fo their perfomances is a crucial issue. The classical approach
followed in this paper consists in replacing the unknown pa-
rameters by their maximum likelihood estimates. This leads to
the so-called Generalized Likelihood Ratio (GLR). The Gener-
alized Likelihood Ratio Test (GLRT), which rejects the null hy-
pothesis for large values of the GLR, easily reduces to the sta-
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tistics given by the ratio of the largest eigenvalue of the sampled
covariance matrix to its normalized trace, cf. [9]–[11]. Nearby
statistics [12]–[15], with good practical properties, have also
been developed, but do not yield a different (asymptotic) error
exponent analysis.

In this paper, we analyze the performance of the GLRT in
the asymptotic regime where the number of sensors and the
number of observations per sensor are large but have the same
order of magnitude. This assumption is relevant in many appli-
cations, among which cognitive radio, for instance, and casts the
problem into a large random matrix framework.

Large random matrix theory has already been applied to
signal detection [16] (see also [17]), and recently to hypothesis
testing [15], [18], [19]. In this article, the focus is mainly
devoted to the study of the largest eigenvalue of the sampled
covariance matrix, whose behavior changes under or .
The fluctuations of the largest eigenvalue under have
been described by Johnstone [20] by means of the celebrated
Tracy–Widom distribution, and are used to study the threshold
and the -value of the GLRT.

In order to characterize the performance of the test, a natural
approach would be to evaluate the Receiver Operating Charac-
teristic (ROC) curve of the GLRT, that is to plot the power of the
test versus a given level of confidence. Unfortunately, the ROC
curve does not admit any simple closed-form expression for a
finite number of sensors and snapshots. As the miss probability
of the GLRT goes exponentially fast to zero, the performance of
the GLRT is analyzed via the computation of its error exponent,
which characterizes the speed of decrease to zero. Its compu-
tation relies on the study of the large deviations of the largest
eigenvalue of “spiked” sampled covariance matrix. By “spiked”
we refer to the case where the eigenvalue converges outside the
bulk of the limiting spectral distribution, which precisely hap-
pens under hypothesis . We build upon [21] to establish the
large deviation principle, and provide a closed-form expression
for the rate function.

We also introduce the error exponent curve, and plot the error
exponent of the power of the test versus the error exponent for a
given level of confidence. The error exponent curve can be inter-
preted as an asymptotic version of the ROC curve in a
scale and enables us to establish that the GLRT outperforms
another test based on the condition number, and proposed by
[22]–[24] in the context of cognitive radio.

Notice that the results provided here (determination of the
threshold of the GLRT test and the computation of the error
exponents) would still hold within the setting of real Gaussian
random variables instead of complex ones, with minor modifi-
cations.2

The paper is organized as follows.
Section II introduces the GLRT. The value of the threshold,

which completes the definition of the GLRT, is established in
Section II-B. As the latter threshold has no simple closed-form
expression and as its practical evaluation is difficult, we intro-
duce in Section II-C an asymptotic framework where it is as-
sumed that both the number of sensors and the number of

2Details are provided in Remarks 4 and 9.

available snapshots go to infinity at the same rate. This assump-
tion is valid, for instance, in cognitive radio contexts and yields
a very simple evaluation of the threshold, which is important in
real-time applications.

In Section III, we recall several results of large random matrix
theory, among which the asymptotic fluctuations of the largest
eigenvalue of a sample covariance matrix, and the limit of the
largest eigenvalue of a spiked model.

These results are used in Section IV where an approximate
threshold value is derived, which leads to the same PFA as the
optimal one in the asymptotic regime. This analysis yields a rel-
evant practical method to approximate the -values associated
with the GLRT.

Section V is devoted to the performance analysis of the
GLRT. We compute the error exponent of the GLRT, derive its
expression in closed-form by establishing a Large Deviation
Principle for the test statistic ,3 and describe the error
exponent curve.

Section VI introduces the test based on the condition number,
that is the statistics given by the ratio between the largest eigen-
value and the smallest eigenvalue of the sampled covariance ma-
trix. We provide the error exponent curve associated with this
test and prove that the latter is outperformed by the GLRT.

Section VII provides further numerical illustrations and con-
clusions are drawn in Section VIII.

Mathematical details are provided in the Appendix. In partic-
ular, a full rigorous proof of a large deviation principle is pro-
vided in Appendix A, while a more informal proof of a nearby
large deviation principle, maybe more accessible to the nonspe-
cialist, is provided in Appendix B.

Notations: For represents the probability
of a given event under hypothesis . For any real random
variable and any real number , notation

stands for the test function which rejects the null hypothesis
when . In this case, the probability of false alarm (PFA)
of the test is given by , while the power of the test
is . Notation stands for the almost sure (a.s.)
convergence under hypothesis . For any one-to-one mapping

where and are two sets, we denote by
the inverse of w.r.t. composition. For any borel set

denotes the indicator function of set and de-
notes the Euclidian norm of a given vector . If is a given ma-
trix, denote by its transpose-conjugate. If is a cumulative
distribution function (c.d.f.), we denote by is complementary
c.d.f., that is: .

II. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the Generalized Likelihood Ratio
Test (Section II-A) and compute the associated threshold and

-value (Section II-B). This exact computation raises some

3Note that in recent papers [25], [14], [15], the fluctuations of the test statistics
under� , based on large random matrix techniques, have also been used to ap-
proximate the power of the test. We believe that the performance analysis based
on the error exponent approach, although more involved, has a wider range of
validity.
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computational issues, which are circumvented by the intro-
duction of a relevant asymptotic framework, well-suited for
mathematical analysis (Section II-C).

A. Derivation of the Test

Denote by the number of observed samples and recall that

where represents an independent
and identically distributed (i.i.d.) process of vectors with
circular complex Gaussian entries with mean zero and covari-
ance matrix , vector is deterministic, signal

denotes a scalar i.i.d. circular complex
Gaussian process with zero mean and unit variance. Moreover,

and are as-
sumed to be independent processes. We stack the observed data
into a matrix . Denote by
the sampled covariance matrix

and respectively, by and the likelihood
functions of the observation matrix indexed by the unknown
parameters and under hypotheses and .

As is a matrix whose columns are i.i.d. Gaussian
vectors with covariance matrix defined by

(2)

likelihood functions write

(3)

(4)

In the case where parameters and are available, the
celebrated Neyman-Pearson procedure yields a uniformly most

powerful test, given by the likelihood ratio statistics .
However, in the case where and are unknown, which

is the problem addressed here, no simple procedure garantees a
uniformly most powerful test, and a classical approach consists
in computing the GLR

(5)

In the GLRT procedure, one rejects hypothesis whenever
, where is a certain threshold which is selected in

order that the PFA does not exceed a given level
.
In the following proposition, which follows after straightfor-

ward computations from [26] and [9], we derive the closed form
expression of the GLR . Denote by

the ordered eigenvalues of (all distincts with probability
one).

Proposition 1: Let be defined by

(6)

then, the GLR [cf. (5)] writes

where .
By Proposition 1, where

. The GLRT rejects the null hypothesis
when inequality holds. As with prob-
ability one and as is increasing on this interval, the latter
inequality is equivalent to . Otherwise stated,
the GLRT reduces to the test which rejects the null hypothesis
for large values of

(7)

where is a certain threshold which is such that
the PFA does not exceed a given level . In the sequel, we will,
therefore, focus on the test statistics .

Remark 1: There exist several variants of the above statis-
tics [12]–[15], which merely consist in replacing the normalized
trace with a more involved estimate of the noise variance. Al-
though very important from a practical point of view, these vari-
ants have no impact on the (asymptotic) error exponent analysis.
Therefore, we restrict our analysis to the traditional GLRT for
the sake of simplicity.

B. Exact Threshold and -Values

In order to complete the construction of the test, we must pro-
vide a procedure to set the threshold . As usual, we propose
to define as the value which maximizes the power

of the test (7) while keeping the PFA under
a desired level . It is well-known (see, for instance,
[8] and [27]) that the latter threshold is obtained by

(8)

where represents the complementary c.d.f. of the statis-
tics under the null hypothesis

(9)

Note that is continuous and decreasing from 1 to 0 on
, so that the threshold in (8) is always well

defined. When the threshold is fixed to , the GLRT
rejects the null hypothesis when or equivalently,
when . It is usually convenient to rewrite the GLRT
under the following form:

(10)
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The statistics represents the significance probability or
-value of the test. The null hypothesis is rejected when the
-value is below the level . In practice, the compu-

tation of the -value associated with one experiment is of prime
importance. Indeed, the -value not only allows to accept/reject
a hypothesis by (10), but it furthermore reflects how strongly the
data contradicts the null hypothesis [8].

In order to evaluate -values, we derive in the sequel the exact
expression of the complementary c.d.f. . The crucial point
is that is a function of the eigenvalues of the
sampled covariance matrix . We have

(11)

where for each , the domain of integration is defined by

and is the joint probability density function (p.d.f.) of the
ordered eigenvalues of under given by

(12)

where stands for the indicator function of the
set and where is the
normalization constant (see, for instance, [28], [29, Chapter 4]).

Remark 2: For each , the computation of requires a
numerical evaluation of a nontrivial integral. Despite the fact
that powerful numerical methods, based on representations of
such integrals with hypergeometric functions [30], are available
(see, for instance, [31] and [32]), an on line computation, re-
quested in a number of real-time applications, may be out of
reach.

Instead, tables of the function should be computed off line
i.e., prior to the experiment. As both the dimensions and
may be subject to frequent changes,4 all possible tables of the
function should be available at the detector’s side, for all
possible values of the couple . This requires both sub-
stantial computations and considerable memory space. In what
follows, we propose a way to overcome this issue.

In the sequel, we study the asymptotic behavior of the com-
plementary c.d.f. when both the number of sensors and
the number of snapshots go to infinity at the same rate. This
analysis leads to simpler testing procedure.

C. Asymptotic Framework

We propose to analyze the asymptotic behavior of the com-
plementary c.d.f. as the number of observations goes to
infinity. More precisely, we consider the case where both the

4In cognitive radio applications, for instance, the number of users � which
are connected to the network is frequently varying.

number of sensors and the number of snapshots go to in-
finity at the same speed, as assumed below

with
(13)

This asymptotic regime is relevant in cases where the sensing
system must be able to perform source detection in a moderate
amount of time i.e., the number of sensors and the number
of samples being of the same order. This is in particular the case
in cognitive radio applications (see, for instance, [33]). Very
often, the number of sensors is lower than the number of snap-
shots; hence, the ratio is lower than 1.

In the sequel, we will simply denote to refer to
the asymptotic regime (13).

Remark 3: The results related to the GLRT presented in
Sections IV and V remain true for ; in the case of the test
based on the condition number and presented in Section VI,
extra-work is needed to handle the fact that the lowest eigen-
value converges to zero, which happens if .

III. LARGE RANDOM MATRICES—LARGEST

EIGENVALUE—BEHAVIOR OF THE GLR STATISTICS

In this section, we recall a few facts on large random matrices
as the dimensions go to infinity. We focus on the behavior
of the eigenvalues of which differs whether hypothesis
holds (Section III-A) or holds (Section III-B).

As the column vectors of are i.i.d. complex Gaussian with
covariance matrix given by (2), the probability density of
is given by

where is a normalizing constant.

A. Behavior Under Hypothesis

As the behavior of does not depend on , we assume that
; in particular, . Under , matrix is a com-

plex Wishart matrix and it is well-known (see, for instance, [28])
that the Jacobian of the transformation between the entries of the
matrix and the eigenvalues/angles is given by the Vandermonde
determinant . This yields the joint p.d.f.
of the ordered eigenvalues (12) where the normalizing constant

is denoted by for simplicity.
The celebrated result from Marc̆enko and Pastur [34] states

that the limit as of the c.d.f.
associated to the empirical distribution of the eigenvalues
of is equal to where represents the
Marc̆enko–Pastur distribution

(14)

with and . This convergence is
very fast in the sense that the probability of deviating from
decreases as . More precisely, a simple application
of the large deviations results in [35] yields that for any distance
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on the set of probability measures on compatible with the
weak convergence and for any

(15)

Moreover, the largest eigenvalue of converges a.s. to
the right edge of the Marc̆enko–Pastur distribution, that is

. A further result due to Johnstone [20] describes its speed
of convergence and its fluctuations (see also [36] for
complementary results). Let be defined by

(16)

where is defined by

(17)

then converges in distribution toward a standard
Tracy–Widom random variable with c.d.f. defined
by

(18)

where solves the Painlevé II differential equation

and where Ai denotes the Airy function. In particular,
is continuous. The Tracy–Widom distribution was first intro-
duced in [37], [38] as the asymptotic distribution of the centered
and rescaled largest eigenvalue of a matrix from the Gaussian
Unitary Ensemble.

Tables of the Tracy–Widom law are available, for instance, in
[39], while a practical algorithm allowing to efficiently evaluate
(18) can be found in [40].

Remark 4: In the case where the entries of matrix are real
Gaussian random variables, the fluctuations of the largest eigen-
value are still described by a Tracy–Widom distribution whose
definition slightly differs from the one given in the complex case
(for details, see [20]).

B. Behavior Under Hypothesis

In this case, the covariance matrix writes
and matrix follows a single spiked model. Since the behavior
of is not affected if the entries of are multiplied by a given
constant, we find it convenient to consider the model where

. Denote by

the signal-to-noise ratio (SNR), then matrix admits the de-
composition where is a unitary matrix and

. With the same change of variables

from the entries of the matrix to the eigenvalues/angles with Ja-
cobian the p.d.f. of the ordered eigen-
values writes

(19)

where the normalizing constant is denoted
by for simplicity, is the diagonal matrix with eigen-
values is the diagonal matrix with
eigenvalues , and for any real diagonal ma-
trices the spherical integral is defined
as

(20)

with the Haar measure on the unitary group of size (see
[30Chapter 3] for details).

Whereas this rank-one perturbation does not affect the
asymptotic behavior of (the convergence toward and
the deviations of the empirical measure given by (15) still hold
under ), the limiting behavior of the largest eigenvalue
can change if the signal-to-noise ratio is large enough.

Assumption 1: The following constant exists

(21)

We refer to as the limiting SNR. We also introduce

Under hypothesis , the largest eigenvalue has the following
asymptotic behavior as go to infinity

(22)

see, for instance, [41] for a proof of this result. Note in particular
that is strictly larger than the right edge of the support
whenever . Otherwise stated, if the perturbation is large
enough, the largest eigenvalue converges outside the support of
Marc̆enko–Pastur distribution.

C. Limiting Behavior of Under and

Gathering the results recalled in Sections III-A and III-B, we
obtain the following:

Proposition 2: Let Assumption 1 hold true and assume that
, then

and
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IV. ASYMPTOTIC THRESHOLD AND -VALUES

A. Computation of the Asymptotic Threshold and -Value

In Theorem 1 below, we take advantage of the convergence
results of the largest eigenvalue of under in the asymptotic
regime to express the threshold and the -value of
interest in terms of Tracy–Widom quantiles. Recall that

, that , and that is given by (17).

Theorem 1: Consider a fixed level and let be
the threshold for which the power of test (7) is maximum, i.e.,

where is defined by (11). Then:
1) The following convergence holds true

2) The PFA of the following test:

(23)

converges to .
3) The -value associated with the GLRT can be ap-

proximated by

(24)

in the sense that .

Remark 5: Theorem 1 provides a simple approach to com-
pute both the threshold and the -values of the GLRT as the
dimension of the observed time series and the number of
snapshots are large: The threshold associated with the level

can be approximated by the righthand side of (23). Similarly,
(24) provides a convenient approximation for the -value asso-
ciated with one experiment. These approaches do not require
the tedious computation of the exact complementary c.d.f. (11)
and, instead, only rely on tables of the c.d.f. , which can be
found, for instance, in [39] along with more details on the com-
putational aspects (note that function does not depend on
any of the problem’s characteristic, and in particular not on ).
This is of importance in real-time applications, such as cogni-
tive radio, for instance, where the users connected to the network
must quickly decide on for the presence/absence of a source.

Proof of Theorem 1: Before proving the three points of the
theorem, we first describe the fluctuations of under with
the help of the results in Section III-A. Assume without loss of
generality that , recall that and denote by

(25)

the rescaled and centered version of the statistics . A direct
application of Slutsky’s lemma (see, for instance, [27]) together
with the fluctuations of as reminded in Section III-A yields
that converges in distribution to a standard Tracy–Widom
random variable with c.d.f. which is continuous over .
Denote by the c.d.f. of under , then a classical result,

sometimes called Polya’s theorem (see, for instance, [42]), as-
serts that the convergence of towards is uniform over

(26)

We are now in position to prove the theorem.
The mere definition of implies that

. Due to (26), . As has a contin-
uous inverse, the first point of the theorem is proved.

The second point is a direct consequence of the convergence
of toward the Tracy–Widom distribution: The PFA of test
(23) can be written as: which readily con-
verges to .

The third point is a direct consequence of (26):
. This completes the

proof of Theorem 1.

V. ASYMPTOTIC ANALYSIS OF THE POWER OF THE TEST

In this section, we provide an asymptotic analysis of the
power of the GLRT as . As the power of the test
goes exponentially to zero, its error exponent is computed
with the help of the large deviations associated to the largest
eigenvalue of matrix . The error exponent and error exponent
curve are computed in Theorem 2, Section V-A; the large devi-
ations of interest are stated in Section V-B. Finally, Theorem 2
is proved in Section V-C.

A. Error Exponents and Error Exponent Curve

The most natural approach to characterize the performance of
a test is to evaluate its power or equivalently its miss probability
i.e., the probability under that the receiver decides hypoth-
esis . For a given level , the miss probability writes

(27)

Based on Section II-B, the infimum is achieved when the
threshold coincides with ; otherwise stated,

(notice that the miss probability
depends on the unknown parameters and ). As
has no simple expression in the general case, we again study its
asymptotic behavior in the asymptotic regime of interest (13).
It follows from Theorem 1 that
for . On the other hand, under hypothesis
converges a.s. to which is strictly greater than when the

ratio is large enough. In this case, goes
to zero as it expresses the probability that deviates from
its limit ; moreover, one can prove that the convergence to
zero is exponential in

(28)

where is the so-called rate function associated to . This
observation naturally yields the following definition of the error
exponent

(29)
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the existence of which is established in Theorem 2 below (as
). Also proved is the fact that does not depend

on .
The error exponent gives crucial information on the per-

formance of the test , provided that the level is kept fixed
when go to infinity. Its existence strongly relies on the
study of the large deviations associated to the statistics .

In practice, however, one may as well benefit from the in-
creasing number of data not only to decrease the miss proba-
bility, but to decrease the PFA as well. As a consequence, it is
of practical interest to analyze the detection performance when
both the miss probability and the PFA go to zero at exponen-
tial speed. A couple is said to be an
achievable pair of error exponents for the test if there exists
a sequence of levels such that, in the asymptotic regime (13)

and

(30)

We denote by the set of achievable pairs of error exponents
for test as . We refer to as the error exponent
curve of .

The following notations are needed in order to describe the
error exponent and error exponent curve

(31)

Remark 6: Function is the well-known Stieltjes transform
associated to Marc̆enko–Pastur distribution and admits a closed-
form representation formula. So does function , although
this fact is perhaps less known. These results are gathered in
Appendix C.

Denote by the convex indicator function i.e., the
function equal to zero for and to infinity otherwise. For

, define the function

(32)

Also define the function

(33)

We are now in position to state the main theorem of the section:

Theorem 2: Let Assumption 1 hold true, then:
1) For any fixed level , the limit in (29) exists

as and satisfies

(34)

if and otherwise.

2) The error exponent curve of test is given by

(35)

if and otherwise.
The proof of Theorem 2 relies on the large deviations of

and is postponed to Section V-C. Before providing the proof, it
is worth making the following remarks.

Remark 7: Several variants of the GLRT have been proposed
in the literature, and typically consist in replacing the denomi-
nator (which converges toward ) by a more involved
estimate of in order to decrease the bias [12]–[15]. However,
it can be established that the error exponents of the above vari-
ants are as well given by (34) and (35) in the asymptotic regime.

Remark 8: The error exponent yields a simple approxima-
tion of the miss probability in the sense that
as . It depends on the limiting ratio and on the
value of the SNR through the constant . In the high SNR
case, the error exponent turns out to have a simple expression
as a function of . If then tends to infinity as
well, which simplifies the expression of rate function . Using

where stands for a term
which converges to zero as , it is straightforward to show
that for each

. After some algebra, we finally obtain

At high SNR, this yields the following convenient approxima-
tion of the miss probability:

(36)

where .

B. Large Deviations Associated to

In order to express the error exponents of interest, a rigorous
formalization of (28) is needed. Let us recall the definition of
a Large Deviation Principle: A sequence of random variables

satisfies a Large Deviation Principle (LDP) under
in the scale with good rate function if the following prop-
erties hold true:

• is a nonnegative function with compact level sets, i.e.,
is compact for .

• For any closed set the following upper bound holds
true:

(37)

• For any open set the following lower bound holds
true:

(38)
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For instance, if is a set such that
, (where and respectively denote the inte-

rior and the closure of ), then (37) and (38) yield

(39)

Informally stated

If, moreover (which typically happens if the limit
of -if existing- does not belong to ), then probability

goes to zero exponentially fast; hence, a large de-
viation (LD); and the event can be referred to as a
rare event. We refer the reader to [43] for further details on the
subject.

As already mentioned above, all the probabilities of interest
are rare events as go to infinity related to large deviations
for . More precisely, Theorem 2 is merely a consequence of
the following Lemma.

Lemma 1: Let Assumption 1 hold true and let ,
then:

1) Under satisfies the LDP in the scale with good
rate function , which is increasing from 0 to on in-
terval .

2) Under and if satisfies the LDP in the scale
with good rate function . Function is decreasing

from to 0 on and increasing from 0 to
on .

3) For any bounded sequence

(40)

4) Let and let be any real sequence
which converges to . If , then

(41)

The proof of Lemma 1 is provided in Appendix A.

Remark 9:
1) The proof of the large deviations for relies on the fact

that the denominator of concentrates much
faster than . Therefore, the large deviations of are
driven by those of , a fact that is exploited in the proof.

2) In Appendix A, we rather focus on the large deviations of
under and skip the proof of Lemma 1-(1), which

is simpler and available (to some extent) in [29, Theorem
2.6.6]].5 Indeed, the proof of the LDP relies on the joint
density of the eigenvalues. Under , this joint density has
an extra-term, the spherical integral, and is thus harder to
analyze.

5See also the errata sheet for the sign error in the rate function on the authors
webpage.

3) Lemma 1-(3) is not a mere consequence of Lemma 1-(2) as
it describes the deviations of at the vicinity of a point
of discontinuity of the rate function. The direct application
of the LDP would provide a trivial lower bound in
this case.

4) In the case where the entries of matrix are real
Gaussian random variables, the results stated in Lemma
1 will still hold true with minor modifications: The rate
functions will be slightly different. Indeed, the computa-
tion of the rate functions relies on the joint density of the
eigenvalues, which differs whether the entries of are
real or complex.

C. Proof of Theorem 2

In order to prove (34), we must study the asymptotic be-
havior of the miss probability
as . Using Theorem 1-(1), we recall that

(42)

where converges to and where is a deterministic
sequence such that

Hence, Lemma 1-(3) yields the first point of Theorem 2. We
now prove the second point. Assume that . Consider any

and for every , consider the test function
which rejects the null hypothesis when

(43)

Denote by the PFA associated with this
test. By Lemma 1-(1) together with the continuity of the rate
function at , we obtain

(44)

The miss probability of this test is given by
. By Lemma 1-(2)

(45)

Equations (44) and (45) prove that is an achiev-
able pair of error exponents. Therefore, the set in the right-
hand side of (35) is included in . We now prove the con-
verse. Assume that is an achievable pair of error expo-
nents and let be a sequence such that (30) holds. Denote
by the threshold associated with level .
As is continuous and increasing from 0 to on in-
terval , there exists a (unique) such that

. We now prove that converges to as tends
to infinity. Consider a subsequence which converges to a
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limit . Assume that . Then there exists
such that for large . This yields

(46)

Taking the limit in both terms yields by
Lemma 1, which contradicts the fact that is an increasing
function. Now assume that . Similarly

(47)

for a certain and for large enough. Taking the limit of both
terms, we obtain which leads to the same
contradiction. This proves that . Recall that by
definition (30)

As tends to , Lemma 1 implies that the righthand side of
the above equation is equal to if
and . It is equal to 0 if or . Now

by definition; therefore, both conditions
and hold. As a conclusion, if is an achievable pair
of error exponents, then for a certain

, and furthermore . This completes the
proof of the second point of Theorem 2.

VI. COMPARISON WITH THE TEST BASED

ON THE CONDITION NUMBER

This section is devoted to the study of the asymptotic perfor-
mances of the test , which is popular in cognitive radio
[22]–[24]. The main result of the section is Theorem 3, where it
is proved that the test based on asymptotically outperforms
the one based on in terms of error exponent curves.

A. Description of the Test

A different approach which has been introduced in several
papers devoted to cognitive radio contexts consists in rejecting
the null hypothesis for large values of the statistics defined
by

(48)

which is the ratio between the largest and the smallest eigen-
values of . Random variable is the so-called condition
number of the sampled covariance matrix . As for , an
important feature of the statistics is that its law does not
depend of the unknown parameter which is the level of the
noise. Under hypothesis , recall that the spectral measure of

weakly converges to the Marc̆enko–Pastur distribution (14)
with support . In addition to the fact that converges

toward under and under , the following result
related to the convergence of the lowest eigenvalue is of impor-
tance (see, for instance, [44], [45], and [41])

(49)

under both hypotheses and . Therefore, the statistics
admits the following limits:

and

(50)

The test is based on the observation that the limit of under
the alternative is strictly larger than the ratio , at least
when the SNR is large enough.

B. A Few Remarks Related to the Determination of the
Threshold for the Test

The determination of the threshold for the test relies on
the asymptotic independence of and under . As we
shall prove below that test is asymptotically outperformed
by test , such a study, rather involved, seems beyond the
scope of this article. For the sake of completeness, however, we
describe informally how to set the threshold for . Recall the
definition of in (16) and let be defined as

Then both and converge toward Tracy–Widom random
variables. Moreover

where and are independent random variables, both dis-
tributed according to .6

As a corollary of the previous convergence, a direct applica-
tion of the Delta method [27, Chapter 3] yields the following
convergence in distribution

where

and

which enables one to set the threshold of the test, based on the
quantiles of the random variable . In particular, fol-
lowing the same arguments as in Theorem 1-1), one can prove

6Such an asymptotic independence is not formally proved yet for �� under
� , but is likely to be true as a similar result has been established in the case of
the Gaussian Unitary Ensemble [46], [40].
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that the optimal threshold (for some fixed ), defined
by , satisfies

In particular, is bounded as .

C. Performance Analysis and Comparison With the GLRT

We now provide the performance analysis of the above test
based on the condition number in terms of error exponents.
In accordance with the definitions of Section V-A, we define
the miss probability associated with test as

for any level , where the infimum
is taken w.r.t. all thresholds such that . We
denote by the limit of sequence (if it ex-
ists) in the asymptotic regime (13). We denote by the error
exponent curve associated with test i.e., the set of couples

of positive numbers for which
for a certain sequence which satisfies .

Theorem 3 below provides the error exponents associated
with test . As for the performance of the test is expressed
in terms of the rate function of the LDPs for under or .
These rate functions combine the rate functions for the largest
eigenvalue , i.e., and defined in Section V-B, together
with the rate function associated to the smallest eigenvalue, ,
defined below. As we shall see, the positive rank-one perturba-
tion does not affect whose rate function remains the same
under and .

We first define

(51)

As for , function also admits a closed-form expression
based on , the Stieltjes transform of Marc̆enko–Pastur distribu-
tion (see Appendix C for details).

Now, define for each

(52)

If and were independent random variables, the contrac-
tion principle (see e.g., [43]) would imply that the following
functions

and

defined for each , are the rate functions associated with
the LDP governing under hypotheses and re-
spectively. Of course, and are not independent, and the
contraction principle does not apply. However, a careful study
of the p.d.f. and shows that and behave as
if they were asymptotically independent, from a large deviation
perspective:

Lemma 2: Let Assumption 1 hold true and let ,
then:

1) Under satisfies the LDP in the scale with good
rate function .

2) Under and if satisfies the LDP in the scale
with good rate function .

3) For any bounded sequence

(53)

Moreover, .
4) Let and let be any real sequence

which converges to . If , then

(54)

Remark 10: In the context of Lemma 1, both quantities
and deviate at the same speed, to the contrary of statistics

where the denominator concentrated much faster than the
largest eigenvalue . Nevertheless, proof of Lemma 2 is a slight
extension of the proof of Lemma 1, based on the study of the
joint deviations , the proof of which can be performed
similarly to the proof of the deviations of . Once the large
deviations established for the couple , it is a matter of
routine to get the large deviations for the ratio . A proof
is outlined in Appendix B.

We now provide the main result of the section.

Theorem 3: Let Assumption 1 hold true, then:
1) For any fixed level and for each , the error

exponent exists and coincides with .
2) The error exponent curve of test is given by

(55)

if and otherwise.
3) The error exponent curve of test uniformly domi-

nates in the sense that for each there exits
such that .

Proof: The proof of items (1) and (2) is merely book-
keeping from the proof of Theorem 2 with Lemma 2 at hand.

Let us prove item (3). The key observation lies in the fol-
lowing two facts:

(56)

(57)

Recall that



2410 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 4, APRIL 2011

where follows from the fact that and by taking
. Assume that inequality is strict. Due to the

fact that is decreasing, the only way to decrease the value
of under the considered constraint
is to find a couple with , but this cannot happen
because this would enforce so that the constraint

remains fulfilled, and this would end up with .
Necessarily, is an equality and (56) holds true.

Let us now give a sketch of proof for (57). Notice first that

(which easily follows from the fact that
is increasing and differentiable) while . This
equality follows from the direct computation:

where the last equality follows from the fact that
together with the closed-form expression for as given in
Appendix C. As previously, write

Consider now a small perturbation and the related
perturbation so that the constraint remains
fulfilled. Due to the values of the derivatives of and at
respective points and , the decrease of will be
larger than the increase of , and this will result in
the fact that

which is the desired result, which in turn yields (57).
We can now prove Theorem 3-(3). Let and

, we shall prove that . Due to the mere
definitions of the curves and , there exist
and such that .
Equation (57) yields that . As is decreasing, we have

and the proof is completed.

Remark 11: Theorem 3-(1) indicates that when the number
of data increases, the powers of tests and both converge
to one at the same exponential speed , provided that the
level is kept fixed. However, when the level goes to zero ex-
ponentially fast as a function of the number of snapshots, then
the test based on outperforms in terms of error expo-
nents: The power of converges to one faster than the power
of . Simulation results for fixed sustain this claim (cf.
Fig. 4). This proves that in the context of interest ,
the GLRT approach should be prefered to the test .

VII. NUMERICAL RESULTS

In the following section, we analyze the performance of the
proposed tests in various scenarios.

Fig. 2 compares the error exponent of test with the optimal
NP test (assuming that all the parameters are known) for various
values of and . The error exponent of the NP test can be easily
obtained using Stein’s Lemma (see, for instance, [47]).

In Fig. 3, we compare the Error Exponent curves of both tests
and . The analytic expressions provided in 2 and 3 for

the Error Exponent curves have been used to plot the curves.
The asymptotic comparison clearly underlines the gain of using
test .

Finally, we compare in Fig. 4 the powers (computed by
Monte-Carlo methods) of tests and for finite values
of and . We consider the case where
and and plot the probability of error under versus
the power of the test, that is versus (resp.

) where is fixed by the following condition:

VIII. CONCLUSION

In this contribution, we have analyzed in detail the GLRT in
the case where the noise variance and the channel are unknown.
Unlike similar contributions, we have focused our efforts on the
analysis of the error exponent by means of large random matrix
theory and large deviation techniques. Closed-form expressions
were obtained and enabled us to establish that the GLRT asymp-
totically outperforms the test based on the condition number,
a fact that is supported by finite-dimension simulations. We
also believe that the large deviations techniques introduced here
will be of interest for the engineering community, beyond the
problem addressed in this paper.

APPENDIX A
PROOF OF LEMMA 1: LARGE DEVIATIONS FOR

The large deviations of the largest eigenvalue of large random
matrices have already been investigated in various contexts,
Gaussian Orthogonal Ensemble [48] and deformed Gaussian
ensembles [21]. As mentionned in [21, Remark 1.2], the proofs
of the latter can be extended to complex Wishart matrix models,
that is random matrices under or .

In both cases, the large deviations of rely on a close study
of the density of the eigenvalues, either given by (12) (under

) or by (19) for the spiked model (under ). The study of
the spiked model, as it involves the study of the asymptotics of
the spherical integral (see Lemma 3 below), is more difficult.
We, therefore, focus on the proof of the LDP under (Lemma
1-(2)) and omit the proof of Lemma 1-(1). Once Lemma 1-(2) is
proved, proving Lemma 1-(1) is a matter of bookkeeping, with
the spherical integral removed at each step.

Recall that are the ordered eigenvalues of
and that is the statistics defined in (6).

In the sequel, we shall prove the upper bound of the LDP
in Lemma 1-(2) [which gives also the upper bound in Lemma
1-(3)]. The proof of the lower bound in Lemma 1-(3) requires
more precise arguments than the lower bound of the LDP. One
has indeed to study what happens at the vicinity of which
is a point of discontinuity of the rate function . Thus, we skip
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Fig. 1. Plots of rate functions � and � in the case where � � ��� and � � � db. In this case, � � ������� � � �� � 	� 
 � � and � 	� 
 � �.

the proof of the lower bound of the LDP in Lemma 1-(2) to
avoid repetition. Note that the proof of Lemma 1-(4) is a mere
consequence of the fact that converges a.s. to if
thus converges to 1 whenever converges to

.
For the sake of simplicity and with no loss of generality as

the law of does not depend on we assume all along this
Appendix that . We first recall important asymptotic
results for spherical integrals.

A. Useful Facts About Spherical Integrals

Recall that the joint distributions of the ordered eigen-
values under hypothesis and are respectively given
by (12) and (19). In the latter, the so-called spherical integral
(20) is introduced. We recall here results from [21] related
to the asymptotic behavior of the spherical integral in the
case where one diagonal matrix is of rank one and the other
has the limiting distribution . We first introduce the
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Fig. 2. Computation of the logarithm of the error exponent � associated to the test � for different values of � (with � defined for � � �
� and � � � �),

and comparison with the optimal result (Neyman-Pearson) obtained in the case where all the parameters are perfectly known.

function defined for by (58), shown at the bottom
of the page.

Consider a -tuple and denote by
the empirical distribution associated to

; let be a metric compatible with the topology
of weak convergence of measures (for example the Dudley
distance; see, for instance, [49]). A strong version of the
convergence of the spherical integral in the exponential scale
with speed , established in [21] can be summarized in the
following Lemma:

Lemma 3: Assume that and and
let Assumption 1 hold true. Let and

. If, for large enough, and
then

where is given by (58), and
.

Recall that the spherical integral , defined in (20), appears
in the joint density (19) of the eigenvalues under . Lemma 3
provides a simple asymptotic equivalent of the normal-
ized integral . Roughly speaking, this will enable
us to replace by the quantity when establishing

the large deviations of , which rely on a careful study of den-
sity (19).

B. Proof of Lemma 1-(2)

In order to establish the LDP under hypothesis and con-
dition , [that is the bounds (37) and (38)], we first no-
tice that intervals for form a basis of
the topology of . The LDP is a consequence of the bound
(59), (60), and (61), given below.7 Bounds (60) and (61) yield
the weak LDP due to [43, Theorem 4.1.11] and the exponential
tightness (59) yields the full LDP.

• (Exponential tightness) there exists a function
going to infinity at infinity such that for all

(59)

Condition (59) is technical (see, for instance, [43, Lemma
1.2.18]): Instead of proving the large deviation upper
bound for every closed set, the exponential tightness (59),
if established, enables one to restrict to the compact sets.
Formally, exponential tightness should be established
for , but this directly follows from (59) and the large
deviations rate of

7In fact, as discussed below, it is easier to first establish similar bounds for
an auxiliary measure introduced in the sequel, which in turn will yield the
LDP for � under .

and
(58)
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Fig. 3. Error Exponent curves associated to the tests � �� � and � �� � in the case where � � and � � �� dB. Each point of the curve corresponds to a
given error exponent under � (� axis) and its counterpart error exponent under � (� axis) as described in Theorem 2-(2) for � and Theorem 3-(2) for � .

Fig. 4. Simulated ROC curves for � (test 1) and � (test 2) in the case where � � ��	 
 � �� and � � �� dB.

• (Upper bound) For any , for any such that

(60)

Due to the exponential tightness, it is sufficient to establish
the upper bound for compact sets. As each compact can be
covered by a finite number of balls, it is, therefore, suffi-
cient to establish upper estimate (60) in order to establish
the LD upper bound.

• (Lower bound) For any

(61)

The fact that (61) implies the LD lower bound (38) is stan-
dard in LD and can be found in [43, Chapter 1], for in-
stance.

As the arguments are very similar to the ones developed in [21],
we only prove in detail the upper bound (60). Proofs of (59) and
(61) are left to the reader.
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The idea is that the empirical measure

(of all but the largest eigenvalues) and the
trace concentrate faster than the largest eigenvalue. In the
exponential scale with speed and the trace can be
considered as equal to their limit, respectively and 1. In
particular, the deviations of arise from those of the largest
eigenvalue and they both satisfy the same LDP with the same
rate function . We, therefore, isolate the terms depending on

and gather the others through their empirical measure .
Recall the notations introduced in (12) and (19) and let

. Consider the following domain:

for large enough

where we performed the change of variables for
, and the related modifications and

. Note also that strictly
speaking, the domain of integration would be expressed dif-
ferently with the ’s and in particular, we should have changed
constant which majorizes the ’s into a larger constant as the

’s can theoretically be slightly above —we keep the same
notation for the sake of simplicity.

To proceed, one has to study the asymptotic behavior of the
normalizing constant

which turns out to be difficult. Instead of establishing directly
the bounds (59)–(61), we proceed as in [21] and establish similar

bounds replacing the probability measures by the measures
defined as

and the rate function by the function defined by

for . Notice that these positive measures are not
probability measures any more, and as a consequence, the func-
tion is not necessarily positive and its infimum might not be
equal to zero, as it is the case for a rate function.

Writing the upper bound for , we obtain

where, for any compactly supported probability measure and
any real number greater than the right edge of the support of

Let us now localize the empirical measure around 8

and the trace around 1. The continuity and convergence proper-
ties of the spherical integral recalled in Lemma 3 yield, for
large enough

(62)

with

and

Note that the bounds of the first integral in (62) follow from the
fact that the event implies that

provided that is satisfied.
The second term in (62) is easily obtained considering the fact
that all the eigenvalues are less than so that for

8Notice that if �� is close to , so is �� due to the change of variable
� � � .
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and .
Now, standard concentration results under yield that

More precisely, one knows using [50] that the empirical measure
is close enough to its expectation and then using

[51] one knows that the expectation is close enough to its limit
. The arguments are detailed in the Wigner case in [21] and

we do not give more details here.
As for is continuous

and is lower semi-continuous, we obtain

By continuity in of the two involved functions, we finally get

and the counterpart of (60) is proved for and function . The
proof of the lower bound is quite similar and left to the reader. It
remains now to recover (60). As is a probability measure and
the whole space is both open and closed, an application of
the upper and lower bounds for immediately yields

(63)

This implies that the LDP holds for with rate function
.

It remains to check that , which easily
follows from the fact to be proved that

(64)

We, therefore, study the variations of over . Note
that , and thus that

. Function being a Stieltjes transform is in-
creasing for , and so is , whose limit at infinity
is . Straightforward but involved computations using
the explicit representation (67) for yield that .

Therefore, is decreasing on and increasing on
, and (64) is proved.

This concludes the proof of the upper bound in Lemma 1-(2).
The proof of Lemma 1-(1) is very similar and left to the reader.

C. Proof of Lemma 1-(3)

The proof of this point requires an extra argument as we study
the large deviations of near the point where the rate
function is not continuous. In particular, the limit (53) does not
follow from the LDP already established. As we shall see when
considering , the fact that
the scale is the same as the one of the fluctuations of
the largest eigenvalue of the complex Wishart model is crucial.

We detail the proof in the case when and, as above,
consider the positive measures . We need to prove that

(65)

the other bound being a direct consequence of the LDP. As pre-
viously, we will carefully localize the various quantities of in-
terest. Denote by for
and by for . Notice also that

together with imply that
. We shall also consider the further constraints:

and

which enable us to properly separate from the support of
. Now, with the localization indicated above, we have for

large enough

As previously, we consider the variables for
and obtain, with the help of Lemma 3

with
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Therefore

(recall that ). Now, as
, its

contribution vanishes at the LD scale

It remains to check that is bounded
below uniformly in . This will yield the convergence of

towards zero; hence, (65). Con-
sider

We have already used the fact that the first term goes to
zero when grows to infinity. Recall that the fluctuations
of are of order ; therefore, the second term
also goes to zero as we consider deviations of order .
Now, converges in distribution to
the Tracy–Widom law; therefore, the last term converges to

. This concludes the proof.

APPENDIX B
SKETCH OF PROOF FOR LEMMA 2: LARGE DEVIATIONS FOR

As stated in Remark 10, we shall first study the LDP for the
joint quantity . The purpose here is to outline the fol-
lowing convergence:

which is an illustrative way, although informal,9 to state the LDP
for [see (39)].

Consider the quantity . As
we are interested in the deviations of and , the interesting
scenario is and (recall that
are the edgepoints of the support of Marc̆enko–Pastur distribu-
tion). More precisely, the interesting case is when the deviations
of the extreme eigenvalue occur outside of the bulk:
and ; such deviations happen at the rate .
The case where the deviations would occur within the bulk is

9All the statements, computations and approximations below can be made
precise as in the proof of Lemma 1.

unlikely to happen because it would enforce the whole eigen-
values to deviate from the limiting support of Marc̆enko–Pastur
distribution, which happens at the rate . Denote by

and

We shall now perform the following approximations:

The three first approximations follow from the fact that
, the last one from Lemma 3.

Plugging these approximations into the expression of
yields
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As and , the last integral goes
to one as and

Recall that we are interested in the limit
. The last term will account for a constant [see,

for instance, (63)]:

The term within the exponential in the integral ac-
counts for the interraction between and and its contri-
bution vanishes at the desired rate. In order to evaluate the two
remaining integrals, one has to rely on Laplace’s method (see,
for instance, [52]) to express the leading term of the integrals
(replacing by below)

Finally, we get the desired limit

where

It remains to replace by its expression (58) and to spread
the constant over and , which are not a priori rate
functions (recall that a rate function is nonnegative). If ,
then the event is “typical” and no deviation occurs,
otherwise stated, the rate function should satisfy

. Similarly, under and under

. Necessarily, should write under
(resp. under ) and the rate functions
should be given by:
under (resp. under ), which are the
desired results.

We have proved (informally) that the LDP holds true for
with rate function . The contraction

principle [43, Chap. 4] immediatly yields the LDP for the ratio
with rate function

(66)

which is the desired result. We provide here intuitive arguments
to understand this fact.

For this, interpret the value of the rate function as
the cost associated to a deviation of (under ) around :

. If a deviation occurs for
the ratio , say where (which is
the typical behavior of under ), then necessarily must
deviate around some value , so does around some value ,
so that the ratio is around . In terms of rate functions, the cost
of the joint deviation is .
The true cost associated to the deviation of the ratio will be the
minimum cost among all these possible joint deviations of
and ; hence, the rate function (66).

APPENDIX C
CLOSED-FORM EXPRESSIONS FOR FUNCTIONS AND

Consider the Stieltjes transform of Marc̆enko–Pastur distri-
bution

We gather without proofs a few facts related to , which are part
of the folklore.

Lemma 4 (Representation of ): The following hold true:
1) Function is analytic in .
2) If with , then

where stands for the principal branch of the square-
root.

3) If with , then

where stands for the branch of the square-root whose
image is .

4) As a consequence, the following hold true:

(67)

(68)
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5) Consider the following function . Func-
tions and satisfy the following system of equations:

(69)

Recall the definition (31) and (51) of function and .
In the following lemma, we provide closed-form formulas of
interest.

Lemma 5: The following identities hold true:
1) Let then

2) Let then

Proof: Consider the case where . First write

Integrating with respect with and applying Funini’s the-
orem yields

in the case where . Recall that and are holomorphic
functions over and satisfy system (69)
(notice in particular that and never vanish). Using
the first equation of (69) implies that

(70)

Consider . By a
direct computation of the derivative, we get

Hence

It remains to plug this identity into (70) to conclude. The repre-
sentation of can be established similarly.
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